1
|
Nasim S, Bichsel C, Pinto A, Alexandrescu S, Kozakewich H, Bischoff J. Similarities and differences between brain and skin GNAQ p.R183Q driven capillary malformations. Angiogenesis 2024:10.1007/s10456-024-09950-8. [PMID: 39343803 DOI: 10.1007/s10456-024-09950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Capillary malformations (CM) are congenital vascular irregularities of capillary and venous blood vessels that appear in the skin, leptomeninges of the brain, and the choroid of the eye in the disorder known as Sturge Weber Syndrome (SWS). More common are non-syndromic CM found only in the skin, without brain or ocular involvement. A somatic activating mutation in GNAQ (p.R183Q) is found in ~ 90% of syndromic and non-syndromic CM specimens and is present in CD31pos endothelial cells isolated from brain and skin CM specimens. Endothelial expression of the GNAQ p.R183Q variant is sufficient to form CM-like vessels in mice. Given the distinct features and functions of blood vessels in the brain versus the skin, we examined the features of CM vessels in both tissues to gain insights into the pathogenesis of CM. Herein, we present morphologic characteristics of CM observed in specimens from brain and skin. The GNAQ p.R183Q variant allelic frequency in each specimen was determined by droplet digital PCR. Sections were stained for endothelial cells, tight junctions, mural cells, and macrophages to assess the endothelium as well as perivascular constituents. CM blood vessels in brain and skin were enlarged, exhibited fibrin leakage and reduced zona occludin-1 and claudin-5, and were surrounded by MRC1pos/LYVE1pos macrophages. In contrast, the CMs from brain and skin differ in endothelial sprouting activity and localization of mural cells. These characteristics might be helpful in the development of targeted and/or tissue specific therapies to prevent or reverse non-syndromic and syndromic CM.
Collapse
Affiliation(s)
- Sana Nasim
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Colette Bichsel
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- CSEM SA, Hegenheimermattweg 167 A, 4123, Allschwil, Switzerland
| | - Anna Pinto
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Harry Kozakewich
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Nataraj K, Schonfeld M, Rodriguez A, Sharma M, Weinman S, Tikhanovich I. Androgen Effects on Alcohol-induced Liver Fibrosis Are Controlled by a Notch-dependent Epigenetic Switch. Cell Mol Gastroenterol Hepatol 2024:101414. [PMID: 39349250 DOI: 10.1016/j.jcmgh.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) is a major cause of alcohol-related mortality. Sex is an important variable; however, the mechanism behind sex differences is not yet established. METHODS Kdm5b flox/flox Kdm5c flox male mice were subjected to gonadectomy or sham surgery. Mice were fed a Western diet and 20% alcohol in the drinking water for 18 weeks. To induce knockout, mice received 2 × 1011 genome copies of AAV8-CMV-Cre or AAV8-control. To test the role of Notch, mice were treated with 10 mg/kg of avagacestat for 4 weeks. RESULTS We found that Kdm5b/Kdm5c knockout promoted alcohol-induced liver disease, whereas gonadectomy abolished this effect, suggesting that male sex hormones promote liver disease in the absence of KDM5 demethylases. In contrast, in the thioacetamide-induced fibrosis model, male sex hormones showed a protective effect regardless of genotype. In human liver disease samples, we found that androgen receptor expression positively correlated with fibrosis levels when KDM5B levels were low and negatively when KDM5B was high, suggesting that a KDM5B-dependent epigenetic state defines the androgen receptor role in liver fibrosis. Using isolated cells, we found that this difference was due to the differential effect of testosterone on hepatic stellate cell activation in the absence or presence of KDM5B/KDM5C. Moreover, this effect was mediated by KDM5-dependent suppression of Notch signaling. In KDM5-deficient mice, Notch3 and Jag1 gene expression was induced, facilitating testosterone-mediated induction of Notch signaling and stellate cell activation. Inhibiting Notch with avagacestat greatly reduced liver fibrosis and abolished the effect of Kdm5b/Kdm5c loss. CONCLUSIONS Male sex hormone signaling can promote or prevent alcohol-associated liver fibrosis depending on the KDM5-dependent epigenetic state.
Collapse
Affiliation(s)
- Kruti Nataraj
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Michael Schonfeld
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Adriana Rodriguez
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Madhulika Sharma
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Steven Weinman
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri; Kansas City VA Medical Center, Kansas City, Missouri
| | - Irina Tikhanovich
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri.
| |
Collapse
|
3
|
Zhang Y, Mu BR, Ran Z, Zhu T, Huang X, Yang X, Wang DM, Ma QH, Lu MH. Pericytes in Alzheimer's disease: Key players and therapeutic targets. Exp Neurol 2024; 379:114825. [PMID: 38777251 DOI: 10.1016/j.expneurol.2024.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.
Collapse
Affiliation(s)
- Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China
| | - Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Nasim S, Bichsel C, Pinto A, Alexandrescu S, Kozakewich H, Bischoff J. Similarities and differences between brain and skin GNAQ p.R183Q driven capillary malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599711. [PMID: 38948880 PMCID: PMC11213000 DOI: 10.1101/2024.06.19.599711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Capillary malformations (CM) are congenital vascular irregularities of capillary and venous blood vessels that appear in the skin, leptomeninges of the brain, and the choroid of the eye in the disorder known as Sturge Weber Syndrome (SWS). More common are non-syndromic CM found only in the skin, without brain or ocular involvement. A somatic activating mutation in GNAQ (p.R183Q) is found in ~90% of syndromic and non-syndromic CM specimens and is present in CD31pos endothelial cells isolated from brain and skin CM specimens. Endothelial expression of the GNAQ p.R183Q variant is sufficient to form CM-like vessels in mice. Given the distinct features and functions of blood vessels in the brain versus the skin, we examined the features of CM vessels in both tissues to gain insights into the pathogenesis of CM. Herein, we present morphologic characteristics of CM observed in specimen from brain and skin. The GNAQ p.R183Q variant allelic frequency in each specimen was determined by droplet digital PCR. Sections were stained for endothelial cells, tight junctions, mural cells, and macrophages to assess the endothelium as well as perivascular constituents. CM blood vessels in brain and skin were enlarged, exhibited fibrin leakage and reduced zona occludin-1, and were surrounded by MRC1pos/LYVE1pos macrophages. In contrast, the CMs from brain and skin differ in endothelial sprouting activity and localization of mural cells. These characteristics might be helpful in the development of targeted and/or tissue specific therapies to prevent or reverse non-syndromic and syndromic CM.
Collapse
Affiliation(s)
- Sana Nasim
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Colette Bichsel
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Harry Kozakewich
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Raza Q, Nadeem T, Youn SW, Swaminathan B, Gupta A, Sargis T, Du J, Cuervo H, Eichmann A, Ackerman SL, Naiche LA, Kitajewski J. Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching. Sci Rep 2024; 14:13603. [PMID: 38866944 PMCID: PMC11169293 DOI: 10.1038/s41598-024-64375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Bhairavi Swaminathan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Ahana Gupta
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Timothy Sargis
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III- CNIC- (F.S.P), Madrid, Spain
| | | | | | - L A Naiche
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA.
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, USA
| |
Collapse
|
6
|
Bernard M, Menet R, Lecordier S, ElAli A. Endothelial PDGF-D contributes to neurovascular protection after ischemic stroke by rescuing pericyte functions. Cell Mol Life Sci 2024; 81:225. [PMID: 38769116 PMCID: PMC11106055 DOI: 10.1007/s00018-024-05244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)β controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRβ is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.
Collapse
Affiliation(s)
- Maxime Bernard
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Romain Menet
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Sarah Lecordier
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Ayman ElAli
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
7
|
Shi Z, Xiong S, Hu R, Wang Z, Park J, Qian Y, Wang J, Bhalla P, Velupally N, Song Q, Song Z, Jeon MS, Zhang KK, Xie L, Layden BT, Ong SG, Jiang Y. The Notch-PDGFRβ axis suppresses brown adipocyte progenitor differentiation in early post-natal mice. Dev Cell 2024; 59:1233-1251.e5. [PMID: 38569546 DOI: 10.1016/j.devcel.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRβ)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRβ+ pericytes promotes brown adipogenesis by downregulating PDGFRβ. Furthermore, inhibition of Notch signaling in PDGFRβ+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRβ axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.
Collapse
Affiliation(s)
- Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Shaolei Xiong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jaden Wang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Pratibha Bhalla
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Nipun Velupally
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Minsun Stacey Jeon
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Ke Kurt Zhang
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Linlin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77845, USA
| | - Brian T Layden
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Jesse Brown Medical VA Medical Center, Chicago, IL 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Sanketi BD, Mantri M, Huang L, Tavallaei MA, Hu S, Wang MFZ, De Vlaminck I, Kurpios NA. Villus myofibroblasts are developmental and adult progenitors of mammalian gut lymphatic musculature. Dev Cell 2024; 59:1159-1174.e5. [PMID: 38537630 PMCID: PMC11078612 DOI: 10.1016/j.devcel.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 05/09/2024]
Abstract
Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Liqing Huang
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Mohammad A Tavallaei
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Shing Hu
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael F Z Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Lin Y, Gahn J, Banerjee K, Dobreva G, Singhal M, Dubrac A, Ola R. Role of endothelial PDGFB in arterio-venous malformations pathogenesis. Angiogenesis 2024; 27:193-209. [PMID: 38070064 PMCID: PMC11021264 DOI: 10.1007/s10456-023-09900-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/05/2023] [Indexed: 04/17/2024]
Abstract
Arterial-venous malformations (AVMs) are direct connections between arteries and veins without an intervening capillary bed. Either familial inherited or sporadically occurring, localized pericytes (PCs) drop is among the AVMs' hallmarks. Whether impaired PC coverage triggers AVMs or it is a secondary event is unclear. Here we evaluated the role of the master regulator of PC recruitment, Platelet derived growth factor B (PDGFB) in AVM pathogenesis. Using tamoxifen-inducible deletion of Pdgfb in endothelial cells (ECs), we show that disruption of EC Pdgfb-mediated PC recruitment and maintenance leads to capillary enlargement and organotypic AVM-like structures. These vascular lesions contain non-proliferative hyperplastic, hypertrophic and miss-oriented capillary ECs with an altered capillary EC fate identity. Mechanistically, we propose that PDGFB maintains capillary EC size and caliber to limit hemodynamic changes, thus restricting expression of Krüppel like factor 4 and activation of Bone morphogenic protein, Transforming growth factor β and NOTCH signaling in ECs. Furthermore, our study emphasizes that inducing or activating PDGFB signaling may be a viable therapeutic approach for treating vascular malformations.
Collapse
Affiliation(s)
- Yanzhu Lin
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Gahn
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kuheli Banerjee
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Mahak Singhal
- Laboratory of AngioRhythms, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montreal, QC, H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Roxana Ola
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
10
|
Ahuja S, Adjekukor C, Li Q, Kocha KM, Rosin N, Labit E, Sinha S, Narang A, Long Q, Biernaskie J, Huang P, Childs SJ. The development of brain pericytes requires expression of the transcription factor nkx3.1 in intermediate precursors. PLoS Biol 2024; 22:e3002590. [PMID: 38683849 PMCID: PMC11081496 DOI: 10.1371/journal.pbio.3002590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/09/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.
Collapse
Affiliation(s)
- Suchit Ahuja
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Cynthia Adjekukor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Qing Li
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Nicole Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Ankita Narang
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Quan Long
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jeff Biernaskie
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Dupré N, Gueniot F, Domenga-Denier V, Dubosclard V, Nilles C, Hill-Eubanks D, Morgenthaler-Roth C, Nelson MT, Keime C, Danglot L, Joutel A. Protein aggregates containing wild-type and mutant NOTCH3 are major drivers of arterial pathology in CADASIL. J Clin Invest 2024; 134:e175789. [PMID: 38386425 PMCID: PMC11014667 DOI: 10.1172/jci175789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Florian Gueniot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Valérie Domenga-Denier
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Virginie Dubosclard
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Christelle Nilles
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - David Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Christelle Morgenthaler-Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Mark T. Nelson
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
12
|
Gastfriend BD, Snyder ME, Holt HE, Daneman R, Palecek SP, Shusta EV. Notch3 directs differentiation of brain mural cells from human pluripotent stem cell-derived neural crest. SCIENCE ADVANCES 2024; 10:eadi1737. [PMID: 38306433 PMCID: PMC10836734 DOI: 10.1126/sciadv.adi1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Brain mural cells regulate development and function of the blood-brain barrier and control blood flow. Existing in vitro models of human brain mural cells have low expression of key mural cell genes, including NOTCH3. Thus, we asked whether activation of Notch3 signaling in hPSC-derived neural crest could direct the differentiation of brain mural cells with an improved transcriptional profile. Overexpression of the Notch3 intracellular domain (N3ICD) induced expression of mural cell markers PDGFRβ, TBX2, FOXS1, KCNJ8, SLC6A12, and endogenous Notch3. The resulting N3ICD-derived brain mural cells produced extracellular matrix, self-assembled with endothelial cells, and had functional KATP channels. ChIP-seq revealed that Notch3 serves as a direct input to relatively few genes in the context of this differentiation process. Our work demonstrates that activation of Notch3 signaling is sufficient to direct the differentiation of neural crest to mural cells and establishes a developmentally relevant differentiation protocol.
Collapse
Affiliation(s)
- Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Margaret E Snyder
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hope E Holt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Richard Daneman
- Departments of Neurosciences and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Sanketi BD, Mantri M, Huang L, Tavallaei MA, Hu S, Wang MFZ, De Vlaminck I, Kurpios NA. Origin and adult renewal of the gut lacteal musculature from villus myofibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.523242. [PMID: 36712064 PMCID: PMC9882374 DOI: 10.1101/2023.01.19.523242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intestinal smooth muscles are the workhorse of the digestive system. Inside the millions of finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic vessel, called the lacteal, sending fats into the blood circulation for energy production. Despite this vital function, how villus smooth muscles form, how they assemble alongside lacteals, and how they repair throughout life remain unknown. Here we combine single-cell RNA sequencing of the mouse intestine with quantitative lineage tracing to reveal the mechanisms of formation and differentiation of villus smooth muscle cells. Within the highly regenerative villus, we uncover a local hierarchy of subepithelial fibroblast progenitors that progress to become mature smooth muscle fibers, via an intermediate contractile myofibroblast-like phenotype. This continuum persists in the adult intestine as the major source of renewal of villus smooth muscle cells during adult life. We further found that the NOTCH3-DLL4 signaling axis governs the assembly of villus smooth muscles alongside their adjacent lacteal, and we show that this is necessary for gut absorptive function. Overall, our data shed light on the genesis of a poorly defined class of intestinal smooth muscle and pave the way for new opportunities to accelerate recovery of digestive function by stimulating muscle repair.
Collapse
Affiliation(s)
- Bhargav D. Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University; Ithaca, NY 14853, USA
| | - Madhav Mantri
- Department of Biomedical Engineering, Cornell University; Ithaca, NY 14850, USA
| | - Liqing Huang
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University; Ithaca, NY 14853, USA
| | - Mohammad A. Tavallaei
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University; Ithaca, NY 14853, USA
| | - Shing Hu
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University; Ithaca, NY 14853, USA
| | - Michael F. Z. Wang
- Department of Biomedical Engineering, Cornell University; Ithaca, NY 14850, USA
| | - Iwijn De Vlaminck
- Department of Biomedical Engineering, Cornell University; Ithaca, NY 14850, USA
| | - Natasza A. Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University; Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: A new signaling paradigm for the neurovascular diseases. Life Sci 2024; 336:122303. [PMID: 38016576 DOI: 10.1016/j.lfs.2023.122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
A wide range of life-threatening conditions with complicated pathogenesis involves neurovascular disorders encompassing Neurovascular unit (NVU) damage. The pathophysiology of NVU is characterized by several features including tissue hypoxia, stimulation of inflammatory and angiogenic processes, and the initiation of intricate molecular interactions, collectively leading to an elevation in blood-brain barrier permeability, atherosclerosis and ultimately, neurovascular diseases. The presence of compelling data about the significant involvement of the glycosylation in the development of diseases has sparked a discussion on whether the abnormal glycosylation may serve as a causal factor for neurovascular disorders, rather than being just recruited as a secondary player in regulating the critical events during the development processes like embryo growth and angiogenesis. An essential tool for both developing new anti-ischemic therapies and understanding the processes of ischemic brain damage is undertaking pre-clinical studies of neurovascular disorders. Together with the post-translational modification of proteins, the modulation of glycosylation and its enzymes implicates itself in several abnormal activities which are known to accelerate neuronal vasculopathy. Despite the failure of the majority of glycosylation-based preclinical and clinical studies over the past years, there is a significant probability to provide neuroprotection utilizing modern and advanced approaches to target abnormal glycosylation activity at embryonic stages as well. This article focuses on a variety of experimental evidence to postulate the interconnection between glycosylation and vascular disorders along with possible treatment options.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | |
Collapse
|
15
|
Cuervo H, Mühleder S, García-Gónzalez I, Benedito R. Notch-mediated cellular interactions between vascular cells. Curr Opin Cell Biol 2023; 85:102254. [PMID: 37832167 DOI: 10.1016/j.ceb.2023.102254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023]
Abstract
Vessel formation and differentiation to a proper hierarchical vasculature requires a coordinated effort from endothelial and mural cells. Over the last decade Notch was identified as a key player in this process by promoting vascular arterialization and modulating endothelial tip-stalk phenotypes. Recent work has identified that Notch fine-tunes the diverse endothelial phenotypes through regulation of canonical cell-cycle and metabolism regulators, such as ERK and Myc. During arterialization, Notch signaling inhibits the cell-cycle and metabolism of endothelial cells which coincides with the acquisition of arterial identity. During angiogenesis, the same molecular machinery prevents the hypermitogenic arrest and excessive sprouting of vessels. Notch also signals in pericytes and smooth muscle cells promoting vascular coverage and maturation. Here, we will review the latest findings on how Notch signals regulate the differentiation and interactions among vascular cells during organ development and homeostasis.
Collapse
Affiliation(s)
- Henar Cuervo
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid 28029, Spain
| | - Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid 28029, Spain
| | - Irene García-Gónzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid 28029, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid 28029, Spain.
| |
Collapse
|
16
|
Wang S, Deng X, Wu Y, Wu Y, Zhou S, Yang J, Huang Y. Understanding the pathogenesis of brain arteriovenous malformation: genetic variations, epigenetics, signaling pathways, and immune inflammation. Hum Genet 2023; 142:1633-1649. [PMID: 37768356 DOI: 10.1007/s00439-023-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Brain arteriovenous malformation (BAVM) is a rare but serious cerebrovascular disease whose pathogenesis has not been fully elucidated. Studies have found that epigenetic regulation, genetic variation and their signaling pathways, immune inflammation, may be the cause of BAVM the main reason. This review comprehensively analyzes the key pathways and inflammatory factors related to BAVMs, and explores their interplay with epigenetic regulation and genetics. Studies have found that epigenetic regulation such as DNA methylation, non-coding RNAs and m6A RNA modification can regulate endothelial cell proliferation, apoptosis, migration and damage repair of vascular malformations through different target gene pathways. Gene defects such as KRAS, ACVRL1 and EPHB4 lead to a disordered vascular environment, which may promote abnormal proliferation of blood vessels through ERK, NOTCH, mTOR, Wnt and other pathways. PDGF-B and PDGFR-β were responsible for the recruitment of vascular adventitial cells and smooth muscle cells in the extracellular matrix environment of blood vessels, and played an important role in the pathological process of BAVM. Recent single-cell sequencing data revealed the diversity of various cell types within BAVM, as well as the heterogeneous expression of vascular-associated antigens, while neutrophils, macrophages and cytokines such as IL-6, IL-1, TNF-α, and IL-17A in BAVM tissue were significantly increased. Currently, there are no specific drugs targeting BAVMs, and biomarkers for BAVM formation, bleeding, and recurrence are lacking clinically. Therefore, further studies on molecular biological mechanisms will help to gain insight into the pathogenesis of BAVM and develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
17
|
Rose KP, Manilla G, Milon B, Zalzman O, Song Y, Coate TM, Hertzano R. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset. iScience 2023; 26:107769. [PMID: 37720106 PMCID: PMC10502415 DOI: 10.1016/j.isci.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
The cochlea consists of diverse cellular populations working in harmony to convert mechanical stimuli into electrical signals for the perception of sound. Otic mesenchyme cells (OMCs), often considered a homogeneous cell type, are essential for normal cochlear development and hearing. Despite being the most numerous cell type in the developing cochlea, OMCs are poorly understood. OMCs are known to differentiate into spatially and functionally distinct cell types, including fibrocytes of the lateral wall and spiral limbus, modiolar osteoblasts, and specialized tympanic border cells of the basilar membrane. Here, we show that OMCs are transcriptionally and functionally heterogeneous and can be divided into four distinct populations that spatially correspond to OMC-derived cochlear structures. We also show that this heterogeneity and complexity of OMCs commences during early phases of cochlear development. Finally, we describe the cell-cell communication network of the developing cochlea, inferring a major role for OMC in outgoing signaling.
Collapse
Affiliation(s)
- Kevin P. Rose
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriella Manilla
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatrice Milon
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ori Zalzman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas M. Coate
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Ronna Hertzano
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Ristori T, Thuret R, Hooker E, Quicke P, Lanthier K, Ntumba K, Aspalter IM, Uroz M, Herbert SP, Chen CS, Larrivée B, Bentley K. Bmp9 regulates Notch signaling and the temporal dynamics of angiogenesis via Lunatic Fringe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.557123. [PMID: 37808725 PMCID: PMC10557600 DOI: 10.1101/2023.09.25.557123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In brief The mechanisms regulating the signaling pathways involved in angiogenesis are not fully known. Ristori et al. show that Lunatic Fringe (LFng) mediates the crosstalk between Bone Morphogenic Protein 9 (Bmp9) and Notch signaling, thereby regulating the endothelial cell behavior and temporal dynamics of their identity during sprouting angiogenesis. Highlights Bmp9 upregulates the expression of LFng in endothelial cells.LFng regulates the temporal dynamics of tip/stalk selection and rearrangement.LFng indicated to play a role in hereditary hemorrhagic telangiectasia.Bmp9 and LFng mediate the endothelial cell-pericyte crosstalk.Bone Morphogenic Protein 9 (Bmp9), whose signaling through Activin receptor-like kinase 1 (Alk1) is involved in several diseases, has been shown to independently activate Notch target genes in an additive fashion with canonical Notch signaling. Here, by integrating predictive computational modeling validated with experiments, we uncover that Bmp9 upregulates Lunatic Fringe (LFng) in endothelial cells (ECs), and thereby also regulates Notch activity in an inter-dependent, multiplicative fashion. Specifically, the Bmp9-upregulated LFng enhances Notch receptor activity creating a much stronger effect when Dll4 ligands are also present. During sprouting, this LFng regulation alters vessel branching by modulating the timing of EC phenotype selection and rearrangement. Our results further indicate that LFng can play a role in Bmp9-related diseases and in pericyte-driven vessel stabilization, since we find LFng contributes to Jag1 upregulation in Bmp9-stimulated ECs; thus, Bmp9-upregulated LFng results in not only enhanced EC Dll4-Notch1 activation, but also Jag1-Notch3 activation in pericytes.
Collapse
|
19
|
Nakisli S, Lagares A, Nielsen CM, Cuervo H. Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations. Front Physiol 2023; 14:1210563. [PMID: 37601628 PMCID: PMC10437819 DOI: 10.3389/fphys.2023.1210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Previously considered passive support cells, mural cells-pericytes and vascular smooth muscle cells-have started to garner more attention in disease research, as more subclassifications, based on morphology, gene expression, and function, have been discovered. Central nervous system (CNS) arteriovenous malformations (AVMs) represent a neurovascular disorder in which mural cells have been shown to be affected, both in animal models and in human patients. To study consequences to mural cells in the context of AVMs, various animal models have been developed to mimic and predict human AVM pathologies. A key takeaway from recently published work is that AVMs and mural cells are heterogeneous in their molecular, cellular, and functional characteristics. In this review, we summarize the observed perturbations to mural cells in human CNS AVM samples and CNS AVM animal models, and we discuss various potential mechanisms relating mural cell pathologies to AVMs.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Alfonso Lagares
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Imas12, Madrid, Spain
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid, Spain
| |
Collapse
|
20
|
Shi Z, Xiong S, Hu R, Wang Z, Park J, Qian Y, Wang J, Bhalla P, Velupally N, Song Q, Song Z, Layden BT, Jiang Y. The Notch-Pdgfrβ axis suppresses brown adipocyte progenitor differentiation in early postnatal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541839. [PMID: 37293108 PMCID: PMC10245810 DOI: 10.1101/2023.05.24.541839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively studied. Here through in vivo lineage tracing, we observed that PDGFRβ+ pericytes give rise to developmental brown adipocytes, but not to those in adult homeostasis. In contrast, TBX18+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRβ+ pericytes promotes brown adipogenesis through the downregulation of PDGFRβ. Furthermore, inhibition of Notch signaling in PDGFRβ+ pericytes mitigates HFHS (high-fat, high-sucrose) induced glucose and metabolic impairment in both developmental and adult stages. Collectively, these findings show that the Notch/PDGFRβ axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health. Highlights PDGFRβ+ pericytes act as an essential developmental brown APC.TBX18+ pericytes contribute to brown adipogenesis in a depot-specific manner.Inhibiting Notch-Pdgfrβ axis promotes brown APC adipogenesis.Enhanced postnatal brown adipogenesis improves metabolic health in adult stage.
Collapse
|
21
|
Garrison AT, Bignold RE, Wu X, Johnson JR. Pericytes: The lung-forgotten cell type. Front Physiol 2023; 14:1150028. [PMID: 37035669 PMCID: PMC10076600 DOI: 10.3389/fphys.2023.1150028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Pericytes are a heterogeneous population of mesenchymal cells located on the abluminal surface of microvessels, where they provide structural and biochemical support. Pericytes have been implicated in numerous lung diseases including pulmonary arterial hypertension (PAH) and allergic asthma due to their ability to differentiate into scar-forming myofibroblasts, leading to collagen deposition and matrix remodelling and thus driving tissue fibrosis. Pericyte-extracellular matrix interactions as well as other biochemical cues play crucial roles in these processes. In this review, we give an overview of lung pericytes, the key pro-fibrotic mediators they interact with, and detail recent advances in preclinical studies on how pericytes are disrupted and contribute to lung diseases including PAH, allergic asthma, and chronic obstructive pulmonary disease (COPD). Several recent studies using mouse models of PAH have demonstrated that pericytes contribute to these pathological events; efforts are currently underway to mitigate pericyte dysfunction in PAH by targeting the TGF-β, CXCR7, and CXCR4 signalling pathways. In allergic asthma, the dissociation of pericytes from the endothelium of blood vessels and their migration towards inflamed areas of the airway contribute to the characteristic airway remodelling observed in allergic asthma. Although several factors have been suggested to influence this migration such as TGF-β, IL-4, IL-13, and periostin, recent evidence points to the CXCL12/CXCR4 pathway as a potential therapeutic target. Pericytes might also play an essential role in lung dysfunction in response to ageing, as they are responsive to environmental risk factors such as cigarette smoke and air pollutants, which are the main drivers of COPD. However, there is currently no direct evidence delineating the contribution of pericytes to COPD pathology. Although there is a lack of human clinical data, the recent available evidence derived from in vitro and animal-based models shows that pericytes play important roles in the initiation and maintenance of chronic lung diseases and are amenable to pharmacological interventions. Therefore, further studies in this field are required to elucidate if targeting pericytes can treat lung diseases.
Collapse
Affiliation(s)
- Annelise T. Garrison
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Rebecca E. Bignold
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Xinhui Wu
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jill R. Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
22
|
Stobart JL, Erlebach E, Glück C, Huang SF, Barrett MJ, Li M, Vinogradov SA, Klohs J, Zarb Y, Keller A, Weber B. Altered hemodynamics and vascular reactivity in a mouse model with severe pericyte deficiency. J Cereb Blood Flow Metab 2022; 43:763-777. [PMID: 36545806 PMCID: PMC10108184 DOI: 10.1177/0271678x221147366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pericytes are the mural cells of the microvascular network that are in close contact with underlying endothelial cells. Endothelial-secreted PDGFB leads to recruitment of pericytes to the vessel wall, but this is disrupted in Pdgfbret/ret mice when the PDGFB retention motif is deleted. This results in severely reduced pericyte coverage on blood vessels. In this study, we investigated vascular abnormalities and hemodynamics in Pdgfbret/ret mice throughout the cerebrovascular network and in different cortical layers by in vivo two-photon microscopy. We confirmed that Pdgfbret/ret mice are severely deficient in pericytes throughout the vascular network, with enlarged brain blood vessels and a reduced number of vessel branches. Red blood cell velocity, linear density, and tube hematocrit were reduced in Pdgfbret/ret mice, which may impair oxygen delivery to the tissue. We also measured intravascular PO2 and found that concentrations were higher in cortical Layer 2/3 in Pdgfbret/ret mice, indicative of reduced blood oxygen extraction. Finally, we found that Pdgfbret/ret mice had a reduced capacity for vasodilation in response to an acetazolamide challenge during functional MRI imaging. Taken together, these results suggest that severe pericyte deficiency can lead to vascular abnormalities and altered cerebral blood flow, reminiscent of pathologies such as arteriovenous malformations.
Collapse
Affiliation(s)
- Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Eva Erlebach
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Matthew Jp Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Max Li
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jan Klohs
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yvette Zarb
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Annika Keller
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Emerging role of pericytes in therapy of cardiovascular diseases. Biomed Pharmacother 2022; 156:113928. [DOI: 10.1016/j.biopha.2022.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
|
24
|
Drapé E, Anquetil T, Larrivée B, Dubrac A. Brain arteriovenous malformation in hereditary hemorrhagic telangiectasia: Recent advances in cellular and molecular mechanisms. Front Hum Neurosci 2022; 16:1006115. [PMID: 36504622 PMCID: PMC9729275 DOI: 10.3389/fnhum.2022.1006115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by vessel dilatation, such as telangiectasia in skin and mucosa and arteriovenous malformations (AVM) in internal organs such as the gastrointestinal tract, lungs, and brain. AVMs are fragile and tortuous vascular anomalies that directly connect arteries and veins, bypassing healthy capillaries. Mutations in transforming growth factor β (TGFβ) signaling pathway components, such as ENG (ENDOGLIN), ACVRL1 (ALK1), and SMAD4 (SMAD4) genes, account for most of HHT cases. 10-20% of HHT patients develop brain AVMs (bAVMs), which can lead to vessel wall rupture and intracranial hemorrhages. Though the main mutations are known, mechanisms leading to AVM formation are unclear, partially due to lack of animal models. Recent mouse models allowed significant advances in our understanding of AVMs. Endothelial-specific deletion of either Acvrl1, Eng or Smad4 is sufficient to induce AVMs, identifying endothelial cells (ECs) as primary targets of BMP signaling to promote vascular integrity. Loss of ALK1/ENG/SMAD4 signaling is associated with NOTCH signaling defects and abnormal arteriovenous EC differentiation. Moreover, cumulative evidence suggests that AVMs originate from venous ECs with defective flow-migration coupling and excessive proliferation. Mutant ECs show an increase of PI3K/AKT signaling and inhibitors of this signaling pathway rescue AVMs in HHT mouse models, revealing new therapeutic avenues. In this review, we will summarize recent advances and current knowledge of mechanisms controlling the pathogenesis of bAVMs, and discuss unresolved questions.
Collapse
Affiliation(s)
- Elise Drapé
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département de Pharmacologie et de Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Typhaine Anquetil
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Bruno Larrivée
- Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Centre De Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada,*Correspondence: Bruno Larrivée,
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada,Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Alexandre Dubrac,
| |
Collapse
|
25
|
Larson AS, Brinjikji W, Krings T, Guerin JB. The cerebrofacial metameric syndromes: An embryological review and proposal of a novel classification scheme. Interv Neuroradiol 2022; 28:595-603. [PMID: 34665049 PMCID: PMC9511621 DOI: 10.1177/15910199211044938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The cerebrofacial metameric syndromes are a group of congenital syndromes that result in vascular malformations throughout specific anatomical distributions of the brain, cranium and face. Multiple reports of patients with high-flow or low-flow vascular malformations following a metameric distribution have supported this idea. There has been much advancement in understanding of segmental organization and cell migration since the concept of metameric vascular syndromes was first proposed. We aim to give an updated review of these embryological considerations and then propose a more detailed classification system for these syndromes, predominately incorporating the contribution of neural crest cells and somitomeres to the pharyngeal arches.
Collapse
Affiliation(s)
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, USA
- Department of Neurosurgery, Mayo Clinic, USA
| | - Timo Krings
- Division of Neuroradiology, University of Toronto and Toronto Western Hospital, Canada
| | | |
Collapse
|
26
|
Selhorst S, Nakisli S, Kandalai S, Adhicary S, Nielsen CM. Pathological pericyte expansion and impaired endothelial cell-pericyte communication in endothelial Rbpj deficient brain arteriovenous malformation. Front Hum Neurosci 2022; 16:974033. [PMID: 36147294 PMCID: PMC9485665 DOI: 10.3389/fnhum.2022.974033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Pericytes, like vascular smooth muscle cells, are perivascular cells closely associated with blood vessels throughout the body. Pericytes are necessary for vascular development and homeostasis, with particularly critical roles in the brain, where they are involved in regulating cerebral blood flow and establishing the blood-brain barrier. A role for pericytes during neurovascular disease pathogenesis is less clear—while some studies associate decreased pericyte coverage with select neurovascular diseases, others suggest increased pericyte infiltration in response to hypoxia or traumatic brain injury. Here, we used an endothelial loss-of-function Recombination signal binding protein for immunoglobulin kappa J region (Rbpj)/Notch mediated mouse model of brain arteriovenous malformation (AVM) to investigate effects on pericytes during neurovascular disease pathogenesis. We tested the hypothesis that pericyte expansion, via morphological changes, and Platelet-derived growth factor B/Platelet-derived growth factor receptor β (Pdgf-B/Pdgfrβ)-dependent endothelial cell-pericyte communication are affected, during the pathogenesis of Rbpj mediated brain AVM in mice. Our data show that pericyte coverage of vascular endothelium expanded pathologically, to maintain coverage of vascular abnormalities in brain and retina, following endothelial deletion of Rbpj. In Rbpj-mutant brain, pericyte expansion was likely attributed to cytoplasmic process extension and not to increased pericyte proliferation. Despite expanding overall area of vessel coverage, pericytes from Rbpj-mutant brains showed decreased expression of Pdgfrβ, Neural (N)-cadherin, and cluster of differentiation (CD)146, as compared to controls, which likely affected Pdgf-B/Pdgfrβ-dependent communication and appositional associations between endothelial cells and pericytes in Rbpj-mutant brain microvessels. By contrast, and perhaps by compensatory mechanism, endothelial cells showed increased expression of N-cadherin. Our data identify cellular and molecular effects on brain pericytes, following endothelial deletion of Rbpj, and suggest pericytes as potential therapeutic targets for Rbpj/Notch related brain AVM.
Collapse
Affiliation(s)
- Samantha Selhorst
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Honors Tutorial College, Ohio University, Athens, OH, United States
| | - Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Shruthi Kandalai
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Honors Tutorial College, Ohio University, Athens, OH, United States
| | - Subhodip Adhicary
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, United States
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- *Correspondence: Corinne M. Nielsen,
| |
Collapse
|
27
|
Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 2022; 377:eabo1984. [PMID: 35926050 PMCID: PMC9528698 DOI: 10.1126/science.abo1984] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.
Collapse
Affiliation(s)
- Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine I, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Antonio M A Miranda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Nikolay Shvetsov
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Emily R Nadelmann
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Viktoria Strohmenger
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Daniel M DeLaughter
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrew Woehler
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Christoph Lippert
- Digital Health-Machine Learning group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany.,Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuri Kim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kemar Brown
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiac Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel J Buchan
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Henrik Fox
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Jan Gummert
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Masatoshi Kanda
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ruoyan Li
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Barbara McDonough
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Farnoush Shahriaran
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Fabian J Theis
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Catherine L Worth
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.,Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Matthias Heinig
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany.,Department of Informatics, Technische Universitaet Muenchen (TUM), 85748 Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| | | | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| |
Collapse
|
28
|
Orlich MM, Diéguez-Hurtado R, Muehlfriedel R, Sothilingam V, Wolburg H, Oender CE, Woelffing P, Betsholtz C, Gaengel K, Seeliger M, Adams RH, Nordheim A. Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow. Circ Res 2022; 131:308-327. [PMID: 35862101 PMCID: PMC9348820 DOI: 10.1161/circresaha.122.321109] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pericytes and vascular smooth muscle cells, collectively known as mural cells, are recruited through PDGFB (platelet-derived growth factor B)-PDGFRB (platelet-derived growth factor receptor beta) signaling. MCs are essential for vascular integrity, and their loss has been associated with numerous diseases. Most of this knowledge is based on studies in which MCs are insufficiently recruited or fully absent upon inducible ablation. In contrast, little is known about the physiological consequences that result from impairment of specific MC functions. Here, we characterize the role of the transcription factor SRF (serum response factor) in MCs and study its function in developmental and pathological contexts.
Collapse
Affiliation(s)
- Michael M. Orlich
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
- International Max Planck Research School (IMPRS) “From Molecules to Organisms,” Tuebingen, Germany (M.M.O., A.N.)
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
- Now with Rudbeck Laboratory C11, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden (M.M.O.)
| | - Rodrigo Diéguez-Hurtado
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Muenster, Germany (R.D.-H., R.H.A.)
- Faculty of Medicine, University of Muenster, Muenster, Germany (R.D.-H., R.H.A.)
| | - Regine Muehlfriedel
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Vithiyanjali Sothilingam
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Hartwig Wolburg
- Department of General Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, University Clinic Tuebingen (UKT), Germany. (H.W.)
| | - Cansu Ebru Oender
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
| | - Pascal Woelffing
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
| | - Mathias Seeliger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Muenster, Germany (R.D.-H., R.H.A.)
- Faculty of Medicine, University of Muenster, Muenster, Germany (R.D.-H., R.H.A.)
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
- International Max Planck Research School (IMPRS) “From Molecules to Organisms,” Tuebingen, Germany (M.M.O., A.N.)
| |
Collapse
|
29
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
30
|
O'Hare M, Arboleda-Velasquez JF. Notch Signaling in Vascular Endothelial and Mural Cell Communications. Cold Spring Harb Perspect Med 2022; 12:a041159. [PMID: 35534207 PMCID: PMC9435572 DOI: 10.1101/cshperspect.a041159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Notch signaling pathway is a highly versatile and evolutionarily conserved mechanism with an important role in cell fate determination. Notch signaling plays a vital role in vascular development, regulating several fundamental processes such as angiogenesis, arterial/venous differentiation, and mural cell investment. Aberrant Notch signaling can result in severe vascular phenotypes as observed in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Alagille syndrome. It is known that vascular endothelial cells and mural cells interact to regulate vessel formation, cell maturation, and stability of the vascular network. Defective endothelial-mural cell interactions are a common phenotype in diseases characterized by impaired vascular integrity. Further refinement of the role of Notch signaling in the vascular junctions will be critical to attempts to modulate Notch in the context of human vascular disease. In this review, we aim to consolidate and summarize our current understanding of Notch signaling in the vascular endothelial and mural cells during development and in the adult vasculature.
Collapse
Affiliation(s)
- Michael O'Hare
- Department of Ophthalmology at Harvard Medical School, Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts 02114, USA
| | - Joseph F Arboleda-Velasquez
- Department of Ophthalmology at Harvard Medical School, Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts 02114, USA
| |
Collapse
|
31
|
Zhu G, Lin Y, Ge T, Singh S, Liu H, Fan L, Wang S, Rhen J, Jiang D, Lyu Y, Yin Y, Li X, Benoit DSW, Li W, Xu Y, Pang J. A novel peptide inhibitor of Dll4-Notch1 signalling and its pro-angiogenic functions. Br J Pharmacol 2022; 179:1716-1731. [PMID: 34796471 PMCID: PMC9040338 DOI: 10.1111/bph.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The Dll4-Notch1 signalling pathway plays an important role in sprouting angiogenesis, vascular remodelling and arterial or venous specificity. Genetic or pharmacological inhibition of Dll4-Notch1 signalling leads to excessive sprouting angiogenesis. However, transcriptional inhibitors of Dll4-Notch1 signalling have not been described. EXPERIMENTAL APPROACH We designed a new peptide targeting Notch signalling, referred to as TAT-ANK, and assessed its effects on angiogenesis. In vitro, tube formation and fibrin gel bead assay were carried out, using human umbilical vein endothelial cells (HUVECs). In vivo, Matrigel plug angiogenesis assay, a developmental retinal model and tumour models in mice were used. The mechanisms underlying TAT-ANK activity were investigated by immunochemistry, western blotting, immunoprecipitation, RT-qPCR and luciferase reporter assays. KEY RESULTS The amino acid residues 179-191 in the G-protein-coupled receptor-kinase-interacting protein-1 (GIT1-ankyrin domain) are crucial for GIT1 binding to the Notch transcription repressor, RBP-J. We designed the peptide TAT-ANK, based on residues 179-191 in GIT1. TAT-ANK significantly inhibited Dll4 expression and Notch 1 activation in HUVECs by competing with activated Notch1 to bind to RBP-J. The analyses of biological functions showed that TAT-ANK promoted angiogenesis in vitro and in vivo by inhibiting Dll4-Notch1 signalling. CONCLUSIONS AND IMPLICATIONS We synthesized and investigated the biological actions of TAT-ANK peptide, a new inhibitor of Notch signalling. This peptide will be of significant interest to research on Dll4-Notch1 signalling and to clinicians carrying out clinical trials using Notch signalling inhibitors. Furthermore, our findings will have important conceptual and therapeutic implications for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Lin
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tandi Ge
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shekhar Singh
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linlin Fan
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shumin Wang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jordan Rhen
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lyu
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiheng Yin
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danielle S. W. Benoit
- Departments of Biomedical Engineering and Chemical Engineering, Materials Science Program, and Centers for Musculoskeletal Research and Oral Biology, University of Rochester, Rochester, New York, USA
| | - Weiming Li
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute of Tongji University, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
32
|
Abstract
Notch signalling is an evolutionarily highly conserved signalling mechanism governing differentiation and regulating homeostasis in many tissues. In this review, we discuss recent advances in our understanding of the roles that Notch signalling plays in the vasculature. We describe how Notch signalling regulates different steps during the genesis and remodelling of blood vessels (vasculogenesis and angiogenesis), including critical roles in assigning arterial and venous identities to the emerging blood vessels and regulation of their branching. We then proceed to discuss how experimental perturbation of Notch signalling in the vasculature later in development affects vascular homeostasis. In this review, we also describe how dysregulated Notch signalling, as a consequence of direct mutations of genes in the Notch pathway or aberrant Notch signalling output, contributes to various types of vascular disease, including CADASIL, Snedden syndrome and pulmonary arterial hypertension. Finally, we point out some of the current knowledge gaps and identify remaining challenges in understanding the role of Notch in the vasculature, which need to be addressed to pave the way for Notch-based therapies to cure or ameliorate vascular disease.
Collapse
Affiliation(s)
- Francesca Del Gaudio
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dongli Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
33
|
H 2O 2-responsive VEGF/NGF gene co-delivery nano-system achieves stable vascularization in ischemic hindlimbs. J Nanobiotechnology 2022; 20:145. [PMID: 35305670 PMCID: PMC8934504 DOI: 10.1186/s12951-022-01328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Peripheral vascular disease (PVD) is a common clinical manifestation of atherosclerosis. Vascular endothelial growth factor (VEGF) gene therapy is a promising approach for PVD treatment. However, due to single-gene therapy limitations and high H2O2 pathological microenvironment, VEGF gene therapy are not as expectations and its clinical application are limited. Synergistic effects of Nerve factors and vascular factors in angiogenesis have attracted attention in recent years. In this study, VEGF and nerve growth factor (NGF) genes co-delivery nanoparticles (VEGF/NGF-NPs) were prepared by using H2O2 responsive 6s-PLGA-Po-PEG as a carrier. 6s-PLGA-Po-PEG could react with H2O2 specifically due to the internal peroxalate bond. Angiogenic effects of VEGF/NGF-NPs has been evaluated in cells and hindlimb ischemia mice model. Results showed that VEGF/NGF-NPs promoted VEGF and NGF co-expression simultaneously, eliminated excessive H2O2, strengthened reactions between SH-SY5Ys and HUVECs, and finally enhanced migration, tube formation, proliferation and H2O2 damage resistance of HUVECs. VEGF/NGF-NPs also recovered blood perfusion, promoted the expression of VEGF, NGF, eNOS and NO, and enhanced vascular coverage of pericytes. Treatment effects of VEGF/NGF-NPs may related to VEGF/eNOS/NO pathway. Altogether, VEGF/NGF-NPs eliminated excessive H2O2 while achieving gene co-delivery, and promoted stable angiogenesis. It’s a promising way for PVD treatment by using VEGF/NGF-NPs.
Collapse
|
34
|
Tefft JB, Bays JL, Lammers A, Kim S, Eyckmans J, Chen CS. Notch1 and Notch3 coordinate for pericyte-induced stabilization of vasculature. Am J Physiol Cell Physiol 2022; 322:C185-C196. [PMID: 34878922 PMCID: PMC8791789 DOI: 10.1152/ajpcell.00320.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Notch pathway regulates complex patterning events in many species and is critical for the proper formation and function of the vasculature. Despite this importance, how the various components of the Notch pathway work in concert is still not well understood. For example, NOTCH1 stabilizes homotypic endothelial junctions, but the role of NOTCH1 in heterotypic interactions is not entirely clear. NOTCH3, on the other hand, is essential for heterotypic interactions of pericytes with the endothelium, but how NOTCH3 signaling in pericytes impacts the endothelium remains elusive. Here, we use in vitro vascular models to investigate whether pericyte-induced stabilization of the vasculature requires the cooperation of NOTCH1 and NOTCH3. We observe that both pericyte NOTCH3 and endothelial NOTCH1 are required for the stabilization of the endothelium. Loss of either NOTCH3 or NOTCH1 decreases the accumulation of VE-cadherin at endothelial adherens junctions and increases the frequency of wider, more motile junctions. We found that DLL4 was the key ligand for simulating NOTCH1 activation in endothelial cells and observed that DLL4 expression in pericytes is dependent on NOTCH3. Altogether, these data suggest that an interplay between pericyte NOTCH3 and endothelial NOTCH1 is critical for pericyte-induced vascular stabilization.
Collapse
Affiliation(s)
- Juliann B. Tefft
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jennifer L. Bays
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Alex Lammers
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Sudong Kim
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Jeroen Eyckmans
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Christopher S. Chen
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| |
Collapse
|
35
|
De Rosa S, Iaconetti C, Eyileten C, Yasuda M, Albanese M, Polimeni A, Sabatino J, Sorrentino S, Postula M, Indolfi C. Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. J Clin Med 2022; 11:jcm11020459. [PMID: 35054151 PMCID: PMC8777617 DOI: 10.3390/jcm11020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular system is largely exposed to the effect of changing flow conditions. Vascular cells can sense flow and its changes. Flow sensing is of pivotal importance for vascular remodeling. In fact, it influences the development and progression of atherosclerosis, controls its location and has a major influx on the development of local complications. Despite its importance, the research community has traditionally paid scarce attention to studying the association between different flow conditions and vascular biology. More recently, a growing body of evidence has been accumulating, revealing that ncRNAs play a key role in the modulation of several biological processes linking flow-sensing to vascular pathophysiology. This review summarizes the most relevant evidence on ncRNAs that are directly or indirectly responsive to flow conditions to the benefit of the clinician, with a focus on the underpinning mechanisms and their potential application as disease biomarkers.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Correspondence: (S.D.R.); (C.I.)
| | - Claudio Iaconetti
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Masakazu Yasuda
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Alberto Polimeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Correspondence: (S.D.R.); (C.I.)
| |
Collapse
|
36
|
Pan P, Weinsheimer S, Cooke D, Winkler E, Abla A, Kim H, Su H. Review of treatment and therapeutic targets in brain arteriovenous malformation. J Cereb Blood Flow Metab 2021; 41:3141-3156. [PMID: 34162280 PMCID: PMC8669284 DOI: 10.1177/0271678x211026771] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Brain arteriovenous malformations (bAVM) are an important cause of intracranial hemorrhage (ICH), especially in younger patients. The pathogenesis of bAVM are largely unknown. Current understanding of bAVM etiology is based on studying genetic syndromes, animal models, and surgically resected specimens from patients. The identification of activating somatic mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene and other mitogen-activated protein kinase (MAPK) pathway genes has opened up new avenues for bAVM study, leading to a paradigm shift to search for somatic, de novo mutations in sporadic bAVMs instead of focusing on inherited genetic mutations. Through the development of new models and understanding of pathways involved in maintaining normal vascular structure and functions, promising therapeutic targets have been identified and safety and efficacy studies are underway in animal models and in patients. The goal of this paper is to provide a thorough review or current diagnostic and treatment tools, known genes and key pathways involved in bAVM pathogenesis to summarize current treatment options and potential therapeutic targets uncovered by recent discoveries.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, USA
| | - Ethan Winkler
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Adib Abla
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| |
Collapse
|
37
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
38
|
Kato T, Manabe RI, Igarashi H, Kametani F, Hirokawa S, Sekine Y, Fujita N, Saito S, Kawashima Y, Hatano Y, Ando S, Nozaki H, Sugai A, Uemura M, Fukunaga M, Sato T, Koyama A, Saito R, Sugie A, Toyoshima Y, Kawata H, Murayama S, Matsumoto M, Kakita A, Hasegawa M, Ihara M, Kanazawa M, Nishizawa M, Tsuji S, Onodera O. Candesartan prevents arteriopathy progression in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy model. J Clin Invest 2021; 131:140555. [PMID: 34779414 DOI: 10.1172/jci140555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/01/2021] [Indexed: 01/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) causes dementia and gait disturbance due to arteriopathy. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a hereditary form of CSVD caused by loss of high-temperature requirement A1 (HTRA1) serine protease activity. In CARASIL, arteriopathy causes intimal thickening, smooth muscle cell (SMC) degeneration, elastic lamina splitting, and vasodilation. The molecular mechanisms were proposed to involve the accumulation of matrisome proteins as substrates or abnormalities in transforming growth factor β (TGF-β) signaling. Here, we show that HTRA1-/- mice exhibited features of CARASIL-associated arteriopathy: intimal thickening, abnormal elastic lamina, and vasodilation. In addition, the mice exhibited reduced distensibility of the cerebral arteries and blood flow in the cerebral cortex. In the thickened intima, matrisome proteins, including the hub protein fibronectin (FN) and latent TGF-β binding protein 4 (LTBP-4), which are substrates of HTRA1, accumulated. Candesartan treatment alleviated matrisome protein accumulation and normalized the vascular distensibility and cerebral blood flow. Furthermore, candesartan reduced the mRNA expression of Fn1, Ltbp-4, and Adamtsl2, which are involved in forming the extracellular matrix network. Our results indicate that these accumulated matrisome proteins may be potential therapeutic targets for arteriopathy in CARASIL.
Collapse
Affiliation(s)
- Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Fuyuki Kametani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sachiko Hirokawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yumi Sekine
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Natsumi Fujita
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yuya Hatano
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Nozaki
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Akihiro Sugai
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Uemura
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, Aichi, Japan
| | - Toshiya Sato
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Kanagawa, Japan
| | - Akihide Koyama
- Department of Legal Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rie Saito
- Department of Pathology, Clinical Neuroscience Branch and
| | - Atsushi Sugie
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Hirotoshi Kawata
- Department of Pathology, Jichi Medical University, Tochigi, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, University of Osaka, Osaka, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
39
|
Rustenhoven J, Tanumihardja C, Kipnis J. Cerebrovascular Anomalies: Perspectives From Immunology and Cerebrospinal Fluid Flow. Circ Res 2021; 129:174-194. [PMID: 34166075 DOI: 10.1161/circresaha.121.318173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Appropriate vascular function is essential for the maintenance of central nervous system homeostasis and is achieved through virtue of the blood-brain barrier; a specialized structure consisting of endothelial, mural, and astrocytic interactions. While appropriate blood-brain barrier function is typically achieved, the central nervous system vasculature is not infallible and cerebrovascular anomalies, a collective terminology for diverse vascular lesions, are present in meningeal and cerebral vasculature supplying and draining the brain. These conditions, including aneurysmal formation and rupture, arteriovenous malformations, dural arteriovenous fistulas, and cerebral cavernous malformations, and their associated neurological sequelae, are typically managed with neurosurgical or pharmacological approaches. However, increasing evidence implicates interacting roles for inflammatory responses and disrupted central nervous system fluid flow with respect to vascular perturbations. Here, we discuss cerebrovascular anomalies from an immunologic angle and fluid flow perspective. We describe immune contributions, both common and distinct, to the formation and progression of diverse cerebrovascular anomalies. Next, we summarize how cerebrovascular anomalies precipitate diverse neurological sequelae, including seizures, hydrocephalus, and cognitive effects and possible contributions through the recently identified lymphatic and glymphatic systems. Finally, we speculate on and provide testable hypotheses for novel nonsurgical therapeutic approaches for alleviating neurological impairments arising from cerebrovascular anomalies, with a particular emphasis on the normalization of fluid flow and alleviation of inflammation through manipulations of the lymphatic and glymphatic central nervous system clearance pathways.
Collapse
Affiliation(s)
- Justin Rustenhoven
- Center for Brain Immunology and Glia (J.R., J.K.), Washington University in St. Louis, St Louis, MO.,Department of Pathology and Immunology, School of Medicine (J.R., J.K.), Washington University in St. Louis, St Louis, MO
| | | | - Jonathan Kipnis
- Center for Brain Immunology and Glia (J.R., J.K.), Washington University in St. Louis, St Louis, MO.,Department of Pathology and Immunology, School of Medicine (J.R., J.K.), Washington University in St. Louis, St Louis, MO
| |
Collapse
|
40
|
Alkayed NJ, Cipolla MJ. Vascular Biology. Stroke 2021; 52:2440-2441. [PMID: 34078110 DOI: 10.1161/strokeaha.121.033556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Portland, OR (N.J.A.)
| | - Marilyn J Cipolla
- Department of Neurological Science, University of Vermont Larner College of Medicine, Burlington (M.J.C.)
| |
Collapse
|
41
|
Lin A, Peiris NJ, Dhaliwal H, Hakim M, Li W, Ganesh S, Ramaswamy Y, Patel S, Misra A. Mural Cells: Potential Therapeutic Targets to Bridge Cardiovascular Disease and Neurodegeneration. Cells 2021; 10:cells10030593. [PMID: 33800271 PMCID: PMC7999039 DOI: 10.3390/cells10030593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mural cells collectively refer to the smooth muscle cells and pericytes of the vasculature. This heterogenous population of cells play a crucial role in the regulation of blood pressure, distribution, and the structural integrity of the vascular wall. As such, dysfunction of mural cells can lead to the pathogenesis and progression of a number of diseases pertaining to the vascular system. Cardiovascular diseases, particularly atherosclerosis, are perhaps the most well-described mural cell-centric case. For instance, atherosclerotic plaques are most often described as being composed of a proliferative smooth muscle cap accompanied by a necrotic core. More recently, the role of dysfunctional mural cells in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, is being recognized. In this review, we begin with an exploration of the mechanisms underlying atherosclerosis and neurodegenerative diseases, such as mural cell plasticity. Next, we highlight a selection of signaling pathways (PDGF, Notch and inflammatory signaling) that are conserved across both diseases. We propose that conserved mural cell signaling mechanisms can be exploited for the identification or development of dual-pronged therapeutics that impart both cardio- and neuroprotective qualities.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cardiotonic Agents/pharmacology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neuroprotective Agents/pharmacology
- Parkinson Disease/drug therapy
- Parkinson Disease/genetics
- Parkinson Disease/metabolism
- Parkinson Disease/pathology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Alexander Lin
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Niridu Jude Peiris
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harkirat Dhaliwal
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Hakim
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Weizhen Li
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India;
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Cardiac Catheterization Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: ; Tel.: +61-18-0065-1373
| |
Collapse
|