1
|
Pfenniger A, Yoo S, Arora R. Oxidative stress and atrial fibrillation. J Mol Cell Cardiol 2024; 196:141-151. [PMID: 39307416 DOI: 10.1016/j.yjmcc.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Though the pathogenesis of AF is complex and is not completely understood, many studies suggest that oxidative stress is a major mechanism in pathophysiology of AF. Through multiple mechanisms, reactive oxygen species (ROS) lead to the formation of an AF substrate that facilitates the development and maintenance of AF. In this review article, we provide an update on the different mechanisms by which oxidative stress promotes atrial remodeling. We then discuss several therapeutic strategies targeting oxidative stress for the prevention or treatment of AF. Considering the complex biology of ROS induced remodeling, and the evolution of ROS sources and compartmentalization during AF progression, there is a definite need for improvement in timing, targeting and reduction of off-target effects of therapeutic strategies targeting oxidative injury in AF.
Collapse
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
2
|
Wang M, Hou C, Jia F, Zhong C, Xue C, Li J. Aging-associated atrial fibrillation: A comprehensive review focusing on the potential mechanisms. Aging Cell 2024; 23:e14309. [PMID: 39135295 PMCID: PMC11464128 DOI: 10.1111/acel.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/11/2024] Open
Abstract
Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.
Collapse
Affiliation(s)
- Meng‐Fei Wang
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Can Hou
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Fang Jia
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cheng‐Hao Zhong
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cong Xue
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Jian‐Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Chen S, Wu N, Zhang Y, Lin Z, Chen J, Qin H, Chen H, Cui C, Yang G, Chen M. Follicle-stimulating hormone promotes atrial fibrosis in menopausal women with atrial fibrillation. Heart Rhythm 2024:S1547-5271(24)03320-4. [PMID: 39284398 DOI: 10.1016/j.hrthm.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Postmenopausal women with atrial fibrillation (AF) exhibit a higher level of atrial fibrosis and a higher recurrence rate after ablation compared with men. However, the underlying mechanism remains unclear. OBJECTIVE The purpost of this study was to investigate the mechanism through which menopause promotes atrial fibrosis. METHODS In a prospective cohort of women with AF, regression analyses were conducted to assess the relationship between low-voltage area (LVA) and sex hormone levels. CREM-IbΔC-X mice, a spontaneous AF model, underwent bilateral ovariectomy (OVX). Electrocardiograms, echocardiograms, and Masson staining were performed. Follicle-stimulating hormone (FSH) stimulation was applied in male mice for 3 months. OVX was also applied in an angiotensin II (Ang II)-induced pressure overload mouse model, after programmed electrical stimulation and structural analyses. Bulk RNA sequencing (RNA-seq) was performed to elucidate potential mechanisms. RESULTS Women demonstrated a significantly higher LVA burden than men (P < .001). A positive correlation was observed between LVA burden and FSH level (P = .002). Mice in the OVX group exhibited a significantly higher incidence of AF (P = .040) and atrial fibrosis (P = .021) compared with the Sham group, which could be attenuated by adeno-associated virus encoding small interfering RNA against Fshr. In male CREM-IbΔC-X mice, FSH stimulation promoted the occurrence of AF (P = .035) and atrial fibrosis (P = .002). In Ang II-induced female mice, OVX prompted atrial fibrosis, increased AF inducibility, and shortened atrial effective refractory period, which could be attenuated with knockdown of Fshr. RNA-seq indicated mitochondrial dysfunction. CONCLUSION Postmenopausal women exhibited a higher LVA burden than men, which was positively correlated with FSH level. FSH promoted atrial fibrosis through oxidative stress.
Collapse
Affiliation(s)
- Shaojie Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Nan Wu
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Yike Zhang
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Zhiqiao Lin
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Jiuzhou Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Huiyuan Qin
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Hongwu Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Chang Cui
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China.
| | - Gang Yang
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China; Division of Cardiology, Jiangsu Provincial People's Hospital Chongqing Hospital, Chongqing, China.
| | - Minglong Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| |
Collapse
|
4
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
5
|
Shen J, Fu H, Ding Y, Yuan Z, Xiang Z, Ding M, Huang M, Peng Y, Li T, Zha K, Ye Q. The role of iron overload and ferroptosis in arrhythmia pathogenesis. IJC HEART & VASCULATURE 2024; 52:101414. [PMID: 38694269 PMCID: PMC11060960 DOI: 10.1016/j.ijcha.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Ferroptosis is a newly discovered form of programmed cell death triggered by intracellular iron overload, which leads to the accumulation of lipid peroxides in various cells. It has been implicated in the pathogenesis and progression of various diseases, including tumors, neurological disorders, and cardiovascular diseases. The intricate mechanism underlying ferroptosis involves an imbalance between the oxidation and antioxidant systems, disturbances in iron metabolism, membrane lipid peroxidation, and dysregulation of amino acid metabolism. We highlight the key molecular mechanisms governing iron overload and ferroptosis, and discuss potential molecular pathways linking ferroptosis with arrhythmias.
Collapse
Affiliation(s)
- Jingsong Shen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hengsong Fu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yanling Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ziyang Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zeming Xiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Miao Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Min Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yongquan Peng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Kelan Zha
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Jin C, Zhong Z, Gao L, Wu X, Zhou C, Zhou G, Liu S. Focus on the Role of Inflammation as a Bridge between Ferroptosis and Atrial Fibrillation: A Narrative Review and Novel Perspective. Rev Cardiovasc Med 2024; 25:110. [PMID: 39076556 PMCID: PMC11264012 DOI: 10.31083/j.rcm2504110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 07/31/2024] Open
Abstract
In this comprehensive review, we examine the intricate interplay between inflammation, ferroptosis, and atrial fibrillation (AF), highlighting their significant roles in AF pathophysiology and pathogenesis. Augmented inflammatory responses are pivotal to AF, potentially leading to atrial remodeling and reentry phenomena by impacting calcium channels and atrial tissue fibrosis. A strong correlation exists between inflammatory cytokines and AF, underscoring the importance of inflammatory signaling pathways, such as NOD-like receptor thermal protien domain associated protein 3 (NLRP3) inflammasome, Nuclear Factor kappa B (NF- κ B) signaling, and Tumor necrosis factor- α (TNF- α ) signaling in AF development. Ferroptosis, a non-apoptotic regulated mode of cell death, has been widely studied in relation to cardiovascular diseases including heart failure, myocardial infarction, cardiomyopathy, and reperfusion injury. The interaction between ferroptosis and inflammation is complex and mutually influential. While significant progress has been made in understanding the inflammation-AF relationship, the role of inflammation as a conduit linking ferroptosis and AF remains underexplored. The specific pathogenesis and key molecules of atrial fibrosis caused by ferroptosis are still not fully understood. Here we review the role of inflammatory signaling in ferroptosis and AF. We elucidated the association between ferroptosis and AF, aiming to unveil mechanisms for targeted inhibition of atrial cell fibrosis and to propose novel therapeutic strategies for AF. This exploration is vital for advancing our knowledge and developing more effective interventions for AF, a condition deeply intertwined with inflammatory processes and ferroptotic pathways.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| |
Collapse
|
7
|
Gondal MUR, Mehmood RS, Khan RP, Malik J. Atrial myopathy. Curr Probl Cardiol 2024; 49:102381. [PMID: 38191102 DOI: 10.1016/j.cpcardiol.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
This paper delves into the progressive concept of atrial myopathy, shedding light on its development and its impact on atrial characteristics. It extensively explores the intricate connections between atrial myopathy, atrial fibrillation (AF), and strokes. Researchers have sought additional contributors to AF-related strokes due to the absence of a clear timing correlation between paroxysmal AF episodes and strokes in patients with cardiac implantable electronic devices. Through various animal models and human investigations, a close interrelation among aging, inflammation, oxidative stress, and stretching mechanisms has been identified. These mechanisms contribute to fibrosis, alterations in electrical properties, autonomic remodeling, and a heightened pro-thrombotic state. These interconnected factors establish a detrimental cycle, exacerbating atrial myopathy and elevating the risk of sustained AF and strokes. By emphasizing the significance of atrial myopathy and the risk of strokes that are distinct from AF, the paper also discusses methods for identifying patients with atrial myopathy. Moreover, it proposes an approach to incorporate the concept of atrial myopathy into clinical practice to guide anticoagulation decisions in individuals with AF.
Collapse
Affiliation(s)
| | - Raja Sadam Mehmood
- Department of Medicine, Shifa International Hospital, Islamabad, Pakistan
| | | | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan.
| |
Collapse
|
8
|
Oropeza-Almazán Y, Blatter LA. Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes. Biomolecules 2024; 14:144. [PMID: 38397381 PMCID: PMC10887423 DOI: 10.3390/biom14020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Atrial calcium transient (CaT) alternans is defined as beat-to-beat alternations in CaT amplitude and is causally linked to atrial fibrillation (AF). Mitochondria play a significant role in cardiac excitation-contraction coupling and Ca signaling through redox environment regulation. In isolated rabbit atrial myocytes, ROS production is enhanced during CaT alternans, measured by fluorescence microscopy. Exogenous ROS (tert-butyl hydroperoxide) enhanced CaT alternans, whereas ROS scavengers (dithiothreitol, MnTBAP, quercetin, tempol) alleviated CaT alternans. While the inhibition of cellular NADPH oxidases had no effect on CaT alternans, interference with mitochondrial ROS (ROSm) production had profound effects: (1) the superoxide dismutase mimetic MitoTempo diminished CaT alternans and shifted the pacing threshold to higher frequencies; (2) the inhibition of cyt c peroxidase by SS-31, and inhibitors of ROSm production by complexes of the electron transport chain S1QEL1.1 and S3QEL2, decreased the severity of CaT alternans; however (3) the impairment of mitochondrial antioxidant defense by the inhibition of nicotinamide nucleotide transhydrogenase with NBD-Cl and thioredoxin reductase-2 with auranofin enhanced CaT alternans. Our results suggest that intact mitochondrial antioxidant defense provides crucial protection against pro-arrhythmic CaT alternans. Thus, modulating the mitochondrial redox state represents a potential therapeutic approach for alternans-associated arrhythmias, including AF.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA;
| |
Collapse
|
9
|
Kanaporis G, Blatter LA. Increased Risk for Atrial Alternans in Rabbit Heart Failure: The Role of Ca 2+/Calmodulin-Dependent Kinase II and Inositol-1,4,5-trisphosphate Signaling. Biomolecules 2023; 14:53. [PMID: 38254653 PMCID: PMC10813785 DOI: 10.3390/biom14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) increases the probability of cardiac arrhythmias, including atrial fibrillation (AF), but the mechanisms linking HF to AF are poorly understood. We investigated disturbances in Ca2+ signaling and electrophysiology in rabbit atrial myocytes from normal and failing hearts and identified mechanisms that contribute to the higher risk of atrial arrhythmias in HF. Ca2+ transient (CaT) alternans-beat-to-beat alternations in CaT amplitude-served as indicator of increased arrhythmogenicity. We demonstrate that HF atrial myocytes were more prone to alternans despite no change in action potentials duration and only moderate decrease of L-type Ca2+ current. Ca2+/calmodulin-dependent kinase II (CaMKII) inhibition suppressed CaT alternans. Activation of IP3 signaling by endothelin-1 (ET-1) and angiotensin II (Ang II) resulted in acute, but transient reduction of CaT amplitude and sarcoplasmic reticulum (SR) Ca2+ load, and lowered the alternans risk. However, prolonged exposure to ET-1 and Ang II enhanced SR Ca2+ release and increased the degree of alternans. Inhibition of IP3 receptors prevented the transient ET-1 and Ang II effects and by itself increased the degree of CaT alternans. Our data suggest that activation of CaMKII and IP3 signaling contribute to atrial arrhythmogenesis in HF.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA;
| |
Collapse
|
10
|
Yin P, Wu Y, Long X, Zhu S, Chen S, Lu F, Lin K, Xu J. HACE1 expression in heart failure patients might promote mitochondrial oxidative stress and ferroptosis by targeting NRF2. Aging (Albany NY) 2023; 15:13888-13900. [PMID: 38070140 PMCID: PMC10756096 DOI: 10.18632/aging.205272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Heart failure is a prevalent and life-threatening medical condition characterized by abnormal atrial electrical activity, contributing to a higher risk of ischemic stroke. Atrial remodelling, driven by oxidative stress and structural changes, plays a central role in heart failure progression. Recent studies suggest that HACE1, a regulatory gene, may be involved in cardiac protection against heart failure. METHODS Clinical data analysis involved heart failure patients, while an animal model utilized C57BL/6J mice. RT-PCR, microarray analysis, histological examination, ELISA, and Western blot assays were employed to assess gene and protein expression, oxidative stress, and cardiac function. Cell transfection and culture of mouse atrial fibroblasts were performed for in-vitro experiments. RESULTS HACE1 expression was reduced in heart failure patients and correlated negatively with collagen levels. In mouse models, HACE1 up-regulation reduced oxidative stress, mitigated fibrosis, and improved cardiac function. Conversely, HACE1 knockdown exacerbated oxidative stress, fibrosis, and cardiac dysfunction. HACE1 also protected against ferroptosis and mitochondrial damage. NRF2, a transcription factor implicated in oxidative stress, was identified as a target of HACE1, with HACE1 promoting NRF2 activity through ubiquitination. CONCLUSIONS HACE1 emerges as a potential therapeutic target and diagnostic marker for heart failure. It regulates oxidative stress, mitigates cardiac fibrosis, and protects against ferroptosis and mitochondrial damage. The study reveals that HACE1 achieves these effects, at least in part, through NRF2 activation via ubiquitination, offering insights into novel mechanisms for heart failure pathogenesis and potential interventions.
Collapse
Affiliation(s)
- Peiyi Yin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yongbin Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuqiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shiwei Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Kun Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
11
|
Ni H, Morotti S, Zhang X, Dobrev D, Grandi E. Integrative human atrial modelling unravels interactive protein kinase A and Ca2+/calmodulin-dependent protein kinase II signalling as key determinants of atrial arrhythmogenesis. Cardiovasc Res 2023; 119:2294-2311. [PMID: 37523735 PMCID: PMC11318383 DOI: 10.1093/cvr/cvad118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 08/02/2023] Open
Abstract
AIMS Atrial fibrillation (AF), the most prevalent clinical arrhythmia, is associated with atrial remodelling manifesting as acute and chronic alterations in expression, function, and regulation of atrial electrophysiological and Ca2+-handling processes. These AF-induced modifications crosstalk and propagate across spatial scales creating a complex pathophysiological network, which renders AF resistant to existing pharmacotherapies that predominantly target transmembrane ion channels. Developing innovative therapeutic strategies requires a systems approach to disentangle quantitatively the pro-arrhythmic contributions of individual AF-induced alterations. METHODS AND RESULTS Here, we built a novel computational framework for simulating electrophysiology and Ca2+-handling in human atrial cardiomyocytes and tissues, and their regulation by key upstream signalling pathways [i.e. protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)] involved in AF-pathogenesis. Populations of atrial cardiomyocyte models were constructed to determine the influence of subcellular ionic processes, signalling components, and regulatory networks on atrial arrhythmogenesis. Our results reveal a novel synergistic crosstalk between PKA and CaMKII that promotes atrial cardiomyocyte electrical instability and arrhythmogenic triggered activity. Simulations of heterogeneous tissue demonstrate that this cellular triggered activity is further amplified by CaMKII- and PKA-dependent alterations of tissue properties, further exacerbating atrial arrhythmogenesis. CONCLUSIONS Our analysis reveals potential mechanisms by which the stress-associated adaptive changes turn into maladaptive pro-arrhythmic triggers at the cellular and tissue levels and identifies potential anti-AF targets. Collectively, our integrative approach is powerful and instrumental to assemble and reconcile existing knowledge into a systems network for identifying novel anti-AF targets and innovative approaches moving beyond the traditional ion channel-based strategy.
Collapse
Affiliation(s)
- Haibo Ni
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Xianwei Zhang
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University
Duisburg-Essen, Essen, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and
Université de Montréal, Montréal, Canada
- Department of Molecular Physiology and Biophysics, Baylor College of
Medicine, Houston, TX, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| |
Collapse
|
12
|
Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail 2023; 25:1199-1212. [PMID: 37434410 DOI: 10.1002/ejhf.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023] Open
Abstract
The development of the foetal heart is driven by increased glucose uptake and activation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1α (HIF-1α), which drives glycolysis. In contrast, the healthy adult heart is governed by sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), which promote fatty-acid oxidation and the substantial mitochondrial ATP production required for survival in a high-workload normoxic environment. During cardiac injury, the heart recapitulates the foetal signalling programme, which (although adaptive in the short term) is highly deleterious if sustained for long periods of time. Prolonged increases in glucose uptake in cardiomyocytes under stress leads to increased flux through the hexosamine biosynthesis pathway; its endproduct - uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) - functions as a critical nutrient surplus sensor. UDP-GlcNAc drives the post-translational protein modification known as O-GlcNAcylation, which rapidly and reversibly modifies thousands of intracellular proteins. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which adds or removes GlcNAc (N-acetylglucosamine), respectively, from target proteins. Recapitulation of foetal programming in heart failure (regardless of diabetes) is accompanied by marked increases in O-GlcNAcylation, both experimentally and clinically. Heightened O-GlcNAcylation in the heart leads to impaired calcium kinetics and contractile derangements, arrhythmias related to activation of voltage-gated sodium channels and Ca2+ /calmodulin-dependent protein kinase II, mitochondrial dysfunction, and maladaptive hypertrophy, microvascular dysfunction, fibrosis and cardiomyopathy. These deleterious effects can be prevented by suppression of O-GlcNAcylation, which can be achieved experimentally by upregulation of AMPK and SIRT1 or by pharmacological inhibition of OGT or stimulation of OGA. The effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the heart are accompanied by reduced O-GlcNAcylation, and their cytoprotective effects are reportedly abrogated if their action to suppress O-GlcNAcylation is blocked. Such an action may represent one of the many mechanisms by which enhanced AMPK and SIRT1 signalling following SGLT2 inhibition leads to cardiovascular benefits. These observations, taken collectively, suggest that UDP-GlcNAc functions as a critical nutrient surplus sensor (which acting in concert with mTOR and HIF-1α) can promote the development of cardiomyopathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
13
|
Shu H, Cheng J, Li N, Zhang Z, Nie J, Peng Y, Wang Y, Wang DW, Zhou N. Obesity and atrial fibrillation: a narrative review from arrhythmogenic mechanisms to clinical significance. Cardiovasc Diabetol 2023; 22:192. [PMID: 37516824 PMCID: PMC10387211 DOI: 10.1186/s12933-023-01913-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023] Open
Abstract
The prevalence of obesity and atrial fibrillation (AF), which are inextricably linked, is rapidly increasing worldwide. Obesity rates are higher among patients with AF than healthy individuals. Some epidemiological data indicated that obese patients were more likely to develop AF, but others reported no significant correlation. Obesity-related hypertension, diabetes, and obstructive sleep apnea are all associated with AF. Additionally, increased epicardial fat, systemic inflammation, and oxidative stress caused by obesity can induce atrial enlargement, inflammatory activation, local myocardial fibrosis, and electrical conduction abnormalities, all of which led to AF and promoted its persistence. Weight loss reduced the risk and reversed natural progression of AF, which may be due to its anti-fibrosis and inflammation effect. However, fluctuations in weight offset the benefits of weight loss. Therefore, the importance of steady weight loss urges clinicians to incorporate weight management interventions in the treatment of patients with AF. In this review, we discuss the epidemiology of obesity and AF, summarize the mechanisms by which obesity triggers AF, and explain how weight loss improves the prognosis of AF.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jia Cheng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zixuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
14
|
Leventopoulos G, Koros R, Travlos C, Perperis A, Chronopoulos P, Tsoni E, Koufou EE, Papageorgiou A, Apostolos A, Kaouris P, Davlouros P, Tsigkas G. Mechanisms of Atrial Fibrillation: How Our Knowledge Affects Clinical Practice. Life (Basel) 2023; 13:1260. [PMID: 37374043 PMCID: PMC10303005 DOI: 10.3390/life13061260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Atrial fibrillation (AF) is a very common arrhythmia that mainly affects older individuals. The mechanism of atrial fibrillation is complex and is related to the pathogenesis of trigger activation and the perpetuation of arrhythmia. The pulmonary veins in the left atrium arei confirm that onfirm the most common triggers due to their distinct anatomical and electrophysiological properties. As a result, their electrical isolation by ablation is the cornerstone of invasive AF treatment. Multiple factors and comorbidities affect the atrial tissue and lead to myocardial stretch. Several neurohormonal and structural changes occur, leading to inflammation and oxidative stress and, consequently, a fibrotic substrate created by myofibroblasts, which encourages AF perpetuation. Several mechanisms are implemented into daily clinical practice in both interventions in and the medical treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Georgios Leventopoulos
- Cardiology Department, University Hospital of Patras, 26504 Patras, Greece; (R.K.); (C.T.); (A.P.); (P.C.); (E.T.); (E.-E.K.); (A.P.); (A.A.); (P.K.); (P.D.); (G.T.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fang Z, Liu Z, Tao B, Jiang X. Engeletin mediates antiarrhythmic effects in mice with isoproterenol-induced cardiac remodeling. Biomed Pharmacother 2023; 161:114439. [PMID: 36848751 DOI: 10.1016/j.biopha.2023.114439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
OBJECTIVE Engeletin is a potent natural compound with antioxidant and anti-inflammatory properties. However, its role in cardiac remodeling remains unclear. Herein, the aim of the present study was to explore the effects of engeletin on cardiac structural and electrical remodeling and its underlying mechanism. METHODS and results: A cardiac remodeling mice model using isoproterenol (ISO)-induced myocardial fibrosis was constructed and divided into the following four groups: control group; engeletin group; ISO group; engeletin + ISO group. Our results demonstrated that engeletin alleviated ISO-induced myocardial fibrosis and dysfunction. Moreover, engeletin significantly prolonged the QT and corrected QT (QTc) intervals, effective refractory period (ERP), and action potential duration (APD), and enhanced connexin protein 43 (Cx43) and ion channel expressions, thereby decreasing ventricular fibrillation (VF) susceptibility. Additionally, dihydroethidium staining illustrated that engeletin decreased reactive oxygen species (ROS) production. Of note, engeletin also increased the levels of superoxide dismutase and glutathione and decreased the activity of malondialdehyde and L-Glutathione oxidized. Moreover, engeletin significantly increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Furthermore, in vitro administration of an Nrf2 inhibitor abolished the anti-oxidant properties of engeletin. CONCLUSION Engeletin ameliorated cardiac structural and electrical remodeling, ion channel remodeling, and oxidative stress induced by ISO in mice, thereby reducing VF susceptibility. These effects may be attributed to the anti-oxidant properties of engeletin associated with the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Zhebo Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Bo Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China.
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China.
| |
Collapse
|
16
|
Deng J, Jiang Y, Chen ZB, Rhee JW, Deng Y, Wang ZV. Mitochondrial Dysfunction in Cardiac Arrhythmias. Cells 2023; 12:679. [PMID: 36899814 PMCID: PMC10001005 DOI: 10.3390/cells12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Electrophysiological and structural disruptions in cardiac arrhythmias are closely related to mitochondrial dysfunction. Mitochondria are an organelle generating ATP, thereby satisfying the energy demand of the incessant electrical activity in the heart. In arrhythmias, the homeostatic supply-demand relationship is impaired, which is often accompanied by progressive mitochondrial dysfunction leading to reduced ATP production and elevated reactive oxidative species generation. Furthermore, ion homeostasis, membrane excitability, and cardiac structure can be disrupted through pathological changes in gap junctions and inflammatory signaling, which results in impaired cardiac electrical homeostasis. Herein, we review the electrical and molecular mechanisms of cardiac arrhythmias, with a particular focus on mitochondrial dysfunction in ionic regulation and gap junction action. We provide an update on inherited and acquired mitochondrial dysfunction to explore the pathophysiology of different types of arrhythmias. In addition, we highlight the role of mitochondria in bradyarrhythmia, including sinus node dysfunction and atrioventricular node dysfunction. Finally, we discuss how confounding factors, such as aging, gut microbiome, cardiac reperfusion injury, and electrical stimulation, modulate mitochondrial function and cause tachyarrhythmia.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yunqiu Jiang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - June-Wha Rhee
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Department of Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhao V. Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
17
|
Liu L, Zhou K, Liu X, Hua Y, Wang H, Li Y. The interplay between cardiac dyads and mitochondria regulated the calcium handling in cardiomyocytes. Front Physiol 2022; 13:1013817. [PMID: 36531185 PMCID: PMC9755166 DOI: 10.3389/fphys.2022.1013817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/24/2022] [Indexed: 11/15/2023] Open
Abstract
Calcium mishandling and mitochondrial dysfunction have been increasingly recognized as significant factors involved in the progression procedure of cardiomyopathy. Ca2+ mishandling could cause calcium-triggered arrhythmias, which could enhance force development and ATP consumption. Mitochondrial disorganization and dysfunction in cardiomyopathy could disturb the balance of energy catabolic and anabolic procedure. Close spatial localization and arrangement of structural among T-tubule, sarcoplasmic reticulum, mitochondria are important for Ca2+ handling. So that, we illustrate the regulating network between calcium handling and mitochondrial homeostasis, as well as its intracellular mechanisms in this review, which would be worthy to develop novel therapeutic strategy and restore the function of injured cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Hua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Li XF, Wan CQ, Mao YM. Analysis of pathogenesis and drug treatment of chronic obstructive pulmonary disease complicated with cardiovascular disease. Front Med (Lausanne) 2022; 9:979959. [PMID: 36405582 PMCID: PMC9672343 DOI: 10.3389/fmed.2022.979959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airflow limitation, and is associated with abnormal inflammatory responses in the lungs to cigarette smoke and toxic and harmful gases. Due to the existence of common risk factors, COPD is prone to multiple complications, among which cardiovascular disease (CVD) is the most common. It is currently established that cardiovascular comorbidities increase the risk of exacerbations and mortality from COPD. COPD is also an independent risk factor for CVD, and its specific mechanism is still unclear, which may be related to chronic systemic inflammation, oxidative stress, and vascular dysfunction. There is evidence that chronic inflammation of the airways can lead to destruction of the lung parenchyma and decreased lung function. Inflammatory cells in the airways also generate reactive oxygen species in the lungs, and reactive oxygen species further promote lung inflammation through signal transduction and other pathways. Inflammatory mediators circulate from the lungs to the whole body, causing intravascular dysfunction, promoting the formation and rupture of atherosclerotic plaques, and ultimately leading to the occurrence and development of CVD. This article reviews the pathophysiological mechanisms of COPD complicated by CVD and the effects of common cardiovascular drugs on COPD.
Collapse
Affiliation(s)
- Xiao-Fang Li
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Cheng-Quan Wan
- Department of Neonatology, Luoyang Maternal and Child Health Hospital,, Luoyang, Henan, China
| | - Yi-Min Mao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
19
|
Gao J, Xue G, Zhan G, Wang X, Li J, Yang X, Xia Y. Benefits of SGLT2 inhibitors in arrhythmias. Front Cardiovasc Med 2022; 9:1011429. [PMID: 36337862 PMCID: PMC9631490 DOI: 10.3389/fcvm.2022.1011429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 09/25/2023] Open
Abstract
Some studies have shown that sodium-glucose cotransporter (SGLT) 2 inhibitors can definitively attenuate the occurrence of cardiovascular diseases such as heart failure (HF), dilated cardiomyopathy (DCM), and myocardial infarction. With the development of research, SGLT2 inhibitors can also reduce the risk of arrhythmias. So in this review, how SGLT2 inhibitors play a role in reducing the risk of arrhythmia from the perspective of electrical remodeling and structural remodeling are explored and then the possible mechanisms are discussed. Specifically, we focus on the role of SGLT2 inhibitors in Na+ and Ca2 + homeostasis and the transients of Na+ and Ca2 +, which could affect electrical remodeling and then lead to arrythmia. We also discuss the protective role of SGLT2 inhibitors in structural remodeling from the perspective of fibrosis, inflammation, oxidative stress, and apoptosis. Ultimately, it is clear that SGLT2 inhibitors have significant benefits on cardiovascular diseases such as HF, myocardial hypertrophy and myocardial infarction. It can be expected that SGLT2 inhibitors can reduce the risk of arrhythmia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
20
|
Zhou Y, Suo W, Zhang X, Lv J, Liu Z, Liu R. Roles and mechanisms of quercetin on cardiac arrhythmia: A review. Biomed Pharmacother 2022; 153:113447. [DOI: 10.1016/j.biopha.2022.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
21
|
Li G, Yang J, Zhang D, Wang X, Han J, Guo X. Research Progress of Myocardial Fibrosis and Atrial Fibrillation. Front Cardiovasc Med 2022; 9:889706. [PMID: 35958428 PMCID: PMC9357935 DOI: 10.3389/fcvm.2022.889706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
With the aging population and the increasing incidence of basic illnesses such as hypertension and diabetes (DM), the incidence of atrial fibrillation (AF) has increased significantly. AF is the most common arrhythmia in clinical practice, which can cause heart failure (HF) and ischemic stroke (IS), increasing disability and mortality. Current studies point out that myocardial fibrosis (MF) is one of the most critical substrates for the occurrence and maintenance of AF. Although myocardial biopsy is the gold standard for evaluating MF, it is rarely used in clinical practice because it is an invasive procedure. In addition, serological indicators and imaging methods have also been used to evaluate MF. Nevertheless, the accuracy of serological markers in evaluating MF is controversial. This review focuses on the pathogenesis of MF, serological evaluation, imaging evaluation, and anti-fibrosis treatment to discuss the existing problems and provide new ideas for MF and AF evaluation and treatment.
Collapse
Affiliation(s)
- Guangling Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, China
| | - Demei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaomei Wang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jingjing Han
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xueya Guo
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Xueya Guo,
| |
Collapse
|
22
|
Inflammasome Signaling in Atrial Fibrillation. J Am Coll Cardiol 2022; 79:2349-2366. [DOI: 10.1016/j.jacc.2022.03.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/26/2022]
|
23
|
Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E, Tousoulis D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int J Mol Sci 2021; 23:ijms23010006. [PMID: 35008432 PMCID: PMC8744894 DOI: 10.3390/ijms23010006] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia managed in clinical practice, and it is linked to an increased risk of death, stroke, and peripheral embolism. The Global Burden of Disease shows that the estimated prevalence of AF is up to 33.5 million patients. So far, successful therapeutic techniques have been implemented, with a high health-care cost burden. As a result, identifying modifiable risk factors for AF and suitable preventive measures may play a significant role in enhancing community health and lowering health-care system expenditures. Several mechanisms, including electrical and structural remodeling of atrial tissue, have been proposed to contribute to the development of AF. This review article discusses the predisposing factors in AF including the different pathogenic mechanisms, sedentary lifestyle, and dietary habits, as well as the potential genetic burden.
Collapse
Affiliation(s)
- Marios Sagris
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
- Correspondence: ; Tel.: +30-213-2088099; Fax: +30-213-2088676
| | - Emmanouil P. Vardas
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
- Department of Cardiology, General Hospital of Athens “G. Gennimatas”, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
| | - Alexios S. Antonopoulos
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
| | - Evangelos Oikonomou
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
| |
Collapse
|
24
|
Avula UMR, Dridi H, Chen BX, Yuan Q, Katchman AN, Reiken SR, Desai AD, Parsons S, Baksh H, Ma E, Dasrat P, Ji R, Lin Y, Sison C, Lederer WJ, Joca HC, Ward CW, Greiser M, Marks AR, Marx SO, Wan EY. Attenuating persistent sodium current-induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress. JCI Insight 2021; 6:e147371. [PMID: 34710060 PMCID: PMC8675199 DOI: 10.1172/jci.insight.147371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We crossbred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mCAT attenuated mitochondrial and cellular reactive oxygen species (ROS) and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidences of spontaneous AF, pacing-induced after-depolarizations, and AF were substantially reduced. Expression of mCAT markedly reduced persistent Na+ current-induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induced atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations, and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.
Collapse
Affiliation(s)
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Bi-xing Chen
- Division of Cardiology, Department of Medicine, and
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Steven R. Reiken
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - Haajra Baksh
- Division of Cardiology, Department of Medicine, and
| | - Elaine Ma
- Division of Cardiology, Department of Medicine, and
| | | | - Ruiping Ji
- Division of Cardiology, Department of Medicine, and
| | - Yejun Lin
- Division of Cardiology, Department of Medicine, and
| | | | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Humberto C. Joca
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Christopher W. Ward
- Center for Biomedical Engineering and Technology and Department of Physiology and
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maura Greiser
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, and
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | |
Collapse
|
25
|
Dries E, Bardi I, Nunez-Toldra R, Meijlink B, Terracciano CM. CaMKII inhibition reduces arrhythmogenic Ca2+ events in subendocardial cryoinjured rat living myocardial slices. J Gen Physiol 2021; 153:212078. [PMID: 33956073 PMCID: PMC8105719 DOI: 10.1085/jgp.202012737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
Spontaneous Ca2+ release (SCR) can cause triggered activity and initiate arrhythmias. Intrinsic transmural heterogeneities in Ca2+ handling and their propensity to disease remodeling may differentially modulate SCR throughout the left ventricular (LV) wall and cause transmural differences in arrhythmia susceptibility. Here, we aimed to dissect the effect of cardiac injury on SCR in different regions in the intact LV myocardium using cryoinjury on rat living myocardial slices (LMS). We studied SCR under proarrhythmic conditions using a fluorescent Ca2+ indicator and high-resolution imaging in LMS from the subendocardium (ENDO) and subepicardium (EPI). Cryoinjury caused structural remodeling, with loss in T-tubule density and an increased time of Ca2+ transients to peak after injury. In ENDO LMS, the Ca2+ transient amplitude and decay phase were reduced, while these were not affected in EPI LMS after cryoinjury. The frequency of spontaneous whole-slice contractions increased in ENDO LMS without affecting EPI LMS after injury. Cryoinjury caused an increase in foci that generates SCR in both ENDO and EPI LMS. In ENDO LMS, SCRs were more closely distributed and had reduced latencies after cryoinjury, whereas this was not affected in EPI LMS. Inhibition of CaMKII reduced the number, distribution, and latencies of SCR, as well as whole-slice contractions in ENDO LMS, but not in EPI LMS after cryoinjury. Furthermore, CaMKII inhibition did not affect the excitation–contraction coupling in cryoinjured ENDO or EPI LMS. In conclusion, we demonstrate increased arrhythmogenic susceptibility in the injured ENDO. Our findings show involvement of CaMKII and highlight the need for region-specific targeting in cardiac therapies.
Collapse
Affiliation(s)
- Eef Dries
- National Heart and Lung Institute, Imperial College London, London, UK.,Lab of Experimental Cardiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Ifigeneia Bardi
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Bram Meijlink
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
26
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Kangussu LM, Costa VV, Olivon VC, Queiroz-Junior CM, Gondim ANS, Melo MB, Reis D, Nóbrega N, Araújo N, Rachid MA, Souza RPD, Tirapelli CR, Santos RASD, Cruz JDS, Teixeira MM, Souza DDGD, Bonaventura D. Dengue virus infection induces inflammation and oxidative stress on the heart. Heart 2021; 108:388-396. [PMID: 34049953 DOI: 10.1136/heartjnl-2020-318912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Dengue fever is one of the most important arboviral diseases in the world, and its severe forms are characterised by a broad spectrum of systemic and cardiovascular hallmarks. However, much remains to be elucidated regarding the pathogenesis triggered by Dengue virus (DENV) in the heart. Herein, we evaluated the cardiac outcomes unleashed by DENV infection and the possible mechanisms associated with these effects. METHODS A model of an adapted DENV-3 strain was used to infect male BALB/c mice to assess haemodynamic measurements and the functional, electrophysiological, inflammatory and oxidative parameters in the heart. RESULTS DENV-3 infection resulted in increased systemic inflammation and vascular permeability with consequent reduction of systolic blood pressure and increase in heart rate. These changes were accompanied by a decrease in the cardiac output and stroke volume, with a reduction trend in the left ventricular end-systolic and end-diastolic diameters and volumes. Also, there was a reduction trend in the calcium current density in the ventricular cardiomyocytes of DENV-3 infected mice. Indeed, DENV-3 infection led to leucocyte infiltration and production of inflammatory mediators in the heart, causing pericarditis and myocarditis. Moreover, increased reactive oxygen species generation and lipoperoxidation were also verified in the cardiac tissue of DENV-3 infected mice. CONCLUSIONS DENV-3 infection induced a marked cardiac dysfunction, which may be associated with inflammation, oxidative stress and electrophysiological changes in the heart. These findings provide new cardiac insights into the mechanisms involved in the pathogenesis triggered by DENV, contributing to the research of new therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Lucas Miranda Kangussu
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | - Vania Claudia Olivon
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | - Antônio Nei Santana Gondim
- Departamento de Educação - Campus XII, Universidade do Estado da Bahia, Salvador, Bahia, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Marcos Barrouin Melo
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Daniela Reis
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Natália Nóbrega
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Natália Araújo
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Milene Alvarenga Rachid
- Departamento de Patologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Renan Pedra de Souza
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Carlos Renato Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Jader Dos Santos Cruz
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | - Daniella Bonaventura
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| |
Collapse
|
28
|
Li Z, Zhao H, Wang J. Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and Comorbidities. Front Cardiovasc Med 2021; 8:650278. [PMID: 34026868 PMCID: PMC8131678 DOI: 10.3389/fcvm.2021.650278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes, atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney disease. The coexistance of comorbidities usually leads to multi morbidity and poor prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical need, and finding an effective therapy strategy is of great value. HF can lead to comorbidity, and in return, comorbidity may promote the progression of HF, creating a vicious cycle. This reciprocal correlation indicates there may be some common causes and biological mechanisms. Metabolism remodeling and chronic inflammation play a vital role in the pathophysiological processes of HF and comorbidities, indicating metabolism and inflammation may be the links between HF and comorbidities. In this review, we comprehensively discuss the major underlying mechanisms and therapeutic implications for comorbidities of HF. We first summarize the potential role of metabolism and inflammation in HF. Then, we give an overview of the linkage between common comorbidities and HF, from the perspective of epidemiological evidence to the underlying metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we summarize the shared risk factors, signal pathways, and therapeutic targets between HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF and comorbidities are all associated with common mechanisms. Impaired mitochondrial biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major mechanisms of both HF and comorbidities. Gene enrichment analysis showed the PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally, drug targets common to HF and several common comorbidities were found by network analysis. Such analysis has already been instrumental in drug repurposing to treat HF and comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors, IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi morbidity. We propose that targeting the metabolic and inflammatory pathways that are common to HF and comorbidities may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Ma K, Ma G, Guo Z, Liu G, Liang W. Regulatory mechanism of calcium/calmodulin-dependent protein kinase II in the occurrence and development of ventricular arrhythmia (Review). Exp Ther Med 2021; 21:656. [PMID: 33968186 PMCID: PMC8097202 DOI: 10.3892/etm.2021.10088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ventricular arrhythmia (VA) is a highly fatal arrhythmia that involves multiple ion channels. Of all sudden cardiac death events, ~85% result from VAs, including ventricular tachycardia and ventricular fibrillation. Calcium/calmodulin-dependent pro-tein kinase II (CaMKII) is an important ion channel regulator that participates in the excitation-contraction coupling of the heart, and as such is important for regulating its electrophysiological function. CaMKII can be activated in a Ca2+/calmodulin (CaM)-dependent or Ca2+/CaM-independent manner, serving a key role in the occurrence and development of VA. The present review aimed to determine whether activated CaMKII induces early afterdepolarizations and delayed afterdepolarizations that result in VA by regulating sodium, potassium and calcium ions. Assessing VA mechanisms based on the CaMKII pathway is of great significance to the clinical treatment of VA and the de-velopment of effective drugs for use in clinical practice.
Collapse
Affiliation(s)
- Kexin Ma
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guoping Ma
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zijing Guo
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Gang Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenjie Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
30
|
Dobrev D, Dudley SC. Oxidative stress: a baystander or a causal contributor to atrial remodeling and fibrillation? Cardiovasc Res 2021; 117:2291-2293. [PMID: 33822005 DOI: 10.1093/cvr/cvab124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.,Montréal Heart Institute, University de Montréal, Montréal, Quebec, Canada.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA
| | - Samuel C Dudley
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
31
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, largely associated to morbidity and mortality. Over the past decades, research in appearance and progression of this arrhythmia have turned into significant advances in its management. However, the incidence of AF continues to increase with the aging of the population and many important fundamental and translational underlaying mechanisms remain elusive. Here, we review recent advances in molecular and cellular basis for AF initiation, maintenance and progression. We first provide an overview of the basic molecular and electrophysiological mechanisms that lead and characterize AF. Next, we discuss the upstream regulatory factors conducting the underlying mechanisms which drive electrical and structural AF-associated remodeling, including genetic factors (risk variants associated to AF as transcriptional regulators and genetic changes associated to AF), neurohormonal regulation (i.e., cAMP) and oxidative stress imbalance (cGMP and mitochondrial dysfunction). Finally, we discuss the potential therapeutic implications of those findings, the knowledge gaps and consider future approaches to improve clinical management.
Collapse
|
32
|
Pfenniger A, Yoo S, Arora R. Nucleoplasmic Ca 2+: The 'Mastermind' Behind Pathological Atrial Remodeling? Circ Res 2021; 128:636-638. [PMID: 34314193 PMCID: PMC9278521 DOI: 10.1161/circresaha.121.318800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anna Pfenniger
- Department of Medicine, Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, IL
| | - Shin Yoo
- Department of Medicine, Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, IL
| | - Rishi Arora
- Department of Medicine, Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
33
|
Joseph JS, Anand K, Malindisa ST, Fagbohun OF. Role of CaMKII in the regulation of fatty acids and lipid metabolism. Diabetes Metab Syndr 2021; 15:589-594. [PMID: 33714133 DOI: 10.1016/j.dsx.2021.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND & AIMS Previous studies have reported the beneficial roles of the activation of calmodulin-dependent protein kinase (CaMK)II to many cellular functions associated with human health. This review aims at discussing its activation by exercise as well as its roles in the regulation of unsaturated, saturated, omega 3 fatty acids, and lipid metabolism. METHODS A wide literature search was conducted using online database such as 'PubMed', 'Google Scholar', 'Researcher', 'Scopus' and the website of World Health Organization (WHO) as well as Control Disease and Prevention (CDC). The criteria for the search were mainly lipid and fatty acid metabolism, diabetes, and metabolic syndrome (MetS). A total of ninety-seven articles were included in the review. RESULTS Calmodulin-dependent protein kinase activation by exercise is helpful in controlling membrane lipids related with type 2 diabetes and obesity. CaMKII regulates many health beneficial cellular functions in individuals who exercise compared with those who do not exercise. Regulation of lipid metabolism and fatty acids are crucial in the improvement of metabolic syndrome. CONCLUSIONS Approaches that involve CaMKII could be a new avenue for designing novel and effective therapeutic modalities in the treatment or better management of metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jitcy S Joseph
- Department of Toxicology and Biochemistry, National Institute for Occupational Health, A Division of National Health Laboratory Service, Johannesburg, South Africa.
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sibusiso T Malindisa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Florida Park, Johannesburg, South Africa
| | - Oladapo F Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Oyo State, Nigeria; Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Wang X, Chen X, Dobrev D, Li N. The crosstalk between cardiomyocyte calcium and inflammasome signaling pathways in atrial fibrillation. Pflugers Arch 2021; 473:389-405. [PMID: 33511453 DOI: 10.1007/s00424-021-02515-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia in adults. The prevalence and incidence of AF is going to increase substantially over the next few decades. Because AF increases the risk of stroke, heart failure, dementia, and others, it severely impacts the quality of life, morbidity, and mortality. Although the pathogenesis of AF is multifaceted and complex, focal ectopic activity and reentry are considered as the fundamental proarrhythmic mechanisms underlying AF development. Over the past 2 decades, large amount of evidence points to the key role of intracellular Ca2+ dysregulation in both initiation and maintenance of AF. More recently, emerging evidence reveal that NLRP3 (NACHT, LRR, PYD domain-containing 3) inflammasome pathway contributes to the substrate of both triggered activity and reentry, ultimately promoting AF. In this article, we review the current state of knowledge on Ca2+ signaling and NLRP3 inflammasome activity in AF. We also discuss the potential crosstalk between these two quintessential contributors to AF promotion.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Xiaohui Chen
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
35
|
Mesubi OO, Rokita AG, Abrol N, Wu Y, Chen B, Wang Q, Granger JM, Tucker-Bartley A, Luczak ED, Murphy KR, Umapathi P, Banerjee PS, Boronina TN, Cole RN, Maier LS, Wehrens XH, Pomerantz JL, Song LS, Ahima RS, Hart GW, Zachara NE, Anderson ME. Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. J Clin Invest 2021; 131:95747. [PMID: 33151911 PMCID: PMC7810480 DOI: 10.1172/jci95747] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) and atrial fibrillation (AF) are major unsolved public health problems, and diabetes is an independent risk factor for AF. However, the mechanism(s) underlying this clinical association is unknown. ROS and protein O-GlcNAcylation (OGN) are increased in diabetic hearts, and calmodulin kinase II (CaMKII) is a proarrhythmic signal that may be activated by ROS (oxidized CaMKII, ox-CaMKII) and OGN (OGN-CaMKII). We induced type 1 (T1D) and type 2 DM (T2D) in a portfolio of genetic mouse models capable of dissecting the role of ROS and OGN at CaMKII and global OGN in diabetic AF. Here, we showed that T1D and T2D significantly increased AF, and this increase required CaMKII and OGN. T1D and T2D both required ox-CaMKII to increase AF; however, we did not detect OGN-CaMKII or a role for OGN-CaMKII in diabetic AF. Collectively, our data affirm CaMKII as a critical proarrhythmic signal in diabetic AF and suggest ROS primarily promotes AF by ox-CaMKII, while OGN promotes AF by a CaMKII-independent mechanism(s). These results provide insights into the mechanisms for increased AF in DM and suggest potential benefits for future CaMKII and OGN targeted therapies.
Collapse
Affiliation(s)
- Olurotimi O. Mesubi
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adam G. Rokita
- Division of Cardiovascular Medicine and Cardiovascular Research Center, Carver College of Medicine, Iowa City, Iowa, USA
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Neha Abrol
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuejin Wu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Biyi Chen
- Division of Cardiovascular Medicine and Cardiovascular Research Center, Carver College of Medicine, Iowa City, Iowa, USA
| | - Qinchuan Wang
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan M. Granger
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anthony Tucker-Bartley
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth D. Luczak
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin R. Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Priya Umapathi
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Partha S. Banerjee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tatiana N. Boronina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xander H. Wehrens
- Department of Molecular Physiology and Biophysics, Department of Medicine (Cardiology), Department of Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering
| | - Long-Sheng Song
- Division of Cardiovascular Medicine and Cardiovascular Research Center, Carver College of Medicine, Iowa City, Iowa, USA
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Gerald W. Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark E. Anderson
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, and
- Department of Physiology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:antiox9121292. [PMID: 33348578 PMCID: PMC7766219 DOI: 10.3390/antiox9121292] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays a key role in many physiological and pathological conditions. The intracellular oxidative homeostasis is tightly regulated by the reactive oxygen species production and the intracellular defense mechanisms. Increased oxidative stress could alter lipid, DNA, and protein, resulting in cellular inflammation and programmed cell death. Evidences show that oxidative stress plays an important role in the progression of various cardiovascular diseases, such as atherosclerosis, heart failure, cardiac arrhythmia, and ischemia-reperfusion injury. There are a number of therapeutic options to treat oxidative stress-associated cardiovascular diseases. Well known antioxidants, such as nutritional supplements, as well as more novel antioxidants have been studied. In addition, novel therapeutic strategies using miRNA and nanomedicine are also being developed to treat various cardiovascular diseases. In this article, we provide a detailed description of oxidative stress. Then, we will introduce the relationship between oxidative stress and several cardiovascular diseases. Finally, we will focus on the clinical implications of oxidative stress in cardiovascular diseases.
Collapse
|
37
|
Xu J, Lei S, Sun S, Zhang W, Zhu F, Yang H, Xu Q, Zhang B, Li H, Zhu M, Hu X, Zhang H, Tang B, Kang P. MiR-324-3p Regulates Fibroblast Proliferation via Targeting TGF-β1 in Atrial Fibrillation. Int Heart J 2020; 61:1270-1278. [PMID: 33191361 DOI: 10.1536/ihj.20-423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atrial fibrillation (AF), one of the common clinical arrhythmias, lacks effective treatment manners. Cardiac fibroblasts play an essential role in myocardial fibrosis and cardiac remodeling, which are involved in AF progression. Reportedly, MicroRNAs (miRNAs) regulate the myocardial fibrosis in AF. However, whether miR-324-3p involves myocardial fibrosis in AF and the tentative molecular mechanisms of miR-324-3p regulating cardiac fibroblasts during AF remains unknown. In the present study, miR-324-3p was found to be decreased in patients with AF and AF rat model. Next, we investigated the effect of miR-324-3p on myocardial fibroblast proliferation through miR-324-3p overexpression and found that miR-324-3p inhibited fibroblast proliferation in vitro. Furthermore, we found that miR-324-3p directly targeted transforming growth factor β1 in fibroblast, which may be involved in the development of myocardial fibrosis during AF. Meanwhile, miR-324-3p mimics treatment suppressed the PI3K/AKT signaling pathway in fibroblast. These results demonstrated a molecular mechanism of miR-324-3p regulating fibroblast proliferation in vitro, which might provide a novel potential treatment manner in AF in clinic.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College
| | - Sisi Lei
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College
| | - Shuo Sun
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Wei Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Feiyu Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College.,Center for Cardiovascular and Cerebrovascular Research, Bengbu Medical College
| | - Haichen Yang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Qingmei Xu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College.,Center for Cardiovascular and Cerebrovascular Research, Bengbu Medical College
| | - Bing Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Hui Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Mingli Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Xiangwen Hu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Heng Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Bi Tang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Pinfang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College.,Center for Cardiovascular and Cerebrovascular Research, Bengbu Medical College
| |
Collapse
|
38
|
Yoo S, Pfenniger A, Hoffman J, Zhang W, Ng J, Burrell A, Johnson DA, Gussak G, Waugh T, Bull S, Benefield B, Knight BP, Passman R, Wasserstrom JA, Aistrup GL, Arora R. Attenuation of Oxidative Injury With Targeted Expression of NADPH Oxidase 2 Short Hairpin RNA Prevents Onset and Maintenance of Electrical Remodeling in the Canine Atrium: A Novel Gene Therapy Approach to Atrial Fibrillation. Circulation 2020; 142:1261-1278. [PMID: 32686471 PMCID: PMC9277750 DOI: 10.1161/circulationaha.119.044127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments of AF are suboptimal because they are not targeted to the molecular mechanisms underlying AF. Using a highly novel gene therapy approach in a canine, rapid atrial pacing model of AF, we demonstrate that NADPH oxidase 2 (NOX2) generated oxidative injury causes upregulation of a constitutively active form of acetylcholine-dependent K+ current (IKACh), called IKH; this is an important mechanism underlying not only the genesis, but also the perpetuation of electric remodeling in the intact, fibrillating atrium. METHODS To understand the mechanism by which oxidative injury promotes the genesis and maintenance of AF, we performed targeted injection of NOX2 short hairpin RNA (followed by electroporation to facilitate gene delivery) in atria of healthy dogs followed by rapid atrial pacing. We used in vivo high-density electric mapping, isolation of atrial myocytes, whole-cell patch clamping, in vitro tachypacing of atrial myocytes, lucigenin chemiluminescence assay, immunoblotting, real-time polymerase chain reaction, immunohistochemistry, and Masson trichrome staining. RESULTS First, we demonstrate that generation of oxidative injury in atrial myocytes is a frequency-dependent process, with rapid pacing in canine atrial myocytes inducing oxidative injury through the induction of NOX2 and the generation of mitochondrial reactive oxygen species. We show that oxidative injury likely contributes to electric remodeling in AF by upregulating IKACh by a mechanism involving frequency-dependent activation of PKCε (protein kinase C epsilon). The time to onset of nonsustained AF increased by >5-fold in NOX2 short hairpin RNA-treated dogs. Furthermore, animals treated with NOX2 short hairpin RNA did not develop sustained AF for up to 12 weeks. The electrophysiological mechanism underlying AF prevention was prolongation of atrial effective refractory periods, at least in part attributable to the attenuation of IKACh. Attenuated membrane translocation of PKCε appeared to be a likely molecular mechanism underlying this beneficial electrophysiological remodeling. CONCLUSIONS NOX2 oxidative injury (1) underlies the onset, and the maintenance of electric remodeling in AF, as well, and (2) can be successfully prevented with a novel, gene-based approach. Future optimization of this approach may lead to a novel, mechanism-guided therapy for AF.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jacob Hoffman
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Wenwei Zhang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jason Ng
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Amy Burrell
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David A. Johnson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Georg Gussak
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Trent Waugh
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Suzanne Bull
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Brandon Benefield
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bradley P. Knight
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rod Passman
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - J. Andrew Wasserstrom
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
39
|
Serum Total Antioxidant Capacity and Enzymatic Defence of Dogs with Chronic Heart Failure and Atrial Fibrillation: A Preliminary Study. J Vet Res 2020; 64:439-444. [PMID: 32984636 PMCID: PMC7497747 DOI: 10.2478/jvetres-2020-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Atrial fibrillation may potentially contribute to oxidative stress to a greater extent than chronic heart failure. The aim of the study was to compare the serum total antioxidant capacity and enzymatic antioxidant defence of dogs with chronic heart failure and atrial fibrillation with those of subjects with chronic heart failure and sinus rhythm and healthy controls. Material and Methods A total of 33 dogs were divided into three groups: dogs with chronic heart failure and atrial fibrillation (CHF + AF; n = 12), chronic heart failure and sinus rhythm (CHF + SR; n = 9), and healthy controls (n = 12). Serum total antioxidant capacity (TAC), serum CuZn-superoxide dismutase (SOD) and catalase, and plasma glutathione peroxidase (GPx) activity were determined. Results SOD activity and serum TAC were significantly lower in the study groups than in control animals. Catalase activity was significantly higher and plasma GPx activity significantly lower in dogs with CHF + AF compared with the CHF + SR and control dogs. Conclusion The results suggest that chronic heart failure in dogs significantly impacts the serum TAC and the antioxidant enzymatic defence, while plasma GPx activity is markedly lower in dogs with chronic heart failure and atrial fibrillation. The role of that imbalance needs further investigation.
Collapse
|
40
|
Han L, Wu A, Li Q, Xia Z, Wu Y, Hong K, Xia Z, Li J. Homocysteine-induced electrical remodeling via the mediation of IP 3R1/Nav1.5 signaling pathway. Am J Transl Res 2020; 12:3822-3841. [PMID: 32774738 PMCID: PMC7407712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Inositol-1,4,5-triphosphate-receptor 1 (IP3R1), a Ca2+ channel in the sarcoplasmic reticulum membrane, is an effective regulator of Ca2+ release involved in the pathology of most cardiovascular diseases. Our study aim to investigate the underlying mechanism by which IP3R1 signaling mediates the process of homocysteine (Hcy)-induced Ca2+ accumulation via interaction with sodium current (Nav1.5) in atrium. We utilized whole-cell patch-clamp analysis and flow cytometry to detect the abnormal electrical activity in mouse atrial myocytes (MACs) obtained from C57B6 mice fed with high-Hcy diet. The results represented not only an increase in protein levels of Nav1.5 and IP3R1, but also an enhanced intracellular levels of Ca2+, and prolonged action potential duration (APD). However, the inhibition of IP3R1 or Nav1.5 gene could both attenuate Ca2+ accumulation in MACs triggered by Hcy, as well as abnormal electrical activity. In addition, Hcy increased the interaction between IP3R1 and Nav1.5. These data suggest that Hcy induced Ca2+ accumulation is mediated by the IP3R1/Nav1.5 signaling pathway, accompanied with the influx of Na+ and Ca2+, which act as triggers for electrical remodeling.
Collapse
Affiliation(s)
- Lu Han
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Aping Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Qing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Zhen Xia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Yanqing Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Zirong Xia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| |
Collapse
|
41
|
Junho CVC, Caio-Silva W, Trentin-Sonoda M, Carneiro-Ramos MS. An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Front Physiol 2020; 11:735. [PMID: 32760284 PMCID: PMC7372084 DOI: 10.3389/fphys.2020.00735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are key regulators of calcium signaling in health and disease. CaMKII is the most abundant isoform in the heart; although classically described as a regulator of excitation–contraction coupling, recent studies show that it can also mediate inflammation in cardiovascular diseases (CVDs). Among CVDs, cardiorenal syndrome (CRS) represents a pressing issue to be addressed, considering the growing incidence of kidney diseases worldwide. In this review, we aimed to discuss the role of CaMK as an inflammatory mediator in heart and kidney interaction by conducting an extensive literature review using the database PubMed. Here, we summarize the role and regulating mechanisms of CaMKII present in several quality studies, providing a better understanding for future investigations of CamKII in CVDs. Surprisingly, despite the obvious importance of CaMKII in the heart, very little is known about CaMKII in CRS. In conclusion, more studies are necessary to further understand the role of CaMKII in CRS.
Collapse
Affiliation(s)
| | - Wellington Caio-Silva
- Center of Natural and Human Sciences (CCNH), Universidade Federal do ABC, Santo André, Brazil
| | - Mayra Trentin-Sonoda
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
42
|
Nattel S, Heijman J, Zhou L, Dobrev D. Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective. Circ Res 2020; 127:51-72. [PMID: 32717172 PMCID: PMC7398486 DOI: 10.1161/circresaha.120.316363] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is a highly prevalent arrhythmia, with substantial associated morbidity and mortality. There have been significant management advances over the past 2 decades, but the burden of the disease continues to increase and there is certainly plenty of room for improvement in treatment options. A potential key to therapeutic innovation is a better understanding of underlying fundamental mechanisms. This article reviews recent advances in understanding the molecular basis for AF, with a particular emphasis on relating these new insights to opportunities for clinical translation. We first review the evidence relating basic electrophysiological mechanisms to the characteristics of clinical AF. We then discuss the molecular control of factors leading to some of the principal determinants, including abnormalities in impulse conduction (such as tissue fibrosis and other extra-cardiomyocyte alterations, connexin dysregulation and Na+-channel dysfunction), electrical refractoriness, and impulse generation. We then consider the molecular drivers of AF progression, including a range of Ca2+-dependent intracellular processes, microRNA changes, and inflammatory signaling. The concept of key interactome-related nodal points is then evaluated, dealing with systems like those associated with CaMKII (Ca2+/calmodulin-dependent protein kinase-II), NLRP3 (NACHT, LRR, and PYD domains-containing protein-3), and transcription-factors like TBX5 and PitX2c. We conclude with a critical discussion of therapeutic implications, knowledge gaps and future directions, dealing with such aspects as drug repurposing, biologicals, multispecific drugs, the targeting of cardiomyocyte inflammatory signaling and potential considerations in intervening at the level of interactomes and gene-regulation. The area of molecular intervention for AF management presents exciting new opportunities, along with substantial challenges.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Liping Zhou
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
43
|
Pfenniger A. Irregularly irregular-Nonuniform cardiac anisotropy as a substrate for atrial fibrillation. J Cardiovasc Electrophysiol 2020; 31:2210-2212. [PMID: 32478448 DOI: 10.1111/jce.14596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular Research and Renal Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
44
|
Zhao Z, Li R, Wang X, Li J, Yuan M, Liu E, Liu T, Li G. Attenuation of atrial remodeling by aliskiren via affecting oxidative stress, inflammation and PI3K/Akt signaling pathway. Cardiovasc Drugs Ther 2020; 35:587-598. [PMID: 32462265 DOI: 10.1007/s10557-020-07002-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common type of arrhythmia. Atrial remodeling is a major factor to the AF substrate. The purpose of the study is to explore whether aliskiren (ALS) has a cardioprotective effect and its potential molecular mechanisms on atrial remodeling. METHODS In acute experiments, dogs were randomly assigned to Sham, Paced and Paced+aliskiren (10 mg kg-1) (Paced+ALS) groups, with 7 dogs in each group. Rapid atrial pacing (RAP) was maintained at 600 bpm for 2 h for paced and Paced+ALS groups and atrial effective refractory periods (AERPs), inducibility of AF (AFi) and average duration time (ADT) were measured. In chronic experiments, there were 5 groups: Sham, Sham+ALS, Paced, Paced+ALS and Paced+ALS+PI3K antagonist wortmannin (WM) (70 μg kg-1 day-1). RAP at 500 beats/min was maintained for 2 weeks. Inflammation and oxidative stress indicators were measured by ELISA assay, echocardiogram and pathology were used to assess atrial structural remodeling, phosphatidylinositol 3-hydroxy kinase/protein kinase B (PI3K/Akt) signaling pathways were studied by RT-PCR and western blotting to evaluate whether the cardioprotective effect of ALS works through PI3K/Akt signaling pathway. RESULTS The electrophysiological changes were observed after 2-h pacing. The AERP shortened with increased AFi and ADT, which was attenuated by ALS (P < 0.05). After pacing for 2 weeks, oxidative stress and inflammation markers in the Paced group were significantly higher than those in the Sham group (P < 0.01) and were reduced by ALS treatment (P < 0.01). The reduced level of antioxidant enzymes caused by RAP was also found to be elevated in ALS-treated group (P < 0.01). The results of pathology and echocardiography showed that RAP can cause atrial enlargement, fibrosis (P < 0.01), and were attenuated in ALS treatment group. The PI3K/Akt signaling pathway were downregulated induced by RAP. ALS could upregulate the PI3K/Akt pathway expression (P < 0.05). Furthermore, the cardioprotective effects in structural remodeling of ALS were suppressed by WM. CONCLUSIONS ALS may offer cardioprotection in RAP-induced atrial remodeling, which may partly be ascribed to its anti-inflammatory and anti-oxidative stress action and the regulation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ruiling Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
45
|
Abstract
The authors discuss the concept of atrial myopathy; its relationship to aging, electrophysiological remodeling, and autonomic remodeling; the interplay between atrial myopathy, AF, and stroke; and suggest how to identify patients with atrial myopathy and how to incorporate atrial myopathy into decisions about anticoagulation. Atrial myopathy seen in animal models of AF and in patients with AF is the result of a combination of factors that lead to electrical and structural remodeling in the atrium. Although AF may lead to the initiation and/or progression of this myopathy, the presence of AF is by no means essential to the development or the maintenance of the atrial myopathic state. Methods to identify atrial myopathy include atrial electrograms, tissue biopsy, cardiac imaging, and certain serum biomarkers. A promising modality is 4-dimensional flow cardiac magnetic resonance. The concept of atrial myopathy may help guide oral anticoagulant therapy in selected groups of patients with AF, particularly those with low to intermediate risk of strokes and those who have undergone successful AF ablation. This review highlights the need for prospective randomized trials to test these hypotheses.
This paper discusses the evolving concept of atrial myopathy by presenting how it develops and how it affects the properties of the atria. It also reviews the complex relationships among atrial myopathy, atrial fibrillation (AF), and stroke. Finally, it discusses how to apply the concept of atrial myopathy in the clinical setting—to identify patients with atrial myopathy and to be more selective in anticoagulation in a subset of patients with AF. An apparent lack of a temporal relationship between episodes of paroxysmal AF and stroke in patients with cardiac implantable electronic devices has led investigators to search for additional factors that are responsible for AF-related strokes. Multiple animal models and human studies have revealed a close interplay of atrial myopathy, AF, and stroke via various mechanisms (e.g., aging, inflammation, oxidative stress, and stretch), which, in turn, lead to fibrosis, electrical and autonomic remodeling, and a pro-thrombotic state. The complex interplay among these mechanisms creates a vicious cycle of ever-worsening atrial myopathy and a higher risk of more sustained AF and strokes. By highlighting the importance of atrial myopathy and the risk of strokes independent of AF, this paper reviews the methods to identify patients with atrial myopathy and proposes a way to incorporate the concept of atrial myopathy to guide anticoagulation in patients with AF.
Collapse
Key Words
- 4D, 4 dimensional
- AF, atrial fibrillation
- APD, action potential duration
- CMR, cardiac magnetic resonance
- CRP, C-reactive protein
- Ca2+, calcium
- Cx, connexin
- GDF, growth differentiation factor
- IL, interleukin
- K+, potassium
- LA, left atrial
- LAA, left atrial appendage
- NADPH, nicotinamide adenine dinucleotide phosphate
- NOX2, catalytic, membrane-bound subunit of NADPH oxidase
- NT-proBNP, N-terminal pro B-type natriuretic peptide
- OAC, oral anticoagulant
- ROS, reactive oxygen species
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- atrial fibrillation
- atrial myopathy
- electrophysiology
- thrombosis
Collapse
Affiliation(s)
- Mark J Shen
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Cardiac Electrophysiology, Prairie Heart Institute of Illinois, HSHS St. John's Hospital, Springfield, Illinois
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - José Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan.,Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), and CIBERCV, Madrid, Spain
| |
Collapse
|
46
|
Dobrev D. Atrial Ca2+/calmodulin-dependent protein kinase II: A druggable master switch of atrial fibrillation-associated atrial remodeling? Heart Rhythm 2019; 16:1089-1090. [DOI: 10.1016/j.hrthm.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 01/23/2023]
|
47
|
Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019; 20:ijms20102386. [PMID: 31091723 PMCID: PMC6566636 DOI: 10.3390/ijms20102386] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
48
|
Piek A, Silljé HHW, de Boer RA. The vicious cycle of arrhythmia and myocardial fibrosis. Eur J Heart Fail 2019; 21:492-494. [PMID: 30698320 DOI: 10.1002/ejhf.1421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Arnold Piek
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|