1
|
Hao XL, Chen R, Liu W, Hou BK, Qu LH, Li ZH, Wang DJ, Jin X, Huang HB. Analysis of Phenotypes Associated with Deficiency of PAX6 Haplotypes in Chinese Aniridia Families. Curr Med Sci 2024; 44:820-826. [PMID: 38967890 DOI: 10.1007/s11596-024-2903-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency. METHODS A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives. The clinical feature analysis included the evaluation of visual acuity, intraocular pressure, slit-lamp anterior segment examination, fundus photography, and spectral domain optical coherence tomography. To identify the mutation responsible for aniridia, targeted next-generation sequencing was used as a beneficial technique. RESULTS A total of 4 mutations were identified, consisting of two novel frameshift mutations (c.314delA, p.K105Sfs*33 and c.838_845dup AACACACC, p.S283Tfs*85), along with two recurring nonsense mutations (c.307C>T, p.R103X and c.619A>T, p.K207*). Complete iris absence, macular foveal hypoplasia, and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families, while corneal lesions, cataracts, and glaucoma exhibited heterogeneity both among the families and within the same family. CONCLUSION In our study, two novel PAX6 mutations associated with aniridia were identified in Chinese families, which expanded the phenotypic and genotypic spectrum of PAX6 mutations. We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.
Collapse
Affiliation(s)
- Xiao-Lu Hao
- Senior Department of Opthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ran Chen
- Bolin Eye Care Group, Beijing, 100098, China
| | - Wei Liu
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572000, China
| | - Bao-Ke Hou
- Senior Department of Opthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ling-Hui Qu
- Department of Ophthalmology, the 74th Army Group Hospital, Guangzhou, 510318, China
| | - Zhao-Hui Li
- Senior Department of Opthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Da-Jiang Wang
- Senior Department of Opthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xin Jin
- Senior Department of Opthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Hou-Bin Huang
- Senior Department of Opthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
2
|
Pedersen HR, Gilson SJ, Hagen LA, Holtan JP, Bragadottir R, Baraas RC. Multimodal in-vivo maps as a tool to characterize retinal structural biomarkers for progression in adult-onset Stargardt disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1384473. [PMID: 38984108 PMCID: PMC11182093 DOI: 10.3389/fopht.2024.1384473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024]
Abstract
Purpose To characterize retinal structural biomarkers for progression in adult-onset Stargardt disease from multimodal retinal imaging in-vivo maps. Methods Seven adult patients (29-69 years; 3 males) with genetically-confirmed and clinically diagnosed adult-onset Stargardt disease and age-matched healthy controls were imaged with confocal and non-confocal Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO), optical coherence tomography (OCT), fundus infrared (FIR), short wavelength-autofluorescence (FAF) and color fundus photography (CFP). Images from each modality were scaled for differences in lateral magnification before montages of AOSLO images were aligned with en-face FIR, FAF and OCT scans to explore changes in retinal structure across imaging modalities. Photoreceptors, retinal pigment epithelium (RPE) cells, flecks, and other retinal alterations in macular regions were identified, delineated, and correlated across imaging modalities. Retinal layer-thicknesses were extracted from segmented OCT images in areas of normal appearance on clinical imaging and intact outer retinal structure on OCT. Eccentricity dependency in cell density was compared with retinal thickness and outer retinal layer thickness, evaluated across patients, and compared with data from healthy controls. Results In patients with Stargardt disease, alterations in retinal structure were visible in different image modalities depending on layer location and structural properties. The patients had highly variable foveal structure, associated with equally variable visual acuity (-0.02 to 0.98 logMAR). Cone and rod photoreceptors, as well as RPE-like structures in some areas, could be quantified on non-confocal split-detection AOSLO images. RPE cells were also visible on dark field AOSLO images close to the foveal center. Hypo-reflective gaps of non-waveguiding cones (dark cones) were seen on confocal AOSLO in regions with clinically normal CFP, FIR, FAF and OCT appearance and an intact cone inner segment mosaic in three patients. Conclusion Dark cones were identified as a possible first sign of retinal disease progression in adult-onset Stargardt disease as these are observed in retinal locations with otherwise normal appearance and outer retinal thickness. This corroborates a previous report where dark cones were proposed as a first sign of progression in childhood-onset Stargardt disease. This also supports the hypothesis that, in Stargardt disease, photoreceptor degeneration occurs before RPE cell death.
Collapse
Affiliation(s)
- Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Josephine Prener Holtan
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnheidur Bragadottir
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
3
|
Heitkotter H, Allphin MT, Untaroiu A, Min H, Warr E, Wynne N, Cooper RF, Carroll J. Peak Cone Density Predicted from Outer Segment Length Measured on Optical Coherence Tomography. Curr Eye Res 2024; 49:314-324. [PMID: 38146597 PMCID: PMC10922793 DOI: 10.1080/02713683.2023.2289853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE To compare peak cone density predicted from outer segment length measured on optical coherence tomography with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. METHODS Data from 42 healthy participants with direct peak cone density measures and optical coherence tomography line scans available were used in this study. Longitudinal reflectivity profiles were analyzed using two methods of identifying the boundaries of the ellipsoid and interdigitation zones to estimate maximum outer segment length: peak-to-peak and the slope method. These maximum outer segment length values were then used to predict peak cone density using a previously described geometrical model. A comparison between predicted and direct peak cone density measures was then performed. RESULTS The mean bias between observers for estimating maximum outer segment length across methods was less than 2 µm. Cone density predicted from the peak-to-peak method against direct cone density measures showed a mean bias of 6,812 cones/mm2 with 50% of participants displaying a 10% difference or less between predicted and direct cone density values. Cone density derived from the slope method showed a mean bias of -17,929 cones/mm2 relative to direct cone density measures, with only 41% of participants demonstrating less than a 10% difference between direct and predicted cone density values. CONCLUSION Predicted foveal cone density derived from peak-to-peak outer segment length measurements using commercial optical coherence tomography show modest agreement with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. The methods used here are imperfect predictors of cone density, however, further exploration of this relationship could reveal a clinically relevant marker of cone structure.
Collapse
Affiliation(s)
- Heather Heitkotter
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, USA
| | - Mitchell T. Allphin
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
| | - Ana Untaroiu
- School of Medicine, Medical College of Wisconsin, Milwaukee, USA
| | - Heun Min
- School of Medicine, Medical College of Wisconsin, Milwaukee, USA
| | - Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
| | - Niamh Wynne
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert F. Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin, Milwaukee, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
4
|
Lopez Soriano V, Dueñas Rey A, Mukherjee R, Coppieters F, Bauwens M, Willaert A, De Baere E. Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci. Nat Commun 2024; 15:1600. [PMID: 38383453 PMCID: PMC10881467 DOI: 10.1038/s41467-024-45381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Cross-species genome comparisons have revealed a substantial number of ultraconserved non-coding elements (UCNEs). Several of these elements have proved to be essential tissue- and cell type-specific cis-regulators of developmental gene expression. Here, we characterize a set of UCNEs as candidate CREs (cCREs) during retinal development and evaluate the contribution of their genomic variation to rare eye diseases, for which pathogenic non-coding variants are emerging. Integration of bulk and single-cell retinal multi-omics data reveals 594 genes under potential cis-regulatory control of UCNEs, of which 45 are implicated in rare eye disease. Mining of candidate cis-regulatory UCNEs in WGS data derived from the rare eye disease cohort of Genomics England reveals 178 ultrarare variants within 84 UCNEs associated with 29 disease genes. Overall, we provide a comprehensive annotation of ultraconserved non-coding regions acting as cCREs during retinal development which can be targets of non-coding variation underlying rare eye diseases.
Collapse
Affiliation(s)
- Victor Lopez Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - Frauke Coppieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
5
|
Dentel A, Madani MB, Robert MP, Valleix S, Brémond-Gignac D, Daruich A. Optic Disc Hypoplasia Assessment in PAX6 -Related Aniridia. J Neuroophthalmol 2024:00041327-990000000-00553. [PMID: 38227763 DOI: 10.1097/wno.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND This study aims to characterize optic disc hypoplasia in congenital aniridia using ultra-wide-field imaging (UWFI) and nonmydriatic retinal photography (NMRP). We also investigated the relation between optic disc hypoplasia and foveal hypoplasia. METHODS This is a retrospective case series of patients diagnosed with PAX6 -related aniridia in a National Referral Center, who underwent UWFI, NMRP, and spectral-domain optical coherence tomography (SD-OCT) . The disc diameter (DD) and the disc-to-fovea distance (DF) were measured. The DD:DF ratio was used to assess the relative size of the optic disc. The analyses were carried with respect to paired age- and sex-matched healthy controls. SD-OCT was used for foveal hypoplasia grading (from 1 to 4) and retinal nerve fiber layer (RNFL) analysis. RESULTS Mean manual DD:DF ratio was 0.33 (95% CI: 0.31-0.35) in aniridia patients versus 0.37 (95% CI: 0.36-0.39) in control patients (n = 20, P = 0.005) measured on NMRP and 0.32 (95% CI: 0.30-0.35) in aniridia patients versus 0.37 (95% CI: 0.37-0.39) in control patients (n = 26, P < 0.0001) when assessed on UWFI. Mean semiautomated DD:DF ratio measured on UWFI in aniridia patients was 0.31 (95% CI: 0.29-0.33) versus 0.37 (95% CI: 0.36-0.38) in control patients ( P < 0.0001). Also, a negative correlation was found significant between the grade of foveal hypoplasia and the mean semiautomated DD:DF ratio (r = -0.52, 95% CI: -0.76 to -0.15, P = 0.0067). Finally, a significant negative correlation was found between the peripapillary temporal RNFL thickness and the grade of foveal hypoplasia ( P = 0.0034). CONCLUSIONS The DD:DF ratio is significantly reduced in PAX6 -related aniridia patients and correlates with the severity of foveal hypoplasia. This ratio is a valuable tool for optic disc hypoplasia assessment in congenital aniridia, especially when provided semiautomatically by UWFI.
Collapse
Affiliation(s)
- Alexandre Dentel
- Ophthalmology Department (Alexandre Dentel, MBM, MPR, DB-G, Alejandra Daruich), Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre (MPR), UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France; INSERM (SV, DB-G, Alejandra Daruich), UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; and Medecine Genomic Department of Systemic and Organ Diseases (SV), Cochin Hospital, APHP, Paris Cité University, Paris, France
| | | | | | | | | | | |
Collapse
|
6
|
Cole JD, McDaniel JA, Nilak J, Ban A, Rodriguez C, Hameed Z, Grannonico M, Netland PA, Yang H, Provencio I, Liu X. Characterization of neural damage and neuroinflammation in Pax6 small-eye mice. Exp Eye Res 2024; 238:109723. [PMID: 37979905 PMCID: PMC10843716 DOI: 10.1016/j.exer.2023.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Aniridia is a panocular condition characterized by a partial or complete loss of the iris. It manifests various developmental deficits in both the anterior and posterior segments of the eye, leading to a progressive vision loss. The homeobox gene PAX6 plays an important role in ocular development and mutations of PAX6 have been the main causative factors for aniridia. In this study, we assessed how Pax6-haploinsufficiency affects retinal morphology and vision of Pax6Sey mice using in vivo and ex vivo metrics. We used mice of C57BL/6 and 129S1/Svlmj genetic backgrounds to examine the variable severity of symptoms as reflected in human aniridia patients. Elevated intraocular pressure (IOP) was observed in Pax6Sey mice starting from post-natal day 20 (P20). Correspondingly, visual acuity showed a steady age-dependent decline in Pax6Sey mice, though these phenotypes were less severe in the 129S1/Svlmj mice. Local retinal damage with layer disorganization was assessed at P30 and P80 in the Pax6Sey mice. Interestingly, we also observed a greater number of activated Iba1+ microglia and GFAP + astrocytes in the Pax6Sey mice than in littermate controls, suggesting a possible neuroinflammatory response to Pax6 deficiencies.
Collapse
Affiliation(s)
- James D Cole
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - John A McDaniel
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Joelle Nilak
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ashley Ban
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Carlos Rodriguez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Zuhaad Hameed
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA.
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Nilsen NG, Gilson SJ, Lindgren H, Kjærland M, Pedersen HR, Baraas RC. Seasonal and Annual Change in Physiological Ocular Growth of 7- to 11-Year-Old Norwegian Children. Invest Ophthalmol Vis Sci 2023; 64:10. [PMID: 38064230 PMCID: PMC10709800 DOI: 10.1167/iovs.64.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose To investigate seasonal and annual change in physiological eye growth in Norwegian school children. Methods Measurements of ocular biometry, non-cycloplegic spherical equivalent autorefraction (SER), and choroidal thickness (ChT) were obtained for 92 children (44 females) aged 7 to 11 years at four time points over a year (November 2019-November 2020). Seasons (3- and 5-month intervals) were classified as winter (November-January), winter-spring (January-June), and summer-autumn (June-November). Cycloplegic SER was obtained in January and used to group children. The seasonal and annual changes were tested with a linear mixed-effects model (P values were adjusted for multiple comparisons). Results All the children experienced annual ocular growth, irrespective of SER, but less so during the summer-autumn. The baseline SER was lower (P < 0.001), axial length (AL) was longer (P < 0.038), and choroids were thicker in 10- to 11-year-old than 7- to 8-year-old mild hyperopes (P = 0.002). Assuming mild hyperopes (n = 65) experience only physiological eye growth, modeling revealed seasonal and annual increases in AL across sex and age (P < 0.018), with less change during the summer-autumn than winter-spring. The 7- to 8-year-olds had a larger decrease annually and over winter-spring in SER (P ≤ 0.036) and in ChT over winter-spring than the 10- to 11-year-olds (P = 0.006). Conclusions There were significant seasonal and annual changes in AL in children who had physiological eye growth irrespective of age within this cohort. Annual changes in SER and seasonal choroidal thinning were only observed in 7- to 8-year-old children. This indicates continued emmetropization in 7- to 8-year-olds and a transition to maintaining emmetropia in 10- to 11-year-olds.
Collapse
Affiliation(s)
- Nickolai G. Nilsen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J. Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Helene Lindgren
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Marianne Kjærland
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R. Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Rigmor C. Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
8
|
Torrefranca AB, Carmona SM, Santiago APD, Cutiongco-Dela Paz E, Lingao MD. Isolated aniridia caused by a novel PAX6 heterozygous deletion mediated by multi-exon complex rearrangement. Ophthalmic Genet 2023; 44:501-504. [PMID: 36440799 DOI: 10.1080/13816810.2022.2144904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Mutations in PAX6 gene (chromosome 11p13) encoding a transcriptional regulator involved in oculogenesis mostly present with aniridia. Aniridia is not uncommon in the Philippines but only limited information is available as yet. The purpose of this study was to present a novel, deletion mediated by complex rearrangement in PAX6 gene causing an isolated aniridia in a Filipino girl. PATIENTS AND METHODS The patient is an 8-year-old girl who came in due to leukocoria with associated nystagmus and esotropia. She presented with subnormal vision, nystagmus, aniridia, and cataractous lenses in both eyes. The family history reveals presence of the aniridia and cataract with the mother and a sibling. The patient underwent lens extraction without intraocular lens implantation bilaterally, where patient subsequently underwent intraocular lens implantation on her left eye. Systemic workup was performed including whole abdomen, renal ultrasound, blood chemistry, and urinalysis. Targeted cataract panel with WT1 and PAX6 genes revealed a novel, heterozygous PAX6-inherited mutation from the mother. This variant is a complex rearrangement in PAX6 involving partial deletions of exons 3-5, including the initiator codon. Deletions of PAX6 are part of a contiguous gene deletion syndrome - Wilms tumor, aniridia, genitourinary anomalies, and intellectual disability syndrome - and therefore evaluation of the WT1 gene was necessary to rule out this life-threatening syndrome. CONCLUSION This rare, complex rearrangement of multiple exons and deletions in PAX6 causing an isolated aniridia phenotype is probably the first reported case. The patient was managed by a multidisciplinary team and the guardians were counseled regarding the prognosis and complications.
Collapse
Affiliation(s)
- Aramis B Torrefranca
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines, Manila, Philippines
| | - Suzanne Marie Carmona
- Institute of Human Genetics, National Institute of Health, University of the Philippines Manila, Manila, Philippines
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, Philippine General Hospital, University of the Philippines, Manila, Philippines
| | - Alvina Pauline D Santiago
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines, Manila, Philippines
| | - Eva Cutiongco-Dela Paz
- Institute of Human Genetics, National Institute of Health, University of the Philippines Manila, Manila, Philippines
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, Philippine General Hospital, University of the Philippines, Manila, Philippines
| | - Michelle D Lingao
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines, Manila, Philippines
| |
Collapse
|
9
|
Wang Q, Wei WB, Shi XY, Rong WN. A novel PAX6 variant as the cause of aniridia in a Chinese patient with SRRRD. BMC Med Genomics 2023; 16:182. [PMID: 37542296 PMCID: PMC10401864 DOI: 10.1186/s12920-023-01620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The genotype characteristics and their associated clinical phenotypes in patients with aniridia were analyzed to explore pathogenic variants using whole-exome sequencing. METHODS One patient with aniridia was enrolled at the Beijing Tongren Hospital. Comprehensive ophthalmic and general examinations were performed on the patient. DNA was extracted from the patient, and whole-exome sequencing was performed to identify the causative variant. The pathogenicity of the variant was predicted using in silico analysis and evaluated according to American College of Medical Genetics and Genomics guidelines. Relationships between genetic variants and clinical features were analyzed. RESULTS In addition to the classical aniridia phenotype showing complete iris aplasia, foveal hypoplasia, and ectopic lentis, the patient also exhibited spontaneous reattachment rhegmatogenous retinal detachment (SRRRD). Whole-exome sequencing identified a novel heterozygous variant, exon8:c.640_646del:p.R214Pfs*28. CONCLUSIONS The present study broadens the range of genetic variants described in aniridia and presents an aniridia patient with SRRRD.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China
| | - Xiang Yu Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China.
| | - Wei Ning Rong
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Huanghe Road, Jinfeng District, the Ningxia Hui Autonomous Region, Yinchuan, 750002, China.
| |
Collapse
|
10
|
Adair BA, Korecki AJ, Djaksigulova D, Wagner PK, Chiu NY, Lam SL, Lengyell TC, Leavitt BR, Simpson EM. ABE8e Corrects Pax6-Aniridic Variant in Humanized Mouse ESCs and via LNPs in Ex Vivo Cortical Neurons. Ophthalmol Ther 2023; 12:2049-2068. [PMID: 37210469 PMCID: PMC10287867 DOI: 10.1007/s40123-023-00729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023] Open
Abstract
INTRODUCTION Aniridia is a rare congenital vision-loss disease caused by heterozygous variants in the PAX6 gene. There is no vision-saving therapy, but one exciting approach is to use CRISPR/Cas9 to permanently correct the causal genomic variants. Preclinical studies to develop such a therapy in animal models face the challenge of showing efficacy when binding human DNA. Thus, we hypothesized that a CRISPR gene therapy can be developed and optimized in humanized mouse embryonic stem cells (ESCs) that will be able to distinguish between an aniridia patient variant and nonvariant chromosome and lay the foundation for human therapy. METHODS To answer the challenge of binding human DNA, we proposed the "CRISPR Humanized Minimally Mouse Models" (CHuMMMs) strategy. Thus, we minimally humanized Pax6 exon 9, the location of the most common aniridia variant c.718C > T. We generated and characterized a nonvariant CHuMMMs mouse, and a CHuMMMs cell-based disease model, in which we tested five CRISPR enzymes for therapeutic efficacy. We then delivered the therapy via lipid nanoparticles (LNPs) to alter a second variant in ex vivo cortical primary neurons. RESULTS We successfully established a nonvariant CHuMMMs mouse and three novel CHuMMMs aniridia cell lines. We showed that humanization did not disrupt Pax6 function in vivo, as the mouse showed no ocular phenotype. We developed and optimized a CRISPR therapeutic strategy for aniridia in the in vitro system, and found that the base editor, ABE8e, had the highest correction of the patient variant at 76.8%. In the ex vivo system, the LNP-encapsulated ABE8e ribonucleoprotein (RNP) complex altered the second patient variant and rescued 24.8% Pax6 protein expression. CONCLUSION We demonstrated the usefulness of the CHuMMMs approach, and showed the first genomic editing by ABE8e encapsulated as an LNP-RNP. Furthermore, we laid the foundation for translation of the proposed CRISPR therapy to preclinical mouse studies and eventually patients with aniridia.
Collapse
Affiliation(s)
- Bethany A Adair
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Diana Djaksigulova
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | | | - Nina Y Chiu
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Incisive Genetics Inc., Vancouver, BC, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
11
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
12
|
Wang C, Yang W, Li X, Zhou C, Liu J, Jin L, Jiang Q, Wang Y. A Novel PAX6 Frameshift Mutation Identified in a Large Chinese Family with Congenital Aniridia. J Pers Med 2023; 13:jpm13030442. [PMID: 36983625 PMCID: PMC10052173 DOI: 10.3390/jpm13030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Congenital aniridia is a rare autosomal dominant congenital ocular disorder. Genetic studies suggest that heterozygous mutations in the developmental regulator PAX6 gene or the related regulatory regions leading to haploinsufficiency are the main cause of congenital aniridia. In this study, the clinical characteristics and pathogenic mutation of a four-generation Chinese family with congenital aniridia were investigated. All members recruited in this study underwent comprehensive ophthalmic examinations. Targeted gene capture sequencing and Sanger sequencing were performed to screen and confirm the candidate pathogenicity gene and its mutation. A multiple alignment of homologous sequences covering the identified mutation from different species was investigated, and the mutant protein structure was predicted using Swiss-Model. Additionally, the prediction of pathogenicity was analyzed using the ACMG Guidelines. Thirteen patients in this pedigree were diagnosed with congenital aniridia. A novel heterozygous frameshift mutation (c.391_398dupATACCAAG, p.Ser133Argfs*8) in exon 7 of the PAX6 gene was identified in all affected individuals in the family. This study demonstrates that this frameshift mutation of the PAX6 gene might be the causative genetic defect of congenital aniridia in this family. This mutation is predicted to cause the premature truncation of the PAX6 protein, leading to the functional haploinsufficiency of PAX6, which may be the major molecular mechanism underlying the aniridia phenotype. To the best of our knowledge, this is the first report of a novel pathogenic PAX6 gene variant c.391_398dupATACCAAG(p.Ser133Argfs*8) identified in a Chinese family with congenital aniridia.
Collapse
Affiliation(s)
- Chenghu Wang
- Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Weihua Yang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen 518040, China
| | - Xiumiao Li
- Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chenchen Zhou
- Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jinghua Liu
- Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Ling Jin
- Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Qin Jiang
- Eye Hospital, Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Q.J.); (Y.W.)
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen 518040, China
- Correspondence: (Q.J.); (Y.W.)
| |
Collapse
|
13
|
Van de Sompele S, Small KW, Cicekdal MB, Soriano VL, D'haene E, Shaya FS, Agemy S, Van der Snickt T, Rey AD, Rosseel T, Van Heetvelde M, Vergult S, Balikova I, Bergen AA, Boon CJF, De Zaeytijd J, Inglehearn CF, Kousal B, Leroy BP, Rivolta C, Vaclavik V, van den Ende J, van Schooneveld MJ, Gómez-Skarmeta JL, Tena JJ, Martinez-Morales JR, Liskova P, Vleminckx K, De Baere E. Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy. Am J Hum Genet 2022; 109:2029-2048. [PMID: 36243009 PMCID: PMC9674966 DOI: 10.1016/j.ajhg.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.
Collapse
Affiliation(s)
- Stijn Van de Sompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kent W Small
- Macula and Retina Institute, Los Angeles and Glendale, California, USA
| | - Munevver Burcu Cicekdal
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Víctor López Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Eva D'haene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fadi S Shaya
- Macula and Retina Institute, Los Angeles and Glendale, California, USA
| | - Steven Agemy
- Department of Ophthalmology, SUNY Downstate Medical Center University, Brooklyn, New York, USA
| | - Thijs Van der Snickt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Toon Rosseel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Mattias Van Heetvelde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Irina Balikova
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; Queen Emma Centre of Precision Medicine, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium; Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Veronika Vaclavik
- University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Bartiméus, Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan R Martinez-Morales
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kris Vleminckx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
14
|
Nilsen NG, Gilson SJ, Pedersen HR, Hagen LA, Knoblauch K, Baraas RC. Seasonal Variation in Diurnal Rhythms of the Human Eye: Implications for Continuing Ocular Growth in Adolescents and Young Adults. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 36282117 PMCID: PMC9617503 DOI: 10.1167/iovs.63.11.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose To investigate the diurnal rhythms in the human eye in winter and summer in southeast Norway (latitude 60°N). Methods Eight measures (epochs) of intraocular pressure, ocular biometry, and optical coherence tomography were obtained from healthy participants (17–24 years of age) on a mid-winter's day (n = 35; 6 hours of daylight at solstice) and on a day the following summer (n = 24; 18 hours of daylight at solstice). Participants wore an activity monitor 7 days before measurements. The epochs were scheduled relative to the individual's habitual wake and sleep time: two in the day (morning and midday) and six in the evening (every hour until and 1 hour after sleep time). Saliva was collected for melatonin. A linear mixed-effects model was used to determine significant diurnal variations, and a sinusoid with a 24-hour period was fitted to the data with a nonlinear mixed-effects model to estimate rhythmic statistics. Results All parameters underwent significant diurnal variation in winter and summer (P < 0.002). A 1-hour phase advance was observed for melatonin and ocular axial length in the summer (P < 0.001). The degree of change in axial length was associated with axial length phase advance (R2 = 0.81, P < 0.001) and choroidal thickening (R2 = 0.54, P < 0.001) in summer. Conclusions Diurnal rhythms in ocular biometry appear to be synchronized with melatonin secretion in both winter and summer, revealing seasonal variation of diurnal rhythms in young adult eyes. The association between axial length and seasonal changes in the phase relationships between ocular parameters and melatonin suggests a between-individual variation in adaptation to seasonal changes in ocular diurnal rhythms.
Collapse
Affiliation(s)
- Nickolai G Nilsen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem-Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Université Lyon I, Lyon, France
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
15
|
DARUICH ALEJANDRA, ROBERT MATTHIEUP, LEROY CAMILLE, DE VERGNES NATHALIE, BEUGNET CAROLINE, MALAN VALERIE, VALLEIX SOPHIE, BREMOND-GIGNAC DOMINIQUE. Foveal Hypoplasia Grading in 95 Cases of Congenital Aniridia: Correlation to Phenotype and PAX6 Genotype. Am J Ophthalmol 2022; 237:122-129. [PMID: 34942114 DOI: 10.1016/j.ajo.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To correlate the degree of foveal hypoplasia in congenital aniridia with visual acuity, iris phenotype, and PAX6 mutations. DESIGN Retrospective case series. METHODS Ninety-five consecutive patients with high-quality spectral-domain optical coherence tomography records and available genotype were included in a single referral center. Iris hypoplasia was classified as complete, presence of iris root or remnants, and mild atypical aniridia. Spectral-domain optical coherence tomography images were assessed to classify foveal hypoplasia as grade 1 to 4 and to determine mean thicknesses for retinal layers. For statistical analysis 1 eye for each patient was used and 1 member of the same family has been included (n = 76 eyes). RESULTS Most eyes (n= 158/169, 93.5%) showed variable degree of foveal hypoplasia. PAX6-positive patients presented higher degree of foveal hypoplasia than patients negative for PAX6 (P < .0001). PAX6 deletions, PAX6 variants subjected to nonsense-mediated decay and C-terminal extension variants were mostly associated with grade 3 or 4 foveal hypoplasia. Deletions restricted to the 3' flanking regulatory regions of PAX6 were associated with grade 1 or 2 foveal hypoplasia (P < .0001). Best-corrected visual acuity was higher and foveal outer retinal layers were thicker in patients with deletions in the 3' regulatory region of PAX6 (P = .001 and P < .0001). Patients with missense mutations presented with variable degree of foveal hypoplasia. The degree of foveal hypoplasia was most frequently correlated with the severity of iris defects, with 95% of eyes with complete aniridia presenting grade 3 or 4 foveal hypoplasia (P = .005). However, among eyes with mild iris phenotype, 70% (n=9/13) showed severe foveal hypoplasia. CONCLUSIONS All types of PAX6 variants, even those associated with mild iris defects, may be at risk for severe foveal hypoplasia with poor visual prognosis, except for deletions restricted to the 3' regulatory PAX6 regions.
Collapse
|
16
|
Baraas RC, Pedersen HR, Knoblauch K, Gilson SJ. Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35113142 PMCID: PMC8819292 DOI: 10.1167/iovs.63.2.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the association between foveal shape and cone and retinal pigment epithelium (RPE) cell topographies in healthy humans. Methods Multimodal adaptive scanning light ophthalmoscopy and optical coherence tomography (OCT) were used to acquire images of foveal cones, RPE cells, and retinal layers in eyes of 23 healthy participants with normal foveas. Distributions of cone and RPE cell densities were fitted with nonlinear mixed-effects models. A linear mixed-effects model was used to examine the relationship between cone and RPE inter-cell distances and foveal shape as obtained from the OCT scans of retinal thickness. Results The best-fit model to the cone densities was a power function with a nasal–temporal asymmetry. There was a significant linear relationship among cone and RPE cell spacing, foveal shape, and foveal cell topography. The model predictions of the central 10° show that the contributions of both the cones and RPE cells are necessary to account for foveal shape. Conclusions The results indicate that there is a strong relationship between cone and RPE cell spacing and the shape of the human adolescent and adult fovea. This finding adds to the existing evidence of the critical role that the RPE serves in fetal foveal development and through adolescence, possibly via the imposition of constraints on the number and distribution of foveal cones.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Lyon, France
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
17
|
Blanco-Kelly F, Tarilonte M, Villamar M, Damián A, Tamayo A, Moreno-Pelayo MA, Ayuso C, Cortón M. Genetics and epidemiology of aniridia: Updated guidelines for genetic study. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:4-14. [PMID: 34836588 DOI: 10.1016/j.oftale.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/13/2021] [Indexed: 12/16/2022]
Abstract
Aniridia is a panocular disease characterized by iris hypoplasia, accompanied by other ocular manifestations, with a high clinical variability and overlapping with different abnormalities of the anterior and posterior segment. This review focuses on the genetic features of this autosomal dominant pathology, which is caused by the haploinsufficiency of the PAX6 gene. Mutations causing premature stop codons are the most frequent among the wider mutational spectrum of PAX6, with more than 600 different mutations identified so far. Recent advances in next-generation sequencing (NGS) have increased the diagnostic yield in aniridia and contributed to elucidate new etiopathogenic mechanisms leading to PAX6 haploinsufficiency. Here, we also update good practices and recommendations to improve genetic testing and clinical management of aniridia using more cost-effective NGS analysis. Those new approaches also allow studying simultaneously both structural variants and point-mutations in PAX6 as well as other genes for differential diagnosis, simultaneously. Some patients with atypical phenotypes might present mutations in FOXC1 and PITX2, both genes causing a wide spectrum of anterior segment dysgenesis, or in ITPR1, which is responsible for a distinctive form of circumpupillary iris aplasia present in Gillespie syndrome, or other mutations in minor genes. Since aniridia can also associate extraocular anomalies, as it occurs in carriers of PAX6 and WT1 microdeletions leading to WAGR syndrome, genetic studies are crucial to assure a correct diagnosis and clinical management, besides allowing prenatal and preimplantational genetic testing in families.
Collapse
Affiliation(s)
- F Blanco-Kelly
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - M Tarilonte
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M Villamar
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - A Damián
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - A Tamayo
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M A Moreno-Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - C Ayuso
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - M Cortón
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
18
|
Casas-Llera P, Ruiz-Casas D, Alió JL. Macular involvement in congenital aniridia. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:60-67. [PMID: 34836590 DOI: 10.1016/j.oftale.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/28/2020] [Indexed: 06/13/2023]
Abstract
This review updates the knowledge about the morphological assessment of the foveal hypoplasia in congenital aniridia and resumes the reported genotype-phenotype correlations known to date. Congenital aniridia is a pan ocular disease. Although iris absence is considered the hallmark of this entity, foveal hypoplasia is present in 94.7%-84% of patients. A foveal morphology assessed by optical coherence tomography in which external retina structures can be identified, with presence of the lengthening of photoreceptors outer segment and a greater external retinal thickness, is associated with a better visual outcome, regardless a foveal pit is identified or not. This analysis can be performed once the external retina has completed its differentiation, by 6 years old. PAX6 mutations that introduce premature termination codon, C terminal extension or PAX6 involving deletions have been related to lesser foveal differentiation. Better foveal differentiation has been associated to non-coding PAX6 mutations.
Collapse
Affiliation(s)
- P Casas-Llera
- Unidad de Glaucoma, Vissum Mirasierra, Madrid, Spain; Unidad de Glaucoma, Fernández Casas Oftalmólogos, Torrelavega, Cantabria, Spain.
| | - D Ruiz-Casas
- Departamento de Oftalmología, Hospital Ramón y Cajal, Madrid, Spain
| | - J L Alió
- Unidad de Córnea, Cataratas y Cirugía Refractiva de Vissum (Grupo Miranza), Alicante, Spain; Departamento de Oftalmología, Patología y Cirugía, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
19
|
Baraas RC, Horjen Å, Gilson SJ, Pedersen HR. The Relationship Between Perifoveal L-Cone Isolating Visual Acuity and Cone Photoreceptor Spacing-Understanding the Transition Between Healthy Aging and Early AMD. Front Aging Neurosci 2021; 13:732287. [PMID: 34566629 PMCID: PMC8458634 DOI: 10.3389/fnagi.2021.732287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Age-related macular degeneration (AMD) is a multifactorial degenerative disorder that can lead to irreversible loss of visual function, with aging being the prime risk factor. However, knowledge about the transition between healthy aging and early AMD is limited. We aimed to examine the relationship between psychophysical measures of perifoveal L-cone acuity and cone photoreceptor structure in healthy aging and early AMD. Methods and Results: Thirty-nine healthy participants, 10 with early AMD and 29 healthy controls were included in the study. Multimodal high-resolution retinal images were obtained with adaptive-optics scanning-light ophthalmoscopy (AOSLO), optical-coherence tomography (OCT), and color fundus photographs. At 5 degrees retinal eccentricity, perifoveal L-cone isolating letter acuity was measured with psychophysics, cone inner segment and outer segment lengths were measured using OCT, while cone density, spacing, and mosaic regularity were measured using AOSLO. The Nyquist sampling limit of cone mosaic (Nc) was calculated for each participant. Both L-cone acuity and photoreceptor inner segment length declined with age, but there was no association between cone density nor outer segment length and age. A multiple regression showed that 56% of the variation in log L-cone acuity was accounted for by Nc when age was taken into account. Six AMD participants with low risk of progression were well within confidence limits, while two with medium-to-severe risk of progression were outliers. The observable difference in cone structure between healthy aging and early AMD was a significant shortening of cone outer segments. Conclusion: The results underscore the resilience of cone structure with age, with perifoveal functional changes preceding detectable changes in the cone photoreceptor mosaic. L-cone acuity is a sensitive measure for assessing age-related decline in this region. The transition between healthy aging of cone structures and changes in cone structures secondary to early AMD relates to outer segment shortening.
Collapse
Affiliation(s)
- Rigmor C Baraas
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Åshild Horjen
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
20
|
Nguyen HH, Pham CM, Nguyen HTT, Vu NP, Duong TT, Nguyen TD, Nguyen BD, Nguyen HV, Nong HV. Novel mutations of the PAX6, FOXC1, and PITX2 genes cause abnormal development of the iris in Vietnamese individuals. Mol Vis 2021; 27:555-563. [PMID: 34566401 PMCID: PMC8416135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Congenital iris abnormality is a feature of several genetic conditions, such as aniridia syndrome and anterior segment degeneration (ASD) disorders. Aniridia syndrome is caused by mutations in the PAX6 gene or its regulatory elements in the locus 11p13 or deletions of contiguous genes, while ASDs are the result of mutations in various genes, such as PAX6, FOXC1, PITX2, and CYP1B1. This study aims to identify pathogenic mutations in Vietnamese individuals with congenital anomalies of the iris. METHODS Genomic DNA was extracted from peripheral blood of 24 patients belonging to 15 unrelated families and their available family members. Multiplex ligation-dependent probe amplification (MLPA) was used to detect the deletions or duplications in the 11p13-14 region, including the PAX6 gene and its neighboring genes. Direct PCR sequencing was used to screen mutations in 13 exons and flanking sequences of the PAX6 gene. The patients without mutation in the PAX6 locus were further analyzed with whole exome sequencing (WES). Identified mutations were tested with segregation analysis in proband family members. RESULTS We identified a total of 8 novel and 4 recurrent mutations in 20 of 24 affected individuals from 12 families. Among these mutations, one large deletion of the whole PAX6 gene and another deletion of the PAX6 downstream region containing the DCDC1 and ELP4 genes were identified. Eight mutations were detected in PAX6, including four nonsense, three frameshift, and one splice site. In addition, two point mutations were identified in the FOXC1 and PITX2 genes in patients without mutation in PAX6. Some of the mutations segregated in an autosomal dominant pattern where family members were available. CONCLUSIONS This study provides new data on causative mutations in individuals with abnormal development of iris tissue in Vietnam. These results contribute to clinical management and genetic counseling for affected people and their families.
Collapse
Affiliation(s)
- Ha Hai Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Hoa Thi Thanh Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nhung Phuong Vu
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trang Thu Duong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ton Dang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | | | - Hai Van Nong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
21
|
Kit V, Cunha DL, Hagag AM, Moosajee M. Longitudinal genotype-phenotype analysis in 86 patients with PAX6-related aniridia. JCI Insight 2021; 6:e148406. [PMID: 34101622 PMCID: PMC8410060 DOI: 10.1172/jci.insight.148406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Aniridia is most commonly caused by haploinsufficiency of the PAX6 gene, characterized by variable iris and foveal hypoplasia, nystagmus, cataracts, glaucoma, and aniridia-related keratopathy (ARK). Genotype-phenotype correlations have previously been described; however, detailed longitudinal studies of aniridia are less commonly reported. We identified 86 patients from 62 unrelated families with molecularly confirmed heterozygous PAX6 variants from a UK-based single-center ocular genetics service. They were categorized into mutation groups, and a retrospective review of clinical characteristics (ocular and systemic) from baseline to most recent was recorded. One hundred and seventy-two eyes were evaluated, with a mean follow-up period of 16.3 ± 12.7 years. Nystagmus was recorded in 87.2% of the eyes, and foveal hypoplasia was found in 75%. Cataracts were diagnosed in 70.3%, glaucoma in 20.6%, and ARK in 68.6% of eyes. Prevalence, age of diagnosis and surgical intervention, and need for surgical intervention varied among mutation groups. Overall, the missense mutation subgroup had the mildest phenotype, and surgically naive eyes maintained better visual acuity. Systemic evaluation identified type 2 diabetes in 12.8% of the study group, which is twice the UK prevalence. This is the largest longitudinal study of aniridia in the UK, and as such, it can provide insights into prognostic indicators for patients and guiding clinical management of both ocular and systemic features.
Collapse
Affiliation(s)
- Vivienne Kit
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Ahmed M Hagag
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Mariya Moosajee
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom.,Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
22
|
Blanco-Kelly F, Tarilonte M, Villamar M, Damián A, Tamayo A, Moreno-Pelayo MA, Ayuso C, Cortón M. Genetics and epidemiology of aniridia: Updated guidelines for genetic study. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96:S0365-6691(21)00124-6. [PMID: 34243981 DOI: 10.1016/j.oftal.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/24/2022]
Abstract
Aniridia is a panocular disease characterized by iris hypoplasia, accompanied by other ocular manifestations, with a high clinical variability and overlapping with different abnormalities of the anterior and posterior segment. This review focuses on the genetic features of this autosomal dominant pathology, which is caused by the haploinsufficiency of the PAX6 gene. Mutations causing premature stop codons are the most frequent among the wider mutational spectrum of PAX6, with more than 600 different mutations identified so far. Recent advances in next-generation sequencing (NGS) have increased the diagnostic yield in aniridia and contributed to elucidate new etiopathogenic mechanisms leading to PAX6 haploinsufficiency. Here, we also update good practices and recommendations to improve genetic testing and clinical management of aniridia using more cost-effective NGS analysis. Those new approaches also allow studying simultaneously both structural variants and point-mutations in PAX6 as well as other genes for differential diagnosis, simultaneously. Some patients with atypical phenotypes might present mutations in FOXC1 and PITX2, both genes causing a wide spectrum of anterior segment dysgenesis, or in ITPR1, which is responsible for a distinctive form of circumpupillary iris aplasia present in Gillespie syndrome, or other mutations in minor genes. Since aniridia can also associate extraocular anomalies, as it occurs in carriers of PAX6 and WT1 microdeletions leading to WAGR syndrome, genetic studies are crucial to assure a correct diagnosis and clinical management, besides allowing prenatal and preimplantational genetic testing in families.
Collapse
Affiliation(s)
- F Blanco-Kelly
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España
| | - M Tarilonte
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España
| | - M Villamar
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España
| | - A Damián
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España
| | - A Tamayo
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España
| | - M A Moreno-Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España
| | - C Ayuso
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España
| | - M Cortón
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España.
| |
Collapse
|
23
|
Milman T, Mudhar HS, Eagle RC. PAX8 Expression in the Crystalline Lens and Lens-Derived Lesions. OPHTHALMOLOGY SCIENCE 2021; 1:100024. [PMID: 36249298 PMCID: PMC9562292 DOI: 10.1016/j.xops.2021.100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Purpose Design Participants Methods Main Outcome Measures Results Conclusions
Collapse
Affiliation(s)
- Tatyana Milman
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
- Correspondence: Tatyana Milman, MD, Department of Pathology, Wills Eye Hospital and Thomas Jefferson University Hospital, 840 Walnut Street, Suite 1410, Philadelphia, PA 19107.
| | - Hardeep Singh Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Ralph C. Eagle
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Jin X, Liu W, Qv LH, X WQ, Huang HB. A novel variant in PAX6 as the cause of aniridia in a Chinese family. BMC Ophthalmol 2021; 21:225. [PMID: 34016071 PMCID: PMC8136215 DOI: 10.1186/s12886-021-01848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aniridia is a kind of congenital human pan-ocular anomaly, which is related to PAX6 commonly. METHODS The ophthalmic examinations including visual acuity, slit lamp and fundoscopy examination were performed in a Chinese aniridia pedigree. The targeted next-generation sequencing of aniridia genes was used to identify the causative mutation. RESULTS A novel heterozygous PAX6 nonsense mutation c.619A > T (p.K207*) was identified in the Chinese autosomal dominant family with aniridia. Phenotype related to the novel mutation included nystagmus, keratopathy, absence of iris, cataract and foveal hypoplasia. CONCLUSIONS The novel nonsense variation in PAX6 was the cause of aniridia in this family, which expanded the spectrum of the PAX6 mutation.
Collapse
Affiliation(s)
- X Jin
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China
| | - W Liu
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, 572000, Sanya, Hainan Province, China
| | - L H Qv
- Department of Ophthalmology, the 74th Army Group Hospital, 510318, Guangzhou, China
| | - W Q X
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China
| | - H B Huang
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China.
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, 572000, Sanya, Hainan Province, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
25
|
Nieves-Moreno M, Noval S, Peralta J, Palomares-Bralo M, del Pozo A, Garcia-Miñaur S, Santos-Simarro F, Vallespin E. Expanding the Phenotypic Spectrum of PAX6 Mutations: From Congenital Cataracts to Nystagmus. Genes (Basel) 2021; 12:genes12050707. [PMID: 34065151 PMCID: PMC8151272 DOI: 10.3390/genes12050707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Congenital aniridia is a complex ocular disorder, usually associated with severe visual impairment, generally caused by mutations on the PAX6 gene. The clinical phenotype of PAX6 mutations is highly variable, making the genotype–phenotype correlations difficult to establish. Methods: we describe the phenotype of eight patients from seven unrelated families with confirmed mutations in PAX6, and very different clinical manifestations. Results: Only two patients had the classical aniridia phenotype while the other two presented with aniridia-related manifestations, such as aniridia-related keratopathy or partial aniridia. Congenital cataracts were the main manifestation in three of the patients in this series. All the patients had nystagmus and low visual acuity. Conclusions: The diagnosis of mild forms of aniridia is challenging, but these patients have a potentially blinding hereditary disease that might present with a more severe phenotype in future generations. Clinicians should be aware of the mild aniridia phenotype and request genetic testing to perform an accurate diagnosis.
Collapse
Affiliation(s)
- Maria Nieves-Moreno
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.N.); (J.P.)
- Correspondence:
| | - Susana Noval
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.N.); (J.P.)
| | - Jesus Peralta
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.N.); (J.P.)
| | - María Palomares-Bralo
- Department of Molecular Developmental Disorders, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Angela del Pozo
- Department of Bioinformatics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Sixto Garcia-Miñaur
- Department of Clinical Genetics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.G.-M.); (F.S.-S.)
| | - Fernando Santos-Simarro
- Department of Clinical Genetics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.G.-M.); (F.S.-S.)
| | - Elena Vallespin
- Department of Molecular Ophthalmology, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| |
Collapse
|
26
|
Casas-Llera P, Ruiz-Casas D, Alió JL. Macular involvement in congenital aniridia. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96:S0365-6691(21)00007-1. [PMID: 33736873 DOI: 10.1016/j.oftal.2020.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
This review updates the knowledge about the morphological assessment of the foveal hypoplasia in Congenital Aniridia and resumes the reported genotype-phenotype correlations known to date. Congenital Aniridia is a pan ocular disease. Although iris absence is considered the hallmark of this entity, foveal hypoplasia is present in 94.7-84% of patients. A foveal morphology assessed by optical coherence tomography in which external retina structures can be identified, with presence of the lengthening of photoreceptors outer segment and a greater external retinal thickness, is associated with a better visual outcome, regardless a foveal pit is identified or not. This analysis can be performed once the external retina has completed its differentiation, by 6 years old. PAX6 mutations that introduce premature termination codon, C terminal extension or PAX6 involving deletions have been related to lesser foveal differentiation. Better foveal differentiation has been associated to non-coding PAX6 mutations.
Collapse
Affiliation(s)
- P Casas-Llera
- Unidad de Glaucoma, Vissum Mirasierra, Madrid, España; Unidad de Glaucoma, Fernández Casas Oftalmólogos, Torrelavega, Cantabria, España.
| | - D Ruiz-Casas
- Departamento de Oftalmología. Hospital Ramón y Cajal, Madrid, España
| | - J L Alió
- Unidad de Córnea, Cataratas y Cirugía Refractiva de Vissum (Grupo Miranza), Alicante, España; Departamento de Oftalmología, Patología y Cirugía, Universidad Miguel Hernández, Alicante, España
| |
Collapse
|
27
|
Linderman RE, Georgiou M, Woertz EN, Cava JA, Litts KM, Tarima S, Rajendram R, Provis JM, Michaelides M, Carroll J. Preservation of the Foveal Avascular Zone in Achromatopsia Despite the Absence of a Fully Formed Pit. Invest Ophthalmol Vis Sci 2021; 61:52. [PMID: 32866266 PMCID: PMC7463179 DOI: 10.1167/iovs.61.10.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose To examine the foveal avascular zone (FAZ) in patients with congenital achromatopsia (ACHM). Methods Forty-two patients with genetically confirmed ACHM were imaged either with Optovue's AngioVue system or Zeiss's Plex Elite 9000, and the presence or absence of a FAZ was determined. For images where a FAZ was present and could be confidently segmented, FAZ area, circularity index, and roundness were measured and compared with previously published normative values. Structural optical coherence tomography images were acquired to assess the degree of foveal hypoplasia (number and thickness of inner retinal layers present at the fovea). Results A FAZ was present in 31 of 42 patients imaged (74%), although no determination could be made for 11 patients due to poor image quality (26%). The mean ± SD FAZ area for the ACHM retina was 0.281 ± 0.112 mm2, which was not significantly different from the previously published normative values (P = 0.94). However, their FAZs had decreased circularity (P < 0.0001) and decreased roundness (P < 0.0001) compared to the normative cohort. In the patients with ACHM examined here, the FAZ area decreased as the number and thickness of the retained inner retinal layers increased. Conclusions Our data demonstrate that despite the presence of foveal hypoplasia, patients with ACHM can have a FAZ. This is distinct from other conditions associated with foveal hypoplasia, which generally show an absence of the FAZ. In ACHM, FAZ formation does not appear to be sufficient for complete pit formation, contrary to some models of foveal development.
Collapse
Affiliation(s)
- Rachel E Linderman
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michalis Georgiou
- Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Erica N Woertz
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jenna A Cava
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Katie M Litts
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ranjan Rajendram
- Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
28
|
Duffy KA, Trout KL, Gunckle JM, Krantz SM, Morris J, Kalish JM. Results From the WAGR Syndrome Patient Registry: Characterization of WAGR Spectrum and Recommendations for Care Management. Front Pediatr 2021; 9:733018. [PMID: 34970513 PMCID: PMC8712693 DOI: 10.3389/fped.2021.733018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
WAGR syndrome is a rare genetic disorder characterized by Wilms tumor, Aniridia, Genitourinary anomalies, and Range of developmental delays. In addition to the classic features, patients affected by WAGR syndrome can develop obesity and kidney failure, and a wide variety of non-classical manifestations have also been described. This suggests that a broader phenotypic spectrum beyond the classic syndrome exists and here we demonstrate that spectrum using data from the WAGR Syndrome Patient Registry. In the present study, we collected information from 91 individuals enrolled in the registry to explore self-reported health issues in this patient population. A wide variety of common clinical issues not classically associated with the disorder were found, prompting the redefinition from WAGR syndrome to WAGR spectrum disorder to incorporate the phenotypic variations that occur. A comprehensive care management approach is needed to address the wide range of clinical issues and we propose a care model for patients affected by WAGR spectrum disorder. Further research is needed to solidify the breath of the phenotype and confirm the observations in this study to advance individualized patient care in this population.
Collapse
Affiliation(s)
- Kelly A Duffy
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kelly L Trout
- International WAGR Syndrome Association, Montgomery Village, MD, United States
| | - Jennifer M Gunckle
- International WAGR Syndrome Association, Montgomery Village, MD, United States
| | | | - John Morris
- International WAGR Syndrome Association, Montgomery Village, MD, United States
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Genetics and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Cole JD, Rodriguez C, Norat P, Gao J, Provencio I, Netland PA, Liu X. Neural damage and neuroprotection with glaucoma development in aniridia. CURRENT NEUROBIOLOGY 2021; 12:14-19. [PMID: 38125639 PMCID: PMC10732493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- James D Cole
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Carlos Rodriguez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Pedro Norat
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|