1
|
Smit-McBride Z, Sun N, Thomas S, Cho IH, Stricklin RG, Sieving PA. Kir4.1 and Aqp4 Contribution to Schisis Cystic Water Accumulation and Clearance in the Rs1 Exon-1 Del XLRS Rat Model. Genes (Basel) 2024; 15:1583. [PMID: 39766850 PMCID: PMC11675908 DOI: 10.3390/genes15121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVE The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These spaces enlarge rapidly, peak at P15, and then collapse by P19. METHODS We explored the possible involvement of Kir4.1 and Aqp4, the principal retina channels for water movement and homeostasis, along with Muller glia cells (MGCs), using semi-quantitative fluorescent immunohistochemistry at P7, P9, P12, and P30, in Rs1KO and WT littermates. RESULTS Kir4.1 expression was reduced in Rs1KO retinas at all the early time points-P7, P9, and P12-as the schisis cavities began to form; downregulation would reduce water egress from the retina. Aqp4 was upregulated at P30 in Rs1KO retinas during schisis cavity closure but not as cavities formed at P12. When examined by GFAP expression, MGCs were not activated at the preschisis P12 age but showed considerable GFAP expression at P30 following retinal cystic structural damage at P15, indicating that MGCs were activated during the period of retina water removal and cavity closure. CONCLUSIONS The study results implicate the downregulation of Kir4.1 in schisis formation and a role for both Kir4.1 and Aqp4 upregulation in subsequent schisis closure.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology, Eye Center, UC Davis School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Vitreoretinal Research Lab, UC Davis School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Ning Sun
- Department of Cell Biology & Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Serafina Thomas
- Department of Cell Biology & Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - In Hwan Cho
- Department of Ophthalmology, Eye Center, UC Davis School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Robin G. Stricklin
- Department of Cell Biology & Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Paul A. Sieving
- Department of Ophthalmology, Eye Center, UC Davis School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Vitreoretinal Research Lab, UC Davis School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Duncan JL, Bowman A, Laster A, Gelfman C, Birch DG, Boye SE, Daiger SP, Del Priore L, Zack DJ, Handa JT. Inherited Retinal Degenerations and Non-Neovascular Age-Related Macular Degeneration: Progress and Unmet Needs. Transl Vis Sci Technol 2024; 13:28. [PMID: 39688851 DOI: 10.1167/tvst.13.12.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Inherited retinal degeneration (IRD) disease and age-related macular degeneration (AMD) are leading causes of irreversible vision loss and blindness. Although significant progress has advanced the field in the past 5 years, significant challenges remain. The current article reviews the accomplishments and research advances that have fueled the development of treatments for patients with IRD and AMD, including the first approved gene-augmentation treatment for RPE65-related retinal degeneration and complement inhibition therapies to slow progression of geographic atrophy (GA) in AMD. The article outlines opportunities to address gaps and unmet needs that should lead to additional progress toward the development of treatments for patients with IRDs and non-neovascular AMD in the future.
Collapse
Affiliation(s)
- Jacque L Duncan
- Wayne and Gladys Valley Center for Vision, Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Amy Laster
- Foundation Fighting Blindness, Columbia, MD, USA
| | | | - David G Birch
- Rose-Silverthorne Retinal Degenerations Laboratory, Retina Foundation of the Southwest, Dallas, TX, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Stephen P Daiger
- Human Genetics Center, Epidemiology Dept., School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lucian Del Priore
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA
| | - Donald J Zack
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Abuzaitoun RO, Branham KH, Lacy GD, Hufnagel RB, Kumar MM, Koskenvuo JW, Tuupanen S, Durham T, Zhao PY, Abalem MF, Andrews CA, Schlegel D, Khan NW, Fahim AT, Heckenlively JR, Musch DC, Jayasundera KT. Racial Disparities in Genetic Detection Rates for Inherited Retinal Diseases. JAMA Ophthalmol 2024:2825835. [PMID: 39509105 PMCID: PMC11544549 DOI: 10.1001/jamaophthalmol.2024.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/03/2024] [Indexed: 11/15/2024]
Abstract
Importance The association of race and detection of pathogenic variants using wide-panel genetic testing for inherited retinal diseases (IRD), to our knowledge, has not been studied previously. Objective To investigate the genetic detection rates of wide-panel testing in Black and non-Hispanic White patients with IRDs. Design, Setting, Participants This 2-group comparison used retrospective patient data that were collected at the University of Michigan (UM) and Blueprint Genetics (BG). At UM, inclusion criteria included having a clinical IRD diagnosis, wide-panel genetic testing, and both parents and the patient self-identifying as the same race (Black or non-Hispanic White). Logistic regression analysis was used; the dependent variable was genetic test result (positive or negative/inconclusive) and the independent variables were race, age, sex, phenotype, and number of genes tested. In the BG database, patients with wide-panel testing and self-reported race were included; detection rate comparison analysis based on race was performed using χ2 test of independence. These data were analyzed from October 30, 2013, through October 26, 2022. Main Outcome and Measure Genetic test result was considered positive if pathogenic/likely pathogenic variants were detected. Results A total of 572 patients were included in UM, 295 were males (51.6%). Mean age was 45 years. There were 54 Black patients (9.4%) and 518 White patients (90.6%). Black race (odds ratio [OR], 0.25; 95% CI, 0.14-0.46; P < .001) and age (OR per 10 years, 0.84; 95% CI, 0.76-0.92; P < .001) were independently associated with decreased odds of a positive test. In the BG database, 142 of 320 of Black patients (44.4%) had a positive/likely positive test result, a proportion lower than White patients (1691 of 2931 [57.7%]) (χ2 = 18.65; df = 1; P < .001). Conclusions and Relevance Results from this study highlight a lower genetic detection rate for Black patients than for White patients with IRDs. This supports a concern that the current development of IRD therapeutics is highly dependent on the ability to identify the genetic cause of disease. Patients with no known genetic diagnosis may be disadvantaged in terms of prognostication, inheritance counseling, reproductive decision-making, and eligibility for potential therapeutic options, including clinical trials. As future treatments become available, these findings suggest the need to examine the genetic detection rates across majority and minority subgroups alike.
Collapse
Affiliation(s)
- Rebhi O. Abuzaitoun
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kari H. Branham
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Gabrielle D. Lacy
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert B. Hufnagel
- Medical Genetics and Ophthalmic Genomics Unit, Ophthalmic Genomics Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Todd Durham
- Foundation Fighting Blindness, Columbia, Maryland
| | - Peter Y. Zhao
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria Fernanda Abalem
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Ophthalmology and Otolaryngology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Chris A. Andrews
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dana Schlegel
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Naheed W. Khan
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Abigail T. Fahim
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - John R. Heckenlively
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - David C. Musch
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - K. Thiran Jayasundera
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
4
|
Xu Y, Liu X, Wu N, Long Y, Ren J, Wang Y, Su X, Liu Z, Fujinami-Yokokawa Y, Fujinami K, Chen F, Meng X, Liu Y. Investigating Microperimetric Features in Bietti Crystalline Dystrophy Patients: A Cross-Sectional Longitudinal Study in a Large Cohort. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39540859 PMCID: PMC11572751 DOI: 10.1167/iovs.65.13.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose To assess the clinical and genetic characteristics of patients with Bietti crystalline dystrophy (BCD) with a focus on potential of microperimetry in monitoring macular function. Methods A total of 208 genetically-confirmed BCD patients were enrolled in this retrospective study. The patients were categorized into subgroups based on their fundus characteristics (fovea sparing and fovea involved), optical coherence tomography (OCT) findings (presence/absence of retinal pigment epithelium [RPE] or ellipsoid zone [EZ] line at the fovea/parafovea), and genetic profiles (Mis/Mis, Tru/Mis, Tru/Tru). Fixation patterns were analyzed, and macular sensitivity (MS) parameters were compared among different groups. Longitudinal analysis was performed to calculate the annual changes in MS parameters. Correlation between genotype and phenotype were further investigated by analyzing cumulative incidence of vision impairment among different genotypic groups. Results Patients with well-preserved RPE or EZ at the foveal/parafoveal region exhibited higher MS. Notably, there was a decline in sensitivity parameters, with a decrease of -2.193 dB/year (95% confidence interval [CI] -4.292 to -0.095, P = 0.041) at the fovea and -1.353 dB/year (95% CI -2.047 to -0.659, P < 0.001) in average sensitivity. An age-adjusted comparison of sensitivity among genotypic groups and cumulative incidence analyses showed no association between genotypic groups and vision loss. Conclusions Microperimetry proves to be one of a credible tool for detecting macular functional changes in BCD patients. BCD patients with different genotypes may have similar disease progression.
Collapse
Affiliation(s)
- Yufei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Nan Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yanling Long
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiayun Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yu Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xinyi Su
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, United Kingdom
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, United Kingdom
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Moorfields Eye Hospital, United Kingdom
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Fang Chen
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
5
|
Pennesi ME, Wang YZ, Birch DG. Deep learning aided measurement of outer retinal layer metrics as biomarkers for inherited retinal degenerations: opportunities and challenges. Curr Opin Ophthalmol 2024; 35:447-454. [PMID: 39259656 DOI: 10.1097/icu.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review was to provide a summary of currently available retinal imaging and visual function testing methods for assessing inherited retinal degenerations (IRDs), with the emphasis on the application of deep learning (DL) approaches to assist the determination of structural biomarkers for IRDs. RECENT FINDINGS (clinical trials for IRDs; discover effective biomarkers as endpoints; DL applications in processing retinal images to detect disease-related structural changes). SUMMARY Assessing photoreceptor loss is a direct way to evaluate IRDs. Outer retinal layer structures, including outer nuclear layer, ellipsoid zone, photoreceptor outer segment, RPE, are potential structural biomarkers for IRDs. More work may be needed on structure and function relationship.
Collapse
Affiliation(s)
- Mark E Pennesi
- Retina Foundation of the Southwest, Dallas, Texas
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yi-Zhong Wang
- Retina Foundation of the Southwest, Dallas, Texas
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
6
|
Cideciyan AV, Roman AJ, Warner RL, Sumaroka A, Wu V, Jiang YY, Swider M, Garafalo AV, Viarbitskaya I, Russell RC, Kohl S, Wissinger B, Ripamonti C, Barbur JL, Bach M, Carroll J, Morgan JIW, Aleman TS. Evaluation of Retinal Structure and Visual Function in Blue Cone Monochromacy to Develop Clinical Endpoints for L-opsin Gene Therapy. Int J Mol Sci 2024; 25:10639. [PMID: 39408969 PMCID: PMC11477341 DOI: 10.3390/ijms251910639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
L-cone opsin expression by gene therapy is a promising treatment for blue cone monochromacy (BCM) caused by congenital lack of long- and middle-wavelength-sensitive (L/M) cone function. Eight patients with BCM and confirmed pathogenic variants at the OPN1LW/OPN1MW gene cluster participated. Optical coherence tomography (OCT), chromatic perimetry, chromatic microperimetry, chromatic visual acuity (VA), and chromaticity thresholds were performed with unmodified commercial equipment and/or methods available in the public domain. Adaptive optics scanning laser ophthalmoscope (AOSLO) imaging was performed in a subset of patients. Outer retinal changes were detectable by OCT with an age-related effect on the foveal disease stage. Rod and short-wavelength-sensitive (S) cone functions were relatively retained by perimetry, although likely impacted by age-related increases in the pre-retinal absorption of short-wavelength lights. The central macula showed a large loss of red sensitivity on dark-adapted microperimetry. Chromatic VAs with high-contrast red gratings on a blue background were not detectable. Color vision was severely deficient. AOSLO imaging showed reduced total cone density with majority of the population being non-waveguiding. This study developed and evaluated specialized outcomes that will be needed for the determination of efficacy and safety in human clinical trials. Dark-adapted microperimetry with a red stimulus sampling the central macula would be a key endpoint to evaluate the light sensitivity improvements. VA changes specific to L-opsin can be measured with red gratings on a bright blue background and should also be considered as outcome measures in future interventional trials.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Raymond L. Warner
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Yu Y. Jiang
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Robert C. Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Susanne Kohl
- Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany; (S.K.); (B.W.)
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany; (S.K.); (B.W.)
| | | | - John L. Barbur
- Centre for Applied Vision Research, School of Health & Psychological Sciences, City St. George’s, University of London, London EC1V 0HB, UK;
| | - Michael Bach
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany;
| | - Joseph Carroll
- Departments of Ophthalmology & Visual Science, Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Tomas S. Aleman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| |
Collapse
|
7
|
Wongchaisuwat N, Amato A, Yang P, Everett L, Pennesi ME, Huang D, Chen S. Optical Coherence Tomography Split-Spectrum Amplitude-Decorrelation Optoretinography Detects Early Central Cone Photoreceptor Dysfunction in Retinal Dystrophies. Transl Vis Sci Technol 2024; 13:5. [PMID: 39361318 PMCID: PMC11451826 DOI: 10.1167/tvst.13.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose To investigate if split-spectrum amplitude-decorrelation optoretinography (SSADOR) can detect and measure macular cone dysfunction in inherited retinal dystrophies (IRDs). Methods This study was a case series of participants presenting with various IRD pathologies. Participants were recruited from the Ophthalmic Genetics clinic at the Casey Eye Institute from February to August 2023. Multimodal and SSADOR imaging was obtained in all cases. Results We recruited nine participants, including four with macular dystrophy, one with fundus flavimaculatus, one with cone dystrophy, and three with retinitis pigmentosa. SSADOR decorrelation maps identified areas of cone functional impairment consistent with disease phenotypes. A correlation between the SSADOR signal and retinal sensitivity measured by microperimetry within the central 20° diameter area was observed. Additionally, SSADOR was able to demonstrate a decreased signal in mild cases when microperimetry measurements were still normal but subtle changes were also apparent on structural OCT. Conclusions SSADOR is sensitive at detecting functional changes in macular cones, even prior to abnormalities in perimetry testing. We highlight the potential benefits of this innovative technology for the early detection of cone dysfunction and their potential contributions to earlier diagnosis and more accurate monitoring of progression. Translational Relevance SSADOR is an innovative technology that detects early macular cone function changes, allowing for early diagnosis and precise monitoring of cone dysfunction progression. By serving as a potential clinical trial endpoint, SSADOR facilitates the translation of scientific findings into practical applications, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nida Wongchaisuwat
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alessia Amato
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Lesley Everett
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mark E. Pennesi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - David Huang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Siyu Chen
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
9
|
Wong WM, Tham YC, Ayton LN, Britten-Jones AC, Edwards TL, Grigg J, Simunovic MP, Chen FK, Jin ZB, Shen RJ, Sui R, Yang L, Zhao C, Chen H, Li S, Ding X, Bhende M, Raman R, Sen P, Poornachandra B, Chia V, Manurung F, Sasongko MB, Ikeda H, Fujinami K, Woo SJ, Kim SJ, Bastion MLC, Kamalden AT, Lott PP, Fong K, Shunmugam M, Lim A, Thapa R, Ibañez BMB, Koh A, Holder GE, Su X, Chan CM, Fenner BJ, Laude A, Ngo WK, Chen TC, Wang NK, Kang EYC, Surawatsatien N, Pisuchpen P, Sujirakul T, Wongchaisuwat N, Apivatthakakul A, Kumaramanickavel G, Leroy B, Michaelides M, Pontikos N, Cheng CY, Pang CP, Chen LJ, Chan HW. Practice Patterns and Challenges in Managing Inherited Retinal Diseases Across Asia-Pacific: A Survey from the APIED Network. Asia Pac J Ophthalmol (Phila) 2024; 13:100098. [PMID: 39366638 DOI: 10.1016/j.apjo.2024.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024] Open
Abstract
PURPOSE The objective of this paper is to shed light on the current landscape of genotyping practices, phenotyping practices and availability of essential vision rehabilitation management for inherited retinal diseases (IRD) in the Asia-Pacific (APAC) Region. METHODS The 62-item questionnaire was distributed electronically via email. The questions covered five domains: (1) structure of the IRD service and registry/database; (2) genotyping practices; (3) genetic counselling; (4) deep phenotyping practices; (5) low-vision rehabilitation services. RESULTS The survey was completed by 36 of 45 centres in twelve countries and regions in APAC. Among these centres, 42 % reported managing more than 1000 patients. Notably, 39 % of centres lack an IRD database or registry, and 44 % of centres have tested less than one-quarter of their IRD patients. The majority of centres (67 %) do not have genetic counsellors. While there was consistency in the imaging-based investigations, there was marked heterogeneity for functional testing using electrophysiology and formal perimetry. Only 34 % of centres confirmed the availability of access to low-vision assistive devices. CONCLUSIONS This study reveals several critical gaps in managing IRDs in the APAC region. These include the lack of IRD database/registry in one-third of centres, a substantial proportion of patients remaining genetically undiagnosed, and limited availability of genetic counsellors. The findings also underscore a need to harmonise investigations for evaluating retinal function and identify areas for improvement in the provision of low-vision rehabilitation services.
Collapse
Affiliation(s)
- Wendy M Wong
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, National University Hospital, National University Health System, Singapore
| | - Yih Chung Tham
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Optometry and Vision Sciences and Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Victoria, Australia
| | - Alexis Ceecee Britten-Jones
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Optometry and Vision Sciences and Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Optometry and Vision Sciences and Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Victoria, Australia
| | - John Grigg
- Save Sight Institute, The University of Sydney, Sydney, Australia; Sydney Eye Hospital, Sydney, Australia
| | - Matthew P Simunovic
- Save Sight Institute, The University of Sydney, Sydney, Australia; Sydney Eye Hospital, Sydney, Australia
| | - Fred K Chen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Centre for Ophthalmology and Visual Science (Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1, Shuai Fu Yuan, Beijing, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Haoyu Chen
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, Shantou, China
| | - Shiying Li
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, School of Medicine, Eye Institute of Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Ding
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Muna Bhende
- Shri Bhagwan Mahavir Vitreoretinal services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal services, Medical Research Foundation, Sankara Nethralaya, Chennai, India; Dr Agarwal Eye Hospital, Chandigarh, India
| | - B Poornachandra
- Vitreo-Retina Services, Narayana Nethralaya, Bengaluru, India
| | - Valen Chia
- JEC Eye Hospitals and Clinics, Jakarta, Indonesia
| | - Florence Manurung
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito Eye Center, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Muhammad Bayu Sasongko
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito Eye Center, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Hanako Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Ain Tengku Kamalden
- UM Eye Research Centre, Department of Ophthalmology, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | | | - Amelia Lim
- Ophthalmology, Penang Gleneagles, Malaysia
| | - Raba Thapa
- Tilganga Institute of Ophthalmology, Kathmandu, Nepal
| | - B Manuel Benjamin Ibañez
- Makati Medical Center, Makati City, the Philippines; DOH Eye Center, East Avenue Medical Center, Quezon City, the Philippines
| | - Adrian Koh
- Eye & Retina Surgeons, Camden Medical Centre, Singapore
| | - Graham E Holder
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, National University Hospital, National University Health System, Singapore
| | - Xinyi Su
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Choi Mun Chan
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore; National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Beau J Fenner
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore; National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Augustinus Laude
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Wei Kiong Ngo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Nuntachai Surawatsatien
- Center of Excellence in Retina, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Phattrawan Pisuchpen
- Department of Ophthalmology and Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tharikarn Sujirakul
- Department of Ophthalmology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nida Wongchaisuwat
- Department of Ophthalmology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atitaya Apivatthakakul
- Department of Ophthalmology, Faculty of Medicine, Chiangmai University, Chiangmai, Thailand
| | | | - Bart Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nikolas Pontikos
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ching-Yu Cheng
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- The Chinese University of Hong Kong, Hong Kong, China
| | - Hwei Wuen Chan
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, National University Hospital, National University Health System, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Mulders T, van der Zanden L, Klevering BJ, Hoyng C, Theelen T. Structure-function correlation of retinal photoreceptors in PRPH2-associated central areolar choroidal dystrophy patients assessed by high-resolution scanning laser imaging and microperimetry. Acta Ophthalmol 2024; 102:521-528. [PMID: 38041245 DOI: 10.1111/aos.15816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE High Magnification Module (HMM™, Heidelberg Engineering, Heidelberg, Germany) imaging is a novel technique, designed to visualize the retina at a cellular level. To assess the potential of HMM™-based metrics as endpoints for future trials, we evaluated correlations between structural HMM™ cone metrics, spectral-domain OCT (SD-OCT, Heidelberg Engineering, Heidelberg, Germany) and retinal sensitivity on microperimetry (MP, MAIA, CenterVue, Padova, Italy) in healthy subjects and p.(Arg142Trp) PRPH2-associated Central Areolar Choroidal Dystrophy (CACD) patients. METHODS We projected a default 10° MP grid on composite HMM™ images and performed automated cone density (CD), intercell distance (ICD) and nearest neighbour distance (NND) analysis at stimuli located at 3° and 5° retinal eccentricity. We manually measured intrasubject outer retinal thickness on SD-OCT in absolute and relative scotomas, located outside of focal atrophy. RESULTS We included 15 CACD patients and five healthy subjects. We found moderate-to-strong correlations of HMM™ metrics and MP sensitivity at 3° eccentricity from the fovea. We found the outer retina at the locations of absolute scotomas to be statistically significant thinner (p = 0.000003, one-sample t-test), as the outer retinal thickness at locations of relative scotomas. Interestingly, HMM™ metrics of these areas did not differ significantly. CONCLUSIONS We found significant correlations between structural photoreceptors metrics on HMM™ imaging and retinal sensitivity on MP in healthy subjects and CACD patients. A multimodal approach, combining SD-OCT, MP and HMM™ imaging, allows for detailed mapping of retinal photoreceptor integrity and restitution potential, important data that could serve as biomarkers in future clinical trials.
Collapse
Affiliation(s)
- Timo Mulders
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | | | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Carel Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Thomas Theelen
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| |
Collapse
|
11
|
Xu G, Luo Y, Qi H, Liu S, Fu J, Ye Z, Li Z. Trichromatic critical flicker frequency as potential visual test in cataract and macula disease patients. Graefes Arch Clin Exp Ophthalmol 2024; 262:2171-2179. [PMID: 38329529 DOI: 10.1007/s00417-024-06398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE To investigate the capacity of critical flicker frequency (CFF) in discriminating cataract eyes with or without macula disease using trichromatic flickers, and to develop a model to predict postoperative best corrected visual acuity (BCVA). METHODS Patients were divided into two groups based on the presence or absence of macular disease. CFF threshold measurements of red (R-CFF), green (G-CFF), and yellow (Y-CFF) flickers were conducted both preoperatively and postoperatively. A generalized estimating equations model (GEE) was employed to examine the relationship between CFF threshold and 3-month postoperative BCVA. RESULTS A total of 115 eyes were enrolled, with 59 eyes in the cataract alone group and 56 eyes in the cataract with macular disease group completing the follow-up. R-CFF was found to be consistent before and after cataract removal (P = 0.06), even in cases where OCT was not performed successfully (P > 0.05). Y-CFF showed the highest AUC (0.798) for differentiating ocular comorbidities. According to the GEE model, in patients with a CFF threshold below 26 Hz, the odds ratios for achieving a postoperative VA of 20/40 or better were 34.8% for R-CFF, 26.0% for G-CFF, and 24.5% for Y-CFF. CONCLUSION CFF emerges as a promising tool for predicting postoperative BCVA, providing valuable supplementary insights when fundus examination is obstructed. R-CFF demonstrates the best resistance to cataracts, while Y-CFF exhibits the highest sensitivity both in identifying macular diseases and predicting postoperative BCVA of 20/40 or better.
Collapse
Affiliation(s)
- Guangcan Xu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Luo
- Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Haolan Qi
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Sijia Liu
- Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Junxia Fu
- Department of Ophthalmology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Zi Ye
- Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Ophthalmology, The Third Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
12
|
Rosin B, Banin E, Sahel JA. Current Status of Clinical Trials Design and Outcomes in Retinal Gene Therapy. Cold Spring Harb Perspect Med 2024; 14:a041301. [PMID: 37696658 PMCID: PMC11216172 DOI: 10.1101/cshperspect.a041301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
With the rapid expansion of methods encompassed by the term gene therapy, new trials exploring the safety and efficacy of these methods are initiated more frequently. As a result, important questions arise pertaining the design of these trials and patient participation. One of the most important aspects of any clinical trial is the ability to measure the trial's outcome in a manner that will reflect the effect of the treatment and allow its quantification, whether the trial is aimed at preservation or restoration of retinal cells (photoreceptors and others), vision, or both. Here we will review the existing methods for quantification of trial outcomes, stressing the importance of assessing the participant's visual function and not just visual acuity. We will also describe the key considerations in trial design. Finally, as patient safety remains the primary concern in any trial participation, we will outline the key principles in that regard.
Collapse
Affiliation(s)
- Boris Rosin
- The UPMC Vision Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Eyal Banin
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jose-Alain Sahel
- The UPMC Vision Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Institut Hospitalo-Universitaire FOReSIGHT, Paris 75012, France
| |
Collapse
|
13
|
Audo I, Nassisi M, Zeitz C, Sahel JA. The Extraordinary Phenotypic and Genetic Variability of Retinal and Macular Degenerations: The Relevance to Therapeutic Developments. Cold Spring Harb Perspect Med 2024; 14:a041652. [PMID: 37604589 PMCID: PMC11146306 DOI: 10.1101/cshperspect.a041652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of rare conditions leading to various degrees of visual handicap and to progressive blindness in more severe cases. Besides visual rehabilitation, educational, and socio-professional support, there are currently limited therapeutic options, but the approval of the first gene therapy product for RPE65-related IRDs raised hope for therapeutic innovations. Such developments are facing obstacles intrinsic to the disease and the affected tissue including the extreme phenotypic and genetic variability of IRDs and the fine tuning of visual processing through the complex architecture of the postmitotic neural retina. A precise phenotypic characterization is required prior to genetic testing, which now relies on high-throughput sequencing. Their challenges will be discussed within this article as well as their implications in clinical trial design.
Collapse
Affiliation(s)
- Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, Paris F-75012, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Ophthalmology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan 20122, Italy
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, Paris F-75012, France
- Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
14
|
Ford JL, Karatza E, Mody H, Nagaraja Shastri P, Khajeh Pour S, Yang TY, Swanson M, Chao D, Devineni D. Clinical Pharmacology Perspective on Development of Adeno-Associated Virus Vector-Based Retina Gene Therapy. Clin Pharmacol Ther 2024; 115:1212-1232. [PMID: 38450707 DOI: 10.1002/cpt.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Adeno-associated virus (AAV) vector-based gene therapy is an innovative modality being increasingly investigated to treat diseases by modifying or replacing defective genes or expressing therapeutic entities. With its unique anatomic and physiological characteristics, the eye constitutes a very attractive target for gene therapy. Specifically, the ocular space is easily accessible and is generally considered "immune-privileged" with a low risk of systemic side effects following local drug administration. As retina cells have limited cellular turnover, a one-time gene delivery has the potential to provide long-term transgene expression. Despite the initial success with voretigene neparvovec (Luxturna), the first approved retina gene therapy, there are still challenges to be overcome for successful clinical development of these products and scientific questions to be answered. The current review paper aims to integrate published experience learned thus far for AAV-based retina gene therapy related to preclinical to clinical translation; first-in-human dose selection; relevant bioanalytical assays and strategies; clinical development considerations including trial design, biodistribution and vector shedding, immunogenicity, transgene expression, and pediatric populations; opportunities for model-informed drug development; and regulatory perspectives. The information presented herein is intended to serve as a guide to inform the clinical development strategy for retina gene therapy with a focus on clinical pharmacology.
Collapse
Affiliation(s)
| | - Eleni Karatza
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Hardik Mody
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Sana Khajeh Pour
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Tong-Yuan Yang
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Michael Swanson
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Daniel Chao
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | |
Collapse
|
15
|
Malvasi M, Compagno S, Segnalini A, Malvasi VM, Pacella F, Turchetti P, Pacella E. Effectiveness of Mp-3 Microperimetric Biofeedback Fixation Training For Low Vision Rehabilitation in Patients Treated With Corticosteroid Ivt in Retinal Vein Occlusions. CLINICAL OPTOMETRY 2024; 16:131-142. [PMID: 38798785 PMCID: PMC11128221 DOI: 10.2147/opto.s460999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Background The success of fixation training using microperimetric biofeedback (MP-3 MBFT) in the realm of visual rehabilitation for patients with central vision loss caused by macular pathologies is well established. This study aimed to assess the effectiveness and safety of visual rehabilitation with microperimetric biofeedback in consolidating the benefits obtained, with the goal of reducing the need for repeated intravitreal injections (IVT). Specifically, the focus is on the eyes of patients with central vision loss treated with slow-release corticosteroid IVT following retinal venous thrombosis (RVO), aiming to enhance and maintain postoperative efficacy. Methods This retrospective review involved the examination of 44 eyes affected by macular edema due to RVO associated with central vision loss. Patients were divided into two groups, with only one undergoing ten sessions of 10-minute visual rehabilitation with a microperimeter (MP-3 MBFT) after IVT over a period of 20 weeks. Results All the treated patients demonstrated good tolerance to the procedure, with no reported complications. A comparison of best-corrected visual acuity (BCVA), retinal sensitivity recorded with a microperimeter, and pre-IVT fixation stability revealed statistically significant improvements at the end of the first month after IVT. However, the treatment group continued to exhibit superior and more enduring results at four months post-IV. Conclusion The synergistic use of MP-3 MBFT rehabilitation after IVT with slow-release corticosteroids has proven particularly effective in improving BCVA and long-term fixation stability. This led to a significant reduction in the number of required IVTs, with no related adverse events. The authors argue that biofeedback utilization represents a noninvasive therapeutic option devoid of contraindications and easy to implement and that it positively contributes to the overall patient experience regarding quality of life in advanced stages of macular diseases.
Collapse
Affiliation(s)
- Mariaelena Malvasi
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Sabrina Compagno
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Alessandro Segnalini
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Vito Maurizio Malvasi
- Department of Odontostomatological and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Paolo Turchetti
- National Institute for Health, Migration and Poverty (INMP/NIHMP), Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Corradetti G, Verma A, Tojjar J, Almidani L, Oncel D, Emamverdi M, Bradley A, Lindenberg S, Nittala MG, Sadda SR. Retinal Imaging Findings in Inherited Retinal Diseases. J Clin Med 2024; 13:2079. [PMID: 38610844 PMCID: PMC11012835 DOI: 10.3390/jcm13072079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent one of the major causes of progressive and irreversible vision loss in the working-age population. Over the last few decades, advances in retinal imaging have allowed for an improvement in the phenotypic characterization of this group of diseases and have facilitated phenotype-to-genotype correlation studies. As a result, the number of clinical trials targeting IRDs has steadily increased, and commensurate to this, the need for novel reproducible outcome measures and endpoints has grown. This review aims to summarize and describe the clinical presentation, characteristic imaging findings, and imaging endpoint measures that are being used in clinical research on IRDs. For the purpose of this review, IRDs have been divided into four categories: (1) panretinal pigmentary retinopathies affecting rods or cones; (2) macular dystrophies; (3) stationary conditions; (4) hereditary vitreoretinopathies.
Collapse
Affiliation(s)
- Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aditya Verma
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jasaman Tojjar
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Louay Almidani
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deniz Oncel
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60153, USA
| | - Mehdi Emamverdi
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
| | - Alec Bradley
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | | | | | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Yang P, Mustafi D, Pepple KL. Immunology of Retinitis Pigmentosa and Gene Therapy-Associated Uveitis. Cold Spring Harb Perspect Med 2024; 14:a041305. [PMID: 37037600 PMCID: PMC10562523 DOI: 10.1101/cshperspect.a041305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The underlying immune state of inherited retinal degenerations (IRDs) and retinitis pigmentosa (RP) has been an emerging area of interest, wherein the consequences have never been greater given the widespread recognition of gene therapy-associated uveitis (GTU) in gene therapy clinical trials. Whereas some evidence suggests that the adaptive immune system may play a role, the majority of studies indicate that the innate immune system is likely the primary driver of neuroinflammation in RP. During retinal degeneration, discrete mechanisms activate resident microglia and promote infiltrating macrophages that can either be protective or detrimental to photoreceptor cell death. This persistent stimulation of innate immunity, overlaid by the introduction of viral antigens as part of gene therapy, has the potential to trigger a complex microglia/macrophage-driven proinflammatory state. A better understanding of the immune pathophysiology in IRD and GTU will be necessary to improve the success of developing novel treatments for IRDs.
Collapse
Affiliation(s)
- Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregan 97239, USA
| | - Debarshi Mustafi
- Department of Ophthalmology, Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington 98109, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington 98109, USA
- Department of Ophthalmology, Seattle Children's Hospital, Seattle, Washington 98109, USA
| | - Kathryn L Pepple
- Department of Ophthalmology, Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
18
|
Nguyen VP, Zhe J, Hu J, Ahmed U, Paulus YM. Molecular and cellular imaging of the eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:360-386. [PMID: 38223186 PMCID: PMC10783915 DOI: 10.1364/boe.502350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
The application of molecular and cellular imaging in ophthalmology has numerous benefits. It can enable the early detection and diagnosis of ocular diseases, facilitating timely intervention and improved patient outcomes. Molecular imaging techniques can help identify disease biomarkers, monitor disease progression, and evaluate treatment responses. Furthermore, these techniques allow researchers to gain insights into the pathogenesis of ocular diseases and develop novel therapeutic strategies. Molecular and cellular imaging can also allow basic research to elucidate the normal physiological processes occurring within the eye, such as cell signaling, tissue remodeling, and immune responses. By providing detailed visualization at the molecular and cellular level, these imaging techniques contribute to a comprehensive understanding of ocular biology. Current clinically available imaging often relies on confocal microscopy, multi-photon microscopy, PET (positron emission tomography) or SPECT (single-photon emission computed tomography) techniques, optical coherence tomography (OCT), and fluorescence imaging. Preclinical research focuses on the identification of novel molecular targets for various diseases. The aim is to discover specific biomarkers or molecular pathways associated with diseases, allowing for targeted imaging and precise disease characterization. In parallel, efforts are being made to develop sophisticated and multifunctional contrast agents that can selectively bind to these identified molecular targets. These contrast agents can enhance the imaging signal and improve the sensitivity and specificity of molecular imaging by carrying various imaging labels, including radionuclides for PET or SPECT, fluorescent dyes for optical imaging, or nanoparticles for multimodal imaging. Furthermore, advancements in technology and instrumentation are being pursued to enable multimodality molecular imaging. Integrating different imaging modalities, such as PET/MRI (magnetic resonance imaging) or PET/CT (computed tomography), allows for the complementary strengths of each modality to be combined, providing comprehensive molecular and anatomical information in a single examination. Recently, photoacoustic microscopy (PAM) has been explored as a novel imaging technology for visualization of different retinal diseases. PAM is a non-invasive, non-ionizing radiation, and hybrid imaging modality that combines the optical excitation of contrast agents with ultrasound detection. It offers a unique approach to imaging by providing both anatomical and functional information. Its ability to utilize molecularly targeted contrast agents holds great promise for molecular imaging applications in ophthalmology. In this review, we will summarize the application of multimodality molecular imaging for tracking chorioretinal angiogenesis along with the migration of stem cells after subretinal transplantation in vivo.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Umayr Ahmed
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
19
|
Britten-Jones AC, Thai L, Flanagan JPM, Bedggood PA, Edwards TL, Metha AB, Ayton LN. Adaptive optics imaging in inherited retinal diseases: A scoping review of the clinical literature. Surv Ophthalmol 2024; 69:51-66. [PMID: 37778667 DOI: 10.1016/j.survophthal.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Adaptive optics (AO) imaging enables direct, objective assessments of retinal cells. Applications of AO show great promise in advancing our understanding of the etiology of inherited retinal disease (IRDs) and discovering new imaging biomarkers. This scoping review systematically identifies and summarizes clinical studies evaluating AO imaging in IRDs. Ovid MEDLINE and EMBASE were searched on February 6, 2023. Studies describing AO imaging in monogenic IRDs were included. Study screening and data extraction were performed by 2 reviewers independently. This review presents (1) a broad overview of the dominant areas of research; (2) a summary of IRD characteristics revealed by AO imaging; and (3) a discussion of methodological considerations relating to AO imaging in IRDs. From 140 studies with AO outcomes, including 2 following subretinal gene therapy treatments, 75% included fewer than 10 participants with AO imaging data. Of 100 studies that included participants' genetic diagnoses, the most common IRD genes with AO outcomes are CNGA3, CNGB3, CHM, USH2A, and ABCA4. Confocal reflectance AO scanning laser ophthalmoscopy was the most reported imaging modality, followed by flood-illuminated AO and split-detector AO. The most common outcome was cone density, reported quantitatively in 56% of studies. Future research areas include guidelines to reduce variability in the reporting of AO methodology and a focus on functional AO techniques to guide the development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| | - Lawrence Thai
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jeremy P M Flanagan
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Phillip A Bedggood
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Thomas L Edwards
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Andrew B Metha
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Wong WM, Tham YC, Simunovic MP, Chen FK, Luu CD, Chen H, Jin ZB, Shen RJ, Li S, Sui R, Zhao C, Yang L, Bhende M, Raman R, Sen P, Ghosh A, Poornachandra B, Sasongko MB, Arianti A, Chia V, Mangunsong CO, Manurung F, Fujinami K, Ikeda H, Woo SJ, Kim SJ, Mohd Khialdin S, Othman O, Bastion MLC, Kamalden AT, Lott PWP, Fong K, Shunmugam M, Lim A, Thapa R, Pradhan E, Rajkarnikar SP, Adhikari S, Ibañez BMBI, Koh A, Chan CMM, Fenner BJ, Tan TE, Laude A, Ngo WK, Holder GE, Su X, Chen TC, Wang NK, Kang EYC, Huang CH, Surawatsatien N, Pisuchpen P, Sujirakul T, Kumaramanickavel G, Singh M, Leroy B, Michaelides M, Cheng CY, Chen LJ, Chan HW. Rationale and protocol paper for the Asia Pacific Network for inherited eye diseases. Asia Pac J Ophthalmol (Phila) 2024; 13:100030. [PMID: 38233300 DOI: 10.1016/j.apjo.2023.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE There are major gaps in our knowledge of hereditary ocular conditions in the Asia-Pacific population, which comprises approximately 60% of the world's population. Therefore, a concerted regional effort is urgently needed to close this critical knowledge gap and apply precision medicine technology to improve the quality of lives of these patients in the Asia-Pacific region. DESIGN Multi-national, multi-center collaborative network. METHODS The Research Standing Committee of the Asia-Pacific Academy of Ophthalmology and the Asia-Pacific Society of Eye Genetics fostered this research collaboration, which brings together renowned institutions and experts for inherited eye diseases in the Asia-Pacific region. The immediate priority of the network will be inherited retinal diseases (IRDs), where there is a lack of detailed characterization of these conditions and in the number of established registries. RESULTS The network comprises 55 members from 35 centers, spanning 12 countries and regions, including Australia, China, India, Indonesia, Japan, South Korea, Malaysia, Nepal, Philippines, Singapore, Taiwan, and Thailand. The steering committee comprises ophthalmologists with experience in consortia for eye diseases in the Asia-Pacific region, leading ophthalmologists and vision scientists in the field of IRDs internationally, and ophthalmic geneticists. CONCLUSIONS The Asia Pacific Inherited Eye Disease (APIED) network aims to (1) improve genotyping capabilities and expertise to increase early and accurate genetic diagnosis of IRDs, (2) harmonise deep phenotyping practices and utilization of ontological terms, and (3) establish high-quality, multi-user, federated disease registries that will facilitate patient care, genetic counseling, and research of IRDs regionally and internationally.
Collapse
Affiliation(s)
- Wendy M Wong
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, National University Hospital, National University Health System, Singapore
| | - Yih Chung Tham
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew P Simunovic
- Save Sight Institute, The University of Sydney, Sydney, Australia; Retinal Unit, Sydney Eye Hospital, Sydney, Australia
| | - Fred Kuanfu Chen
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Haoyu Chen
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, Shantou, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Shiying Li
- Department of Ophthalmology in Xiang'an Hospital of Xiamen University and Medical Center of Xiamen University, School of Medicine in Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1, Shuai Fu Yuan, Beijing, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Muna Bhende
- Shri Bhagwan Mahavir Vitreoretinal services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal services, Medical Research Foundation, Sankara Nethralaya, Chennai, India; Dr Agarwal Eye Hospital, Chandigarh, India
| | - Arkasubhra Ghosh
- GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - B Poornachandra
- Vitreo-Retina Services, Narayana Nethralaya, Bangalore, India
| | - Muhammad Bayu Sasongko
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito Eye Center, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Alia Arianti
- JEC Eye Hospitals and Clinics, Jakarta, Indonesia
| | - Valen Chia
- JEC Eye Hospitals and Clinics, Jakarta, Indonesia
| | | | | | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Hanako Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Safinaz Mohd Khialdin
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia; UKM Specialist Children's Hospital, Kuala Lumpur, Malaysia
| | - Othmaliza Othman
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Ain Tengku Kamalden
- UM Eye Research Centre, Department of Ophthalmology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pooi Wah Penny Lott
- UM Eye Research Centre, Department of Ophthalmology, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | - Amelia Lim
- Ophthalmology, Penang Gleneagles, Malaysia
| | - Raba Thapa
- Tilganga Institute of Ophthalmology, Kathmandu, Nepal
| | - Eli Pradhan
- Tilganga Institute of Ophthalmology, Kathmandu, Nepal
| | | | | | - B Manuel Benjamin Iv Ibañez
- Makati Medical Center, Makati City, Philippines; DOH Eye Center, East Avenue Medical Center, Quezon City, Philippines
| | - Adrian Koh
- Eye & Retina Surgeons, Camden Medical Centre, Singapore, Singapore
| | - Choi Mun M Chan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Beau J Fenner
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Tien-En Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Augustinus Laude
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Wei Kiong Ngo
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Graham E Holder
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, National University Hospital, National University Health System, Singapore
| | - Xinyi Su
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, National University Hospital, National University Health System, Singapore
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Nuntachai Surawatsatien
- Center of Excellence in Retina, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Phattrawan Pisuchpen
- Department of Ophthalmology and Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tharikarn Sujirakul
- Department of Ophthalmology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Mandeep Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Bart Leroy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ching-Yu Cheng
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hwei Wuen Chan
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, National University Hospital, National University Health System, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Brar AS, Parameswarappa DC, Takkar B, Narayanan R, Jalali S, Mandal S, Fujinami K, Padhy SK. Gene Therapy for Inherited Retinal Diseases: From Laboratory Bench to Patient Bedside and Beyond. Ophthalmol Ther 2024; 13:21-50. [PMID: 38113023 PMCID: PMC10776519 DOI: 10.1007/s40123-023-00862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
This comprehensive review provides a thorough examination of inherited retinal diseases (IRDs), encompassing their classification, genetic underpinnings, and the promising landscape of gene therapy trials. IRDs, a diverse group of genetic conditions causing vision loss through photoreceptor cell death, are explored through various angles, including inheritance patterns, gene involvement, and associated systemic disorders. The focal point is gene therapy, which offers hope for halting or even reversing the progression of IRDs. The review highlights ongoing clinical trials spanning retinal cell replacement, neuroprotection, pharmacological interventions, and optogenetics. While these therapies hold tremendous potential, they face challenges like timing optimization, standardized assessment criteria, inflammation management, vector refinement, and raising awareness among vision scientists. Additionally, translating gene therapy success into widespread adoption and addressing cost-effectiveness are crucial challenges to address. Continued research and clinical trials are essential to fully harness gene therapy's potential in treating IRDs and enhancing the lives of affected individuals.
Collapse
Affiliation(s)
- Anand Singh Brar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| | - Deepika C Parameswarappa
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Raja Narayanan
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Sohini Mandal
- Dr Rajendra Prasad Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, 152-8902, Japan
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India.
| |
Collapse
|
22
|
Ng FYC, Tan PL, Sundar G. Improving visual outcomes in patients with rare paediatric eye diseases. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023; 52:625-634. [PMID: 38920150 DOI: 10.47102/annals-acadmedsg.202323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Introduction Rare paediatric eye diseases (RPEDs) threaten both vision and life. Recently, rare diseases were recognised as a global public health agenda, with children specified as a priority in the World Health Organization's VISION 2020 against avoidable visual loss. Method We conducted a review through a query of online databases (PubMed, Embase and Cochrane Library). Articles related to RPEDs were selected based on relevance by 2 authors, with any disagreements adjudicated by the third author. Results We synthesise the current state of knowledge regarding RPEDs, barriers to their care, and recommendations for the future. RPEDs often result in significant visual loss, profoundly impacting the way children comprehend and participate in the world. These diseases may also reduce life expectancy and even be life-threatening. Barriers to the care of RPEDs include an unclear definition of "rare diseases", missed or delayed diagnosis, inadequate knowledge and expertise in management, and challenging research environments. Conclusion Our findings provide an update on the diagnosis and management of RPEDs, which is of relevance to ophthalmologists, paediatricians, healthcare policymakers and social workers. We propose supportive policies and adequate resource allocation to these diseases, comprehensive and patient-centred care, alongside improved education and training, enhanced research capabilities and continued collaboration across institutions.
Collapse
Affiliation(s)
- Faye Yu Ci Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh Lin Tan
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gangadhara Sundar
- Orbit & Oculofacial Surgery Service, Department of Ophthalmology, National University Hospital, Singapore
| |
Collapse
|
23
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Lisbjerg K, Bertelsen M, Grønskov K, Kessel L. Clinical characterization of patients with PRPF31-related retinitis pigmentosa and asymptomatic carriers: a cross-sectional study. Ophthalmic Genet 2023; 44:456-464. [PMID: 37293790 DOI: 10.1080/13816810.2023.2219732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND/AIM To describe the clinical phenotype of retinitis pigmentosa (RP) caused by PRPF31-variants and clinical characterization of asymptomatic PRPF31 carriers. MATERIALS AND METHODS We conducted a descriptive cross-sectional deep phenotyping study. We included subjects with PRPF31 variants predicted to be disease-causing, both individuals with RP and asymptomatic carriers. Participants underwent a comprehensive clinical examination of standard visual function parameters (visual acuity, contrast sensitivity, Goldmann visual field), full-field stimulus threshold (FST), full-field electroretinogram (ff-ERG), and a structural investigation with slit lamp and multimodal imaging. We used Spearman correlation analyses to evaluate associations between quantitative outcomes. RESULTS We included 21 individuals with disease-causing PRPF31-variants: 16 symptomatic and 5 asymptomatic subjects. The symptomatic subjects demonstrated a typical RP phenotype with constricted visual fields, extinguished ff-ERG, and disrupted outer retinal anatomy. FST was impaired and correlated significantly with other outcome measures in RP subjects. Structure-function correlations with Spearman correlation analysis showed moderate correlation coefficients due to a few outliers in each analysis. The asymptomatic individuals had normal best-corrected visual acuity and visual fields, but showed reduced ff-ERG amplitudes, borderline FST sensitivity, and structural abnormalities on OCT and fundoscopy. CONCLUSIONS RP11 has a typical RP phenotype but varies in terms of severity. FST measurements correlated well with other functional and structural metrics and may be a reliable outcome measure in future trials as it is sensitive to a broad range of disease severities. Asymptomatic carriers showed sub-clinical disease manifestations, and our findings underline that reported non-penetrance in PRPF31-related RP is not an all-or-none phenomenon.
Collapse
Affiliation(s)
- Kristian Lisbjerg
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mette Bertelsen
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Beaver D, Limnios IJ. A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases. FRONTIERS IN TRANSPLANTATION 2023; 2:1130086. [PMID: 38993872 PMCID: PMC11235385 DOI: 10.3389/frtra.2023.1130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 07/13/2024]
Abstract
Stem cell therapies can potentially treat various retinal degenerative diseases, including age-related macular degeneration (AMD) and inherited retinal diseases like retinitis pigmentosa. For these diseases, transplanted cells may include stem cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a combination of both. Although stem cell-derived RPE cells have progressed to human clinical trials, therapies using photoreceptors and other retinal cell types are lagging. In this review, we discuss the potential use of human pluripotent stem cell (hPSC)-derived photoreceptors for the treatment of retinal degeneration and highlight the progress and challenges for their efficient production and clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Davinia Beaver
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| | - Ioannis Jason Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| |
Collapse
|
26
|
Liu WJ, Taylor LJ, MacLaren RE, Jolly JK. Clinical Research on the Leading Causes of Severe Sight Impairment in the UK General and Working Populations. Clin Ophthalmol 2023; 17:2729-2735. [PMID: 37743890 PMCID: PMC10516213 DOI: 10.2147/opth.s417773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose Clinical research brings the potential of improved diagnostics, sight-saving treatments, and more accessible services to those suffering with severe sight impairment (SSI). This report investigates whether registered ophthalmology clinical studies address the leading causes of SSI in the general and working populations of the United Kingdom (UK). Methods The latest statistics on the leading causes of SSI in the UK general and working populations were identified by searching PubMed, Cochrane Library, and TRIP databases. Clinical study registries were searched to identify registered clinical studies (on or prior to 1st December 2022) on the leading causes of SSI. The relationship between the number of clinical studies on leading causes of SSI and the percentage of SSI certifications they account for was analyzed. Results In the UK general population, the number of registered clinical studies on the leading causes of SSI is statistically significantly correlated (Spearman's rho = 0.86, p < 0.01) with the percentage of SSI certifications they account for. However, there is no correlation between the two in the UK working population (aged 16-64) (Spearman's rho = 0.15, p = 0.70). Eye conditions accounting for the most SSI certifications in individuals of working age have significantly less clinical research activity than those that cause the most SSI certifications in the general population. Out of the leading causes of SSI certifications studied, disorders of the visual cortex and congenital anomalies of the eye have the least clinical research activity. Conclusion Clinical research into the leading causes of SSI in the general population is essential. However, it is important to consider eye conditions that cause the most severe visual impairment in individuals of working age due to the significant health and socioeconomic implications of sight loss in this population.
Collapse
Affiliation(s)
- Wei Jia Liu
- School of Medicine and Biomedical Sciences, University of Oxford, Oxford, UK
| | - Laura J Taylor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
27
|
Shamshad A, Kang C, Jenny LA, Persad-Paisley EM, Tsang SH. Translatability barriers between preclinical and clinical trials of AAV gene therapy in inherited retinal diseases. Vision Res 2023; 210:108258. [PMID: 37244011 PMCID: PMC10526971 DOI: 10.1016/j.visres.2023.108258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
Inherited retinal diseases (IRDs) are progressive degenerative diseases which cause gradual vision loss or complete blindness. As over 270 gene mutations have been identified in the underlying pathology of IRDs, gene therapy as a treatment modality has been an increasingly active realm of investigation. Currently, the most common vehicle of ocular gene delivery is the adeno-associated virus (AAV) vector. This is injected into the immune-privileged subretinal space to mediate transgene expression in retinal cells. Although numerous animal models of IRDs have demonstrated successful outcomes following AAV-mediated gene delivery, many of these studies fail to translate into successful outcomes in clinical trials. The purpose of this review is to A) comparatively assess preclinical and clinical IRD trials in which the success of AAV-mediated therapy failed to translate between animal and human participants B) discuss factors which may complicate the translatability of gene therapy in animals to results in humans.
Collapse
Affiliation(s)
| | - Chaerim Kang
- Warren Alpert Medical School of Brown University, USA
| | - Laura A Jenny
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Stephen H Tsang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA; Columbia Stem Cell Initiative, Columbia University, New York, NY, USA; Insitute of Human Nutrition, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
29
|
Siles L, Gaudó P, Pomares E. High-Efficiency CRISPR/Cas9-Mediated Correction of a Homozygous Mutation in Achromatopsia-Patient-Derived iPSCs. Int J Mol Sci 2023; 24:ijms24043655. [PMID: 36835061 PMCID: PMC9964936 DOI: 10.3390/ijms24043655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Achromatopsia is an autosomal recessive disorder, in which cone photoreceptors undergo progressive degeneration, causing color blindness and poor visual acuity, among other significant eye affectations. It belongs to a group of inherited retinal dystrophies that currently have no treatment. Although functional improvements have been reported in several ongoing gene therapy studies, more efforts and research should be carried out to enhance their clinical application. In recent years, genome editing has arisen as one of the most promising tools for personalized medicine. In this study, we aimed to correct a homozygous PDE6C pathogenic variant in hiPSCs derived from a patient affected by achromatopsia through CRISPR/Cas9 and TALENs technologies. Here, we demonstrate high efficiency in gene editing by CRISPR/Cas9 but not with TALENs approximation. Despite a few of the edited clones displaying heterozygous on-target defects, the proportion of corrected clones with a potentially restored wild-type PDE6C protein was more than half of the total clones analyzed. In addition, none of them presented off-target aberrations. These results significantly contribute to advances in single-nucleotide gene editing and the development of future strategies for the treatment of achromatopsia.
Collapse
Affiliation(s)
- Laura Siles
- Fundació de Recerca de l’Institut de Microcirurgia Ocular, 08035 Barcelona, Spain
- Departament de Genètica, IMO Grupo Miranza, 08035 Barcelona, Spain
| | - Paula Gaudó
- Fundació de Recerca de l’Institut de Microcirurgia Ocular, 08035 Barcelona, Spain
- Departament de Genètica, IMO Grupo Miranza, 08035 Barcelona, Spain
| | - Esther Pomares
- Fundació de Recerca de l’Institut de Microcirurgia Ocular, 08035 Barcelona, Spain
- Departament de Genètica, IMO Grupo Miranza, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
30
|
Lisbjerg K, Grønskov K, Bertelsen M, Møller LB, Kessel L. Genetic Modifiers of Non-Penetrance and RNA Expression Levels in PRPF31-Associated Retinitis Pigmentosa in a Danish Cohort. Genes (Basel) 2023; 14:435. [PMID: 36833363 PMCID: PMC9956082 DOI: 10.3390/genes14020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background/aims: To examine potential genetic modifiers of disease penetrance in PRPF31-associated retinitis pigmentosa 11 (RP11). (2) Methods: Blood samples from individuals (n = 37) with PRPF31 variants believed to be disease-causing were used for molecular genetic testing and, in some cases (n = 23), also for mRNA expression analyses. Medical charts were used to establish if individuals were symptomatic (RP) or asymptomatic non-penetrant carriers (NPC). RNA expression levels of PRPF31 and CNOT3 were measured on peripheral whole blood using quantitative real-time PCR normalized to GAPDH. Copy number variation of minisatellite repeat element 1 (MSR1) was performed with DNA fragment analysis. (3) Results: mRNA expression analyses on 22 individuals (17 with RP and 5 non-penetrant carriers) revealed no statistically significant differences in PRPF31 or CNOT3 mRNA expression levels between individuals with RP and non-penetrant carriers. Among 37 individuals, we found that all three carriers of a 4-copy MSR1 sequence on their wild-type (WT) allele were non-penetrant carriers. However, copy number variation of MSR1 is not the sole determinant factor of non-penetrance, as not all non-penetrant carriers carried a 4-copy WT allele. A 4-copy MSR1 mutant allele was not associated with non-penetrance. (4) Conclusions: In this Danish cohort, a 4-copy MSR1 WT allele was associated with non-penetrance of retinitis pigmentosa caused by PRPF31 variants. The level of PRPF31 mRNA expression in peripheral whole blood was not a useful indicator of disease status.
Collapse
Affiliation(s)
- Kristian Lisbjerg
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Mette Bertelsen
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lisbeth Birk Møller
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
31
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
32
|
Gupta PR, Kheir W, Peng B, Duan J, Chiang JPW, Iannaccone A. Identification of numerous novel disease-causing variants in patients with inherited retinal diseases, combining careful clinical-functional phenotyping with systematic, broad NGS panel-based genotyping. Mol Vis 2022; 28:203-219. [PMID: 36284670 PMCID: PMC9514548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/14/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose The widespread consensus is that genotyping is essential for patients with inherited retinal disease (IRD). Given the numerous ongoing gene therapy clinical trials for IRDs, identifying the pathogenic mutation in these patients has potential important therapeutic implications. In this study, we demonstrate how we identified with a high degree of confidence numerous novel disease-causing mutations, deletions, and duplications in a large consecutive IRD case series by using a judicious combination of careful, in-depth clinical-functional phenotyping to guide and integrate our genotyping approach. Methods We conducted a retrospective analysis of data between November 2016 and March 2018 from the Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases IRD patient database, which encompassed 378 IRD cases that had not yet been previously genotyped. With the exception of some patients who presented with classical clinical-functional phenotypes that allowed for targeted gene testing, all other subjects systematically underwent next-generation sequencing-based broad, IRD-focused panel testing. Most cases were also tested for parental allele phase. Results were reviewed vis-à-vis the clinical-functional phenotypes for reconciliation and potential addition of supplemental testing such as deletion/duplication microarrays or copy number variant (CNV) analysis. Supplemental testing was driven by an IRD specialist-laboratory consensus, and decisions were clinically or genetically driven or both. Results By judiciously using this two-way approach and leveraging to its full potential the benefits of careful, in-depth clinical-functional phenotyping by an experienced IRD specialist, more than 80% of the cases in this series were successfully genotyped. We also identified with a high degree of confidence 52 novel disease-causing mutations, deletions, and duplications. Conclusions The combination of meticulous, expert clinical-functional phenotyping studies with systematic next-generation sequencing panel-based genotyping and microarray deletion/duplication testing or CNV analysis as applicable in accordance with the above-mentioned consensus was extremely effective at the diagnostic end, reduced costs, and saved time. IRD specialist-laboratory two-way interactions and case discussions would augment the efficacy of this approach and improve the diagnostic yield in successfully solving and genotyping IRD cases.
Collapse
Affiliation(s)
- Priya R. Gupta
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC
| | - Wajiha Kheir
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC,,Current affiliation: Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
| | - Bo Peng
- Molecular Vision Laboratory, Hillsboro, OR
| | - Jie Duan
- Molecular Vision Laboratory, Hillsboro, OR
| | | | - Alessandro Iannaccone
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC
| |
Collapse
|
33
|
Chen JS, Baxter SL. Applications of natural language processing in ophthalmology: present and future. Front Med (Lausanne) 2022; 9:906554. [PMID: 36004369 PMCID: PMC9393550 DOI: 10.3389/fmed.2022.906554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in technology, including novel ophthalmic imaging devices and adoption of the electronic health record (EHR), have resulted in significantly increased data available for both clinical use and research in ophthalmology. While artificial intelligence (AI) algorithms have the potential to utilize these data to transform clinical care, current applications of AI in ophthalmology have focused mostly on image-based deep learning. Unstructured free-text in the EHR represents a tremendous amount of underutilized data in big data analyses and predictive AI. Natural language processing (NLP) is a type of AI involved in processing human language that can be used to develop automated algorithms using these vast quantities of available text data. The purpose of this review was to introduce ophthalmologists to NLP by (1) reviewing current applications of NLP in ophthalmology and (2) exploring potential applications of NLP. We reviewed current literature published in Pubmed and Google Scholar for articles related to NLP and ophthalmology, and used ancestor search to expand our references. Overall, we found 19 published studies of NLP in ophthalmology. The majority of these publications (16) focused on extracting specific text such as visual acuity from free-text notes for the purposes of quantitative analysis. Other applications included: domain embedding, predictive modeling, and topic modeling. Future ophthalmic applications of NLP may also focus on developing search engines for data within free-text notes, cleaning notes, automated question-answering, and translating ophthalmology notes for other specialties or for patients, especially with a growing interest in open notes. As medicine becomes more data-oriented, NLP offers increasing opportunities to augment our ability to harness free-text data and drive innovations in healthcare delivery and treatment of ophthalmic conditions.
Collapse
Affiliation(s)
- Jimmy S. Chen
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, United States
- Health Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, United States
| | - Sally L. Baxter
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, United States
- Health Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
35
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
36
|
Morgan JIW, Jiang YY, Vergilio GK, Serrano LW, Pearson DJ, Bennett J, Maguire AM, Aleman TS. Short-term Assessment of Subfoveal Injection of Adeno-Associated Virus-Mediated hCHM Gene Augmentation in Choroideremia Using Adaptive Optics Ophthalmoscopy. JAMA Ophthalmol 2022; 140:411-420. [PMID: 35266957 PMCID: PMC8914909 DOI: 10.1001/jamaophthalmol.2022.0158] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022]
Abstract
Importance Subretinal injection for gene augmentation in retinal degenerations forcefully detaches the neural retina from the retinal pigment epithelium, potentially damaging photoreceptors and/or retinal pigment epithelium cells. Objective To use adaptive optics scanning light ophthalmoscopy (AOSLO) to assess the short-term integrity of the cone mosaic following subretinal injections of adeno-associated virus vector designed to deliver a functional version of the CHM gene (AAV2-hCHM) in patients with choroideremia. Design, Setting, and Participants This longitudinal case series study enrolled adult patients with choroideremia from February 2015 to January 2016 in the US. To be included in the study, study participants must have received uniocular subfoveal injections of low-dose (5 × 1010 vector genome per eye) or high-dose (1 × 1011 vector genome per eye) AAV2-hCHM. Analysis began February 2015. Main Outcomes and Measures The macular regions of both eyes were imaged before and 1 month after injection using a custom-built multimodal AOSLO. Postinjection cone inner segment mosaics were compared with preinjection mosaics at multiple regions of interest. Colocalized spectral-domain optical coherence tomography and dark-adapted cone sensitivity was also acquired at each time point. Results Nine study participants ranged in age from 26 to 50 years at the time of enrollment, and all were White men. Postinjection AOSLO images showed preservation of the cone mosaic in all 9 AAV2-hCHM-injected eyes. Mosaics appeared intact and contiguous 1 month postinjection, with the exception of foveal disruption in 1 patient. Optical coherence tomography showed foveal cone outer segment shortening postinjection. Cone-mediated sensitivities were unchanged in 8 of 9 injected and 9 of 9 uninjected eyes. One participant showed acute loss of foveal optical coherence tomography cone outer segment-related signals along with cone sensitivity loss that colocalized with disruption of the mosaic on AOSLO. Conclusions and Relevance Integrity of the cone mosaic is maintained following subretinal delivery of AAV2-hCHM, providing strong evidence in support of the safety of the injections. Minor foveal thinning observed following surgery corresponds with short-term cone outer segment shortening rather than cone cell loss. Foveal cone loss in 1 participant raises the possibility of individual vulnerability to the subretinal injection.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Yu You Jiang
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Grace K. Vergilio
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Leona W. Serrano
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Denise J. Pearson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Jean Bennett
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Albert M. Maguire
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Tomas S. Aleman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| |
Collapse
|
37
|
Jayasundera KT, Abuzaitoun RO, Lacy GD, Abalem MF, Saltzman GM, Ciulla TA, Johnson MW. Challenges of Cost-Effectiveness Analyses of Novel Therapeutics for Inherited Retinal Diseases. Am J Ophthalmol 2022; 235:90-97. [PMID: 34433085 PMCID: PMC8861129 DOI: 10.1016/j.ajo.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the challenges and potential improvement strategies of cost-effectiveness analyses performed for therapeutics targeting inherited retinal diseases (IRDs). DESIGN Perspective. METHODS A literature review was conducted with discussion of current limitations and improvement recommendations. RESULTS Cost-effectiveness analysis (CEA) performed for IRD therapeutics has multiple limitations. First, the available methods used to measure health-related quality of life and health utilities can be inaccurate when used in IRDs. Second, the financial burden to patients and society from vision impairment associated with IRDs has been inadequately studied and includes a variety of expenditures ranging from direct costs of IRD specialty health care to indirect expenses associated with daily living activities. Third, our collective understanding is limited in the areas of IRD natural history and health benefits gained from new IRD treatments (eg, gene therapies). In addition, the therapeutic effect from a patient perspective and its duration of action are not fully understood. Due to the scarcity of data, CEA for newly approved therapies has relied on assumptions and creations of predictive models for both costs and health benefits for these new therapeutics in order to calculate the incremental cost-effectiveness ratio. CONCLUSIONS CEA studies performed for IRD therapeutics have been limited by the established health utilities in ophthalmology and the lack of disease-specific information. The assumptions and extrapolations in these studies create substantial uncertainty in incremental cost-effectiveness ratio results. An improved framework is required for CEA of IRD therapeutics in order to determine the cost-effectiveness of each therapy brought from clinical trials to clinical practice.
Collapse
Affiliation(s)
- K Thiran Jayasundera
- From the Kellogg Eye Center, Department of Ophthalmology and Visual Sciences (K.T.J., R.O.A.,G.D.L., M.F.A., M.W.J.)
| | - Rebhi O Abuzaitoun
- From the Kellogg Eye Center, Department of Ophthalmology and Visual Sciences (K.T.J., R.O.A.,G.D.L., M.F.A., M.W.J.)
| | - Gabrielle D Lacy
- From the Kellogg Eye Center, Department of Ophthalmology and Visual Sciences (K.T.J., R.O.A.,G.D.L., M.F.A., M.W.J.)
| | - Maria Fernanda Abalem
- From the Kellogg Eye Center, Department of Ophthalmology and Visual Sciences (K.T.J., R.O.A.,G.D.L., M.F.A., M.W.J.); University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Ophthalmology and Otolaryngology (M.F.A.)
| | - Gregory M Saltzman
- University of São Paulo Medical School, São Paulo, São Paulo, Brazil; Department of Economics and Management (G.M.S.); Albion College, Albion, Michigan, USA; Department of Health Management and Policy (G.M.S.)
| | - Thomas A Ciulla
- University of Michigan, Ann Arbor, Michigan, USA; Department of Ophthalmology (T.A.C.); Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, USA; Clearside Biomedical, Inc (T.A.C.); Alpharetta, Georgia, USA; Retina Service, Midwest Eye Institute (T.A.C.), Carmel, Indiana, USA
| | - Mark W Johnson
- From the Kellogg Eye Center, Department of Ophthalmology and Visual Sciences (K.T.J., R.O.A.,G.D.L., M.F.A., M.W.J.).
| |
Collapse
|
38
|
The thin line between seeing risks and venturing scientific progress. Graefes Arch Clin Exp Ophthalmol 2022; 260:2773-2774. [PMID: 35113251 PMCID: PMC8811008 DOI: 10.1007/s00417-022-05557-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
|
39
|
It is time for a moonshot to find “Cures” for diabetic retinal disease. Prog Retin Eye Res 2022; 90:101051. [DOI: 10.1016/j.preteyeres.2022.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
|
40
|
Britten‐Jones AC, O'Hare F, Edwards TL, Ayton LN. Victorian evolution of inherited retinal diseases natural history registry (VENTURE study): Rationale, methodology and initial participant characteristics. Clin Exp Ophthalmol 2022; 50:768-780. [PMID: 35621151 PMCID: PMC9796389 DOI: 10.1111/ceo.14110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/28/2022] [Accepted: 05/15/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Emerging treatments are being developed for inherited retinal diseases, requiring a clear understanding of natural progression and a database of potential participants for clinical trials. This article describes the rationale, study design and methodology of the Victorian Evolution of inherited retinal diseases NaTUral history REgistry (VENTURE), including data from the first 150 participants enrolled. METHODS VENTURE collects retrospective and prospective data from people with inherited retinal diseases. Following registration, participants are asked to attend a baseline examination using a standardised protocol to confirm their inherited retinal disease diagnosis. Examination procedures include (i) retinal function, using visual acuity and perimetry; (ii) retinal structure, using multimodal imaging and (iii) patient-reported outcomes. Participants' molecular diagnoses are obtained from their clinical records or through targeted-panel genetic testing by an independent laboratory. Phenotype and genotype data are used to enrol participants into disease-specific longitudinal cohort sub-studies. RESULTS From 7 July 2020 to 30 December 2021, VENTURE enrolled 150 registrants (138 families) and most (63%) have a rod-cone dystrophy phenotype. From 93 participants who have received a probable molecular diagnosis, the most common affected genes are RPGR (13% of all registrants), USH2A (10%), CYP4V2 (7%), ABCA4 (5%), and CHM (5%). Most participants have early to moderate vision impairment, with over half (55%) having visual acuities of better than 6/60 (20/200) at registration. CONCLUSIONS The VENTURE study will complement existing patient registries and help drive inherited retinal disease research in Australia, facilitating access to research opportunities for individuals with inherited retinal diseases.
Collapse
Affiliation(s)
- Alexis Ceecee Britten‐Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneAustralia
| | - Fleur O'Hare
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneAustralia
| | - Thomas L. Edwards
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneAustralia
| | - Lauren N. Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneAustralia
| | | |
Collapse
|
41
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
42
|
Britten-Jones AC, Jin R, Gocuk SA, Cichello E, O'Hare F, Hickey DG, Edwards TL, Ayton LN. The safety and efficacy of gene therapy treatment for monogenic retinal and optic nerve diseases: A systematic review. Genet Med 2021; 24:521-534. [PMID: 34906485 DOI: 10.1016/j.gim.2021.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE This study aimed to systematically review and summarize gene therapy treatment for monogenic retinal and optic nerve diseases. METHODS This review was prospectively registered (CRD42021229812). A comprehensive literature search was performed in Ovid MEDLINE, Ovid Embase, Cochrane Central, and clinical trial registries (February 2021). Clinical studies describing DNA-based gene therapy treatments for monogenic posterior ocular diseases were eligible for inclusion. Risk of bias evaluation was performed. Data synthesis was undertaken applying Synthesis Without Meta-analysis guidelines. RESULTS This study identified 47 full-text publications, 50 conference abstracts, and 54 clinical trial registry entries describing DNA-based ocular gene therapy treatments for 16 different genetic variants. Study summaries and visual representations of safety and efficacy outcomes are presented for 20 unique full-text publications in RPE65-mediated retinal dystrophies, choroideremia, Leber hereditary optic neuropathy, rod-cone dystrophy, achromatopsia, and X-linked retinoschisis. The most common adverse events were related to lid/ocular surface/cornea abnormalities in subretinal gene therapy trials and anterior uveitis in intravitreal gene therapy trials. CONCLUSION There is a high degree of variability in ocular monogenic gene therapy trials with respect to study design, statistical methodology, and reporting of safety and efficacy outcomes. This review improves the accessibility and transparency in interpreting gene therapy trials to date.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.
| | - Rui Jin
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Sena A Gocuk
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Elise Cichello
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Fleur O'Hare
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Thomas L Edwards
- Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Surgery (Ophthalmology), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Lassoued A, Zhang F, Kurokawa K, Liu Y, Bernucci MT, Crowell JA, Miller DT. Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography. Proc Natl Acad Sci U S A 2021; 118:e2107444118. [PMID: 34795055 PMCID: PMC8617487 DOI: 10.1073/pnas.2107444118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerative diseases, whose most debilitating phase is cone photoreceptor death. Perimetric and electroretinographic methods are the gold standards for diagnosing and monitoring RP and assessing cone function. However, these methods lack the spatial resolution and sensitivity to assess disease progression at the level of individual photoreceptor cells, where the disease originates and whose degradation causes vision loss. High-resolution retinal imaging methods permit visualization of human cone cells in vivo but have only recently achieved sufficient sensitivity to observe their function as manifested in the cone optoretinogram. By imaging with phase-sensitive adaptive optics optical coherence tomography, we identify a biomarker in the cone optoretinogram that characterizes individual cone dysfunction by stimulating cone cells with flashes of light and measuring nanometer-scale changes in their outer segments. We find that cone optoretinographic responses decrease with increasing RP severity and that even in areas where cone density appears normal, cones can respond differently than those in controls. Unexpectedly, in the most severely diseased patches examined, we find isolated cones that respond normally. Short-wavelength-sensitive cones are found to be more vulnerable to RP than medium- and long-wavelength-sensitive cones. We find that decreases in cone response and cone outer-segment length arise earlier in RP than changes in cone density but that decreases in response and length are not necessarily correlated within single cones.
Collapse
Affiliation(s)
- Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, IN 47405
| | - Furu Zhang
- School of Optometry, Indiana University, Bloomington, IN 47405
| | | | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN 47405
| | | | - James A Crowell
- School of Optometry, Indiana University, Bloomington, IN 47405
| | - Donald T Miller
- School of Optometry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
44
|
Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021; 3:737632. [PMID: 34778871 PMCID: PMC8581640 DOI: 10.3389/fgeed.2021.737632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Blindness and deafness are the most frequent sensory disorders in humans. Whatever their cause - genetic, environmental, or due to toxic agents, or aging - the deterioration of these senses is often linked to irreversible damage to the light-sensing photoreceptor cells (blindness) and/or the mechanosensitive hair cells (deafness). Efforts are increasingly focused on preventing disease progression by correcting or replacing the blindness and deafness-causal pathogenic alleles. In recent years, gene replacement therapies for rare monogenic disorders of the retina have given positive results, leading to the marketing of the first gene therapy product for a form of childhood hereditary blindness. Promising results, with a partial restoration of auditory function, have also been reported in preclinical models of human deafness. Silencing approaches, including antisense oligonucleotides, adeno-associated virus (AAV)-mediated microRNA delivery, and genome-editing approaches have also been applied to various genetic forms of blindness and deafness The discovery of new DNA- and RNA-based CRISPR/Cas nucleases, and the new generations of base, prime, and RNA editors offers new possibilities for directly repairing point mutations and therapeutically restoring gene function. Thanks to easy access and immune-privilege status of self-contained compartments, the eye and the ear continue to be at the forefront of developing therapies for genetic diseases. Here, we review the ongoing applications and achievements of this new class of emerging therapeutics in the sensory organs of vision and hearing, highlighting the challenges ahead and the solutions to be overcome for their successful therapeutic application in vivo.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
45
|
Hahn LC, van Schooneveld MJ, Wesseling NL, Florijn RJ, Ten Brink JB, Lissenberg-Witte BI, Strubbe I, Meester-Smoor MA, Thiadens AA, Diederen RM, van Cauwenbergh C, de Zaeytijd J, Walraedt S, de Baere E, Klaver CCW, Ossewaarde-van Norel J, Ingeborgh van den Born L, Hoyng CB, van Genderen MM, Sieving PA, Leroy BP, Bergen AA, Boon CJF. X-Linked Retinoschisis: Novel Clinical Observations and Genetic Spectrum in 340 Patients. Ophthalmology 2021; 129:191-202. [PMID: 34624300 DOI: 10.1016/j.ophtha.2021.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To describe the natural course, phenotype, and genotype of patients with X-linked retinoschisis (XLRS). DESIGN Retrospective cohort study. PARTICIPANTS Three hundred forty patients with XLRS from 178 presumably unrelated families. METHODS This multicenter, retrospective cohort study reviewed medical records of patients with XLRS for medical history, symptoms, visual acuity (VA), ophthalmoscopy, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain [SD] OCT, fundus autofluorescence). MAIN OUTCOME MEASURES Age at onset, age at diagnosis, severity of visual impairment, annual visual decline, and electroretinography and imaging findings. RESULTS Three hundred forty patients were included with a mean follow-up time of 13.2 years (range, 0.1-50.1 years). The median ages to reach mild visual impairment and low vision were 12 and 25 years, respectively. Severe visual impairment and blindness were observed predominantly in patients older than 40 years, with a predicted prevalence of 35% and 25%, respectively, at 60 years of age. The VA increased slightly during the first 2 decades of life and subsequently transitioned into an average annual decline of 0.44% (P < 0.001). No significant difference was found in decline of VA between variants that were predicted to be severe and mild (P = 0.239). The integrity of the ellipsoid zone (EZ) as well as the photoreceptor outer segment (PROS) length in the fovea on SD OCT correlated significantly with VA (Spearman's ρ = -0.759 [P < 0.001] and -0.592 [P = 0.012], respectively). Fifty-three different RS1 variants were found. The most common variants were the founder variant c.214G→A (p.(Glu72Lys)) (101 patients [38.7%]) and a deletion of exon 3 (38 patients [14.6%]). CONCLUSIONS Large variabilities in phenotype and natural course of XLRS were seen in this study. In most patients, XLRS showed a slow deterioration starting in the second decade of life, suggesting an optimal window of opportunity for treatment within the first 3 decades of life. The integrity of EZ as well as the PROS length on SD OCT may be important in choosing optimal candidates for treatment and as potential structural end points in future therapeutic studies. No clear genotype-phenotype correlation was found.
Collapse
Affiliation(s)
- Leo C Hahn
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Bartiméus, Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - Nieneke L Wesseling
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ralph J Florijn
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ine Strubbe
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium
| | | | - Alberta A Thiadens
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roselie M Diederen
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline van Cauwenbergh
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Julie de Zaeytijd
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium
| | - Sophie Walraedt
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium
| | - Elfride de Baere
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Institute of Molecular and Clinical Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria M van Genderen
- Bartiméus, Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul A Sieving
- Department of Ophthalmology, School of Medicine, University of California at Davis, Sacramento, California
| | - Bart P Leroy
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium; Division of Ophthalmology & CCMT, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
46
|
Iannaccone A, Alekseev O. Choosing Outcome Measures and Assessing Efficacy of Therapeutic Interventions in Inherited Retinal Diseases: The Importance of Natural History Studies. Int Ophthalmol Clin 2021; 61:47-61. [PMID: 34584044 DOI: 10.1097/iio.0000000000000380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Chung DC, Birch DG, MacLaren RE. Endpoints for Measuring Efficacy in Clinical Trials for Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:63-78. [PMID: 34584045 DOI: 10.1097/iio.0000000000000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Balfoort BM, Buijs MJN, Ten Asbroek ALMA, Bergen AAB, Boon CJF, Ferreira EA, Houtkooper RH, Wagenmakers MAEM, Wanders RJA, Waterham HR, Timmer C, van Karnebeek CD, Brands MM. A review of treatment modalities in gyrate atrophy of the choroid and retina (GACR). Mol Genet Metab 2021; 134:96-116. [PMID: 34340878 DOI: 10.1016/j.ymgme.2021.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022]
Abstract
UNLABELLED Gyrate atrophy of the choroid and retina (GACR) is a rare inborn error of amino acid metabolism caused by bi-allelic variations in OAT. GACR is characterised by vision decline in early life eventually leading to complete blindness, and high plasma ornithine levels. There is no curative treatment for GACR, although several therapeutic modalities aim to slow progression of the disease by targeting different steps within the ornithine pathway. No international treatment protocol is available. We systematically collected all international literature on therapeutic interventions in GACR to provide an overview of published treatment effects. METHODS Following the PRISMA guidelines, we conducted a systematic review of the English literature until December 22nd 2020. PubMed and Embase databases were searched for studies related to therapeutic interventions in patients with GACR. RESULTS A total of 33 studies (n = 107 patients) met the inclusion criteria. Most studies were designed as case reports (n = 27) or case series (n = 4). No randomised controlled trials or large cohort studies were found. Treatments applied were protein-restricted diets, pyridoxine supplementation, creatine or creatine precursor supplementation, l-lysine supplementation, and proline supplementation. Protein-restricted diets lowered ornithine levels ranging from 16.0-91.2%. Pyridoxine responsiveness was reported in 30% of included mutations. Lysine supplementation decreased ornithine levels with 21-34%. Quality assessment showed low to moderate quality of the articles. CONCLUSIONS Based primarily on case reports ornithine levels can be reduced by using a protein restricted diet, pyridoxine supplementation (variation-dependent) and/or lysine supplementation. The lack of pre-defined clinical outcome measures and structural follow-up in all included studies impeded conclusions on clinical effectiveness. Future research should be aimed at 1) Unravelling the OAT biochemical pathway to identify other possible pathologic metabolites besides ornithine, 2) Pre-defining GACR specific clinical outcome measures, and 3) Establishing an international historical cohort.
Collapse
Affiliation(s)
- Berith M Balfoort
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Mark J N Buijs
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Anneloor L M A Ten Asbroek
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Arthur A B Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Centre, 2333, ZA, Leiden, the Netherlands
| | - Elise A Ferreira
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Margreet A E M Wagenmakers
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Corrie Timmer
- Department Endocrinology and Metabolism Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Clara D van Karnebeek
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands; Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marion M Brands
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
49
|
Mbefo M, Berger A, Schouwey K, Gérard X, Kostic C, Beryozkin A, Sharon D, Dolfuss H, Munier F, Tran HV, van Lohuizen M, Beltran WA, Arsenijevic Y. Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy. Int J Mol Sci 2021; 22:ijms22179331. [PMID: 34502238 PMCID: PMC8430630 DOI: 10.3390/ijms22179331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD.
Collapse
Affiliation(s)
- Martial Mbefo
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Adeline Berger
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Karine Schouwey
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Xavier Gérard
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Corinne Kostic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Avigail Beryozkin
- Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem 91120, Israel; (A.B.); (D.S.)
| | - Dror Sharon
- Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem 91120, Israel; (A.B.); (D.S.)
| | - Hélène Dolfuss
- UMR_S 1112, Laboratoire de Génétique Médicales, University of Strasbourg, CEDEX, 67084 Strasbourg, France;
| | - Francis Munier
- Unit of Oculogenetics, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (F.M.); (H.V.T.)
| | - Hoai Viet Tran
- Unit of Oculogenetics, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (F.M.); (H.V.T.)
| | | | - William A. Beltran
- Division of Experimental Retinal Therapies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
- Correspondence:
| |
Collapse
|
50
|
Ludwig AL, Gamm DM. Outer Retinal Cell Replacement: Putting the Pieces Together. Transl Vis Sci Technol 2021; 10:15. [PMID: 34724034 PMCID: PMC8572485 DOI: 10.1167/tvst.10.10.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Retinal degenerative diseases (RDDs) affecting photoreceptors (PRs) are one of the most prevalent sources of incurable blindness worldwide. Due to a lack of endogenous repair mechanisms, functional cell replacement of PRs and/or retinal pigmented epithelium (RPE) cells are among the most anticipated approaches for restoring vision in advanced RDD. Human pluripotent stem cell (hPSC) technologies have accelerated development of outer retinal cell therapies as they provide a theoretically unlimited source of donor cells. Human PSC-RPE replacement therapies have progressed rapidly, with several completed and ongoing clinical trials. Although potentially more promising, hPSC-PR replacement therapies are still in their infancy. A first-in-human trial of hPSC-derived neuroretinal transplantation has recently begun, but a number of questions regarding survival, reproducibility, functional integration, and mechanism of action remain. The discovery of biomaterial transfer between donor and PR cells has highlighted the need for rigorous safety and efficacy studies of PR replacement. In this review, we briefly discuss the history of neuroretinal and PR cell transplantation to identify remaining challenges and outline a stepwise approach to address specific pieces of the outer retinal cell replacement puzzle.
Collapse
Affiliation(s)
- Allison L. Ludwig
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - David M. Gamm
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|