1
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
2
|
Alpizar YA, Dallmeier K. T cell-mediated protection in absence of virus neutralizing antibodies. Nat Microbiol 2025:10.1038/s41564-024-01921-5. [PMID: 39849084 DOI: 10.1038/s41564-024-01921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Molecular Vaccinology & Vaccine Discovery (MVVD), Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Molecular Vaccinology & Vaccine Discovery (MVVD), Leuven, Belgium.
| |
Collapse
|
3
|
Buerger V, Hadl S, Schneider M, Schaden M, Hochreiter R, Bitzer A, Kosulin K, Mader R, Zoihsl O, Pfeiffer A, Loch AP, Morandi E, Nogueira ML, de Brito CAA, Croda J, Teixeira MM, Coelho ICB, Gurgel R, da Fonseca AJ, de Lacerda MVG, Moreira ED, Veiga APR, Dubischar K, Wressnigg N, Eder-Lingelbach S, Jaramillo JC. Safety and immunogenicity of a live-attenuated chikungunya virus vaccine in endemic areas of Brazil: interim results of a double-blind, randomised, placebo-controlled phase 3 trial in adolescents. THE LANCET. INFECTIOUS DISEASES 2025; 25:114-125. [PMID: 39243794 DOI: 10.1016/s1473-3099(24)00458-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Chikungunya outbreaks have been reported in Brazil since 2014. Adolescents are a sensitive population who would benefit from a prophylactic vaccine. This study assessed the immunogenicity and safety of the vaccine VLA1553 in adolescents in Brazil. With an overall trial duration of 12 months, we now report data on safety and immunogenicity over a period of 28 days after vaccination. METHODS In this double-blind, randomised, placebo-controlled phase 3 trial, adolescents aged 12 to <18 years were recruited. The trial was performed at ten trial sites across Brazil. Eligible participants were generally healthy. The main exclusion criteria comprised immune-mediated or chronic arthritis or arthralgia, a known or suspected defect of the immune system, or any live vaccine received within the 4 weeks before trial vaccination. Randomisation was stratified by baseline serostatus in a 2:1 ratio to receive VLA1553 (at a dose of 1 × 104 TCID50 per 0·5 mL [ie, 50% tissue culture infectious dose]) or placebo. VLA1553 or placebo was administered intramuscularly as a single-dose immunisation on day 1. The primary endpoint was the proportion of baseline seronegative participants with chikungunya virus neutralising antibody levels of 150 or more in μPRNT50 (a micro plaque reduction neutralisation test), which was considered a surrogate of protection. The safety analysis included all participants receiving a trial vaccination. Immunogenicity analyses were performed in a subset. The trial is registered with ClinicalTrials.gov, NCT04650399. FINDINGS Between Feb 14, 2022, and March 14, 2023, 754 participants received a trial vaccination (502 received VLA1553 and 252 received placebo) with a per-protocol population of 351 participants for immunogenicity analyses (303 in the VLA1553 group and 48 in the placebo group). In participants who were seronegative at baseline, VLA1553 induced seroprotective chikungunya virus neutralising antibody levels in 247 of 250 (98·8%, 95% CI 96·5-99·8) participants 28 days after vaccination. In seropositive participants, the baseline seroprotection rate of 96·2% increased to 100% after vaccination with VLA1553. Most (365 [93%] of 393) adverse events were of mild or moderate intensity, VLA1553 was generally well tolerated. When compared with placebo, participants exposed to VLA1553 had a significantly higher frequency of related adverse events (351 [69·9%] of 502 vs 121 [48·0%] of 252; p<0·0001), mostly headache, myalgia, fatigue, and fever. Among four reported serious adverse events (three in the VLA1553 group and one in the placebo group), one was classified as possibly related to VLA1553: a high-grade fever. Among 20 adverse events of special interest (ie, symptoms suggesting chikungunya-like disease), 16 were classified as related to trial vaccination (15 in the VLA1553 group and one in the placebo group), with severe symptoms reported in four participants (fever, headache, or arthralgia). 17 adverse events of special interest resolved within 1 week. Among 85 participants with arthralgia (68 in the VLA1553 group and 17 in the placebo group), eight adolescents had short-lived (range 1-5 days), mostly mild recurring episodes (seven in the VLA1553 group and one in the placebo group). The median duration of arthralgia was 1 day (range 1-5 days). The frequency of injection site adverse events for VLA1553 was higher than in the placebo group (161 [32%] vs 62 [25%]), but rarely severe (two [<1%] in the VLA1553 group and one [<1%] in the placebo group). After administration of VLA1553, there was a significantly lower frequency of solicited adverse events in participants who were seropositive at baseline compared with those who were seronegative (53% vs 74%; p<0·0001) including headache, fatigue, fever, and arthralgia. INTERPRETATION VLA1553 was generally safe and induced seroprotective titres in almost all vaccinated adolescents with favourable safety data in adolescents who were seropositive at baseline. The data support the use of VLA1553 for the prevention of disease caused by the chikungunya virus among adolescents and in endemic areas. FUNDING Coalition for Epidemic Preparedness Innovation and EU Horizon 2020. TRANSLATION For the Portuguese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Mauricio Lacerda Nogueira
- Faculdade de Medicina Sao Jose Rio Preto, Sao Paulo, Brazil; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Julio Croda
- Centro de Pesquisa Clínica da Faculdade de Medicina da Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos (CPDF)-Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Minas Gerais, Brazil
| | | | - Ricardo Gurgel
- Centro de Pesquisas Clinicas Universidade Federal Sergipe, Sergipe, Brazil
| | | | | | - Edson Duarte Moreira
- Centro de Pesquisa Clínica - CPEC da Associação Obras Sociais Irmã Dulce, Bahia, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
5
|
McMahon R, Toepfer S, Sattler N, Schneider M, Narciso-Abraham M, Hadl S, Hochreiter R, Kosulin K, Mader R, Zoihsl O, Wressnigg N, Dubischar K, Buerger V, Eder-Lingelbach S, Jaramillo JC. Antibody persistence and safety of a live-attenuated chikungunya virus vaccine up to 2 years after single-dose administration in adults in the USA: a single-arm, multicentre, phase 3b study. THE LANCET. INFECTIOUS DISEASES 2024; 24:1383-1392. [PMID: 39146946 DOI: 10.1016/s1473-3099(24)00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Chikungunya virus infection can lead to long-term debilitating symptoms. A precursor phase 3 clinical study showed high seroprotection (defined as a 50% plaque reduction of chikungunya virus-specific neutralising antibodies on a micro plaque reduction neutralisation test [μPRNT] titre of ≥150 in baseline seronegative participants) up to 6 months after a single vaccination of the chikungunya virus vaccine VLA1553 (Valneva Austria, Vienna, Austria) and a good safety profile. Here we report antibody persistence and safety up to 2 years. METHODS In this single-arm, multicentre, phase 3b study, we recruited participants from the precursor phase 3 trial from professional vaccine trial sites in the USA. Participants (aged ≥18 years) were eligible if they had completed the previous study and received VLA1553. Chikungunya virus-specific neutralising antibodies were evaluated at 28 days, 6 months, and 1 year and 2 years after vaccination. The primary outcome was the proportion of seroprotected participants (ie, μPRNT50 titre of ≥150) at 1 and 2 years, assessed in all eligible participants who had at least one post-vaccination immunogenicity sample available, overall and by age group at the time of vaccination (18-64 years and ≥65 years). Adverse events of special interest at the time of transition from the previous study to the current study (ie, at 6 months) and serious adverse events during the current study were recorded (ie, between 6 months and 2 years). All analyses were descriptive. This study is registered with ClinicalTrials.gov, NCT04838444, and immunogenicity follow-up is ongoing. FINDINGS In the precursor study, participants were screened between Sept 17, 2020, and April 10, 2021; data cutoff for this analysis was March 31, 2023. Of 2724 participants in the precursor study who received one dose of VLA1553, 363 participants were analysed in this study (310 [85%] aged 18-64 years and 53 [15%] aged ≥65 years at enrolment in the precursor study; mean age 47·7 years [SD 14·2], 207 [57%] of 363 participants were female, 156 [43%] were male, 280 [77%] were White, and 314 [87%] were not Hispanic or Latino). Strong seroprotection was observed at 1 year (98·9% [356 of 360 assessable participants; 97·2-99·7]) and 2 years (96·8% [306 of 316; 94·3-98·5]) after vaccination, and was very similar between those aged 18-64 years (at 1 year: 98·7% [303 of 307; 96·7-99·6]; at 2 years: 96·6% [256 of 265; 93·7-98·4]) and those aged 65 years and older (at 1 year: 100% [53 of 53; 93·3-100]; at 2 years: 98·0% [50 of 51; 89·6-100]) at each timepoint. No adverse events of special interest were ongoing at the time of transition. Ten serious adverse events occurred in nine (2%) participants between the 6-month and 2-year timepoints, including one death (due to drug overdose) that was determined to not be related to VLA1553. INTERPRETATION After a single VLA1553 vaccination, chikungunya virus-neutralising antibodies above the threshold considered to be protective persisted up to 2 years and there were no long-term serious adverse events related to vaccination. VLA1553 is an efficient and safe intervention that offers high seroprotection against chikungunya virus infection, a virus likely to spread globally with an urgent demand for long-lasting prophylaxis. FUNDING Valneva Austria, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.
Collapse
|
6
|
Tong Jia Ming S, Tan Yi Jun K, Carissimo G. Pathogenicity and virulence of O'nyong-nyong virus: A less studied Togaviridae with pandemic potential. Virulence 2024; 15:2355201. [PMID: 38797948 PMCID: PMC11135837 DOI: 10.1080/21505594.2024.2355201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
O'nyong-nyong virus (ONNV) is a neglected mosquito-borne alphavirus belonging to the Togaviridae family. ONNV is known to be responsible for sporadic outbreaks of acute febrile disease and polyarthralgia in Africa. As climate change increases the geographical range of known and potential new vectors, recent data indicate a possibility for ONNV to spread outside of the African continent and grow into a greater public health concern. In this review, we summarise the current knowledge on ONNV epidemiology, host-pathogen interactions, vector-virus responses, and insights into possible avenues to control risk of further epidemics. In this review, the limited ONNV literature is compared and correlated to other findings on mainly Old World alphaviruses. We highlight and discuss studies that investigate viral and host factors that determine viral-vector specificity, along with important mechanisms that determine severity and disease outcome of ONNV infection.
Collapse
Affiliation(s)
- Samuel Tong Jia Ming
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Katrina Tan Yi Jun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore, Singapore
| |
Collapse
|
7
|
Sloof AC, Boer M, Vondeling GT, de Roo AM, Jaramillo JC, Postma MJ. Strategic vaccination responses to Chikungunya outbreaks in Rome: Insights from a dynamic transmission model. PLoS Negl Trop Dis 2024; 18:e0012713. [PMID: 39652620 DOI: 10.1371/journal.pntd.0012713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/19/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) outbreaks, driven by the expanding habitat of the Aedes albopictus mosquito and global climate change, pose a significant threat to public health. Our study evaluates the effectiveness of emergency vaccination using a dynamic disease transmission model for a potential large-scale outbreak in Rome, Italy. METHODS The model incorporates a susceptible-exposed-infected-recovered (SEIR) framework for human and mosquito populations, taking into account temperature-dependent mosquito lifecycle dynamics, human-mosquito interactions, and various vaccination scenarios. FINDINGS Results indicate that emergency vaccination could significantly mitigate the impact of a CHIKV outbreak. Without vaccination, an outbreak is estimated to infect up to 6.21% of Rome's population, equating to approximately 170,762 individuals. Implementing rapid vaccination after detecting the virus in ten individuals and achieving 40% coverage could reduce infection rates by 82%, preventing 139,805 cases. Scenario and sensitivity analyses confirm that even with lower vaccination coverage rates, significant benefits are observed: at 10% coverage, the number of infections drops to 115,231, and at 20% coverage, it further reduces to 76,031. These scenarios indicate prevention of approximately 33% and 55% of infections, respectively. CONCLUSIONS The findings highlight the critical role of timely vaccination interventions in outbreak settings, demonstrating that even modest coverage levels can markedly decrease the spread of CHIKV. This study underscores the importance of preparedness, early detection and adaptive response capabilities to manage emerging infectious diseases in urban centres, advocating for strategic vaccine stockpiling and rapid deployment mechanisms to enhance public health outcomes.
Collapse
Affiliation(s)
- Albertus Constantijn Sloof
- Department of Health Sciences, University Medical Center Groningen, Groningen, Netherlands
- Asc Academics B.V., Groningen, Netherlands
| | | | | | - Adrianne M de Roo
- Department of Health Sciences, University Medical Center Groningen, Groningen, Netherlands
- Valneva Austria GmbH, Vienna, Austria
| | - Juan Carlos Jaramillo
- Valneva Austria GmbH, Vienna, Austria
- Vaccines Europe, Executive Board Member, Brussels, Belgium
| | - Maarten J Postma
- Department of Health Sciences, University Medical Center Groningen, Groningen, Netherlands
- Department of Economics, Econometrics and Finance, University of Groningen, Faculty of Economics & Business, Groningen, Netherlands
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Division of Pharmacology and Therapy, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Weber WC, Streblow DN, Coffey LL. Chikungunya Virus Vaccines: A Review of IXCHIQ and PXVX0317 from Pre-Clinical Evaluation to Licensure. BioDrugs 2024; 38:727-742. [PMID: 39292392 PMCID: PMC11530495 DOI: 10.1007/s40259-024-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Chikungunya virus is an emerging mosquito-borne alphavirus that causes febrile illness and arthritic disease. Chikungunya virus is endemic in 110 countries and the World Health Organization estimates that it has caused more than 2 million cases of crippling acute and chronic arthritis globally since it re-emerged in 2005. Chikungunya virus outbreaks have occurred in Africa, Asia, Indian Ocean islands, South Pacific islands, Europe, and the Americas. Until recently, no specific countermeasures to prevent or treat chikungunya disease were available. To address this need, multiple vaccines are in human trials. These vaccines use messenger RNA-lipid nanoparticles, inactivated virus, and viral vector approaches, with a live-attenuated vaccine VLA1553 and a virus-like particle PXVX0317 in phase III testing. In November 2023, the US Food and Drug Administration (FDA) approved the VLA1553 live-attenuated vaccine, which is marketed as IXCHIQ. In June 2024, Health Canada approved IXCHIQ, and in July 2024, IXCHIQ was approved by the European Commission. On August 13, 2024, the US FDA granted priority review for PXVX0317. The European Medicine Agency is considering accelerated assessment review of PXVX0317, with potential for approval by both agencies in 2025. In this review, we summarize published data from pre-clinical and clinical trials for the IXCHIQ and PXVX0317 vaccines. We also discuss unanswered questions including potential impacts of pre-existing chikungunya virus immunity on vaccine safety and immunogenicity, whether long-term immunity can be achieved, safety in children, pregnant, and immunocompromised individuals, and vaccine efficacy in people with previous exposure to other emerging alphaviruses in addition to chikungunya virus.
Collapse
Affiliation(s)
- Whitney C Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis One Shields Avenue, Davis One Shields Avenue, 5327 VM3A, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Buerger V, Maurer G, Kosulin K, Hochreiter R, Larcher-Senn J, Dubischar K, Eder-Lingelbach S. Combined immunogenicity evaluation for a new single-dose live-attenuated chikungunya vaccine. J Travel Med 2024; 31:taae084. [PMID: 38959854 DOI: 10.1093/jtm/taae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Chikungunya is a serious and debilitating viral infection with a significant disease burden. VLA1553 (IXCHIQ®) is a live-attenuated vaccine licensed for active immunization for prevention of disease caused by chikungunya virus (CHIKV). METHODS Immunogenicity following a single dose of VLA1553 was evaluated in healthy adults aged ≥18 years in two Phase 3 trials [N = 656 participants (per protocol analysis set)]. Immunogenicity data to 180 days post-vaccination [geometric mean titres (GMTs), seroresponse rate, seroconversion rate] were pooled for the two trials. A comparison of subgroups based on age, sex, body mass index (BMI), race and baseline seropositivity was included. All analyses were descriptive. RESULTS Most participants were aged 18-64 years (N = 569/656 [86.7%]), there were slightly more females (N = 372/656 [56.7%]), most were not Hispanic/Latino (N = 579/656 [88.3%]), and most were White (N = 517/656 [78.8%]). In baseline seronegative participants, GMT peaked at Day 29 post-vaccination, and subsequently declined slightly but remained elevated until Day 180. At Days 29, 85 and 180, seroresponse rate was 98.3, 97.7 and 96.4% and seroconversion rate was 98.5, 98.4 and 98.2%. There were no differences in seroresponse rate in participants aged 18-64 years or ≥65 years at Day 29 (98.1 vs 100%), Day 85 (97.4 vs 100%) and Day 180 (96.3 vs 96.5%) nor based on sex, BMI, ethnicity or race. An immune response was shown in a small heterogenous population of baseline seropositive participants, with GMTs showing the same trend as baseline seronegative participants. CONCLUSIONS A single dose of VLA1553 elicited a very strong immune response by Day 29 that remained elevated at Day 180 in both baseline seronegative and seropositive participants in a combined evaluation of two Phase 3 trials. The vaccine was similarly immunogenic in participants aged ≥65 years and 18-64 years, and there were no differences based on subgroup analyses for sex, BMI, ethnicity or race.
Collapse
Affiliation(s)
- Vera Buerger
- Valneva Austria GmbH, Campus Vienna Biocenter, 3103 Vienna, Austria
| | - Gabriele Maurer
- Valneva Austria GmbH, Campus Vienna Biocenter, 3103 Vienna, Austria
| | - Karin Kosulin
- Valneva Austria GmbH, Campus Vienna Biocenter, 3103 Vienna, Austria
| | | | - Julian Larcher-Senn
- Assign Data Management and Statistics GmbH, Stadlweg 23, 6020 Innsbruck, Austria
| | - Katrin Dubischar
- Valneva Austria GmbH, Campus Vienna Biocenter, 3103 Vienna, Austria
| | | |
Collapse
|
10
|
Chen LH, Fritzer A, Hochreiter R, Dubischar K, Meyer S. From bench to clinic: the development of VLA1553/IXCHIQ, a live-attenuated chikungunya vaccine. J Travel Med 2024; 31:taae123. [PMID: 39255380 PMCID: PMC11497415 DOI: 10.1093/jtm/taae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Over the past 20 years, over 5 million cases of chikungunya, a mosquito-transmitted viral disease, have been reported in over 110 countries. Until recently, preventative strategies for chikungunya were largely ineffective, relying on vector control and individual avoidance of mosquito bites. METHODS This review outlines the preclinical and clinical efficacy and safety data that led to the approval of VLA1553 (IXCHIQ®), a live-attenuated vaccine against chikungunya disease. It also describes the innovative development pathway of VLA1553, based on an immunological surrogate of protection, and discusses ongoing and future post-licensure studies. RESULTS In mice and non-human primate models, VLA1553 elicited high titres of neutralizing antibodies, conferred protection against wild-type chikungunya virus challenge and raised no safety concerns. A Phase 1 clinical trial of VLA1553 demonstrated 100% seroconversion among 120 healthy participants, with sustained neutralizing antibody titres after 12 months. These results and determination of a surrogate marker of protection led to advancement of VLA1553 directly into Phase 3 clinical development, as agreed with the US Food and Drug Administration (FDA) and the European Medicines Agency. The pivotal Phase 3 trial met its primary immunogenicity endpoint, achieving seroprotective levels based on immuno-bridging in baseline seronegative participants 28 days post-vaccination. These findings enabled submission of a Biologics Licence Application to the FDA for accelerated approval of VLA1553 in the US for adults aged ≥18 years. Ongoing and planned studies will confirm the clinical efficacy/effectiveness and safety of VLA1553 in adults and younger individuals, and will generate data in chikungunya endemic countries that have the highest unmet need. CONCLUSION VLA1553 is the first vaccine approved for the prevention of chikungunya disease in adults, following accelerated development based on a serological surrogate marker of protection. VLA1553 adds to strategies to reduce the spread and burden of chikungunya in endemic populations and travellers.
Collapse
Affiliation(s)
- Lin H Chen
- Department of Medicine, Division of Infectious Diseases and Travel Medicine, Mount Auburn Hospital, 330 Mt Auburn St, Cambridge, MA 02138, USA
- Faculty of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Andrea Fritzer
- Pre-Clinical Vaccine Development Department, Valneva Austria GmbH, Campus-Vienna-Biocenter 3, 1030 Vienna, Austria
| | - Romana Hochreiter
- Clinical Serology Department, Valneva Austria GmbH, Campus-Vienna-Biocenter 3, 1030 Vienna, Austria
| | - Katrin Dubischar
- R&D Management, Valneva Austria GmbH, Campus-Vienna-Biocenter 3, 1030 Vienna, Austria
| | - Stéphanie Meyer
- Corporate Medical Affairs, Valneva SE, Ilot Saint-Joseph Bureaux Convergence, 12 ter Quai Perrache Bâtiment A, 69002 Lyon, France
| |
Collapse
|
11
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
12
|
Graham VA, Easterbrook L, Rayner E, Findlay-Wilson S, Flett L, Kennedy E, Fotheringham S, Kempster S, Almond N, Dowall S. Comparison of Chikungunya Virus-Induced Disease Progression and Pathogenesis in Type-I Interferon Receptor-Deficient Mice (A129) and Two Wild-Type (129Sv/Ev and C57BL/6) Mouse Strains. Viruses 2024; 16:1534. [PMID: 39459867 PMCID: PMC11512278 DOI: 10.3390/v16101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus causing a debilitating febrile illness with rheumatic disease symptoms of arthralgia and arthritis. Since its spread outside of Africa in 2005, it continues to cause outbreaks and disseminates into new territories. Intervention strategies are urgently required, including vaccination and antiviral approaches. To test efficacy, the use of small animal models is required. Two mouse strains, A129, with a deficiency in their type-I interferon (IFN) receptor, and C57BL/6 are widely used. A direct comparison of these strains alongside the wild-type parental strain of the A129 mice, 129Sv/Ev, was undertaken to assess clinical disease progression, viral loads in key tissues, histological changes and levels of sera biomarkers. Our results confirm the severe disease course in A129 mice which was not observed in the parental 129Sv/Ev strain. Of the two wild-type strains, viral loads were higher in 129Sv/Ev mice compared to C57BL/6 counterparts. Our results have established these models and parameters for the future testing of vaccines and antiviral approaches.
Collapse
Affiliation(s)
- Victoria A. Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Stephen Findlay-Wilson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Lucy Flett
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Sarah Kempster
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK; (S.K.); (N.A.)
| | - Neil Almond
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK; (S.K.); (N.A.)
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| |
Collapse
|
13
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 PMCID: PMC11736809 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Egloff C, Fovet CM, Denis J, Pascal Q, Bossevot L, Luccantoni S, Leonec M, Dereuddre-Bosquet N, Leparc-Goffart I, Le Grand R, Durand GA, Badaut C, Picone O, Roques P. Fetal Zika virus inoculation in macaques revealed control of the fetal viral load during pregnancy. Virol J 2024; 21:209. [PMID: 39227837 PMCID: PMC11373269 DOI: 10.1186/s12985-024-02468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Early pregnancy Zika virus (ZIKV) infection is associated with major brain damage in fetuses, leading to microcephaly in 0.6-5.0% of cases, but the underlying mechanisms remain largely unknown. METHODS To understand the kinetics of ZIKV infection during fetal development in a nonhuman primate model, four cynomolgus macaque fetuses were exposed in utero through echo-guided intramuscular inoculation with 103 PFU of ZIKV at 70-80 days of gestation, 2 controls were mock inoculated. Clinical, immuno-virological and ultrasound imaging follow-ups of the mother/fetus pairs were performed until autopsy after cesarean section 1 or 2 months after exposure (n = 3 per group). RESULTS ZIKV was transmitted from the fetus to the mother and then replicate in the peripheral blood of the mother from week 1 to 4 postexposure. Infected fetal brains tended to be smaller than those of controls, but not the femur lengths. High level of viral RNA ws found after the first month in brain tissues and placenta. Thereafter, there was partial control of the virus in the fetus, resulting in a decreased number of infected tissue sections and a decreased viral load. Immune cellular and humoral responses were effectively induced. CONCLUSIONS ZIKV infection during the second trimester of gestation induces short-term brain injury, and although viral genomes persist in tissues, most of the virus is cleared before delivery.
Collapse
Affiliation(s)
- Charles Egloff
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, IAME INSERM U1137, Université de PARIS, Paris, France
| | - Claire-Maëlle Fovet
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Jessica Denis
- Unité interactions hôtes-pathogènes, Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Laetitia Bossevot
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Marco Leonec
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- National Reference Center for Arboviruses, INSERM-Institut de Recherche Biomédicale des Armées, 13005, Marseille, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- National Reference Center for Arboviruses, INSERM-Institut de Recherche Biomédicale des Armées, 13005, Marseille, France
| | - Cyril Badaut
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Olivier Picone
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, IAME INSERM U1137, Université de PARIS, Paris, France
| | - Pierre Roques
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France.
- Virology Unit, Institut Pasteur de Guinée (IPGui), BP4416, Conakry, Guinea.
| |
Collapse
|
15
|
Baylis SA, Knezevic I, Almond NM. Harmonising the measurement of neutralising antibodies against chikungunya virus: a path forward for licensing of new vaccines? THE LANCET. MICROBE 2024; 5:100874. [PMID: 38761815 DOI: 10.1016/s2666-5247(24)00097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/20/2024]
Affiliation(s)
| | | | - Neil M Almond
- Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, United Kingdom
| |
Collapse
|
16
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
17
|
Rosso A, Flacco ME, Cioni G, Tiseo M, Imperiali G, Bianconi A, Fiore M, Calò GL, Orazi V, Troia A, Manzoli L. Immunogenicity and Safety of Chikungunya Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2024; 12:969. [PMID: 39340001 PMCID: PMC11436237 DOI: 10.3390/vaccines12090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Several vaccines against chikungunya fever have been developed and tested, and one has been recently licensed. We performed a meta-analysis to estimate the immunogenicity and safety of all chikungunya vaccines that have been progressed to clinical trial evaluation (VLA1553; mRNA-1388/VAL-181388; PXVX0317/VRC-CHKVLP059-00-VP; ChAdOx1 Chik; MV-CHIK). We included trials retrieved from MedLine, Scopus, and ClinicalTrials.gov. The outcomes were the rates of seroconversion/seroresponse and serious adverse events (SAEs) after the primary immunization course. We retrieved a total of 14 datasets, including >4000 participants. All candidate chikungunya vaccines were able to elicit an immunogenic response in ≥96% of vaccinated subjects, regardless of the vaccination schedule and platform used, and the seroconversion/seroresponse rates remained high 6 to 12 months after vaccination for most vaccines. Four of the five candidate vaccines showed a good overall safety profile (no data were available for ChAdOx1 Chik), with no significant increase in the risk of SAEs among the vaccinated, and a low absolute risk of product-related SAEs. Overall, the present findings support the potential use of the candidate vaccines for the prevention of chikungunya and the current indication for use in adult travelers to endemic regions of the licensed VLA 1553 vaccine. In order to extend chikungunya vaccination to a wider audience, further studies are needed on individuals from endemic countries and frail populations.
Collapse
Affiliation(s)
- Annalisa Rosso
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Maria Elena Flacco
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Giovanni Cioni
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Marco Tiseo
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Gianmarco Imperiali
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Alessandro Bianconi
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Matteo Fiore
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Giovanna Letizia Calò
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Vittorio Orazi
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Anastasia Troia
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Lamberto Manzoli
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| |
Collapse
|
18
|
Weber WC, Andoh TF, Kreklywich CN, Streblow ZJ, Denton M, Streblow MM, Powers JM, Sulgey G, Medica S, Dmitriev I, Curiel DT, Haese NN, Streblow DN. Nonreciprocity in CHIKV and MAYV Vaccine-Elicited Protection. Vaccines (Basel) 2024; 12:970. [PMID: 39340002 PMCID: PMC11435824 DOI: 10.3390/vaccines12090970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is a pathogenic arthritogenic alphavirus responsible for large-scale human epidemics for which a vaccine was recently approved for use. Mayaro virus (MAYV) is a related emerging alphavirus with epidemic potential with circulation overlap potential with CHIKV. We previously reported the ability of a non-replicating human adenovirus (AdV)-vectored vaccine expressing the MAYV structural polyprotein to protect against disease in mice following challenge with MAYV, CHIKV and UNAV. Herein, we evaluated mouse immunity and protective efficacy for an AdV-CHIKV full structural polyprotein vaccine in combination with heterologous AdV-MAYV prime/boost regimens versus vaccine coadministration. Heterologous prime/boost regimens skewed immunity toward the prime vaccine antigen but allowed for a boost of cross-neutralizing antibodies, while vaccine co-administration elicited robust, balanced responses capable of boosting. All immunization strategies protected against disease from homologous virus infection, but reciprocal protective immunity differences were revealed upon challenge with heterologous viruses. In vivo passive transfer experiments reproduced the inequity in reciprocal cross-protection after heterologous MAYV challenge. We detected in vitro antibody-dependent enhancement of MAYV replication, suggesting a potential mechanism for the lack of cross-protection. Our findings provide important insights into rational alphavirus vaccine design that may have important implications for the evolving alphavirus vaccine landscape.
Collapse
Affiliation(s)
- Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - John M. Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Gauthami Sulgey
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Igor Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University, St. Louis, MO 63110, USA; (I.D.); (D.T.C.)
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University, St. Louis, MO 63110, USA; (I.D.); (D.T.C.)
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
19
|
Weber WC, Streblow ZJ, Kreklywich CN, Denton M, Sulgey G, Streblow MM, Marcano D, Flores PN, Rodriguez-Santiago RM, Alvarado LI, Rivera-Amill V, Messer WB, Hochreiter R, Kosulin K, Dubischar K, Buerger V, Streblow DN. The Approved Live-Attenuated Chikungunya Virus Vaccine (IXCHIQ ®) Elicits Cross-Neutralizing Antibody Breadth Extending to Multiple Arthritogenic Alphaviruses Similar to the Antibody Breadth Following Natural Infection. Vaccines (Basel) 2024; 12:893. [PMID: 39204019 PMCID: PMC11359099 DOI: 10.3390/vaccines12080893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The first vaccine against chikungunya virus (CHIKV) was recently licensed in the U.S., Europe, and Canada (brand IXCHIQ®, referred to as VLA1553). Other pathogenic alphaviruses co-circulate with CHIKV and major questions remain regarding the potential of IXCHIQ to confer cross-protection for populations that are exposed to them. Here, we characterized the cross-neutralizing antibody (nAb) responses against heterotypic CHIKV and additional arthritogenic alphaviruses in individuals at one month, six months, and one year post-IXCHIQ vaccination. We characterized nAbs against CHIKV strains LR2006, 181/25, and a 2021 isolate from Tocantins, Brazil, as well as O'nyong-nyong virus (ONNV), Mayaro virus (MAYV), and Ross River virus (RRV). IXCHIQ elicited 100% seroconversion to each virus, with the exception of RRV at 83.3% seroconversion of vaccinees, and cross-neutralizing antibody potency decreased with increasing genetic distance from CHIKV. We compared vaccinee responses to cross-nAbs elicited by natural CHIKV infection in individuals living in the endemic setting of Puerto Rico at 8-9 years post-infection. These data suggest that IXCHIQ efficiently and potently elicits cross-nAb breadth that extends to related alphaviruses in a manner similar to natural CHIKV infection, which may have important implications for individuals that are susceptible to alphavirus co-circulation in regions of potential vaccine rollout.
Collapse
Affiliation(s)
- Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (Z.J.S.); (C.N.K.); (M.D.); (G.S.)
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (Z.J.S.); (C.N.K.); (M.D.); (G.S.)
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (Z.J.S.); (C.N.K.); (M.D.); (G.S.)
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (Z.J.S.); (C.N.K.); (M.D.); (G.S.)
| | - Gauthami Sulgey
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (Z.J.S.); (C.N.K.); (M.D.); (G.S.)
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (Z.J.S.); (C.N.K.); (M.D.); (G.S.)
| | - Dorca Marcano
- Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (D.M.); (P.N.F.); (R.M.R.-S.); (L.I.A.); (V.R.-A.)
| | - Paola N. Flores
- Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (D.M.); (P.N.F.); (R.M.R.-S.); (L.I.A.); (V.R.-A.)
| | - Rachel M. Rodriguez-Santiago
- Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (D.M.); (P.N.F.); (R.M.R.-S.); (L.I.A.); (V.R.-A.)
| | - Luisa I. Alvarado
- Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (D.M.); (P.N.F.); (R.M.R.-S.); (L.I.A.); (V.R.-A.)
| | - Vanessa Rivera-Amill
- Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (D.M.); (P.N.F.); (R.M.R.-S.); (L.I.A.); (V.R.-A.)
| | - William B. Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Romana Hochreiter
- Valneva Austria GmbH, 1030 Vienna, Austria; (R.H.); (K.K.); (K.D.); (V.B.)
| | - Karin Kosulin
- Valneva Austria GmbH, 1030 Vienna, Austria; (R.H.); (K.K.); (K.D.); (V.B.)
| | - Katrin Dubischar
- Valneva Austria GmbH, 1030 Vienna, Austria; (R.H.); (K.K.); (K.D.); (V.B.)
| | - Vera Buerger
- Valneva Austria GmbH, 1030 Vienna, Austria; (R.H.); (K.K.); (K.D.); (V.B.)
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (Z.J.S.); (C.N.K.); (M.D.); (G.S.)
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
20
|
Acosta CJ, Nordio F, Boltz DA, Baldwin WR, Hather G, Kpamegan E. Predicting Efficacy of a Purified Inactivated Zika Virus Vaccine in Flavivirus-Naïve Humans Using an Immunological Correlate of Protection in Non-Human Primates. Microorganisms 2024; 12:1177. [PMID: 38930559 PMCID: PMC11206130 DOI: 10.3390/microorganisms12061177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
A traditional phase 3 clinical efficacy study for a Zika vaccine may be unfeasible because of the current low transmission of Zika virus (ZIKV). An alternative clinical development approach to evaluate Zika vaccine efficacy (VE) is therefore required, delineated in the US FDA's Accelerated Approval Program for licensure, which utilizes an anti-Zika neutralizing antibody (Zika NAb) titer correlated with non-human primate (NHP) protection as a surrogate endpoint. In this accelerated approval approach, the estimation of VE would be inferred from the percentage of phase 3 trial participants achieving the established surrogate endpoint. We provide a statistical framework to predict the probability of protection for human participants vaccinated with a purified inactivated ZIKV vaccine (TAK-426), in the absence of VE measurements, using NHP data under a single-correlate model. Based on a logistic regression (LR) with bias-reduction model, a probability of 90% protection in humans is expected with a ZIKV NAb geometric mean titer (GMT) ≥ 3.38 log10 half-maximal effective concentration (EC50). The predicted probability of protection of TAK-426 against ZIKV infection was determined using the two-parameter LR model that fit the calculated VE in rhesus macaques and the flavivirus-naïve phase 1 trial participants' ZIKV NAb GMTs log10 EC50, measured by a ZIKV reporter virus particle assay, at 1 month post dose 2. The TAK-426 10 µg dose predicted a probability of protection from infection of 98% among flavivirus-naïve phase 1 trial participants.
Collapse
Affiliation(s)
- Camilo J. Acosta
- Takeda Vaccines Inc., Cambridge, MA 02142, USA; (F.N.); (D.A.B.); (W.R.B.); (G.H.); (E.K.)
| | | | | | | | | | | |
Collapse
|
21
|
Marković V, Szczepańska A, Berlicki Ł. Antiviral Protein-Protein Interaction Inhibitors. J Med Chem 2024; 67:3205-3231. [PMID: 38394369 PMCID: PMC10945500 DOI: 10.1021/acs.jmedchem.3c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Continually repeating outbreaks of pathogenic viruses necessitate the construction of effective antiviral strategies. Therefore, the development of new specific antiviral drugs in a well-established and efficient manner is crucial. Taking into account the strong ability of viruses to change, therapies with diversified molecular targets must be sought. In addition to the widely explored viral enzyme inhibitor approach, inhibition of protein-protein interactions is a very valuable strategy. In this Perspective, protein-protein interaction inhibitors targeting HIV, SARS-CoV-2, HCV, Ebola, Dengue, and Chikungunya viruses are reviewed and discussed. Antibodies, peptides/peptidomimetics, and small molecules constitute three classes of compounds that have been explored, and each of them has some advantages and disadvantages for drug development.
Collapse
Affiliation(s)
- Violeta Marković
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- University
of Kragujevac, Faculty of Science,
Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Anna Szczepańska
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
22
|
McMahon R, Fuchs U, Schneider M, Hadl S, Hochreiter R, Bitzer A, Kosulin K, Koren M, Mader R, Zoihsl O, Wressnigg N, Dubischar K, Buerger V, Eder-Lingelbach S, Jaramillo JC. A randomized, double-blinded Phase 3 study to demonstrate lot-to-lot consistency and to confirm immunogenicity and safety of the live-attenuated chikungunya virus vaccine candidate VLA1553 in healthy adults†. J Travel Med 2024; 31:taad156. [PMID: 38091981 PMCID: PMC10911060 DOI: 10.1093/jtm/taad156] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND The global spread of the chikungunya virus (CHIKV) increases the exposure risk for individuals travelling to or living in endemic areas. This Phase 3 study was designed to demonstrate manufacturing consistency between three lots of the single shot live-attenuated CHIKV vaccine VLA1553, and to confirm the promising immunogenicity and safety data obtained in previous trials. METHODS This randomized, double-blinded, lot-to-lot consistency, Phase 3 study, assessed immunogenicity and safety of VLA1553 in 408 healthy adults (18-45 years) in 12 sites across the USA. The primary endpoint was a comparison of the geometric mean titre (GMT) ratios of CHIKV-specific neutralizing antibodies between three VLA1553 lots at 28 days post-vaccination. Secondary endpoints included immunogenicity and safety over 6 months post-vaccination. RESULTS GMTs were comparable between the lots meeting the acceptance criteria for equivalence. The average GMT (measured by 50% CHIKV micro plaque neutralization test; μPRNT50) peaked with 2643 at 28 days post-vaccination and decreased to 709 at 6 months post-vaccination. An excellent seroresponse rate (defined as μPRNT50 titre ≥ 150 considered protective) was achieved in 97.8% of participants at 28 days post-vaccination and still persisted in 96% at 6 months after vaccination. Upon VLA1553 immunization, 72.5% of participants experienced adverse events (AEs), without significant differences between lots (related solicited systemic AE: 53.9% of participants; related solicited local AE: 19.4%). Overall, AEs were mostly mild or moderate and resolved without sequela, usually within 3 days. With 3.9% of participants experiencing severe AEs, 2.7% were classified as related, whereas none of the six reported serious adverse events was related to the administration of VLA1553. CONCLUSIONS All three lots of VLA1553 recapitulated the safety and immunogenicity profiles of a preceding Phase 3 study, fulfilling pre-defined consistency requirements. These results highlight the manufacturability of VLA1553, a promising vaccine for the prevention of CHIKV disease for those living in or travelling to endemic areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael Koren
- Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Robert Mader
- CRETA GmbH, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Rao S, Erku D, Mahalingam S, Taylor A. Immunogenicity, safety and duration of protection afforded by chikungunya virus vaccines undergoing human clinical trials. J Gen Virol 2024; 105. [PMID: 38421278 DOI: 10.1099/jgv.0.001965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Background. Chikungunya virus (CHIKV) causes chikungunya fever and has been responsible for major global epidemics of arthritic disease over the past two decades. Multiple CHIKV vaccine candidates are currently undergoing or have undergone human clinical trials, with one vaccine candidate receiving FDA approval. This scoping review was performed to evaluate the 'efficacy', 'safety' and 'duration of protection' provided by CHIKV vaccine candidates in human clinical trials.Methods. This scoping literature review addresses studies involving CHIKV vaccine clinical trials using available literature on the PubMed, Medline Embase, Cochrane Library and Clinicaltrial.gov databases published up to 25 August 2023. Covidence software was used to structure information and review the studies included in this article.Results. A total of 1138 studies were screened and, after removal of duplicate studies, 12 relevant studies were thoroughly reviewed to gather information. This review summarizs that all seven CHIKV vaccine candidates achieved over 90 % seroprotection against CHIKV after one or two doses. All vaccines were able to provide neutralizing antibody protection for at least 28 days.Conclusions. A variety of vaccine technologies have been used to develop CHIKV vaccine candidates. With one vaccine candidate having recently received FDA approval, it is likely that further CHIKV vaccines will be available commercially in the near future.
Collapse
Affiliation(s)
- Shambhavi Rao
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Erku
- Centre for Applied Health Economics, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
| | - Suresh Mahalingam
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adam Taylor
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
24
|
Principi N, Esposito S. Development of Vaccines against Emerging Mosquito-Vectored Arbovirus Infections. Vaccines (Basel) 2024; 12:87. [PMID: 38250900 PMCID: PMC10818606 DOI: 10.3390/vaccines12010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Among emergent climate-sensitive infectious diseases, some mosquito-vectored arbovirus infections have epidemiological, social, and economic effects. Dengue virus (DENV), West Nile virus (WNV), and Chikungunya virus (CHIKV) disease, previously common only in the tropics, currently pose a major risk to global health and are expected to expand dramatically in the near future if adequate containment measures are not implemented. The lack of safe and effective vaccines is critical as it seems likely that emerging mosquito-vectored arbovirus infections will be con-trolled only when effective and safe vaccines against each of these infections become available. This paper discusses the clinical characteristics of DENV, WNV, and CHIKV infections and the state of development of vaccines against these viruses. An ideal vaccine should be able to evoke with a single administration a prompt activation of B and T cells, adequate concentrations of protecting/neutralizing antibodies, and the creation of a strong immune memory capable of triggering an effective secondary antibody response after new infection with a wild-type and/or mutated infectious agent. Moreover, the vaccine should be well tolerated, safe, easily administrated, cost-effective, and widely available throughout the world. However, the development of vaccines against emerging mosquito-vectored arbovirus diseases is far from being satisfactory, and it seems likely that it will take many years before effective and safe vaccines for all these infections are made available worldwide.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
25
|
Weber WC, Labriola CS, Kreklywich CN, Ray K, Haese NN, Andoh TF, Denton M, Medica S, Streblow MM, Smith PP, Mizuno N, Frias N, Fisher MB, Barber-Axthelm AM, Chun K, Uttke S, Whitcomb D, DeFilippis V, Rakshe S, Fei SS, Axthelm MK, Smedley JV, Streblow DN. Mayaro virus pathogenesis and immunity in rhesus macaques. PLoS Negl Trop Dis 2023; 17:e0011742. [PMID: 37983245 PMCID: PMC10695392 DOI: 10.1371/journal.pntd.0011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/04/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes debilitating and persistent arthritogenic disease. While MAYV was previously reported to infect non-human primates (NHP), characterization of MAYV pathogenesis is currently lacking. Therefore, in this study we characterized MAYV infection and immunity in rhesus macaques. To inform the selection of a viral strain for NHP experiments, we evaluated five MAYV strains in C57BL/6 mice and showed that MAYV strain BeAr505411 induced robust tissue dissemination and disease. Three male rhesus macaques were subcutaneously challenged with 105 plaque-forming units of this strain into the arms. Peak plasma viremia occurred at 2 days post-infection (dpi). NHPs were taken to necropsy at 10 dpi to assess viral dissemination, which included the muscles and joints, lymphoid tissues, major organs, male reproductive tissues, as well as peripheral and central nervous system tissues. Histological examination demonstrated that MAYV infection was associated with appendicular joint and muscle inflammation as well as presence of perivascular inflammation in a wide variety of tissues. One animal developed a maculopapular rash and two NHP had viral RNA detected in upper torso skin samples, which was associated with the presence of perivascular and perifollicular lymphocytic aggregation. Analysis of longitudinal peripheral blood samples indicated a robust innate and adaptive immune activation, including the presence of anti-MAYV neutralizing antibodies with activity against related Una virus and chikungunya virus. Inflammatory cytokines and monocyte activation also peaked coincident with viremia, which was well supported by our transcriptomic analysis highlighting enrichment of interferon signaling and other antiviral processes at 2 days post MAYV infection. The rhesus macaque model of MAYV infection recapitulates many of the aspects of human infection and is poised to facilitate the evaluation of novel therapies and vaccines targeting this re-emerging virus.
Collapse
Affiliation(s)
- Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia P. Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nina Frias
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Miranda B. Fisher
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Aaron M. Barber-Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kimberly Chun
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Samantha Uttke
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Danika Whitcomb
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Shauna Rakshe
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Suzanne S. Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
26
|
Cherian N, Bettis A, Deol A, Kumar A, Di Fabio JL, Chaudhari A, Yimer S, Fahim R, Endy T. Strategic considerations on developing a CHIKV vaccine and ensuring equitable access for countries in need. NPJ Vaccines 2023; 8:123. [PMID: 37596253 PMCID: PMC10439111 DOI: 10.1038/s41541-023-00722-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Chikungunya is an arboviral disease caused by the chikungunya virus (CHIKV) afflicting tropical and sub-tropical countries worldwide. It has been identified as a priority pathogen by the Coalition for Epidemics Preparedness Innovations (CEPI) and as an emerging infectious disease (EID) necessitating further action as soon as possible by the World Health Organization (WHO). Recent studies suggest that disability-adjusted life years (DALYs) due to CHIKV infection are as high as 106,089 DALYs lost globally. Significant progress has been made in the development of several vaccines, aimed at preventing CHIKV infections. This perspective article summarizes CEPI's efforts and strategic considerations for developing a CHIKV vaccine and ensuring equitable access for CHIKV endemic countries.
Collapse
Affiliation(s)
- Neil Cherian
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway.
| | - Alison Bettis
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Arminder Deol
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Arun Kumar
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | | | - Amol Chaudhari
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Solomon Yimer
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Raafat Fahim
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Timothy Endy
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| |
Collapse
|
27
|
Stephenson KE. Live-attenuated Chikungunya vaccine: a possible new era. Lancet 2023; 401:2090-2091. [PMID: 37321234 DOI: 10.1016/s0140-6736(23)01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
28
|
Schneider M, Narciso-Abraham M, Hadl S, McMahon R, Toepfer S, Fuchs U, Hochreiter R, Bitzer A, Kosulin K, Larcher-Senn J, Mader R, Dubischar K, Zoihsl O, Jaramillo JC, Eder-Lingelbach S, Buerger V, Wressnigg N. Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2023; 401:2138-2147. [PMID: 37321235 PMCID: PMC10314240 DOI: 10.1016/s0140-6736(23)00641-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND VLA1553 is a live-attenuated vaccine candidate for active immunisation and prevention of disease caused by chikungunya virus. We report safety and immunogenicity data up to day 180 after vaccination with VLA1553. METHODS This double-blind, multicentre, randomised, phase 3 trial was done in 43 professional vaccine trial sites in the USA. Eligible participants were healthy volunteers aged 18 years and older. Patients were excluded if they had history of chikungunya virus infection or immune-mediated or chronic arthritis or arthralgia, known or suspected defect of the immune system, any inactivated vaccine received within 2 weeks before vaccination with VLA1553, or any live vaccine received within 4 weeks before vaccination with VLA1553. Participants were randomised (3:1) to receive VLA1553 or placebo. The primary endpoint was the proportion of baseline negative participants with a seroprotective chikungunya virus antibody level defined as 50% plaque reduction in a micro plaque reduction neutralisation test (μPRNT) with a μPRNT50 titre of at least 150, 28 days after vaccination. The safety analysis included all individuals who received vaccination. Immunogenicity analyses were done in a subset of participants at 12 pre-selected study sites. These participants were required to have no major protocol deviations to be included in the per-protocol population for immunogenicity analyses. This trial is registered at ClinicalTrials.gov, NCT04546724. FINDINGS Between Sept 17, 2020 and April 10, 2021, 6100 people were screened for eligibility. 1972 people were excluded and 4128 participants were enrolled and randomised (3093 to VLA1553 and 1035 to placebo). 358 participants in the VLA1553 group and 133 participants in the placebo group discontinued before trial end. The per-protocol population for immunogenicity analysis comprised 362 participants (266 in the VLA1553 group and 96 in the placebo group). After a single vaccination, VLA1553 induced seroprotective chikungunya virus neutralising antibody levels in 263 (98·9%) of 266 participants in the VLA1553 group (95% CI 96·7-99·8; p<0·0001) 28 days post-vaccination, independent of age. VLA1553 was generally safe with an adverse event profile similar to other licensed vaccines and equally well tolerated in younger and older adults. Serious adverse events were reported in 46 (1·5%) of 3082 participants exposed to VLA1553 and eight (0·8%) of 1033 participants in the placebo arm. Only two serious adverse events were considered related to VLA1553 treatment (one mild myalgia and one syndrome of inappropriate antidiuretic hormone secretion). Both participants recovered fully. INTERPRETATION The strong immune response and the generation of seroprotective titres in almost all vaccinated participants suggests that VLA1553 is an excellent candidate for the prevention of disease caused by chikungunya virus. FUNDING Valneva, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.
Collapse
|
29
|
Rao S, Abeyratne E, Freitas JR, Yang C, Tharmarajah K, Mostafavi H, Liu X, Zaman M, Mahalingam S, Zaid A, Taylor A. A booster regime of liposome-delivered live-attenuated CHIKV vaccine RNA genome protects against chikungunya virus disease in mice. Vaccine 2023; 41:3976-3988. [PMID: 37230889 DOI: 10.1016/j.vaccine.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-transmitted chikungunya virus (CHIKV) is the causal pathogen of CHIKV disease and is responsible for global epidemics of arthritic disease. CHIKV infection can lead to severe chronic and debilitating arthralgia, significantly impacting patient mobility and quality of life. Our previous studies have shown a live-attenuated CHIKV vaccine candidate, CHIKV-NoLS, to be effective in protecting against CHIKV disease in mice vaccinated with one dose. Further studies have demonstrated the value of a liposome RNA delivery system to deliver the RNA genome of CHIKV-NoLS directly in vivo, promoting de novo production of live-attenuated vaccine particles in vaccinated hosts. This system, designed to bypass live-attenuated vaccine production bottlenecks, uses CAF01 liposomes. However, one dose of CHIKV-NoLS CAF01 failed to provide systemic protection against CHIKV challenge in mice, with low levels of CHIKV-specific antibodies. Here we describe CHIKV-NoLS CAF01 booster vaccination regimes designed to increase vaccine efficacy. C57BL/6 mice were vaccinated with three doses of CHIKV-NoLS CAF01 either intramuscularly or subcutaneously. CHIKV-NoLS CAF01 vaccinated mice developed a systemic immune response against CHIKV that shared similarity to vaccination with CHIKV-NoLS, including high levels of CHIKV-specific neutralising antibodies in subcutaneously inoculated mice. CHIKV-NoLS CAF01 vaccinated mice were protected against disease signs and musculoskeletal inflammation when challenged with CHIKV. Mice given one dose of live-attenuated CHIKV-NoLS developed a long lasting protective immune response for up to 71 days. A clinically relevant CHIKV-NoLS CAF01 booster regime can overcome the challenges faced by our previous one dose strategy and provide systemic protection against CHIKV disease.
Collapse
Affiliation(s)
- Shambhavi Rao
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Eranga Abeyratne
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Joseph R Freitas
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Chenying Yang
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Kothila Tharmarajah
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Helen Mostafavi
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Xiang Liu
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, 4222 Queensland, Australia
| | - Suresh Mahalingam
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Ali Zaid
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Adam Taylor
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia.
| |
Collapse
|
30
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
31
|
Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses 2022; 15:48. [PMID: 36680088 PMCID: PMC9863735 DOI: 10.3390/v15010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus, the causative agent of chikungunya fever, is generally characterized by the sudden onset of symptoms, including fever, rash, myalgia, and headache. In some patients, acute chikungunya virus infection progresses to severe and chronic arthralgia that persists for years. Chikungunya infection is more commonly identified in tropical and subtropical regions. However, recent expansions and epidemics in the temperate regions have raised concerns about the future public health impact of chikungunya diseases. Several underlying factors have likely contributed to the recent re-emergence of chikungunya infection, including urbanization, human travel, viral adaptation to mosquito vectors, lack of effective control measures, and the spread of mosquito vectors to new regions. However, the true burden of chikungunya disease is most likely to be underestimated, particularly in developing countries, due to the lack of standard diagnostic assays and clinical manifestations overlapping with those of other endemic viral infections in the regions. Additionally, there have been no chikungunya vaccines available to prevent the infection. Thus, it is important to update our understanding of the immunopathogenesis of chikungunya infection, its clinical manifestations, the diagnosis, and the development of chikungunya vaccines.
Collapse
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
32
|
Schmidt C, Schnierle BS. Chikungunya Vaccine Candidates: Current Landscape and Future Prospects. Drug Des Devel Ther 2022; 16:3663-3673. [PMID: 36277603 PMCID: PMC9580835 DOI: 10.2147/dddt.s366112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that has spread globally in the last twenty years. Although mortality is rather low, infection can result in debilitating arthralgia that can persist for years. Unfortunately, no treatments or preventive vaccines are currently licensed against CHIKV infections. However, a large range of promising preclinical and clinical vaccine candidates have been developed during recent years. This review will give an introduction into the biology of CHIKV and the immune responses that are induced by infection, and will summarize CHIKV vaccine development.
Collapse
Affiliation(s)
- Christin Schmidt
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany,Correspondence: Barbara S Schnierle, Paul-Ehrlich-Institut, Department of Virology, Section AIDS and newly emerging pathogens, Paul-Ehrlich-Strasse 51.59, Langen, 63225, Germany, Tel/Fax +49 6103 77 5504, Email
| |
Collapse
|