1
|
Xu Z, He S, Begum MM, Han X. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Antioxid Redox Signal 2024; 41:1073-1099. [PMID: 39575748 DOI: 10.1089/ars.2024.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Significance: Lipids, which constitute the highest portion (over 50%) of brain dry mass, are crucial for brain integrity, energy homeostasis, and signaling regulation. Emerging evidence revealed that lipid profile alterations and abnormal lipid metabolism occur during normal aging and in different forms of neurodegenerative diseases. Moreover, increasing genome-wide association studies have validated new targets on lipid-associated pathways involved in disease development. Myelin, the protective sheath surrounding axons, is crucial for efficient neural signaling transduction. As the primary site enriched with lipids, impairments of myelin are increasingly recognized as playing significant and complex roles in various neurodegenerative diseases, beyond simply being secondary effects of neuronal loss. Recent Advances: With advances in the lipidomics field, myelin lipid alterations and their roles in contributing to or reflecting the progression of diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others, have recently caught great attention. Critical Issues: This review summarizes recent findings of myelin lipid alterations in the five most common neurodegenerative diseases and discusses their implications in disease pathogenesis. Future Directions: By highlighting myelin lipid abnormalities in neurodegenerative diseases, this review aims to encourage further research focused on lipids and the development of new lipid-oriented therapeutic approaches in this area. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Mst Marium Begum
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Compton SLE, Yang S, Madere J, Weltzien EK, Caan BJ, Meyerhardt JA, Schmitz KH, Brown JC. Dietary quality and chemotherapy-induced peripheral neuropathy in colon cancer. Cancer 2024. [PMID: 39369275 DOI: 10.1002/cncr.35599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting chemotoxicity caused by oxaliplatin. This study investigated the relationship between dietary quality and the development of moderate and/or severe CIPN in colon cancer survivors using data from the Focus on Reducing Dose-Limiting Toxicities in Colon Cancer with Resistance Exercise trial (ClinicalTrials.gov identifier NCT03291951). METHODS Diet quality was collected using a 127-item food-frequency questionnaire and was scored using the Alternative Healthy Eating Index-2010 (AHEI-2010). CIPN was assessed with the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events at each chemotherapy cycle. The association of dietary quality with time to the first moderate-to-severe (moderate-severe) or severe event of CIPN was estimated using Cox proportional hazards models. Only participants who received oxaliplatin were included in this analysis (n = 132). RESULTS Seventy-four participants (56.1%) reported moderate-severe CIPN. Higher dietary quality was associated with a significantly decreased risk of moderate-severe CIPN (hazard ratio [HR], 0.96; 95% confidence interval [CI], 0.93-0.99) and severe CIPN (HR, 0.91; 95% CI, 0.85-0.98). Consumption of red and processed meat (HR, 1.78; 95% CI, 1.07-2.83) and sugar-sweetened beverages (HR, 1.33; 95% CI, 1.10-1.59) was associated with an increased risk of moderate-severe CIPN. Consumption of sugar-sweetened beverages also was associated with an increased risk of severe CIPN (HR, 1.57; 95% CI, 1.14-2.18), whereas vegetable consumption was associated with a reduced risk of severe CIPN (HR, 0.29; 95% CI, 0.09-0.73). CONCLUSIONS Among patients with colon cancer who received oxaliplatin-based chemotherapy, higher baseline dietary quality was associated with a reduced risk of moderate-severe CIPN.
Collapse
Affiliation(s)
| | - Shengping Yang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Joseph Madere
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Erin K Weltzien
- Kaiser Permanente Northern California, Oakland, California, USA
| | - Bette J Caan
- Kaiser Permanente Northern California, Oakland, California, USA
| | | | | | - Justin C Brown
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Lousiana State University Health Sciences Center, New Orleans School of Medicine, New Orleans, Louisiana, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Wang B, Jin Y, Ouyang X, Zhu R, Wang X, Li S, Jiang F. Ferroptosis contributes to diabetes-induced visual pathway neuronal damage via iron accumulation and GPX4 inactivation. Metab Brain Dis 2024; 39:1459-1468. [PMID: 39080199 PMCID: PMC11513717 DOI: 10.1007/s11011-024-01398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/20/2024] [Indexed: 10/29/2024]
Abstract
The damage of the diabetic visual pathway is one of the main causes of blindness in diabetic patients. Visual pathways include anatomic parts from the retina to the occipital lobe. This study investigated the involvement of ferroptosis, a planned cell death brought on by the buildup of free iron in cells, in the impairment of visual pathways in diabetes mellitus. Streptozotocin (STZ) was used to construct a diabetic rat model. Pathological and ultrastructural changes of the occipital lobe, retina, and optic nerve were observed by Hematoxylin-Eosin (HE) staining and transmission electron microscopy (TEM). The expressions of Neuronal nuclei (NeuN), Glial fibrillary acidic protein (GFAP), and Glutathione Peroxidase 4 (GPX4) in the occipital lobe and retina were detected by immunofluorescence, and Western Blotting was used to identify the NeuN GFAP and GPX4 expressions in the occipital lobe. Iron content in the occipital lobe and retina was detected by Iron Assay Kit. The success rate of the diabetic rat model was 93.3%. In the diabetic group, the cells of the occipital lobe and retina were arranged disorderly, and the boundaries were unclear. The membrane of the occipital lobe, retina, and optic nerve was broken, some vacuoles were observed, mitochondrial morphology was changed, swelling was observed, and the mitochondrial ridge disappeared. There was a large increase in GFAP expression and iron concentration and a significant decrease in the expression of NeuN, and GPX4 in the retina and occipital lobe. Ferroptosis plays an important role in visual pathway damage in diabetes, and GPX4 regulates this process.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Jin
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuan Ouyang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ru Zhu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Aier Eye Hospital of Wuhan University, Wuhan, 430060, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuang Li
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Nattero-Chávez L, Insenser M, Amigó N, Samino S, Martínez-Micaelo N, Dorado Avendaño B, Quintero Tobar A, Escobar-Morreale HF, Luque-Ramírez M. Quantification of lipoproteins by proton nuclear magnetic resonance spectroscopy ( 1H-NMRS) improves the prediction of cardiac autonomic dysfunction in patients with type 1 diabetes. J Endocrinol Invest 2024; 47:2075-2085. [PMID: 38182920 DOI: 10.1007/s40618-023-02289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
AIMS To assess if advanced characterization of serum glycoprotein and lipoprotein profile, measured by proton nuclear magnetic resonance spectroscopy (1H-NMRS) improves a predictive clinical model of cardioautonomic neuropathy (CAN) in subjects with type 1 diabetes (T1D). METHODS Cross-sectional study (ClinicalTrials.gov Identifier: NCT04950634). CAN was diagnosed using Ewing's score. Advanced characterization of macromolecular complexes including glycoprotein and lipoprotein profiles in serum samples were measured by 1H-NMRS. We addressed the relationships between these biomarkers and CAN using correlation and regression analyses. Diagnostic performance was assessed by analyzing their areas under the receiver operating characteristic curves (AUCROC). RESULTS Three hundred and twenty-three patients were included (46% female, mean age and duration of diabetes of 41 ± 13 years and 19 ± 11 years, respectively). The overall prevalence of CAN was 28% [95% confidence interval (95%CI): 23; 33]. Glycoproteins such as N-acetylglucosamine/galactosamine and sialic acid showed strong correlations with inflammatory markers such as high-sensitive C-reactive protein, fibrinogen, IL-10, IL-6, and TNF-α. On the contrary, we did not find any association between the former and CAN. A stepwise binary logistic regression model (R2 = 0.078; P = 0.003) retained intermediate-density lipoprotein-triglycerides (IDL-TG) [β:0.082 (95%CI: 0.005; 0.160); P = 0.039], high-density lipoprotein-triglycerides (HDL-TGL)/HDL-Cholesterol [β:3.633 (95%CI: 0.873; 6.394); P = 0.010], and large-HDL particle number [β: 3.710 (95%CI: 0.677; 6.744); P = 0.001] as statistically significant determinants of CAN. Adding these lipoprotein particles to a clinical prediction model of CAN that included age, duration of diabetes, and A1c enhanced its diagnostic performance, improving AUCROC from 0.546 (95%CI: 0.404; 0.688) to 0.728 (95%CI: 0.616; 0.840). CONCLUSIONS When added to clinical variables, 1H-NMRS-lipoprotein particle profiles may be helpful to identify those patients with T1D at risk of CAN.
Collapse
Affiliation(s)
- L Nattero-Chávez
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain.
- Diabetes, Obesity and Human Reproduction Research Group, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - M Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - N Amigó
- Biosfer Teslab, CIBERDEM, Madrid, Spain
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - S Samino
- Biosfer Teslab, CIBERDEM, Madrid, Spain
| | | | - B Dorado Avendaño
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - A Quintero Tobar
- Diabetes, Obesity and Human Reproduction Research Group, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - H F Escobar-Morreale
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Diabetes, Obesity and Human Reproduction Research Group, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - M Luque-Ramírez
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Diabetes, Obesity and Human Reproduction Research Group, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
5
|
Llorián-Salvador M, Cabeza-Fernández S, Gomez-Sanchez JA, de la Fuente AG. Glial cell alterations in diabetes-induced neurodegeneration. Cell Mol Life Sci 2024; 81:47. [PMID: 38236305 PMCID: PMC10796438 DOI: 10.1007/s00018-023-05024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 01/19/2024]
Abstract
Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.
Collapse
Affiliation(s)
- María Llorián-Salvador
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
| | - Sonia Cabeza-Fernández
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Jose A Gomez-Sanchez
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Alerie G de la Fuente
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain.
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
6
|
Yako H, Niimi N, Takaku S, Sango K. Advantages of omics approaches for elucidating metabolic changes in diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1208441. [PMID: 38089620 PMCID: PMC10715313 DOI: 10.3389/fendo.2023.1208441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Various animal and cell culture models of diabetes mellitus (DM) have been established and utilized to study diabetic peripheral neuropathy (DPN). The divergence of metabolic abnormalities among these models makes their etiology complicated despite some similarities regarding the pathological and neurological features of DPN. Thus, this study aimed to review the omics approaches toward DPN, especially on the metabolic states in diabetic rats and mice induced by chemicals (streptozotocin and alloxan) as type 1 DM models and by genetic mutations (MKR, db/db and ob/ob) and high-fat diet as type 2 DM models. Omics approaches revealed that the pathways associated with lipid metabolism and inflammation in dorsal root ganglia and sciatic nerves were enriched and controlled in the levels of gene expression among these animal models. Additionally, these pathways were conserved in human DPN, indicating the pivotal pathogeneses of DPN. Omics approaches are beneficial tools to better understand the association of metabolic changes with morphological and functional abnormalities in DPN.
Collapse
Affiliation(s)
- Hideji Yako
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Pereyra AS, McLaughlin KL, Buddo KA, Ellis JM. Medium-chain fatty acid oxidation is independent of l-carnitine in liver and kidney but not in heart and skeletal muscle. Am J Physiol Gastrointest Liver Physiol 2023; 325:G287-G294. [PMID: 37461880 PMCID: PMC10642992 DOI: 10.1152/ajpgi.00105.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Medium-chain fatty acid (MCFA) consumption confers a wide range of health benefits that are highly distinct from long-chain fatty acids (LCFAs). A major difference between the metabolism of LCFAs compared with MCFAs is that mitochondrial LCFA oxidation depends on the carnitine shuttle, whereas MCFA mitochondrial oxidation is not. Although MCFAs are said to range from 6 to 14 carbons long based on physicochemical properties in vitro, the biological cut-off length of acyl chains that can bypass the carnitine shuttle in different mammalian tissues is unknown. To define the range of acyl chain length that can be oxidized in the mitochondria independent of carnitine, we determined the oxidative metabolism of free fatty acids (FFAs) from 6 to 18 carbons long in the liver, kidney, heart, and skeletal muscle. The liver oxidized FFAs 6 to 14 carbons long, whereas the kidney oxidized FFAs from 6 to 10 carbons in length. Heart and skeletal muscle were unable to oxidize FFAs of any chain length. These data show that while the liver and kidney can oxidize MCFAs in the free form, the heart and skeletal muscle require carnitine for the oxidative metabolism of MCFAs. Together these data demonstrate that MCFA oxidation independent of carnitine is tissue-specific.NEW & NOTEWORTHY This work demonstrates that the traditional concept of mitochondrial medium-chain fatty acid oxidation as unregulated and independent of carnitine applies only to liver metabolism, and to kidney to a lesser extent, but not the heart or skeletal muscle. Thus, the benefits of dietary medium-chain fatty acids are set by liver metabolic activity and peripheral tissues are unlikely to receive direct benefits from medium-chain fatty acid metabolism, but rather metabolic byproducts of liver's medium-chain oxidative metabolism.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| | - Kelsey L McLaughlin
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| | - Katherine A Buddo
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| | - Jessica M Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
8
|
Pandey MK. Uncovering the Lipid Web: Discovering the Multifaceted Roles of Lipids in Human Diseases and Therapeutic Opportunities. Int J Mol Sci 2023; 24:13223. [PMID: 37686028 PMCID: PMC10487860 DOI: 10.3390/ijms241713223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Lipids, characterized by their hydrophobic nature, encompass a wide range of molecules with distinct properties and functions [...].
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC-7016, Suit R1.019A, Cincinnati, OH 45229, USA; or ; Tel.: +1-513-803-1694; Fax: +1-513-636-1321
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Chen Y, Jiang H, Zhan Z, Lu J, Gu T, Yu P, Liang W, Zhang X, Liu S, Bi H, Zhong S, Tang L. Restoration of lipid homeostasis between TG and PE by the LXRα-ATGL/EPT1 axis ameliorates hepatosteatosis. Cell Death Dis 2023; 14:85. [PMID: 36746922 PMCID: PMC9902534 DOI: 10.1038/s41419-023-05613-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
Converting lipid disturbances in response to energy oversupply into healthy lipid homeostasis is a promising therapy to alleviate hepatosteatosis. Our clinical studies found that a further elevation of triglyceride (TG) in obese patients with the body mass index (BMI) greater than 28 was accompanied by a further reduction of phosphatidylethanolamine (PE). Shorter survival and poor prognosis were shown for the patients with high TG and low PE levels. Liver X receptor alpha (LXRα) knockout mice aggravated high-fat diet (HFD)-induced obesity and lipid disorders, making the TG enrichment and the PE decrease more pronounced according to the liver lipidomics analysis. The RNA-seq from mice liver exhibited that these metabolism disorders were attributed to the decline of Atgl (encoding the TG metabolism enzyme ATGL) and Ept1 (encoding the PE synthesis enzyme EPT1) expression. Mechanistic studies uncovered that LXRα activated the ATGL and EPT1 gene via direct binding to a LXR response element (LXRE) in the promoter. Moreover, both the supplement of PE in statin or fibrate therapy, and the LXRα inducer (oridonin) ameliorated cellular lipid deposition and lipotoxicity. Altogether, restoration of lipid homeostasis of TG and PE via the LXRα-ATGL/EPT1 axis may be a potential approach for the management of hepatosteatosis and metabolic syndrome.
Collapse
Affiliation(s)
- Yulian Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Huanguo Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Zhikun Zhan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jindi Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Ping Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Weimin Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xi Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Shilong Zhong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China.
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
10
|
Mazza E, Calesella F, Paolini M, di Pasquasio C, Poletti S, Lorenzi C, Falini A, Zanardi R, Colombo C, Benedetti F. Insulin resistance disrupts white matter microstructure and amplitude of functional spontaneous activity in bipolar disorder. Bipolar Disord 2023; 25:32-42. [PMID: 36377438 DOI: 10.1111/bdi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is linked to several structural and functional brain alterations. In addition, BD patients have a three-fold increased risk of developing insulin resistance, which is associated with neural changes and poorer BD outcomes. Therefore, we investigated the effects of insulin and two derived measures (insulin resistance and sensitivity) on white matter (WM) microstructure, resting-state (rs) functional connectivity (FC), and fractional amplitude of low-frequency fluctuation (fALFF). METHODS BD patients (n = 92) underwent DTI acquisition, and a subsample (n = 22) underwent rs-fMRI. Blood samples were collected to determine insulin and glucose levels. The Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) were computed. DTI data were analyzed via tract-based spatial statistics and threshold-free cluster enhancement. From rs-fMRI data, both ROI-to-ROI FC matrices and fALFF maps were extracted. RESULTS Insulin showed a widespread negative association with fractional anisotropy (FA) and a positive effect on radial diffusivity (RD) and mean diffusivity (MD). HOMA-IR exerted a significant effect on RD in the right superior longitudinal fasciculus, whereas QUICKI was positively associated with FA and negatively with RD and MD in the left superior longitudinal fasciculus, left anterior corona radiata, and forceps minor. fALFF was negatively modulated by insulin and HOMA-IR and positively associated with QUICKI in the precuneus. No significant results were found in the ROI-to-ROI analysis. CONCLUSION Our findings suggest that WM microstructure and functional alterations might underlie the effect of IR on BD pathophysiology, even if the causal mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Elena Mazza
- Vita-Salute San Raffaele University, Milan, Italy.,Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federico Calesella
- Vita-Salute San Raffaele University, Milan, Italy.,Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Paolini
- Vita-Salute San Raffaele University, Milan, Italy.,Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Sara Poletti
- Vita-Salute San Raffaele University, Milan, Italy.,Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Raffaella Zanardi
- Vita-Salute San Raffaele University, Milan, Italy.,Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milan, Italy.,Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy.,Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
11
|
Chen XJ, Wang XF, Pan ZC, Zhang D, Zhu KC, Jiang T, Kong XK, Xie R, Sun LH, Tao B, Liu JM, Zhao HY. Nerve conduction velocity is independently associated with bone mineral density in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1109322. [PMID: 36891057 PMCID: PMC9987338 DOI: 10.3389/fendo.2023.1109322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
AIM This study investigated the association between nerve conduction velocity (NCV) and bone mineral density (BMD) in patients with type 2 diabetes mellitus (T2DM). METHODS This study retrospectively collected medical data of T2DM patients who underwent dual-energy X-ray absorptiometry and nerve conduction study at the Shanghai Ruijin Hospital, Shanghai, China. The primary outcome was the total hip BMD T-score. The main independent variables were motor nerve conduction velocities (MCVs), sensory nerve conduction velocities (SCVs), and composite Z-scores of MCV and SCV. T2DM patients were divided into total hip BMD T-scores < -1 and total hip BMD T-scores ≥ -1 groups. The association between the primary outcome and main independent variables was evaluated by Pearson bivariate correlation and multivariate linear regression. RESULTS 195 female and 415 male patients with T2DM were identified. In male patients with T2DM, bilateral ulnar, median, and tibial MCVs and bilateral sural SCVs were lower in the total hip BMD T-score < -1 group than T-score ≥ -1 group (P < 0.05). Bilateral ulnar, median, and tibial MCVs, and bilateral sural SCVs showed positive correlations with total hip BMD T-score in male patients with T2DM (P < 0.05). Bilateral ulnar and tibial MCVs, bilateral sural SCVs, and composite MCV SCV and MSCV Z-scores were independently and positively associated with total hip BMD T-score in male patients with T2DM, respectively (P < 0.05). NCV did not show significant correlation with the total hip BMD T-score in female patients with T2DM. CONCLUSION NCV showed positive association with total hip BMD in male patients with T2DM. A decline in NCV indicates an elevated risk of low BMD (osteopenia/osteoporosis) in male patients with T2DM.
Collapse
Affiliation(s)
- Xiao-jing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-feng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-can Pan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke-cheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-ke Kong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Xie
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-hao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hong-yan Zhao, ; Jian-min Liu,
| | - Hong-yan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hong-yan Zhao, ; Jian-min Liu,
| |
Collapse
|
12
|
Chen H, Liao C, Yang X, Zhou H, Wu Y, Sun Q, Li S, Zhang W. Multi-omics analysis revealed the role of CYP1A2 in the induction of mechanical allodynia in type 1 diabetes. Front Genet 2023; 14:1151340. [PMID: 37035728 PMCID: PMC10076588 DOI: 10.3389/fgene.2023.1151340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Mechanical allodynia (MA) is one of the leading clinical symptoms of painful diabetic peripheral neuropathy (PDPN), which is a primary reason for non-traumatic amputations, foot ulceration, and gait abnormalities in patients with diabetes. However, the pathogenic mechanisms of MA have not yet been fully elucidated, and there is no effective treatment. This study aims to study the potential pathogenetic mechanisms of MA and to provide targets for the therapy of MA. Methods: A single intraperitoneal injection of streptozotocin induced type 1 diabetes in rat models. Subsequently, rats were divided into the control group, the diabetic group without MA, and the diabetic group with MA based on weekly behavioral assays. The differentially expressed lipids in the sciatic nerve of each group were detected using untargeted lipidomics, and the differentially expressed genes in the sciatic nerve of each group were detected by transcriptomics. The pathogenesis of MA was predicted using integrated analysis and validated by immunofluorescence staining and transmission electron microscopy. Results: Untargeted lipidomics revealed the accumulation of a more severe lipid in MA rats. Transcriptomics results suggested that differentially expressed genes in MA rats were primarily related to lipid droplets and myelin sheath. Integrated analysis results indicated that the downregulation of Cytochrome P450 1A2 (CYP1A2) expression was closely linked to lipid metabolism disorders. Immunofluorescence staining demonstrated that down-regulation of CYP1A2 expression occurred in MA rats. Transmission electron microscopy results showed that more severe lipid droplet accumulation and myelin sheath degeneration occurred in MA rats. Conclusion: Our findings imply that the downregulation of CYP1A2 expression leads to disorders of lipid metabolism and further leads to lipid droplet accumulation and myelin sheath degeneration, which might ultimately lead to the development of MA. Therefore, our study contributes to promoting the understanding of the molecular mechanisms of MA and providing potential targets for the clinical treatment of MA.
Collapse
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
14
|
Prola A, Pilot-Storck F. Cardiolipin Alterations during Obesity: Exploring Therapeutic Opportunities. BIOLOGY 2022; 11:1638. [PMID: 36358339 PMCID: PMC9687765 DOI: 10.3390/biology11111638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 08/13/2023]
Abstract
Cardiolipin is a specific phospholipid of the mitochondrial inner membrane that participates in many aspects of its organization and function, hence promoting proper mitochondrial ATP production. Here, we review recent data that have investigated alterations of cardiolipin in different tissues in the context of obesity and the related metabolic syndrome. Data relating perturbations of cardiolipin content or composition are accumulating and suggest their involvement in mitochondrial dysfunction in tissues from obese patients. Conversely, cardiolipin modulation is a promising field of investigation in a search for strategies for obesity management. Several ways to restore cardiolipin content, composition or integrity are emerging and may contribute to the improvement of mitochondrial function in tissues facing excessive fat storage. Inversely, reduction of mitochondrial efficiency in a controlled way may increase energy expenditure and help fight against obesity and in this perspective, several options aim at targeting cardiolipin to achieve a mild reduction of mitochondrial coupling. Far from being just a victim of the deleterious consequences of obesity, cardiolipin may ultimately prove to be a possible weapon to fight against obesity in the future.
Collapse
Affiliation(s)
- Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Fanny Pilot-Storck
- Team Relaix, INSERM, IMRB, Université Paris-Est Créteil, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
| |
Collapse
|
15
|
Kleiboeker B, Lodhi IJ. Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders. Mol Metab 2022; 65:101577. [PMID: 35988716 PMCID: PMC9442330 DOI: 10.1016/j.molmet.2022.101577] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Peroxisomes are single membrane-bound organelles named for their role in hydrogen peroxide production and catabolism. However, their cellular functions extend well beyond reactive oxygen species (ROS) metabolism and include fatty acid oxidation of unique substrates that cannot be catabolized in mitochondria, and synthesis of ether lipids and bile acids. Metabolic functions of peroxisomes involve crosstalk with other organelles, including mitochondria, endoplasmic reticulum, lipid droplets and lysosomes. Emerging studies suggest that peroxisomes are important regulators of energy homeostasis and that disruption of peroxisomal functions influences the risk for obesity and the associated metabolic disorders, including type 2 diabetes and hepatic steatosis. SCOPE OF REVIEW Here, we focus on the role of peroxisomes in ether lipid synthesis, β-oxidation and ROS metabolism, given that these functions have been most widely studied and have physiologically relevant implications in systemic metabolism and obesity. Efforts are made to mechanistically link these cellular and systemic processes. MAJOR CONCLUSIONS Circulating plasmalogens, a form of ether lipids, have been identified as inversely correlated biomarkers of obesity. Ether lipids influence metabolic homeostasis through multiple mechanisms, including regulation of mitochondrial morphology and respiration affecting brown fat-mediated thermogenesis, and through regulation of adipose tissue development. Peroxisomal β-oxidation also affects metabolic homeostasis through generation of signaling molecules, such as acetyl-CoA and ROS that inhibit hydrolysis of stored lipids, contributing to development of hepatic steatosis. Oxidative stress resulting from increased peroxisomal β-oxidation-generated ROS in the context of obesity mediates β-cell lipotoxicity. A better understanding of the roles peroxisomes play in regulating and responding to obesity and its complications will provide new opportunities for their treatment.
Collapse
Affiliation(s)
- Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA.
| |
Collapse
|
16
|
Rumora AE, Kim B, Feldman EL. A Role for Fatty Acids in Peripheral Neuropathy Associated with Type 2 Diabetes and Prediabetes. Antioxid Redox Signal 2022; 37:560-577. [PMID: 35152728 PMCID: PMC9499450 DOI: 10.1089/ars.2021.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Significance: As the global prevalence of diabetes rises, diabetic complications are also increasing at an alarming rate. Peripheral neuropathy (PN) is the most prevalent complication of diabetes and prediabetes, and is characterized by progressive sensory loss resulting from nerve damage. While hyperglycemia is the major risk factor for PN in type 1 diabetes (T1D), the metabolic syndrome (MetS) underlies the onset and progression of PN in type 2 diabetes (T2D) and prediabetes. Recent Advances: Recent reports show that dyslipidemia, a MetS component, is strongly associated with PN in T2D and prediabetes. Dyslipidemia is characterized by an abnormal plasma lipid profile with uncontrolled lipid levels, and both clinical and preclinical studies implicate a role for dietary fatty acids (FAs) in PN pathogenesis. Molecular studies further show that saturated and unsaturated FAs differentially regulate the nerve lipid profile and nerve function. Critical Issues: We first review the properties of FAs and the neuroanatomy of the peripheral nervous system (PNS). Second, we discuss clinical and preclinical studies that implicate the involvement of FAs in PN. Third, we summarize the potential effects of FAs on nerve function and lipid metabolism within the peripheral nerves, sensory neurons, and Schwann cells. Future Directions: Future directions will focus on identifying molecular pathways in T2D and prediabetes that are modulated by FAs in PN. Determining pathophysiological mechanisms that underlie the injurious effects of saturated FAs and beneficial properties of unsaturated FAs will provide mechanistic targets for developing new targeted therapies to treat PN associated with T2D and prediabetes. Antioxid. Redox Signal. 37, 560-577.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, Columbia University, New York, New York, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J, Feldman EL. A High-Fat Diet Disrupts Nerve Lipids and Mitochondrial Function in Murine Models of Neuropathy. Front Physiol 2022; 13:921942. [PMID: 36072849 PMCID: PMC9441493 DOI: 10.3389/fphys.2022.921942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Henn RE, Noureldein MH, Elzinga SE, Kim B, Savelieff MG, Feldman EL. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis 2022; 170:105766. [PMID: 35584728 PMCID: PMC10071699 DOI: 10.1016/j.nbd.2022.105766] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive impairment, including dementias such as Alzheimer's disease. Maintaining normal cognitive function is an intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bioenergetics is a central requirement of neurons, which need large amounts of energy but lack significant energy storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive impairment.
Collapse
Affiliation(s)
- Rosemary E Henn
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Bhumsoo Kim
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
19
|
Podvigina TT, Yarushkina NI, Filaretova LP. Effects of Running on the Development of Diabetes and Diabetes-Induced Complications. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Hansen CS, Suvitaival T, Theilade S, Mattila I, Lajer M, Trošt K, Ahonen L, Hansen TW, Legido-Quigley C, Rossing P, Ahluwalia TS. Cardiovascular Autonomic Neuropathy in Type 1 Diabetes Is Associated With Disturbances in TCA, Lipid, and Glucose Metabolism. Front Endocrinol (Lausanne) 2022; 13:831793. [PMID: 35498422 PMCID: PMC9046722 DOI: 10.3389/fendo.2022.831793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Diabetic cardiovascular autonomic neuropathy (CAN) is associated with increased mortality and morbidity. To explore metabolic mechanisms associated with CAN we investigated associations between serum metabolites and CAN in persons with type 1 diabetes (T1D). MATERIALS AND METHODS Cardiovascular reflex tests (CARTs) (heart rate response to: deep breathing; lying-to-standing test; and the Valsalva maneuver) were used to diagnose CAN in 302 persons with T1D. More than one pathological CARTs defined the CAN diagnosis. Serum metabolomics and lipidomic profiles were analyzed with two complementary non-targeted mass-spectrometry methods. Cross-sectional associations between metabolites and CAN were assessed by linear regression models adjusted for relevant confounders. RESULTS Participants were median (IQR) aged 55(49, 63) years, 48% males with diabetes duration 39(32, 47) years, HbA1c 63(55,69) mmol/mol and 34% had CAN. A total of 75 metabolites and 106 lipids were analyzed. In crude models, the CAN diagnosis was associated with higher levels of hydroxy fatty acids (2,4- and 3,4-dihydroxybutanoic acids, 4-deoxytetronic acid), creatinine, sugar derivates (ribitol, ribonic acid, myo-inositol), citric acid, glycerol, phenols, phosphatidylcholines and lower levels of free fatty acids and the amino acid methionine (p<0.05). Upon adjustment, positive associations with the CAN diagnoses were retained for hydroxy fatty acids, tricarboxylic acid (TCA) cycle-based sugar derivates, citric acid, and phenols (P<0.05). CONCLUSION Metabolic pathways, including the TCA cycle, hydroxy fatty acids, phosphatidylcholines and sugar derivatives are associated with the CAN diagnosis in T1D. These pathway may be part of the pathogeneses leading to CAN and may be modifiable risk factors for the complication.
Collapse
Affiliation(s)
- Christian S. Hansen
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- *Correspondence: Christian S. Hansen,
| | - Tommi Suvitaival
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Simone Theilade
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The Department of Medicine, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Ismo Mattila
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Maria Lajer
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kajetan Trošt
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Linda Ahonen
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tine W. Hansen
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Peter Rossing
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tarunveer S. Ahluwalia
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Bozelli JC, Epand RM. Interplay between cardiolipin and plasmalogens in Barth syndrome. J Inherit Metab Dis 2022; 45:99-110. [PMID: 34655242 DOI: 10.1002/jimd.12449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Barth syndrome (BTHS) is a rare inherited metabolic disease resulting from mutations in the gene of the enzyme tafazzin, which catalyzes the acyl chain remodeling of the mitochondrial-specific lipid cardiolipin (CL). Tissue samples of individuals with BTHS present abnormalities in the level and the molecular species of CL. In addition, in tissues of a tafazzin knockdown mouse as well as in cells derived from BTHS patients it has been shown that plasmalogens, a subclass of glycerophospholipids, also have abnormal levels. Likewise, administration of a plasmalogen precursor to cells derived from BTHS patients led to an increase in plasmalogen and to some extent CL levels. These results indicate an interplay between CL and plasmalogens in BTHS. This interdependence is supported by the concomitant loss in these lipids in different pathological conditions. However, currently the molecular mechanism linking CL and plasmalogens is not fully understood. Here, a review of the evidence showing the linkage between the levels of CL and plasmalogens is presented. In addition, putative mechanisms that might play a role in this interplay are proposed. Finally, the opportunity of therapeutic approaches based on the regulation of plasmalogens as new therapies for the treatment of BTHS is discussed.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Palavicini JP, Chavez-Velazquez A, Fourcaudot M, Tripathy D, Pan M, Norton L, DeFronzo RA, Shannon CE. The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Front Physiol 2021; 12:784391. [PMID: 34925073 PMCID: PMC8674727 DOI: 10.3389/fphys.2021.784391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-sensitizer pioglitazone exerts its cardiometabolic benefits in type 2 diabetes (T2D) through a redistribution of body fat, from ectopic and visceral areas to subcutaneous adipose depots. Whereas excessive weight gain and lipid storage in obesity promotes insulin resistance and chronic inflammation, the expansion of subcutaneous adipose by pioglitazone is associated with a reversal of these immunometabolic deficits. The precise events driving this beneficial remodeling of adipose tissue with pioglitazone remain unclear, and whether insulin-sensitizers alter the lipidomic composition of human adipose has not previously been investigated. Using shotgun lipidomics, we explored the molecular lipid responses in subcutaneous adipose tissue following 6months of pioglitazone treatment (45mg/day) in obese humans with T2D. Despite an expected increase in body weight following pioglitazone treatment, no robust effects were observed on the composition of storage lipids (i.e., triglycerides) or the content of lipotoxic lipid species (e.g., ceramides and diacylglycerides) in adipose tissue. Instead, pioglitazone caused a selective remodeling of the glycerophospholipid pool, characterized by a decrease in lipids enriched for arachidonic acid, such as plasmanylethanolamines and phosphatidylinositols. This contributed to a greater overall saturation and shortened chain length of fatty acyl groups within cell membrane lipids, changes that are consistent with the purported induction of adipogenesis by pioglitazone. The mechanism through which pioglitazone lowered adipose tissue arachidonic acid, a major modulator of inflammatory pathways, did not involve alterations in phospholipase gene expression but was associated with a reduction in its precursor linoleic acid, an effect that was also observed in skeletal muscle samples from the same subjects. These findings offer important insights into the biological mechanisms through which pioglitazone protects the immunometabolic health of adipocytes in the face of increased lipid storage.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alberto Chavez-Velazquez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcel Fourcaudot
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luke Norton
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ralph A. DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Christopher E. Shannon
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Shaw GA. Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 2021; 18:100350. [PMID: 34746877 PMCID: PMC8554460 DOI: 10.1016/j.bbih.2021.100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in the synthesis of steroid hormones, including the sex hormone estrogen. Sex-specific regulation of these hormones is important for phenotypic development and downstream, sex-specific activational effects in both brain and behavior. First, mitochondrial contribution to the synthesis of estrogen, followed by a discussion of the signaling interactions between estrogen and the mitochondria will be reviewed. Next, disorders with an established sex difference related to aging, mood, and cognition will be examined. Finally, review of mitochondria as a biomarker of disease and data supporting efforts in targeting mitochondria as a therapeutic target for the amelioration of these disorders will be discussed. Taken together, this review aims to assess the influence of E2 on mitochondrial function within the brain via exploration of E2-ER interactions within neural mitochondria and how they may act to influence the development and presentation of neurodegenerative and neurocognitive diseases with known sex differences.
Collapse
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
24
|
Wang C, Palavicini JP, Han X. A Lipidomics Atlas of Selected Sphingolipids in Multiple Mouse Nervous System Regions. Int J Mol Sci 2021; 22:11358. [PMID: 34768790 PMCID: PMC8583963 DOI: 10.3390/ijms222111358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Many lipids, including sphingolipids, are essential components of the nervous system. Sphingolipids play critical roles in maintaining the membrane structure and integrity and in cell signaling. We used a multi-dimensional mass spectrometry-based shotgun lipidomics platform to selectively analyze the lipid species profiles of ceramide, sphingomyelin, cerebroside, and sulfatide; these four classes of sphingolipids are found in the central nervous system (CNS) (the cerebrum, brain stem, and spinal cord) and peripheral nervous system (PNS) (the sciatic nerve) tissues of young adult wild-type mice. Our results revealed that the lipid species profiles of the four sphingolipid classes in the different nervous tissues were highly distinct. In addition, the mRNA expression of sphingolipid metabolism genes-including the ceramidase synthases that specifically acylate the N-acyl chain of ceramide species and sphingomyelinases that cleave sphingomyelins generating ceramides-were analyzed in the mouse cerebrum and spinal cord tissue in order to better understand the sphingolipid profile differences observed between these nervous tissues. We found that the distinct profiles of the determined sphingolipids were consistent with the high selectivity of ceramide synthases and provided a potential mechanism to explain region-specific CNS ceramide and sphingomyelin levels. In conclusion, we portray for the first time a lipidomics atlas of select sphingolipids in multiple nervous system regions and believe that this type of knowledge could be very useful for better understanding the role of this lipid category in the nervous system.
Collapse
Affiliation(s)
- Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA; (C.W.); (J.P.P.)
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA; (C.W.); (J.P.P.)
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA; (C.W.); (J.P.P.)
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
25
|
Blomqvist M, Zetterberg H, Blennow K, Månsson JE. Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration. Mol Cell Neurosci 2021; 116:103670. [PMID: 34562592 DOI: 10.1016/j.mcn.2021.103670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
Sulfatide (3-O-sulfogalactosylceramide, SM4) is a glycosphingolipid, highly multifunctional and particularly enriched in the myelin sheath of neurons. The role of sulfatide has been implicated in various biological fields such as the nervous system, immune system, host-pathogen recognition and infection, beta cell function and haemostasis/thrombosis. Thus, alterations in sulfatide metabolism and production are associated with several human diseases such as neurological and immunological disorders and cancers. The unique lipid-rich composition of myelin reflects the importance of lipids in this specific membrane structure. Sulfatide has been shown to be involved in the regulation of oligodendrocyte differentiation and in the maintenance of the myelin sheath by influencing membrane dynamics involving sorting and lateral assembly of myelin proteins as well as ion channels. Sulfatide is furthermore essential for proper formation of the axo-glial junctions at the paranode together with axonal glycosphingolipids. Alterations in sulfatide metabolism are suggested to contribute to myelin deterioration as well as synaptic dysfunction, neurological decline and inflammation observed in different conditions associated with myelin pathology (mouse models and human disorders). Body fluid biomarkers are of importance for clinical diagnostics as well as for patient stratification in clinical trials and treatment monitoring. Cerebrospinal fluid (CSF) is commonly used as an indirect measure of brain metabolism and analysis of CSF sulfatide might provide information regarding whether the lipid disruption observed in neurodegenerative disorders is reflected in this body fluid. In this review, we evaluate the diagnostic utility of CSF sulfatide as a biomarker for neurodegenerative disorders associated with dysmyelination/demyelination by summarising the current literature on this topic. We can conclude that neither CSF sulfatide levels nor individual sulfatide species consistently reflect the lipid disruption observed in many of the demyelinating disorders. One exception is the lysosomal storage disorder metachromatic leukodystrophy, possibly due to the genetically determined accumulation of non-metabolised sulfatide. We also discuss possible explanations as to why myelin pathology in brain tissue is poorly reflected by the CSF sulfatide concentration. The previous suggestion that CSF sulfatide is a marker of myelin damage has thereby been challenged by more recent studies using more sophisticated laboratory techniques for sulfatide analysis as well as improved sample selection criteria due to increased knowledge on disease pathology.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|