1
|
Zhou X, Ning J, Cai R, Liu J, Yang H, Bai Y. Single-Cell Sequencing and Machine Learning Integration to Identify Candidate Biomarkers in Psoriasis: INSIG1. J Inflamm Res 2024; 17:11485-11503. [PMID: 39735895 PMCID: PMC11681806 DOI: 10.2147/jir.s492875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/15/2024] [Indexed: 12/31/2024] Open
Abstract
Background Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research. Methods We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis. Bulk transcriptome and scRNA-seq data were integrated to identify differentially expressed genes (DEGs). Machine learning was employed to screen candidate genes. Correlation analysis was used to predict the interactions between cells expressing insulin-induced gene 1 (INSIG1) and other immune cells. Finally, drug docking was performed on INSIG1, and the expression levels of INSIG1 in psoriasis were verified through clinical and in vivo experiments, and further in vivo experiments established the efficacy of tetrandrine in the treatment of psoriasis. Results T cells were initially categorized into seven states, with differentially expressed genes in T cells (TDEGs) identified and their functions and signaling pathways. INSIG1 emerged as a characteristic gene for psoriasis and was found to be downregulated in psoriasis and potentially negatively associated with T cells, influencing psoriasis fatty acid metabolism, as inferred from enrichment and immunoinfiltration analyses. In the cellular communication network, cells expressing INSIG1 exhibited close interactions with other immune cells through multiple signaling channels. Furthermore, drug sensitivity showed that tetrandrine stably binds to INSIG1, could be a potential therapeutic agent for psoriasis. Conclusion INSIG1 emerges as a specific candidate gene potentially regulating the fatty acid metabolism of patients with psoriasis. In addition, tetrandrine shows promise as a potential treatment for the condition.
Collapse
Affiliation(s)
- Xiangnan Zhou
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People’s Republic of China
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical School of Medicine, Beijing, 100029, People’s Republic of China
| | - Jingyuan Ning
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Rui Cai
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical School of Medicine, Beijing, 100029, People’s Republic of China
| | - Jiayi Liu
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical School of Medicine, Beijing, 100029, People’s Republic of China
| | - Haoyu Yang
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Yanping Bai
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
2
|
Ndoj K, Meurs A, Papaioannou D, Bjune K, Zelcer N. The low-density lipoprotein receptor: Emerging post-transcriptional regulatory mechanisms. Atherosclerosis 2024; 401:119082. [PMID: 39700747 DOI: 10.1016/j.atherosclerosis.2024.119082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Cholesterol is a vital component of cellular membranes and is an essential molecule in mammalian physiology. Yet dysregulation of hepatic cholesterol metabolism and an increase in plasma cholesterol is linked to development of atherosclerotic cardiovascular disease. Maintaining tight regulation of cholesterol homeostasis is therefore essential, elegantly highlighted by the control of hepatic low-density lipoprotein receptor (LDLR) abundance and associated lipoprotein clearance. The LDLR was discovered in the 1970's in the seminal work of Brown and Goldstein. This was followed by the development of statins, which promote hepatic clearance of LDL via the LDLR pathway. The discovery two decades ago of Proprotein Convertase Subtilisin-Kexin Type 9 (PCSK9), a secreted protein that binds to the LDLR ectodomain and promotes its degradation, and the clinical development of PCSK9 inhibitors has ushered an effort to uncover additional mechanisms that govern the function and abundance of the LDLR. In recent years this has led to the identification of novel post-transcriptional and post-translational mechanisms that govern the LDLR. This review focuses on these emerging regulatory mechanisms and specifically discusses: (1) Regulation of the LDLR mRNA by RNA-binding proteins and microRNAs, (2) Ubiquitin-dependent degradation of the LDLR protein by the E3 ubiquitin ligases inducible degrader of the LDLR (IDOL) and GOLIATH (RNF130), (3) Control of the LDLR pathway by the asialoglycoprotein receptor 1 (ASGR1), and (4) The role of LDLR ectodomain shedding mediated by membrane-type 1 matrix metalloprotease (MT1-MMP), Bone morphogenetic protein 1 (BMP1), and γ-secretase. Understanding the contribution of these emerging mechanisms to regulation of the LDLR is important for the development of novel LDLR-focused lipid-lowering strategies.
Collapse
Affiliation(s)
- Klevis Ndoj
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Amber Meurs
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Dimitra Papaioannou
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Zhang Y, Jiang X, Wang W, Lei L, Sheng R, Li S, Luo J, Liu H, Zhang J, Han X, Li Y, Zhang Y, Wang C, Si S, Jin ZG, Xu Y. ASGR1 Deficiency Inhibits Atherosclerosis in Western Diet-Fed ApoE-/- Mice by Regulating Lipoprotein Metabolism and Promoting Cholesterol Efflux. Arterioscler Thromb Vasc Biol 2024; 44:2428-2449. [PMID: 39387120 PMCID: PMC11593992 DOI: 10.1161/atvbaha.124.321076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Atherosclerosis is the most common cause of cardiovascular diseases. Clinical studies indicate that loss-of-function ASGR1 (asialoglycoprotein receptor 1) is significantly associated with lower plasma cholesterol levels and reduces cardiovascular disease risk. However, the effect of ASGR1 on atherosclerosis remains incompletely understood; whether inhibition of ASGR1 causes liver injury remains controversial. Here, we comprehensively investigated the effects and the underlying molecular mechanisms of ASGR1 deficiency and overexpression on atherosclerosis and liver injury in mice. METHODS We engineered Asgr1 knockout mice (Asgr1-/-), Asgr1 and ApoE double-knockout mice (Asgr1-/-ApoE-/-), and ASGR1-overexpressing mice on an ApoE-/- background and then fed them different diets to assess the role of ASGR1 in atherosclerosis and liver injury. RESULTS After being fed a Western diet for 12 weeks, Asgr1-/-ApoE-/- mice exhibited significantly decreased atherosclerotic lesion areas in the aorta and aortic root sections, reduced plasma VLDL (very-low-density lipoprotein) cholesterol and LDL (low-density lipoprotein) cholesterol levels, decreased VLDL production, and increased fecal cholesterol contents. Conversely, ASGR1 overexpression in ApoE-/- mice increased atherosclerotic lesions in the aorta and aortic root sections, augmented plasma VLDL cholesterol and LDL cholesterol levels and VLDL production, and decreased fecal cholesterol contents. Mechanistically, ASGR1 deficiency reduced VLDL production by inhibiting the expression of MTTP (microsomal triglyceride transfer protein) and ANGPTL3 (angiopoietin-like protein 3)/ANGPTL8 (angiopoietin-like protein 8) but increasing LPL (lipoprotein lipase) activity, increased LDL uptake by increasing LDLR (LDL receptor) expression, and promoted cholesterol efflux through increasing expression of LXRα (liver X receptor-α), ABCA1 (ATP-binding cassette subfamily A member 1), ABCG5 (ATP-binding cassette subfamily G member 5), and CYP7A1 (cytochrome P450 family 7 subfamily A member 1). These underlying alterations were confirmed in ASGR1-overexpressing ApoE-/- mice. In addition, ASGR1 deficiency exacerbates liver injury in Western diet-induced Asgr1-/-ApoE-/- mice and high-fat diet-induced but not normal laboratory diet-induced and high-fat and high-cholesterol diet-induced Asgr1-/- mice, while its overexpression mitigates liver injury in Western diet-induced ASGR1-overexpressing ApoE-/- mice. CONCLUSIONS Inhibition of ASGR1 inhibits atherosclerosis in Western diet-fed ApoE-/- mice, suggesting that inhibiting ASGR1 may serve as a novel therapeutic strategy to treat atherosclerosis and cardiovascular diseases.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Diet, Western
- Disease Models, Animal
- Mice
- Male
- Liver/metabolism
- Liver/pathology
- Cholesterol/blood
- Cholesterol/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Asialoglycoprotein Receptor/metabolism
- Asialoglycoprotein Receptor/genetics
- Mice, Knockout
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Plaque, Atherosclerotic
- Aorta/pathology
- Aorta/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- Macrophages/metabolism
- Signal Transduction
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
Collapse
Affiliation(s)
- Yuyan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Xinhai Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Weizhi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Lijuan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Ren Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Shunwang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Jinque Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.L., H.L., Z.-G.J.)
| | - Huan Liu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.L., H.L., Z.-G.J.)
| | - Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Yining Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Yuhao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Chenyin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Shuyi Si
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Zheng-Gen Jin
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.L., H.L., Z.-G.J.)
| | - Yanni Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| |
Collapse
|
4
|
Garcia-Arcos I. Adding a New Piece to the ASGR1 Puzzle: ANGPTL3. Arterioscler Thromb Vasc Biol 2024; 44:2450-2452. [PMID: 39479768 PMCID: PMC11630090 DOI: 10.1161/atvbaha.124.321882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Affiliation(s)
- Itsaso Garcia-Arcos
- SUNY Downstate Health Sciences University, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Department of Cell Biology, Brooklyn, NY
| |
Collapse
|
5
|
Song J, Fang Y, Rao X, Wu L, Zhang C, Ying J, Hua F, Lin Y, Wei G. Beyond conventional treatment: ASGR1 Leading the new era of hypercholesterolemia management. Biomed Pharmacother 2024; 180:117488. [PMID: 39316974 DOI: 10.1016/j.biopha.2024.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality worldwide, with hypercholesterolemia being a major risk factor. Although various lipid-lowering therapies exist, many patients fail to achieve optimal cholesterol control, highlighting the need for novel therapeutic approaches. ASGR1 (asialoglycoprotein receptor 1), predominantly expressed on hepatocytes, has emerged as a key regulator of cholesterol metabolism and low-density lipoprotein (LDL) clearance. This receptor's ability to regulate lipid homeostasis positions it as a promising target for therapeutic intervention in hypercholesterolemia and related cardiovascular diseases. This review critically examines the biological functions and regulatory mechanisms of ASGR1 in cholesterol metabolism, with a focus on its potential as a therapeutic target for hypercholesterolemia and related cardiovascular diseases. By analyzing recent advances in ASGR1 research, this article explores its role in liver-specific pathways, the implications of ASGR1 variants in CVD risk, and the prospects for developing ASGR1-targeted therapies. This review aims to provide a foundation for future research and clinical applications in hypercholesterolemia management.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Yang Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
6
|
Zhang Y, Dong W, Zhao M, Zhang J, Li L, Ma Y, Meng X, Wang Y. Identification and Analysis of Phenolic Compounds in Vaccinium uliginosum L. and Its Lipid-Lowering Activity In Vitro. Foods 2024; 13:3438. [PMID: 39517222 PMCID: PMC11545093 DOI: 10.3390/foods13213438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccinium uliginosum L. (VU), rich in polyphenols, is an important wild berry resource primarily distributed in extremely cold regions. However, the detailed composition of Vaccinium uliginosum L. polyphenols (VUPs) has not been reported, which limits the development and utilization of VU. In this study, VU-free polyphenols (VUFPs) and VU-bound polyphenols (VUBPs) were, respectively, extracted using an ultrasonic, complex enzyme and alkali extraction method; the compositions were identified using ultra-performance liquid chromatography-electrospray ionization mass spectrometry, and lipid-lowering activity in vitro was evaluated. The results showed that 885 polyphenols and 47 anthocyanins were detected in the VUFPs and VUBPs, and 30 anthocyanin monomers were firstly detected in VU. Compared with the model group, the accumulation of lipid droplets and the total cholesterol and triglyceride contents in the high-concentration VUP group reduced by 36.95%, 65.82%, and 62.43%, respectively, and liver damage was also alleviated. It was also found that VUP can regulate the level of Asialoglycoprotein receptor 1, a new target for lipid lowering. In summary, this study provides a detailed report on VUP for the first time, confirming that VUP has lipid-lowering potential in vitro. These findings suggest new strategies and theoretical support for the development and utilization of VU, especially in the field of functional foods.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Manjun Zhao
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Jiyue Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yan Ma
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| |
Collapse
|
7
|
Luo Y, Hou Y, Zhao W, Yang B. Recent progress in gene therapy for familial hypercholesterolemia treatment. iScience 2024; 27:110641. [PMID: 39262805 PMCID: PMC11387600 DOI: 10.1016/j.isci.2024.110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder that affects 1 in 300 people, leading to high cholesterol levels and significantly increased cardiovascular risk. The limitations of existing FH treatments underscore the need for innovative therapeutics, and gene therapy offers a promising alternative to address FH more effectively. In this review, we survey approved gene therapy drugs first and then delve into the landscape of gene addition, gene inactivation, and gene editing therapies for hypercholesterolemia, highlighting both approved interventions and those in various stages of development. We also discussed recent advancements in gene editing tools that are essential for their application in gene therapy. Safety considerations inherent to gene therapy are also discussed, emphasizing the importance of mitigating potential risks associated with such treatments. Overall, this review highlights the progress and prospects of gene therapies for FH treatments, underscoring their potential to revolutionize the management of this prevalent and challenging condition.
Collapse
Affiliation(s)
- Yaxin Luo
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yaofeng Hou
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenwen Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
- Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
8
|
Yin Y, Liu J, Yu J, Dong D, Gao F, Yu L, Du X, Wu S. ASGR1 is a promising target for lipid reduction in pigs with PON2 as its inhibitor. iScience 2024; 27:110288. [PMID: 39055948 PMCID: PMC11269292 DOI: 10.1016/j.isci.2024.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Although the role of asialoglycoprotein receptor 1 (ASGR1) in lowering lipid levels is well established, recent studies indicate that ASGR1 inhibition can cause unexpected liver damage in pigs, raising a serious issue about whether ASGR1 can be a good target for treating ASCVD. Here, we utilized the CRISPR-Cas9 system to regenerate ASGR1-knockout pigs, who displayed decreased lipid profiles without observable liver damage. This was confirmed by the lower levels of serum ALT and AST, reduced expression of inflammation markers, and normal histological morphology. Also, we implemented immunoprecipitation combined with mass spectrometry (IP-MS) and discovered that paraoxonase-2 (PON2) can interact with and significantly degrade ASGR1 in a dose-dependent manner. This degradation reduced lipid levels in mice, accompanied by little inflammation. Our study highlights the effectiveness and safety of degrading ASGR1 to reduce lipid levels in pigs and provides a potential inhibitor of ASGR1.
Collapse
Affiliation(s)
- Yunjun Yin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jia Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingcai Dong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Libao Yu
- The Eighth Medical Center of PLA General Hospital, Beijing 100094, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| |
Collapse
|
9
|
Yu X, Tao J, Wu Y, Chen Y, Li P, Yang F, Tang M, Sammad A, Tao Y, Xu Y, Li YX. Deficiency of ASGR1 Alleviates Diet-Induced Systemic Insulin Resistance via Improved Hepatic Insulin Sensitivity. Diabetes Metab J 2024; 48:802-815. [PMID: 38310881 PMCID: PMC11307118 DOI: 10.4093/dmj.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGRUOUND Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown. METHODS The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro. RESULTS ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis. CONCLUSION The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.
Collapse
Affiliation(s)
- Xiaorui Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawang Tao
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuhang Wu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Chen
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Penghui Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Miaoxiu Tang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Abdul Sammad
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine Center for Nanomedicine, The Third Affiliated Hospital, Guangzhou, China
| | - Yingying Xu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yin-Xiong Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
10
|
Wang Y, Yang Z, Tang H, Sun X, Qu J, Lu S, Rao B. Faecal microbiota transplantation is better than probiotics for tissue regeneration of type 2 diabetes mellitus injuries in mice. Arch Physiol Biochem 2024; 130:333-341. [PMID: 35675471 DOI: 10.1080/13813455.2022.2080229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022]
Abstract
CONTEXT Western diet and unhealthy lifestyle have contributed to the continued growth of type 2 diabetes mellitus (T2DM). T2DM is associated with dysbacteriosis, and studies have found that altering the gut microbiota has a positive effect on treatment. OBJECTIVE In addition to hyperglycaemia, T2DM often causes damage to multiple organs. However, there are few studies on organ damage from faecal microbiota transplantation (FMT). MATERIALS AND METHODS T2DM mice were divided into four groups and were given phosphate buffered saline (PBS) (T2DM group), FMT (FMT group), Lactobacillus (LAB group), and Bifidobacterium (BIO group) by gavage for six weeks, respectively. Mice on a normal diet (control group) were gavaged with PBS for six weeks. RESULTS After gavage treatment, FMT, LAB, and BIO groups were similar in lowering glucose, endotoxemia was slightly reduced, and the colonic mucus layer and liver lobules developed towards normal tissue. Surprisingly, we found that the FMT group had unique effects on islet cell regeneration, increased functional β cells, and insulin sensitivity. DISCUSSION AND CONCLUSION Lactobacillus has the best glucose-lowering effect, but FMT has obvious advantages in β-cell regeneration, which provides new treatment ideas for tissue damage caused by T2DM.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Zhenpeng Yang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Huazhen Tang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Xibo Sun
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Jinxiu Qu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| |
Collapse
|
11
|
Zhang Z, Leng XK, Zhai YY, Zhang X, Sun ZW, Xiao JY, Lu JF, Liu K, Xia B, Gao Q, Jia M, Xu CQ, Jiang YN, Zhang XG, Tao KS, Wu JW. Deficiency of ASGR1 promotes liver injury by increasing GP73-mediated hepatic endoplasmic reticulum stress. Nat Commun 2024; 15:1908. [PMID: 38459023 PMCID: PMC10924105 DOI: 10.1038/s41467-024-46135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Liver injury is a core pathological process in the majority of liver diseases, yet the genetic factors predisposing individuals to its initiation and progression remain poorly understood. Here we show that asialoglycoprotein receptor 1 (ASGR1), a lectin specifically expressed in the liver, is downregulated in patients with liver fibrosis or cirrhosis and male mice with liver injury. ASGR1 deficiency exacerbates while its overexpression mitigates acetaminophen-induced acute and CCl4-induced chronic liver injuries in male mice. Mechanistically, ASGR1 binds to an endoplasmic reticulum stress mediator GP73 and facilitates its lysosomal degradation. ASGR1 depletion increases circulating GP73 levels and promotes the interaction between GP73 and BIP to activate endoplasmic reticulum stress, leading to liver injury. Neutralization of GP73 not only attenuates ASGR1 deficiency-induced liver injuries but also improves survival in mice received a lethal dose of acetaminophen. Collectively, these findings identify ASGR1 as a potential genetic determinant of susceptibility to liver injury and propose it as a therapeutic target for the treatment of liver injury.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiang Kai Leng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuan Yuan Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhi Wei Sun
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kun Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Miao Jia
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Cheng Qi Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Na Jiang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Gang Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Kai Shan Tao
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University, Xi'an, China.
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
12
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
13
|
Li X, Zheng T, Zhang Y, Zhao Y, Liu F, Dai S, Liu X, Zhang M. Dickkopf-1 promotes vascular smooth muscle cell foam cell formation and atherosclerosis development through CYP4A11/SREBP2/ABCA1. FASEB J 2023; 37:e23048. [PMID: 37389895 DOI: 10.1096/fj.202300295r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/20/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are considered to be a crucial source of foam cells in atherosclerosis due to their low expression level of cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) intrinsically. While the definite regulatory mechanisms are complicated and have not yet been fully elucidated, we previously reported that Dickkopf-1 (DKK1) mediates endothelial cell (EC) dysfunction, thereby aggravating atherosclerosis. However, the role of smooth muscle cell (SMC) DKK1 in atherosclerosis and foam cell formation remains unknown. In this study, we established SMC-specific DKK1-knockout (DKK1SMKO ) mice by crossbreeding DKK1flox/flox mice with TAGLN-Cre mice. Then, DKK1SMKO mice were crossed with APOE-/- mice to generate DKK1SMKO /APOE-/- mice, which exhibited milder atherosclerotic burden and fewer SMC foam cells. In vitro loss- and gain-of-function studies of DKK1 in primary human aortic smooth muscle cells (HASMCs) have proven that DKK1 prevented oxidized lipid-induced ABCA1 upregulation and cholesterol efflux and promoted SMC foam cell formation. Mechanistically, RNA-sequencing (RNA-seq) analysis of HASMCs as well as chromatin immunoprecipitation (ChIP) experiments showed that DKK1 mediates the binding of transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) to the promoter of cytochrome P450 epoxygenase 4A11 (CYP4A11) to regulate its expression. In addition, CYP4A11 as well as its metabolite 20-HETE-promoted activation of transcription factor sterol regulatory element-binding protein 2 (SREBP2) mediated the DKK1 regulation of ABCA1 in SMC. Furthermore, HET0016, the antagonist of CYP4A11, has also shown an alleviating effect on atherosclerosis. In conclusion, our results demonstrate that DKK1 promotes SMC foam cell formation during atherosclerosis via a reduction in CYP4A11-20-HETE/SREBP2-mediated ABCA1 expression.
Collapse
Affiliation(s)
- Xiao Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tengfei Zheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yachao Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengming Liu
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shen Dai
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaolin Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
14
|
Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H, Braud VM. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int J Mol Sci 2023; 24:ijms24076253. [PMID: 37047226 PMCID: PMC10094153 DOI: 10.3390/ijms24076253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.
Collapse
Affiliation(s)
- Manon Barthe
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Leslie Hertereau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
| | - Noura Lamghari
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Hanan Osman-Ponchet
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
- Correspondence: (H.O.-P.); (V.M.B.)
| | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- Correspondence: (H.O.-P.); (V.M.B.)
| |
Collapse
|
15
|
Shen L, Ma J, Yang Y, Liao T, Wang J, Chen L, Zhang S, Zhao Y, Niu L, Hao X, Jiang A, Li X, Gan M, Zhu L. Cooked pork-derived exosome nanovesicles mediate metabolic disorder-microRNA could be the culprit. J Nanobiotechnology 2023; 21:83. [PMID: 36894941 PMCID: PMC9999493 DOI: 10.1186/s12951-023-01837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
In this study, exosomes from cooked meat were extracted by ultra-high-speed centrifugation. Approximately 80% of exosome vesicles were within 20-200 nm. In addition, the surface biomarkers of isolated exosomes were evaluated using flow cytometry. Further studies showed the exosomal microRNA profiles were different among cooked porcine muscle, fat and liver. Cooked pork-derived exosomes were chronically administered to ICR mice by drinking for 80 days. The mice plasma levels of miR-1, miR-133a-3p, miR-206 and miR-99a were increased to varying degrees after drinking exosome enriched water. Furthermore, GTT and ITT results confirmed an abnormal glucose metabolism and insulin resistance in mice. Moreover, the lipid droplets were significantly increased in the mice liver. A transcriptome analysis performed with mice liver samples identified 446 differentially expressed genes (DEGs). Functional enrichment analysis found that DEGs were enriched in metabolic pathways. Overall, the results suggest that microRNAs derived form cooked pork may function as a critical regulator of metabolic disorder in mice.
Collapse
Affiliation(s)
- Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianfeng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiting Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxia Hao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anan Jiang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Zhao W, Xu S, Weng J. ASGR1: an emerging therapeutic target in hypercholesterolemia. Signal Transduct Target Ther 2023; 8:43. [PMID: 36690631 PMCID: PMC9869305 DOI: 10.1038/s41392-023-01319-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/16/2022] [Accepted: 12/26/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Wenqi Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230027, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230027, China.
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
17
|
Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion. Nature 2022; 608:413-420. [PMID: 35922515 DOI: 10.1038/s41586-022-05006-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.
Collapse
|
18
|
Cheng Z, Guo D, Ruzi A, Pan T, You K, Chen Y, Huang X, Zhang J, Yang F, Niu L, Xu K, Li YX. Modeling MEN1 with Patient-Origin iPSCs Reveals GLP-1R Mediated Hypersecretion of Insulin. Cells 2022; 11:2387. [PMID: 35954231 PMCID: PMC9368616 DOI: 10.3390/cells11152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an inherited disease caused by mutations in the MEN1 gene encoding a nuclear protein menin. Among those different endocrine tumors of MEN1, the pancreatic neuroendocrine tumors (PNETs) are life-threatening and frequently implicated. Since there are uncertainties in genotype and phenotype relationship and there are species differences between humans and mice, it is worth it to replenish the mice model with human cell resources. Here, we tested whether the patient-origin induced pluripotent stem cell (iPSC) lines could phenocopy some defects of MEN1. In vitro β-cell differentiation revealed that the percentage of insulin-positive cells and insulin secretion were increased by at least two-fold in MEN1-iPSC derived cells, which was mainly resulted from significantly higher proliferative activities in the pancreatic progenitor stage (Day 7-13). This scenario was paralleled with increased expressions of prohormone convertase1/3 (PC1/3), glucagon-like peptide-1 (GLP-1), GLP-1R, and factors in the phosphatidylinositol 3-kinase (PI3K)/AKT signal pathway, and the GLP-1R was mainly expressed in β-like cells. Blockages of either GLP-1R or PI3K significantly reduced the percentages of insulin-positive cells and hypersecretion of insulin in MEN1-derived cells. Furthermore, in transplantation of different stages of MEN1-derived cells into immune-deficient mice, only those β-like cells produced tumors that mimicked the features of the PNETs from the original patient. To the best of our knowledge, this was the first case using patient-origin iPSCs modeling most phenotypes of MEN1, and the results suggested that GLP-1R may be a potential therapeutic target for MEN1-related hyperinsulinemia.
Collapse
Affiliation(s)
- Ziqi Cheng
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dongsheng Guo
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Aynisahan Ruzi
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Tingcai Pan
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Kai You
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Yan Chen
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiaye Zhang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
| | - Lizhi Niu
- Guangzhou Fuda Cancer Hospital, Guangzhou 510305, China; (L.N.); (K.X.)
| | - Kecheng Xu
- Guangzhou Fuda Cancer Hospital, Guangzhou 510305, China; (L.N.); (K.X.)
| | - Yin-Xiong Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou 510000, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou 510530, China
| |
Collapse
|
19
|
Gao J, Ma L, Yin J, Liu G, Ma J, Xia S, Gong S, Han Q, Li T, Chen Y, Yin Y. Camellia ( Camellia oleifera bel.) seed oil reprograms gut microbiota and alleviates lipid accumulation in high fat-fed mice through the mTOR pathway. Food Funct 2022; 13:4977-4992. [PMID: 35452062 DOI: 10.1039/d1fo04075h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Camellia (Camellia oleifera bel.) seed oil (CO) is extensively used as an edible oil in China and Asian countries owing to its high nutritional and medicinal values. It has been shown that a high-fat diet enhances lipid accumulation and induces intestinal microbiota imbalance in mice. However, it is still to be learned whether CO prevents dyslipidemia through gut microbiota. Here, using 16S rRNA gene sequencing analysis of the gut microbiota, we found that oral CO relieved lipid accumulation and reversed gut microbiota dysbiosis. Compared to mice (C57BL/6J male mice) fed a high-fat diet, treatment with CO regulated the composition and functional profiling communities related to the lipid metabolism of gut microbiota. The abundances of Dubosiella, Lactobacillus, and Alistipes were markedly increased in CO supplementation mice. In addition, the colon levels of isobutyric acid, pentanoic acid, and isovaleric acid were similar between the control and CO supplementation mice. Besides, the results indicated that CO supplementation in mice alleviated lipid droplet accumulation in the hepatocytes and subcutaneous adipose tissue, although the liver index did not show a difference. Notably, CO supplementation for 6 weeks significantly reduced the levels of LDL, TC, and TG, while enhancing the level of HDL in serum and liver. Meanwhile, we also identified that CO supplementation suppressed the mammalian target of rapamycin (mTOR) signaling pathway in high fat-fed (HF-fed) mice. Taken together, our results suggest that CO improved dyslipidemia and alleviated lipid accumulation in HF-fed mice, the molecular mechanisms possibly associated with the reorganization of gut microbiota, in particular, Alistipes and Dubosiella, mediated the inhibition of the mTOR pathway.
Collapse
Affiliation(s)
- Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao shan South Road, No. 658, Changsha 410004, China. .,National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha, Hunan, China.
| | - Li Ma
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao shan South Road, No. 658, Changsha 410004, China. .,National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - SiTing Xia
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - SaiMing Gong
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Qi Han
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - TieJun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha, Hunan, China.
| | - YongZhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao shan South Road, No. 658, Changsha 410004, China. .,National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
| | - YuLong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha, Hunan, China. .,College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Yang Y, Li M, Ma Y, Ye W, Si Y, Zheng X, Liu H, Cheng L, Zhang L, Zhang H, Zhang X, Lei Y, Shen L, Zhang F, Ma H. LncRNA NEAT1 Potentiates SREBP2 Activity to Promote Inflammatory Macrophage Activation and Limit Hantaan Virus Propagation. Front Microbiol 2022; 13:849020. [PMID: 35495674 PMCID: PMC9044491 DOI: 10.3389/fmicb.2022.849020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
As the global prototypical zoonotic hantavirus, Hantaan virus (HTNV) is prevalent in Asia and is the leading causative agent of severe hemorrhagic fever with renal syndrome (HFRS), which has profound morbidity and mortality. Macrophages are crucial components of the host innate immune system and serve as the first line of defense against HTNV infection. Previous studies indicated that the viral replication efficiency in macrophages determines hantavirus pathogenicity, but it remains unknown which factor manipulates the macrophage activation pattern and the virus-host interaction process. Here, we performed the transcriptomic analysis of HTNV-infected mouse bone marrow-derived macrophages and identified the long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1), especially the isoform NEAT1-2, as one of the lncRNAs that is differentially expressed at the early phase. Based on coculture experiments, we revealed that silencing NEAT1-2 hinders inflammatory macrophage activation and facilitates HTNV propagation, while enhancing NEAT1-2 transcription effectively restrains viral replication. Furthermore, sterol response element binding factor-2 (SREBP2), which controls the cholesterol metabolism process, was found to stimulate macrophages by promoting the production of multiple inflammatory cytokines upon HTNV infection. NEAT1-2 could potentiate SREBP2 activity by upregulating Srebf1 expression and interacting with SREBP2, thus stimulating inflammatory macrophages and limiting HTNV propagation. More importantly, we demonstrated that the NEAT1-2 expression level in patient monocytes was negatively correlated with viral load and HFRS disease progression. Our results identified a function and mechanism of action for the lncRNA NEAT1 in heightening SREBP2-mediated macrophage activation to restrain hantaviral propagation and revealed the association of NEAT1 with HFRS severity.
Collapse
Affiliation(s)
- Yongheng Yang
- College of Life Sciences, Northwest University, Xi'an, China.,Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Mengyun Li
- College of Life Sciences, Northwest University, Xi'an, China.,Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yongtao Ma
- Department of Emergency, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yue Si
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xijing Zhang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Lixin Shen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Yu L, Peng J, Mineo C. Lipoprotein sialylation in atherosclerosis: Lessons from mice. Front Endocrinol (Lausanne) 2022; 13:953165. [PMID: 36157440 PMCID: PMC9498574 DOI: 10.3389/fendo.2022.953165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Sialylation is a dynamically regulated modification, which commonly occurs at the terminal of glycan chains in glycoproteins and glycolipids in eukaryotic cells. Sialylation plays a key role in a wide array of biological processes through the regulation of protein-protein interactions, intracellular localization, vesicular trafficking, and signal transduction. A majority of the proteins involved in lipoprotein metabolism and atherogenesis, such as apolipoproteins and lipoprotein receptors, are sialylated in their glycan structures. Earlier studies in humans and in preclinical models found a positive correlation between low sialylation of lipoproteins and atherosclerosis. More recent works using loss- and gain-of-function approaches in mice have revealed molecular and cellular mechanisms by which protein sialylation modulates causally the process of atherosclerosis. The purpose of this concise review is to summarize these findings in mouse models and to provide mechanistic insights into lipoprotein sialylation and atherosclerosis.
Collapse
Affiliation(s)
- Liming Yu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Chieko Mineo,
| |
Collapse
|