1
|
Woolsey C, Cross RW, Prasad AN, Agans KN, Borisevich V, Deer DJ, Dobias NS, Fears AC, Harrison MB, Heinrich ML, Fenton KA, Garry RF, Branco LM, Geisbert TW. Monoclonal antibody therapy demonstrates increased virulence of a lineage VII strain of Lassa virus in nonhuman primates. Emerg Microbes Infect 2024; 13:2301061. [PMID: 38164768 PMCID: PMC10810630 DOI: 10.1080/22221751.2023.2301061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Lassa virus (LASV) is a World Health Organization (WHO) priority pathogen that causes high morbidity and mortality. Recently, we showed that a combination of three broadly neutralizing human monoclonal antibodies known as Arevirumab-3 (8.9F, 12.1F, 37.2D) based on the lineage IV Josiah strain protected 100% of cynomolgus macaques against heterologous challenge with lineage II and III strains of LASV when therapy was initiated beginning at day 8 after challenge. LASV strains from Benin and Togo represent a new lineage VII that are more genetically diverse from lineage IV than strains from lineages II and III. Here, we tested the ability of Arevirumab-3 to protect macaques against a LASV lineage VII Togo isolate when treatment was administered beginning 8 days after exposure. Unexpectedly, only 40% of treated animals survived challenge. In a subsequent study we showed that Arevirumab-3 protected 100% of macaques from lethal challenge when treatment was initiated 7 days after LASV Togo exposure. Based on our transcriptomics data, successful Arevirumab-3 treatment correlated with diminished neutrophil signatures and the predicted development of T cell responses. As the in vitro antiviral activity of Arevirumab-3 against LASV Togo was equivalent to lineage II and III strains, the reduced protection in macaques against Togo likely reflects the faster disease course of LASV Togo in macaques than other strains. This data causes concern regarding the ability of heterologous vaccines and treatments to provide cross protection against lineage VII LASV isolates.
Collapse
Affiliation(s)
- Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N. Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J. Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S. Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alyssa C. Fears
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B. Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Karla A. Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert F. Garry
- Zalgen Labs, LLC, Frederick, MD, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
van Tol S, Fletcher P, Feldmann F, Mukesh RK, Port JR, Gallogly S, Schulz JE, Rhoderick JF, Makinson R, Carmody A, Myers L, Lovaglio J, Smith BJ, Okumura A, Shaia C, Saturday G, Marzi A, Lambe T, Munster VJ, van Doremalen N. A Bivalent Adenovirus-Vectored Vaccine Induces a Robust Humoral Response, but Does Not Protect Cynomolgus Macaques Against a Lethal Challenge With Sudan Virus. J Infect Dis 2024; 230:1083-1092. [PMID: 38487996 PMCID: PMC11566226 DOI: 10.1093/infdis/jiae056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/30/2024] [Indexed: 11/16/2024] Open
Abstract
The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific immunoglobulin G responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no differences in survival outcomes were measured among all 3 groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.
Collapse
MESH Headings
- Animals
- Macaca fascicularis
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Ebolavirus/immunology
- Ebolavirus/genetics
- Antibodies, Viral/blood
- Genetic Vectors
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunity, Humoral
- Ebola Vaccines/immunology
- Ebola Vaccines/administration & dosage
- Immunoglobulin G/blood
- Disease Models, Animal
- Viral Load
- Adenoviruses, Simian/immunology
- Adenoviruses, Simian/genetics
- Vaccination
- Adenoviridae/genetics
- Adenoviridae/immunology
Collapse
Affiliation(s)
| | | | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | | | | | | | | | - Rebecca Makinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
| | - Aaron Carmody
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Lara Myers
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | - Carl Shaia
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
| | | | | |
Collapse
|
3
|
de La Vega MA, XIII A, Massey CS, Spengler JR, Kobinger GP, Woolsey C. An update on nonhuman primate usage for drug and vaccine evaluation against filoviruses. Expert Opin Drug Discov 2024; 19:1185-1211. [PMID: 39090822 PMCID: PMC11466704 DOI: 10.1080/17460441.2024.2386100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. In silico simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures. AREAS COVERED In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models. EXPERT OPINION A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using in silico models to accurately predict immunological outcomes.
Collapse
Affiliation(s)
- Marc-Antoine de La Vega
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Ara XIII
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Christopher S. Massey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch and Infectious Diseases
Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for
Disease Control and Prevention, Atlanta, GA
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Munyeku-Bazitama Y, Edidi-Atani F, Takada A. Non-Ebola Filoviruses: Potential Threats to Global Health Security. Viruses 2024; 16:1179. [PMID: 39205153 PMCID: PMC11359311 DOI: 10.3390/v16081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.
Collapse
Affiliation(s)
- Yannick Munyeku-Bazitama
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Francois Edidi-Atani
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
5
|
Cross RW, Woolsey C, Chu VC, Babusis D, Bannister R, Vermillion MS, Geleziunas R, Barrett KT, Bunyan E, Nguyen AQ, Cihlar T, Porter DP, Prasad AN, Deer DJ, Borisevich V, Agans KN, Martinez J, Harrison MB, Dobias NS, Fenton KA, Bilello JP, Geisbert TW. Oral administration of obeldesivir protects nonhuman primates against Sudan ebolavirus. Science 2024; 383:eadk6176. [PMID: 38484056 DOI: 10.1126/science.adk6176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024]
Abstract
Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jasmine Martinez
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
6
|
Durant O, Marzi A. Ebola virus disease sequelae and viral persistence in animal models: Implications for the future. PLoS Pathog 2024; 20:e1012065. [PMID: 38512815 PMCID: PMC10956775 DOI: 10.1371/journal.ppat.1012065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Ebola virus disease (EVD), caused by infection with Ebola virus, results in severe, acute illness with a high mortality rate. As the incidence of outbreaks of EVD increases and with the development and approval of medical countermeasures (MCMs) against the acute disease, late phases of EVD, including sequelae, recrudescence, and viral persistence, are occuring more frequently and are now a focus of ongoing research. Existing animal disease models recapitulate acute EVD but are not suitable to investigate the mechanisms of these late disease phenomena. Although there are challenges in establishing such a late disease model, the filovirus research community has begun to call for the development of an EBOV persistence model to address late disease concerns. Ultimately, this will aid the development of MCMs against late disease and benefit survivors of future EVD and filovirus outbreaks.
Collapse
Affiliation(s)
- Olivia Durant
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
7
|
Moso MA, Lim CK, Williams E, Marshall C, McCarthy J, Williamson DA. Prevention and post-exposure management of occupational exposure to Ebola virus. THE LANCET. INFECTIOUS DISEASES 2024; 24:e93-e105. [PMID: 37722397 DOI: 10.1016/s1473-3099(23)00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/20/2023]
Abstract
There have been significant advances in the prevention and management of Ebola virus disease (EVD) caused by Zaire Ebola virus (ZEBOV), including the development of two effective vaccines, rVSV-ZEBOV and Ad26.ZEBOV/MVA-BN-Filo. In addition, ZEBOV monoclonal antibodies have become first-line therapy for EVD. However, the 2022-23 outbreak of Sudan Ebola virus (SUDV) in Uganda has highlighted the gap in current therapies and vaccines, whose efficacy is uncertain against non-ZEBOV species. Health-care and laboratory staff working in EVD treatment centres or Ebola virus diagnostic and research laboratories face unique risks relating to potential occupational exposure to Ebola viruses. Given the substantial morbidity and mortality associated with EVD, facilities should have strategies in place to manage occupational exposures, including consideration of post-exposure therapies. In this Review, we discuss currently available evidence for prevention and post-exposure prophylaxis of EVD, including therapies currently under evaluation for SUDV.
Collapse
Affiliation(s)
- Michael A Moso
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Chuan K Lim
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eloise Williams
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Caroline Marshall
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McCarthy
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Dobbs KR, Lobb A, Dent AE. Ebola virus disease in children: epidemiology, pathogenesis, management, and prevention. Pediatr Res 2024; 95:488-495. [PMID: 37903937 DOI: 10.1038/s41390-023-02873-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
Ebola disease is a severe disease with extremely high case-fatality rates ranging from 28-100%. Observations made during the 2013-2016 West African epidemic improved our understanding of the clinical course of Ebola disease and accelerated the study of therapeutic and preventative strategies. The epidemic also highlighted the unique challenges associated with providing optimal care for children during Ebola disease outbreaks. In this review, we outline current understanding of Ebola disease epidemiology, pathogenesis, management, and prevention, highlighting data pertinent to the care of children. IMPACT: In this review, we summarize recent advancements in our understanding of Ebola disease epidemiology, clinical presentation, and therapeutic and preventative strategies. We highlight recent data pertinent to the care of children and pregnant women and identify research gaps for this important emerging viral infection in children.
Collapse
Affiliation(s)
- Katherine R Dobbs
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- UH Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | - Alyssa Lobb
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Arlene E Dent
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
9
|
Woolsey C, Borisevich V, Agans KN, O’Toole R, Fenton KA, Harrison MB, Prasad AN, Deer DJ, Gerardi C, Morrison N, Cross RW, Eldridge JH, Matassov D, Geisbert TW. A Highly Attenuated Panfilovirus VesiculoVax Vaccine Rapidly Protects Nonhuman Primates Against Marburg Virus and 3 Species of Ebola Virus. J Infect Dis 2023; 228:S660-S670. [PMID: 37171813 PMCID: PMC11009496 DOI: 10.1093/infdis/jiad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The family Filoviridae consists of several virus members known to cause significant mortality and disease in humans. Among these, Ebola virus (EBOV), Marburg virus (MARV), Sudan virus (SUDV), and Bundibugyo virus (BDBV) are considered the deadliest. The vaccine, Ervebo, was shown to rapidly protect humans against Ebola disease, but is indicated only for EBOV infections with limited cross-protection against other filoviruses. Whether multivalent formulations of similar recombinant vesicular stomatitis virus (rVSV)-based vaccines could likewise confer rapid protection is unclear. METHODS Here, we tested the ability of an attenuated, quadrivalent panfilovirus VesiculoVax vaccine (rVSV-Filo) to elicit fast-acting protection against MARV, EBOV, SUDV, and BDBV. Groups of cynomolgus monkeys were vaccinated 7 days before exposure to each of the 4 viral pathogens. All subjects (100%) immunized 1 week earlier survived MARV, SUDV, and BDBV challenge; 80% survived EBOV challenge. Survival correlated with lower viral load, higher glycoprotein-specific immunoglobulin G titers, and the expression of B-cell-, cytotoxic cell-, and antigen presentation-associated transcripts. CONCLUSIONS These results demonstrate multivalent VesiculoVax vaccines are suitable for filovirus outbreak management. The highly attenuated nature of the rVSV-Filo vaccine may be preferable to the Ervebo "delta G" platform, which induced adverse events in a subset of recipients.
Collapse
Affiliation(s)
- Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rachel O’Toole
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mack B Harrison
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cheryl Gerardi
- Department of Viral Vaccine Development, Auro Vaccines, Pearl River, New York, USA
| | - Nneka Morrison
- Department of Viral Vaccine Development, Auro Vaccines, Pearl River, New York, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - John H Eldridge
- Department of Viral Vaccine Development, Auro Vaccines, Pearl River, New York, USA
| | - Demetrius Matassov
- Department of Viral Vaccine Development, Auro Vaccines, Pearl River, New York, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Sprecher A, Cross R, Marzi A, Martins KA, Wolfe D, Montgomery JM, Spiropoulou CF, Cihlar T, Ahuka-Mundeke S, Nyhuis T, Teicher C, Crozier I, Strong J, Kobinger G, Woolsey C, Geisbert TW, Feldmann H, Muyembe JJ. Perspectives on Advancing Countermeasures for Filovirus Disease: Report From a Multisector Meeting. J Infect Dis 2023; 228:S474-S478. [PMID: 37596837 PMCID: PMC10651188 DOI: 10.1093/infdis/jiad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Although there are now approved treatments and vaccines for Ebola virus disease, the case fatality rate remains unacceptably high even when patients are treated with the newly approved therapeutics. Furthermore, these countermeasures are not expected to be effective against disease caused by other filoviruses. A meeting of subject-matter experts was held during the 10th International Filovirus Symposium to discuss strategies to address these gaps. Several investigational therapeutics, vaccine candidates, and combination strategies were presented. The greatest challenge was identified to be the implementation of well-designed clinical trials of safety and efficacy during filovirus disease outbreaks. Preparing for this will require agreed-upon common protocols for trials intended to bridge multiple outbreaks across all at-risk countries. A multinational research consortium including at-risk countries would be an ideal mechanism to negotiate agreement on protocol design and coordinate preparation. Discussion participants recommended a follow-up meeting be held in Africa to establish such a consortium.
Collapse
Affiliation(s)
| | - Robert Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Karen A Martins
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, US Department of Health and Human Services, Washington, District of Columbia
| | - Daniel Wolfe
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, US Department of Health and Human Services, Washington, District of Columbia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicale, Kinshasa, Republic of the Congo
- Kinshasa Teaching Hospital, School of Medicine, Kinshasa University, Democratic Republic of the Congo
| | - Tara Nyhuis
- Mapp Biopharmaceutical, Inc, San Diego, California
| | | | - Ian Crozier
- Clinical Monitoring Program Research Directorate, Frederick National Laboratory for Cancer Research, Maryland
| | - Jim Strong
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg
| | - Gary Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Republic of the Congo
- Kinshasa Teaching Hospital, School of Medicine, Kinshasa University, Democratic Republic of the Congo
| |
Collapse
|
11
|
Dupuy LC, Spiropoulou CF, Towner JS, Spengler JR, Sullivan NJ, Montgomery JM. Filoviruses: Scientific Gaps and Prototype Pathogen Recommendation. J Infect Dis 2023; 228:S446-S459. [PMID: 37849404 PMCID: PMC11009505 DOI: 10.1093/infdis/jiad362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.
Collapse
Affiliation(s)
- Lesley C Dupuy
- Virology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Cross RW, Heinrich ML, Fenton KA, Borisevich V, Agans KN, Prasad AN, Woolsey C, Deer DJ, Dobias NS, Rowland MM, Lathigra R, Borrega R, Geisbert JB, Garry RF, Branco LM, Geisbert TW. A human monoclonal antibody combination rescues nonhuman primates from advanced disease caused by the major lineages of Lassa virus. Proc Natl Acad Sci U S A 2023; 120:e2304876120. [PMID: 37590417 PMCID: PMC10450431 DOI: 10.1073/pnas.2304876120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
There are no approved treatments for Lassa fever (LF), which is responsible for thousands of deaths each year in West Africa. A major challenge in developing effective medical countermeasures against LF is the high diversity of circulating Lassa virus (LASV) strains with four recognized lineages and four proposed lineages. The recent resurgence of LASV in Nigeria caused by genetically distinct strains underscores this concern. Two LASV lineages (II and III) are dominant in Nigeria. Here, we show that combinations of two or three pan-lineage neutralizing human monoclonal antibodies (8.9F, 12.1F, 37.D) known as Arevirumab-2 or Arevirumab-3 can protect up to 100% of cynomolgus macaques against challenge with both lineage II and III LASV isolates when treatment is initiated at advanced stages of disease on day 8 after LASV exposure. This work demonstrates that it may be possible to develop postexposure interventions that can broadly protect against most strains of LASV.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | | | - Karla A. Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Abhishek N. Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Daniel J. Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Natalie S. Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | | | - Raju Lathigra
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
| | | | - Joan B. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Robert F. Garry
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA70112
| | - Luis M. Branco
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| |
Collapse
|
13
|
Rijal P, Donnellan FR. A review of broadly protective monoclonal antibodies to treat Ebola virus disease. Curr Opin Virol 2023; 61:101339. [PMID: 37392670 DOI: 10.1016/j.coviro.2023.101339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/28/2023] [Indexed: 07/03/2023]
Abstract
The filovirus vaccine and the therapeutic monoclonal antibody (mAb) research have made substantial progress. However, existing vaccines and mAbs approved for use in humans are specific to Zaire ebolavirus (EBOV). Since other Ebolavirus species are a continuing threat to public health, the search for broadly protective mAbs has drawn attention. Here, we review viral glycoprotein-targeting mAbs that have proved their broader protective efficacy in animal models. MBP134AF, the most advanced of these new-generation mAb therapies, has recently been deployed in Uganda during the Sudan ebolavirus outbreak. Furthermore, we discuss the measures associated with enhancing antibody therapies and the risks associated with them, including the rise of escape mutations following the mAb treatment and naturally occurring EBOV variants.
Collapse
Affiliation(s)
- Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, United Kingdom.
| | - Francesca R Donnellan
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, UK.
| |
Collapse
|
14
|
Crozier I, Britson KA, Wolfe DN, Klena JD, Hensley LE, Lee JS, Wolfraim LA, Taylor KL, Higgs ES, Montgomery JM, Martins KA. The Evolution of Medical Countermeasures for Ebola Virus Disease: Lessons Learned and Next Steps. Vaccines (Basel) 2022; 10:1213. [PMID: 36016101 PMCID: PMC9415766 DOI: 10.3390/vaccines10081213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
The Ebola virus disease outbreak that occurred in Western Africa from 2013-2016, and subsequent smaller but increasingly frequent outbreaks of Ebola virus disease in recent years, spurred an unprecedented effort to develop and deploy effective vaccines, therapeutics, and diagnostics. This effort led to the U.S. regulatory approval of a diagnostic test, two vaccines, and two therapeutics for Ebola virus disease indications. Moreover, the establishment of fieldable diagnostic tests improved the speed with which patients can be diagnosed and public health resources mobilized. The United States government has played and continues to play a key role in funding and coordinating these medical countermeasure efforts. Here, we describe the coordinated U.S. government response to develop medical countermeasures for Ebola virus disease and we identify lessons learned that may improve future efforts to develop and deploy effective countermeasures against other filoviruses, such as Sudan virus and Marburg virus.
Collapse
Affiliation(s)
- Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Kyla A. Britson
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN 37831, USA
| | - Daniel N. Wolfe
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| | - John D. Klena
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.D.K.); (J.M.M.)
| | - Lisa E. Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Fort Detrick, MD 12116, USA;
| | - John S. Lee
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| | - Larry A. Wolfraim
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Kimberly L. Taylor
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Elizabeth S. Higgs
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.D.K.); (J.M.M.)
| | - Karen A. Martins
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| |
Collapse
|
15
|
Reversion of Ebolavirus Disease from a Single Intramuscular Injection of a Pan-Ebolavirus Immunotherapeutic. Pathogens 2022; 11:pathogens11060655. [PMID: 35745509 PMCID: PMC9228268 DOI: 10.3390/pathogens11060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Intravenous (IV) administration of antiviral monoclonal antibodies (mAbs) can be challenging, particularly during an ongoing epidemic, due to the considerable resources required for performing infusions. An ebolavirus therapeutic administered via intramuscular (IM) injection would reduce the burdens associated with IV infusion and allow rapid treatment of exposed individuals during an outbreak. Here, we demonstrate how MBP134, a cocktail of two pan-ebolavirus mAbs, reverses the course of Sudan ebolavirus disease (Gulu variant) with a single IV or IM dose in non-human primates (NHPs) as late as five days post-exposure. We also investigate the utility of adding half-life extension mutations to the MBP134 mAbs, ultimately creating a half-life extended cocktail designated MBP431. When delivered as a post-exposure prophylactic or therapeutic, a single IM dose of MBP431 offered complete or significant protection in NHPs challenged with Zaire ebolavirus. In conjunction with previous studies, these results support the use of MBP431 as a rapidly deployable IM medical countermeasure against every known species of ebolavirus.
Collapse
|