1
|
Steppan J, Wang H, Nandakumar K, Gadkari M, Poe A, Pak L, Brady T, Berkowitz DE, Shimoda LA, Santhanam L. LOXL2 inhibition ameliorates pulmonary artery remodeling in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L423-L438. [PMID: 39010824 PMCID: PMC11482525 DOI: 10.1152/ajplung.00327.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/16/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Conduit pulmonary arterial stiffening and the resultant increase in pulmonary vascular impedance have emerged as an important underlying driver of pulmonary arterial hypertension (PAH). Given that matrix deposition is central to vascular remodeling, we evaluated the role of the collagen cross-linking enzyme lysyl oxidase like 2 (LOXL2) in this study. Human pulmonary artery smooth muscle cells (PASMCs) subjected to hypoxia showed increased LOXL2 secretion. LOXL2 activity and expression were markedly higher in primary PASMCs isolated from the pulmonary arteries of the rat Sugen 5416 + hypoxia (SuHx) model of severe pulmonary hypertension (PH). Similarly, LOXL2 protein and mRNA levels were increased in the pulmonary arteries (PA) and lungs of rats with PH (SuHx and monocrotaline (MCT) models). Pulmonary arteries (PAs) isolated from the rats with PH exhibited hypercontractility to phenylephrine and attenuated vasorelaxation elicited by acetylcholine, indicating severe endothelial dysfunction. Tensile testing revealed a significant increase in PA stiffness in PH. Treatment with PAT-1251, a novel small-molecule LOXL2 inhibitor, improved active and passive properties of the PA ex vivo. There was an improvement in right heart function as measured by right ventricular pressure volume loops in vivo with PAT-1251. Importantly, PAT-1251 treatment ameliorated PH, resulting in improved pulmonary artery pressures, right ventricular remodeling, and survival. Hypoxia-induced LOXL2 activation is a causal mechanism in pulmonary artery stiffening in PH and pulmonary artery mechanical and functional decline. LOXL2 inhibition with PAT-1251 could be a promising approach to improve pulmonary artery pressures, right ventricular elastance, cardiac relaxation, and survival in PAH.NEW & NOTEWORTHY Pulmonary arterial stiffening contributes to the progression of PAH and the deterioration of right heart function. This study shows that LOXL2 is upregulated in rat models of PH. LOXL2 inhibition halts pulmonary vascular remodeling and improves PA contractility, endothelial function, and PA pressure, resulting in prolonged survival. Thus, LOXL2 is an important mediator of PA remodeling and stiffening in PH and a promising target to improve PA pressures and survival in PH.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kavitha Nandakumar
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Mahin Gadkari
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore Maryland, United States
| | - Alan Poe
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lydia Pak
- Department of Molecular and Cellular Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Travis Brady
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore Maryland, United States
| |
Collapse
|
2
|
Mueller MC, Du Y, Walker LA, Magin CM. Dynamically stiffening biomaterials reveal age- and sex-specific differences in pulmonary arterial adventitial fibroblast activation. Matrix Biol Plus 2024; 22:100145. [PMID: 38699486 PMCID: PMC11063519 DOI: 10.1016/j.mbplus.2024.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Respiratory diseases like pulmonary arterial hypertension (PAH) frequently exhibit sexual dimorphism. Female PAH patients are more susceptible to the disease but have increased survival rates. This phenomenon is known as the estrogen paradox, and the underlying mechanisms are not fully understood. During PAH progression in vivo, human pulmonary arterial adventitial fibroblasts (hPAAFs) differentiate into an activated phenotype. These cells produce excess, aberrant extracellular matrix proteins that stiffen the surrounding pulmonary arterial tissues. Here, we employed dynamic poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based biomaterials to study how the age and sex of human serum influenced hPAAF activation in response to microenvironmental stiffening in vitro. Results showed female and male cells responded differently to increases in microenvironmental stiffness and serum composition. Male hPAAFs were less activated than female cells on soft hydrogels and more responsive to increases in microenvironmental stiffness regardless of serum composition. Female hPAAF activation followed this pattern only when cultured in younger (age < 50) female serum or when older (age ≥ 50) female serum was supplemented with estradiol. Otherwise, female hPAAF activation was relatively high on both soft and stiffened hydrogels, with little difference in activation between the two conditions. Collectively, these results suggest that it may be possible to model the estrogen paradox observed in PAH in vitro and that it is critical for researchers to report cell sex and serum source when conducting in vitro experimentation.
Collapse
Affiliation(s)
- Mikala C. Mueller
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, USA
| | - Lori A. Walker
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, USA
| | - Chelsea M. Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, USA
- Division of Pulmonary Sciences & Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, USA
| |
Collapse
|
3
|
Aravamudhan A, Dieffenbach PB, Choi KM, Link PA, Meridew JA, Haak AJ, Fredenburgh LE, Tschumperlin DJ. Non-canonical IKB kinases regulate YAP/TAZ and pathological vascular remodeling behaviors in pulmonary artery smooth muscle cells. Physiol Rep 2024; 12:e15999. [PMID: 38610069 PMCID: PMC11014870 DOI: 10.14814/phy2.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Paul B. Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Patrick A. Link
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Andrew J. Haak
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | | |
Collapse
|
4
|
Mueller MC, Du Y, Walker LA, Magin CM. Dynamically stiffening biomaterials reveal age- and sex-specific differences in pulmonary arterial adventitial fibroblast activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.11.540410. [PMID: 38168342 PMCID: PMC10760008 DOI: 10.1101/2023.05.11.540410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Respiratory diseases like pulmonary arterial hypertension (PAH) frequently exhibit sexual dimorphism. Female PAH patients are more susceptible to the disease but have increased survival rates. This phenomenon is known as the estrogen paradox, and the underlying mechanisms are not fully understood. During PAH progression in vivo , human pulmonary arterial adventitial fibroblasts (hPAAFs) differentiate into an activated phenotype. These cells produce excess, aberrant extracellular matrix proteins that stiffen the surrounding pulmonary arterial tissues. Here, we employed dynamic poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based biomaterials to study how the age and sex of human serum influenced hPAAF activation in response to microenvironmental stiffening in vitro . Results showed female and male cells responded differently to increases in microenvironmental stiffness and serum composition. Male hPAAFs were less activated than female cells on soft hydrogels and more responsive to increases in microenvironmental stiffness regardless of serum composition. Female hPAAF activation followed this pattern only when cultured in younger (age < 50) female serum or when older (age ≥ 50) female serum was supplemented with estradiol. Otherwise, female hPAAF activation was relatively high on both soft and stiffened hydrogels, with little difference in activation between the two conditions. Collectively, these results suggest that it may be possible to model the estrogen paradox observed in PAH in vitro and that it is critical for researchers to report cell sex and serum source when conducting in vitro experimentation.
Collapse
|
5
|
Shumway AJ, Shanahan MT, Hollville E, Chen K, Beasley C, Villanueva JW, Albert S, Lian G, Cure MR, Schaner M, Zhu LC, Bantumilli S, Deshmukh M, Furey TS, Sheikh SZ, Sethupathy P. Aberrant miR-29 is a predictive feature of severe phenotypes in pediatric Crohn's disease. JCI Insight 2024; 9:e168800. [PMID: 38385744 PMCID: PMC10967384 DOI: 10.1172/jci.insight.168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.
Collapse
Affiliation(s)
| | - Michael T. Shanahan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | | | - Kevin Chen
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
| | | | | | - Sara Albert
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease
| | | | | | - Lee-Ching Zhu
- Department of Pathology and Laboratory Medicine, and
| | | | | | - Terrence S. Furey
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Steppan J, Wang H, Nandakumar K, Poe A, Pak L, Brady T, Gadkari M, Berkowitz DE, Shimoda LA, Santhanam L. LOXL2 inhibition ameliorates pulmonary artery remodeling in pulmonary hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563874. [PMID: 37961202 PMCID: PMC10634806 DOI: 10.1101/2023.10.24.563874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Conduit pulmonary arterial stiffening and the resultant increase in pulmonary vascular impedance has emerged as an important underlying driver of pulmonary arterial hypertension (PAH). Given that matrix deposition is central to vascular remodeling, we evaluated the role of the collagen crosslinking enzyme lysyl oxidase like 2 (LOXL2) in this study. Methods and Results Human pulmonary artery smooth muscle cells (PASMCs) subjected to hypoxia showed increased LOXL2 secretion. LOXL2 activity and expression were markedly higher in primary PASMCs isolated from pulmonary arteries of the rat Sugen 5416 + hypoxia (SuHx) model of severe PH. Similarly, LOXL2 protein and mRNA levels were increased in pulmonary arteries (PA) and lungs of rats with PH (SuHx and monocrotaline (MCT) models). Pulmonary arteries (PAs) isolated from rats with PH exhibited hypercontractility to phenylephrine and attenuated vasorelaxation elicited by acetylcholine, indicating severe endothelial dysfunction. Tensile testing revealed a a significant increase in PA stiffness in PH. Treatment with PAT-1251, a novel small-molecule LOXL2 inhibitor, improved active and passive properties of the PA ex vivo. There was an improvement in right heart function as measured by right ventricular pressure volume loops in-vivo with PAT-1251. Importantly PAT-1251 treatment ameliorated PH, resulting in improved pulmonary artery pressures, right ventricular remodeling, and survival. Conclusion Hypoxia induced LOXL2 activation is a causal mechanism in pulmonary artery stiffening in PH, as well as pulmonary artery mechanical and functional decline. LOXL2 inhibition with PAT-1251 is a promising approach to improve pulmonary artery pressures, right ventricular elastance, cardiac relaxation, and survival in PAH. New & Noteworthy Pulmonary arterial stiffening contributes to the progression of PAH and the deterioration of right heart function. This study shows that LOXL2 is upregulated in rat models of PH. LOXL2 inhibition halts pulmonary vascular remodeling and improves PA contractility, endothelial function and improves PA pressure, resulting in prolonged survival. Thus, LOXL2 is an important mediator of PA remodeling and stiffening in PH and a promising target to improve PA pressures and survival in PH.
Collapse
|
7
|
Hiraide S, Machida T, Takihana S, Ohshita M, Iizuka K. Pressure stress delays cyclooxygenase-2 expression induced by interleukin-1β in cultured human pulmonary artery smooth muscle cells. Heliyon 2023; 9:e21008. [PMID: 37876479 PMCID: PMC10590958 DOI: 10.1016/j.heliyon.2023.e21008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Pulmonary artery smooth muscle cells (PASMCs) play an important role in the sequence of events leading to the formation of pulmonary hypertension (PH). However, little is known about the direct effects of high pressure on the function and intercellular signaling pathways of PASMCs. The aim of this study was to evaluate the effect of pressure stress that simulates PH on interleukin (IL)-1β- or angiotensin II-induced cyclooxygenase-2 (COX-2) expression in cultured human PASMCs. Methods Either 20 or 60 mmHg atmospheric pressure was applied to PASMCs by a pressure-loading apparatus. Protein expression and phosphorylation were analyzed by western blotting. mRNA expression was analyzed by quantitative real-time reverse transcription-polymerase chain reaction. Results IL-1β-induced COX-2 protein expression peaked at 6 h in non-pressurized cells, whereas COX-2 expression was delayed, peaking at 12 h, in 20 and 60 mmHg pressurized cells. Both pressures also delayed the time to peak COX-2 mRNA expression induced by IL-1β. In addition, pressure stress delayed the time to peak mitogen-activated protein kinase (MAPK) phosphorylation induced by IL-1β. In contrast, angiotensin II-induced transient COX-2 mRNA expression and MAPK phosphorylation were not affected by pressure stress. Conclusion These results suggest that pressure stress delays IL-1β-induced COX-2 expression via the delayed activation of MAPKs in PASMCs, and the effects of pressure stress differ according to the bioactive substance being stimulated. Our results demonstrate that the application of pressure stress to PASMCs directly alters cell function, which may provide a basic insight into our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Sachiko Hiraide
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Shota Takihana
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Mikoto Ohshita
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Kenji Iizuka
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
8
|
Davis-Hall D, Thomas E, Peña B, Magin CM. 3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension. Biofabrication 2022; 15:10.1088/1758-5090/aca8cf. [PMID: 36533728 PMCID: PMC9933849 DOI: 10.1088/1758-5090/aca8cf] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/05/2022] [Indexed: 12/10/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature, characterized by elevated pulmonary blood pressure, remodeling of the pulmonary arteries, and ultimately right ventricular failure. Therapeutic interventions for PAH are limited in part by the lack ofin vitroscreening platforms that accurately reproduce dynamic arterial wall mechanical properties. Here we present a 3D-bioprinted model of the pulmonary arterial adventitia comprised of a phototunable poly(ethylene glycol) alpha methacrylate (PEG-αMA)-based hydrogel and primary human pulmonary artery adventitia fibroblasts (HPAAFs). This unique biomaterial emulates PAH pathogenesisin vitrothrough a two-step polymerization reaction. First, PEG-αMA macromer was crosslinked off-stoichiometry by 3D bioprinting an acidic bioink solution into a basic gelatin support bath initiating a base-catalyzed thiol-ene reaction with synthetic and biodegradable crosslinkers. Then, matrix stiffening was induced by photoinitiated homopolymerization of unreacted αMA end groups. A design of experiments approach produced a hydrogel platform that exhibited an initial elastic modulus (E) within the range of healthy pulmonary arterial tissue (E= 4.7 ± 0.09 kPa) that was stiffened to the pathologic range of hypertensive tissue (E= 12.8 ± 0.47 kPa) and supported cellular proliferation over time. A higher percentage of HPAAFs cultured in stiffened hydrogels expressed the fibrotic marker alpha-smooth muscle actin than cells in soft hydrogels (88 ± 2% versus 65 ± 4%). Likewise, a greater percentage of HPAAFs were positive for the proliferation marker 5-ethynyl-2'-deoxyuridine (EdU) in stiffened models (66 ± 6%) compared to soft (39 ± 6%). These results demonstrate that 3D-bioprinted, phototunable models of pulmonary artery adventitia are a tool that enable investigation of fibrotic pathogenesisin vitro.
Collapse
Affiliation(s)
- Duncan Davis-Hall
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States of America
| | - Emily Thomas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Brisa Peña
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States of America
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States of America
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
9
|
Shen Y, Goncharov DA, Pena A, Baust J, Barragan AC, Ray A, Rode A, Bachman TN, Chang B, Jiang L, Dieffenbach P, Fredenburgh LE, Rojas M, DeLisser H, Mora AL, Kudryashova TV, Goncharova EA. Cross-talk between TSC2 and the extracellular matrix controls pulmonary vascular proliferation and pulmonary hypertension. Sci Signal 2022; 15:eabn2743. [PMID: 36473049 PMCID: PMC9869933 DOI: 10.1126/scisignal.abn2743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased proliferation and survival of cells in small pulmonary arteries (PAs) drive pulmonary arterial hypertension (PAH). Because cell growth mediated by the mTOR-containing mTORC1 complex is inhibited by tuberous sclerosis complex 2 (TSC2), we investigated the role of this GTPase-activating protein in PAH pathology. TSC2 abundance was decreased in remodeled small PAs and PA vascular smooth muscle cells (PAVSMCs) from patients with PAH or from rodent pulmonary hypertension (PH) models, as well as PAVSMCs maintained on substrates that reproduced pathology-induced stiffness. Accordingly, mice with smooth muscle-specific reduction in TSC2 developed PH. At the molecular level, decreased TSC2 abundance led to stiffness-induced PAVSMC proliferation, increased abundance of the mechanosensitive transcriptional coactivators YAP/TAZ, and enhanced mTOR kinase activity. Moreover, extracellular matrix (ECM) produced by TSC2-deficient PAVSMCs stimulated the proliferation of nondiseased PA adventitial fibroblasts and PAVSMCs through fibronectin and its receptor, the α5β1 integrin. Reconstituting TSC2 in PAVSMCs from patients with PAH through overexpression or treatment with the SIRT1 activator SRT2104 decreased YAP/TAZ abundance, mTOR activity, and ECM production, as well as inhibited proliferation and induced apoptosis. In two rodent models of PH, SRT2104 treatment restored TSC2 abundance, attenuated pulmonary vascular remodeling, and ameliorated PH. Thus, TSC2 in PAVSMCs integrates ECM composition and stiffness with pro-proliferative and survival signaling, and restoring TSC2 abundance could be an attractive therapeutic option to treat PH.
Collapse
Affiliation(s)
- Yuanjun Shen
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| | - Dmitry A. Goncharov
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| | - Andressa Pena
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Jeffrey Baust
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Andres Chavez Barragan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Arnab Ray
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Analise Rode
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Timothy N. Bachman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Baojun Chang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Lifeng Jiang
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| | - Paul Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Current affiliation: Regeneron Pharmaceuticals, Tarrytown, NY
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH, USA 43210
| | - Horace DeLisser
- Department of Pathology and Laboratory Medicine, Pulmonary Vascular Disease Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH, USA 43210
| | - Tatiana V. Kudryashova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| | - Elena. A. Goncharova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Aging is an important risk factor for cardiovascular disease and is associated with increased vessel wall stiffness. Pathophysiological stiffening, notably in arteries, disturbs the integrity of the vascular endothelium and promotes permeability and transmigration of immune cells, thereby driving the development of atherosclerosis and related vascular diseases. Effective therapeutic strategies for arterial stiffening are still lacking. RECENT FINDINGS Here, we overview the literature on age-related arterial stiffening, from patient-derived data to preclinical in-vivo and in-vitro findings. First, we overview the common techniques that are used to measure stiffness and discuss the observed stiffness values in atherosclerosis and aging. Next, the endothelial response to stiffening and possibilities to attenuate this response are discussed. SUMMARY Future research that will define the endothelial contribution to stiffness-related cardiovascular disease may provide new targets for intervention to restore endothelial function in atherosclerosis and complement the use of currently applied lipid-lowering, antihypertensive, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences
- Amsterdam UMC, VU University Medical Center, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Olivia Klatt
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences
| |
Collapse
|
11
|
Blanchard N, Link PA, Farkas D, Harmon B, Hudson J, Bogamuwa S, Piper B, Authelet K, Cool CD, Heise RL, Freishtat R, Farkas L. Dichotomous role of integrin-β5 in lung endothelial cells. Pulm Circ 2022; 12:e12156. [PMID: 36438452 PMCID: PMC9684688 DOI: 10.1002/pul2.12156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, devastating disease, and its main histological manifestation is an occlusive pulmonary arteriopathy. One important functional component of PAH is aberrant endothelial cell (EC) function including apoptosis-resistance, unchecked proliferation, and impaired migration. The mechanisms leading to and maintaining physiologic and aberrant EC function are not fully understood. Here, we tested the hypothesis that in PAH, ECs have increased expression of the transmembrane protein integrin-β5, which contributes to migration and survival under physiologic and pathological conditions, but also to endothelial-to-mesenchymal transition (EnMT). We found that elevated integrin-β5 expression in pulmonary artery lesions and lung tissue from PAH patients and rats with PH induced by chronic hypoxia and injection of CD117+ rat lung EC clones. These EC clones exhibited elevated expression of integrin-β5 and its heterodimerization partner integrin-αν and showed accelerated barrier formation. Inhibition of integrin-ανβ5 in vitro partially blocked transforming growth factor (TGF)-β1-induced EnMT gene expression in rat lung control ECs and less in rat lung EC clones and human lung microvascular ECs. Inhibition of integrin-ανβ5 promoted endothelial dysfunction as shown by reduced migration in a scratch assay and increased apoptosis in synergism with TGF-β1. In vivo, blocking of integrin-ανβ5 exaggerated PH induced by chronic hypoxia and CD117+ EC clones in rats. In summary, we found a role for integrin-ανβ5 in lung endothelial survival and migration, but also a partial contribution to TGF-β1-induced EnMT gene expression. Our results suggest that integrin-ανβ5 is required for physiologic function of ECs and lung vascular homeostasis.
Collapse
Affiliation(s)
- Neil Blanchard
- Department of Orthopedic SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Patrick A. Link
- Departments of Physiology and Biomedical EngineeringMayo ClinicRochesterMichiganUSA
- Department of Biomedical Engineering, School of EngineeringVirginia Commonwealth UniversityCharlottesvilleVirginiaUSA
| | - Daniela Farkas
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Brennan Harmon
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Jaylen Hudson
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Srimathi Bogamuwa
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Bryce Piper
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kayla Authelet
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlyne D. Cool
- Department of PathologyUniversity of Colorado at DenverDenverColoradoUSA
| | - Rebecca L. Heise
- Department of Biomedical Engineering, School of EngineeringVirginia Commonwealth UniversityCharlottesvilleVirginiaUSA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Laszlo Farkas
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Physiology and BiophysicsVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
12
|
Paudel SS, deWeever A, Sayner S, Stevens T, Tambe DT. Substrate stiffness modulates migration and local intercellular membrane motion in pulmonary endothelial cell monolayers. Am J Physiol Cell Physiol 2022; 323:C936-C949. [PMID: 35912996 PMCID: PMC9467474 DOI: 10.1152/ajpcell.00339.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
The pulmonary artery endothelium forms a semipermeable barrier that limits macromolecular flux through intercellular junctions. This barrier is maintained by an intrinsic forward protrusion of the interacting membranes between adjacent cells. However, the dynamic interactions of these membranes have been incompletely quantified. Here, we present a novel technique to quantify the motion of the peripheral membrane of the cells, called paracellular morphological fluctuations (PMFs), and to assess the impact of substrate stiffness on PMFs. Substrate stiffness impacted large-length scale morphological changes such as cell size and motion. Cell size was larger on stiffer substrates, whereas the speed of cell movement was decreased on hydrogels with stiffness either larger or smaller than 1.25 kPa, consistent with cells approaching a jammed state. Pulmonary artery endothelial cells moved fastest on 1.25 kPa hydrogel, a stiffness consistent with a healthy pulmonary artery. Unlike these large-length scale morphological changes, the baseline of PMFs was largely insensitive to the substrate stiffness on which the cells were cultured. Activation of store-operated calcium channels using thapsigargin treatment triggered a transient increase in PMFs beyond the control treatment. However, in hypocalcemic conditions, such an increase in PMFs was absent on 1.25 kPa hydrogel but was present on 30 kPa hydrogel-a stiffness consistent with that of a hypertensive pulmonary artery. These findings indicate that 1) PMFs occur in cultured endothelial cell clusters, irrespective of the substrate stiffness; 2) PMFs increase in response to calcium influx through store-operated calcium entry channels; and 3) stiffer substrate promotes PMFs through a mechanism that does not require calcium influx.
Collapse
Affiliation(s)
- Sunita Subedi Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Althea deWeever
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Sarah Sayner
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
| | - Dhananjay T Tambe
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
13
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
14
|
Saleh KS, Hewawasam R, Šerbedžija P, Blomberg R, Noreldeen SE, Edelman B, Smith BJ, Riches DWH, Magin CM. Engineering Hybrid-Hydrogels Comprised of Healthy or Diseased Decellularized Extracellular Matrix to Study Pulmonary Fibrosis. Cell Mol Bioeng 2022; 15:505-519. [PMID: 36444345 PMCID: PMC9700547 DOI: 10.1007/s12195-022-00726-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic disease characterized by progressive lung scarring that inhibits gas exchange. Evidence suggests fibroblast-matrix interactions are a prominent driver of disease. However, available preclinical models limit our ability to study these interactions. We present a technique for synthesizing phototunable poly(ethylene glycol) (PEG)-based hybrid-hydrogels comprising healthy or fibrotic decellularized extracellular matrix (dECM) to decouple mechanical properties from composition and elucidate their roles in fibroblast activation. Here, we engineered and characterized phototunable hybrid-hydrogels using molecular techniques such as ninhydrin and Ellman's assays to assess dECM functionalization, and parallel-plate rheology to measure hydrogel mechanical properties. These biomaterials were employed to investigate the activation of fibroblasts from dual-transgenic Col1a1-GFP and αSMA-RFP reporter mice in response to changes in composition and mechanical properties. We show that reacting functionalized dECM from healthy or bleomycin-injured mouse lungs with PEG alpha-methacrylate (αMA) in an off-stoichiometry Michael-addition reaction created soft hydrogels mimicking a healthy lung elastic modulus (4.99 ± 0.98 kPa). Photoinitiated stiffening increased the material modulus to fibrotic values (11.48 ± 1.80 kPa). Percent activation of primary murine fibroblasts expressing Col1a1 and αSMA increased by approximately 40% following dynamic stiffening of both healthy and bleomycin hybrid-hydrogels. There were no significant differences between fibroblast activation on stiffened healthy versus stiffened bleomycin-injured hybrid-hydrogels. Phototunable hybrid-hydrogels provide an important platform for probing cell-matrix interactions and developing a deeper understanding of fibrotic activation in pulmonary fibrosis. Our results suggest that mechanical properties are a more significant contributor to fibroblast activation than biochemical composition within the scope of the hybrid-hydrogel platform evaluated in this study. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00726-y.
Collapse
Affiliation(s)
- Kamiel S. Saleh
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Rukshika Hewawasam
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Predrag Šerbedžija
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Saif E. Noreldeen
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
| | - Benjamin Edelman
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO USA
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - David W. H. Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Aurora, CO USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Chelsea M. Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, 2115 N Scranton Street, Suite 3010, Aurora, CO 80045 USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
15
|
Halade GV, Kain V, De La Rosa X, Lindsey ML. Metabolic transformation of fat in obesity determines the inflammation resolving capacity of splenocardiac and cardiorenal networks in heart failure. Am J Physiol Heart Circ Physiol 2022; 322:H953-H970. [PMID: 35333119 PMCID: PMC9054267 DOI: 10.1152/ajpheart.00684.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
Abstract
All fats are not created equal, and despite the extensive literature, the effect of fat intake is the most debated question in obesity, cardiovascular, and cardiorenal research. Cellular and molecular mechanisms underlying cardiac dysfunction and consequent heart failure in the setting of obesity are not well understood. Our understanding of how fats are metabolically transformed after nonreperfused myocardial infarction (MI), in particular, is incomplete. Here, using male C57BL/6J mice (2 mo old), we determined the role of omega-6 fatty acids, provided as safflower oil (SO) for 12 wk, followed by supplementation with docosahexaenoic acid (DHA; n-3 fatty acids) for 8 wk before MI. With SO feeding, inflammation resolution was impaired. Specialized proresolving mediators (SPMs) increased in DHA-fed mice to reverse the effects of SO, whereas prostaglandins and thromboxane B2 were reduced in the spleen and amplified multiple resolving mechanisms in heart and kidney post-MI. DHA amplified the number of resolving macrophages and cardiac reparative pathways of the splenocardiac and cardiorenal networks in acute heart failure, with higher Treg cells in chronic heart failure and marked expression of Foxp3+ in the myocardium. Our findings indicate that surplus ingestion of SO intensified systemic, baseline, nonresolving inflammation, and DHA intake dominates splenocardiac resolving phase with the biosynthesis of SPMs and controlled cardiorenal inflammation in heart failure survivor mice.NEW & NOTEWORTHY Chronic and surplus dietary intake of safflower oil (SO) increased plasma creatinine dysregulated post-MI splenocardiac inflammation coincides with the dysfunctional cardiorenal network. In contrast, docosahexaenoic acid (DHA) increases post-MI survival in chronic heart failure. DHA transforms into specialized proresolving mediators (SPMs) and limited proinflammatory prostaglandins and thromboxanes following myocardial infarction (MI). DHA promotes Ly6Clow resolving macrophages and T regulatory cells (Foxp3+) in a splenocardiac manner post-MI.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, Florida
| | - Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, Florida
| | - Xavier De La Rosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
16
|
Torrino S, Bertero T. Metabo-reciprocity in cell mechanics: feeling the demands/feeding the demand. Trends Cell Biol 2022; 32:624-636. [DOI: 10.1016/j.tcb.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
|
17
|
Andre P, Joshi SR, Briscoe SD, Alexander MJ, Li G, Kumar R. Therapeutic Approaches for Treating Pulmonary Arterial Hypertension by Correcting Imbalanced TGF-β Superfamily Signaling. Front Med (Lausanne) 2022; 8:814222. [PMID: 35141256 PMCID: PMC8818880 DOI: 10.3389/fmed.2021.814222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by high blood pressure in the pulmonary circulation driven by pathological remodeling of distal pulmonary arteries, leading typically to death by right ventricular failure. Available treatments improve physical activity and slow disease progression, but they act primarily as vasodilators and have limited effects on the biological cause of the disease—the uncontrolled proliferation of vascular endothelial and smooth muscle cells. Imbalanced signaling by the transforming growth factor-β (TGF-β) superfamily contributes extensively to dysregulated vascular cell proliferation in PAH, with overactive pro-proliferative SMAD2/3 signaling occurring alongside deficient anti-proliferative SMAD1/5/8 signaling. We review the TGF-β superfamily mechanisms underlying PAH pathogenesis, superfamily interactions with inflammation and mechanobiological forces, and therapeutic strategies under development that aim to restore SMAD signaling balance in the diseased pulmonary arterial vessels. These strategies could potentially reverse pulmonary arterial remodeling in PAH by targeting causative mechanisms and therefore hold significant promise for the PAH patient population.
Collapse
|
18
|
Ramis J, Middlewick R, Pappalardo F, Cairns JT, Stewart ID, John AE, Naveed SUN, Krishnan R, Miller S, Shaw DE, Brightling CE, Buttery L, Rose F, Jenkins G, Johnson SR, Tatler AL. Lysyl oxidase-like 2 is increased in asthma and contributes to asthmatic airway remodelling. Eur Respir J 2022; 60:13993003.04361-2020. [PMID: 34996828 PMCID: PMC9260127 DOI: 10.1183/13993003.04361-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/08/2021] [Indexed: 12/04/2022]
Abstract
Background Airway smooth muscle (ASM) cells are fundamental to asthma pathogenesis, influencing bronchoconstriction, airway hyperresponsiveness and airway remodelling. The extracellular matrix (ECM) can influence tissue remodelling pathways; however, to date no study has investigated the effect of ASM ECM stiffness and cross-linking on the development of asthmatic airway remodelling. We hypothesised that transforming growth factor-β (TGF-β) activation by ASM cells is influenced by ECM in asthma and sought to investigate the mechanisms involved. Methods This study combines in vitro and in vivo approaches: human ASM cells were used in vitro to investigate basal TGF-β activation and expression of ECM cross-linking enzymes. Human bronchial biopsies from asthmatic and nonasthmatic donors were used to confirm lysyl oxidase like 2 (LOXL2) expression in ASM. A chronic ovalbumin (OVA) model of asthma was used to study the effect of LOXL2 inhibition on airway remodelling. Results We found that asthmatic ASM cells activated more TGF-β basally than nonasthmatic controls and that diseased cell-derived ECM influences levels of TGF-β activated. Our data demonstrate that the ECM cross-linking enzyme LOXL2 is increased in asthmatic ASM cells and in bronchial biopsies. Crucially, we show that LOXL2 inhibition reduces ECM stiffness and TGF-β activation in vitro, and can reduce subepithelial collagen deposition and ASM thickness, two features of airway remodelling, in an OVA mouse model of asthma. Conclusion These data are the first to highlight a role for LOXL2 in the development of asthmatic airway remodelling and suggest that LOXL2 inhibition warrants further investigation as a potential therapy to reduce remodelling of the airways in severe asthma. Novel role for matrix cross-linking enzyme LOXL2 in asthmatic airway remodelling: LOXL2 is increased in #asthma but LOXL2 inhibition reduces matrix stiffness in airway smooth muscle cells and reduces remodelling in vivohttps://bit.ly/3FnzGb3
Collapse
Affiliation(s)
- Jopeth Ramis
- Biodiscovery Institute, University of Nottingham, UK.,Department of Chemical Engineering, Technological Institute of the Philippines, Philippines
| | - Robert Middlewick
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | | | - Jennifer T Cairns
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Iain D Stewart
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Alison E John
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Shams-Un-Nisa Naveed
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, UK
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Suzanne Miller
- Biodiscovery Institute, University of Nottingham, UK.,Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Dominick E Shaw
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, UK
| | - Lee Buttery
- Biodiscovery Institute, University of Nottingham, UK
| | - Felicity Rose
- Biodiscovery Institute, University of Nottingham, UK
| | - Gisli Jenkins
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Simon R Johnson
- Biodiscovery Institute, University of Nottingham, UK.,Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| |
Collapse
|
19
|
Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nat Biomed Eng 2022; 6:54-66. [PMID: 34083763 PMCID: PMC8908879 DOI: 10.1038/s41551-021-00740-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
The precise understanding and control of microenvironmental cues could be used to optimize the efficacy of cell therapeutics. Here, we show that mesenchymal stromal cells (MSCs) singly coated with a soft conformal gel presenting defined chemomechanical cues promote matrix remodelling by secreting soluble interstitial collagenases in response to the presence of tumour necrosis factor alpha (TNF-α). In mice with fibrotic lung injury, treatment with the coated MSCs maintained normal collagen levels, fibre density and microelasticity in lung tissue, and the continuous presentation of recombinant TNF-α in the gel facilitated the reversal of aberrant tissue remodelling by the cells when inflammation subsided in the host. Gel coatings with predefined chemomechanical cues could be used to tailor cells with specific mechanisms of action for desired therapeutic outcomes.
Collapse
|
20
|
Dieffenbach PB, Aravamudhan A, Fredenburgh LE, Tschumperlin DJ. The Mechanobiology of Vascular Remodeling in the Aging Lung. Physiology (Bethesda) 2022; 37:28-38. [PMID: 34514871 PMCID: PMC8742727 DOI: 10.1152/physiol.00019.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aging is accompanied by declining lung function and increasing susceptibility to lung diseases. The role of endothelial dysfunction and vascular remodeling in these changes is supported by growing evidence, but underlying mechanisms remain elusive. In this review we summarize functional, structural, and molecular changes in the aging pulmonary vasculature and explore how interacting aging and mechanobiological cues may drive progressive vascular remodeling in the lungs.
Collapse
Affiliation(s)
- Paul B. Dieffenbach
- 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Aja Aravamudhan
- 2Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Laura E. Fredenburgh
- 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Daniel J. Tschumperlin
- 2Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
21
|
Dieffenbach PB, Mallarino Haeger C, Rehman R, Corcoran AM, Coronata AMF, Vellarikkal SK, Chrobak I, Waxman AB, Vitali SH, Sholl LM, Padera RF, Lagares D, Polverino F, Owen CA, Fredenburgh LE. A Novel Protective Role for Matrix Metalloproteinase-8 in the Pulmonary Vasculature. Am J Respir Crit Care Med 2021; 204:1433-1451. [PMID: 34550870 PMCID: PMC8865706 DOI: 10.1164/rccm.202108-1863oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Mechanical signaling through cell-matrix interactions plays a major role in progressive vascular remodeling in pulmonary arterial hypertension (PAH). MMP-8 (matrix metalloproteinase-8) is an interstitial collagenase involved in regulating inflammation and fibrosis of the lung and systemic vasculature, but its role in PAH pathogenesis remains unexplored. Objectives: To evaluate MMP-8 as a modulator of pathogenic mechanical signaling in PAH. Methods: MMP-8 levels were measured in plasma from patients with pulmonary hypertension (PH) and controls by ELISA. MMP-8 vascular expression was examined in lung tissue from patients with PAH and rodent models of PH. MMP-8-/- and MMP-8+/+ mice were exposed to normobaric hypoxia or normoxia for 4-8 weeks. PH severity was evaluated by right ventricular systolic pressure, echocardiography, pulmonary artery morphometry, and immunostaining. Proliferation, migration, matrix component expression, and mechanical signaling were assessed in MMP-8-/- and MMP-8+/+ pulmonary artery smooth muscle cells (PASMCs). Measurements and Main Results: MMP-8 expression was significantly increased in plasma and pulmonary arteries of patients with PH compared with controls and induced in the pulmonary vasculature in rodent PH models. Hypoxia-exposed MMP-8-/- mice had significant mortality, increased right ventricular systolic pressure, severe right ventricular dysfunction, and exaggerated vascular remodeling compared with MMP-8+/+ mice. MMP-8-/- PASMCs demonstrated exaggerated proliferation and migration mediated by altered matrix protein expression, elevated integrin-β3 levels, and induction of FAK (focal adhesion kinase) and downstream YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif) activity. Conclusions: MMP-8 is a novel protective factor upregulated in the pulmonary vasculature during PAH pathogenesis. MMP-8 opposes pathologic mechanobiological feedback by altering matrix composition and disrupting integrin-β3/FAK and YAP/TAZ-dependent mechanical signaling in PASMCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Izabela Chrobak
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Sally H. Vitali
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Robert F. Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
22
|
Barbeau S, Gilbert G, Cardouat G, Baudrimont I, Freund-Michel V, Guibert C, Marthan R, Vacher P, Quignard JF, Ducret T. Mechanosensitivity in Pulmonary Circulation: Pathophysiological Relevance of Stretch-Activated Channels in Pulmonary Hypertension. Biomolecules 2021; 11:biom11091389. [PMID: 34572602 PMCID: PMC8470538 DOI: 10.3390/biom11091389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
A variety of cell types in pulmonary arteries (endothelial cells, fibroblasts, and smooth muscle cells) are continuously exposed to mechanical stimulations such as shear stress and pulsatile blood pressure, which are altered under conditions of pulmonary hypertension (PH). Most functions of such vascular cells (e.g., contraction, migration, proliferation, production of extracellular matrix proteins, etc.) depend on a key event, i.e., the increase in intracellular calcium concentration ([Ca2+]i) which results from an influx of extracellular Ca2+ and/or a release of intracellular stored Ca2+. Calcium entry from the extracellular space is a major step in the elevation of [Ca2+]i, involving a variety of plasmalemmal Ca2+ channels including the superfamily of stretch-activated channels (SAC). A common characteristic of SAC is that their gating depends on membrane stretch. In general, SAC are non-selective Ca2+-permeable cation channels, including proteins of the TRP (Transient Receptor Potential) and Piezo channel superfamily. As membrane mechano-transducers, SAC convert physical forces into biological signals and hence into a cell response. Consequently, SAC play a major role in pulmonary arterial calcium homeostasis and, thus, appear as potential novel drug targets for a better management of PH.
Collapse
Affiliation(s)
- Solène Barbeau
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Guillaume Gilbert
- ORPHY, UFR Sciences et Techniques, University of Brest, EA 4324, F-29238 Brest, France;
| | - Guillaume Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Isabelle Baudrimont
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Véronique Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Christelle Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Roger Marthan
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Pierre Vacher
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
- Correspondence:
| |
Collapse
|
23
|
Wang A, Cao S, Stowe JC, Valdez-Jasso D. Substrate Stiffness and Stretch Regulate Profibrotic Mechanosignaling in Pulmonary Arterial Adventitial Fibroblasts. Cells 2021; 10:1000. [PMID: 33922850 PMCID: PMC8146344 DOI: 10.3390/cells10051000] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial adventitial fibroblasts (PAAFs) are important regulators of fibrotic vascular remodeling during the progression of pulmonary arterial hypertension (PAH), a disease that currently has no effective anti-fibrotic treatments. We conducted in-vitro experiments in PAAFs cultured on hydrogels attached to custom-made equibiaxial stretchers at 10% stretch and substrate stiffnesses representing the mechanical conditions of mild and severe stages of PAH. The expression of collagens α(1)I and α(1)III and elastin messenger RNAs (Col1a1, Col3a1, Eln) were upregulated by increased stretch and substrate stiffness, while lysyl oxidase-like 1 and α-smooth muscle actin messenger RNAs (Loxl1, Acta2) were only significantly upregulated when the cells were grown on matrices with an elevated stiffness representative of mild PAH but not on a stiffness representative of severe PAH. Fibronectin messenger RNA (Fn1) levels were significantly induced by increased substrate stiffness and transiently upregulated by stretch at 4 h, but was not significantly altered by stretch at 24 h. We modified our published computational network model of the signaling pathways that regulate profibrotic gene expression in PAAFs to allow for differential regulation of mechanically-sensitive nodes by stretch and stiffness. When the model was modified so that stiffness activated integrin β3, the Macrophage Stimulating 1 or 2 (MST1\2) kinases, angiotensin II (Ang II), transforming growth factor-β (TGF-β), and syndecan-4, and stretch-regulated integrin β3, MST1\2, Ang II, and the transient receptor potential (TRP) channel, the model correctly predicted the upregulation of all six genes by increased stiffness and the observed responses to stretch in five out of six genes, although it could not replicate the non-monotonic effects of stiffness on Loxl1 and Acta2 expression. Blocking Ang II Receptor Type 1 (AT1R) with losartan in-vitro uncovered an interaction between the effects of stretch and stiffness and angiotensin-independent activation of Fn1 expression by stretch in PAAFs grown on 3-kPa matrices. This novel combination of in-vitro and in-silico models of PAAF profibrotic cell signaling in response to altered mechanical conditions may help identify regulators of vascular adventitial remodeling due to changes in stretch and matrix stiffness that occur during the progression of PAH in-vivo.
Collapse
Affiliation(s)
| | | | | | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA; (A.W.); (S.C.); (J.C.S.)
| |
Collapse
|
24
|
Campbell DR, Senger CN, Ryan AL, Magin CM. Engineering Tissue-Informed Biomaterials to Advance Pulmonary Regenerative Medicine. Front Med (Lausanne) 2021; 8:647834. [PMID: 33898484 PMCID: PMC8060451 DOI: 10.3389/fmed.2021.647834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Biomaterials intentionally designed to support the expansion, differentiation, and three-dimensional (3D) culture of induced-pluripotent stem cells (iPSCs) may pave the way to cell-based therapies for chronic respiratory diseases. These conditions are endured by millions of people worldwide and represent a significant cause of morbidity and mortality. Currently, there are no effective treatments for the majority of advanced lung diseases and lung transplantation remains the only hope for many chronically ill patients. Key opinion leaders speculate that the novel coronavirus, COVID-19, may lead to long-term lung damage, further exacerbating the need for regenerative therapies. New strategies for regenerative cell-based therapies harness the differentiation capability of human iPSCs for studying pulmonary disease pathogenesis and treatment. Excitingly, biomaterials are a cell culture platform that can be precisely designed to direct stem cell differentiation. Here, we present a closer look at the state-of-the-art of iPSC differentiation for pulmonary engineering, offer evidence supporting the power of biomaterials to improve stem cell differentiation, and discuss our perspective on the potential for tissue-informed biomaterials to transform pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Donald R. Campbell
- Department of Bioengineering, Denver, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| | - Christiana N. Senger
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chelsea M. Magin
- Department of Bioengineering, Denver, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| |
Collapse
|
25
|
Woodcock CSC, Hafeez N, Handen A, Tang Y, Harvey LD, Estephan LE, Speyer G, Kim S, Bertero T, Chan SY. Matrix stiffening induces a pathogenic QKI-miR-7-SRSF1 signaling axis in pulmonary arterial endothelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 320:L726-L738. [PMID: 33565360 DOI: 10.1152/ajplung.00407.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) refers to a set of heterogeneous vascular diseases defined by elevation of pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), leading to right ventricular (RV) remodeling and often death. Early increases in pulmonary artery stiffness in PAH drive pathogenic alterations of pulmonary arterial endothelial cells (PAECs), leading to vascular remodeling. Dysregulation of microRNAs can drive PAEC dysfunction. However, the role of vascular stiffness in regulating pathogenic microRNAs in PAH is incompletely understood. Here, we demonstrated that extracellular matrix (ECM) stiffening downregulated miR-7 levels in PAECs. The RNA-binding protein quaking (QKI) has been implicated in the biogenesis of miR-7. Correspondingly, we found that ECM stiffness upregulated QKI, and QKI knockdown led to increased miR-7. Downstream of the QKI-miR-7 axis, the serine and arginine-rich splicing factor 1 (SRSF1) was identified as a direct target of miR-7. Correspondingly, SRSF1 was reciprocally upregulated in PAECs exposed to stiff ECM and was negatively correlated with miR-7. Decreased miR-7 and increased QKI and SRSF1 were observed in lungs from patients with PAH and PAH rats exposed to SU5416/hypoxia. Lastly, miR-7 upregulation inhibited human PAEC migration, whereas forced SRSF1 expression reversed this phenotype, proving that miR-7 depended upon SRSF1 to control migration. In aggregate, these results define the QKI-miR-7-SRSF1 axis as a mechanosensitive mechanism linking pulmonary arterial vascular stiffness to pathogenic endothelial function. These findings emphasize implications relevant to PAH and suggest the potential benefit of developing therapies that target this miRNA-dependent axis in PAH.
Collapse
Affiliation(s)
- Chen-Shan Chen Woodcock
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Neha Hafeez
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adam Handen
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ying Tang
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Lloyd D Harvey
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Leonard E Estephan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, Arizona
| | - Seungchan Kim
- Department of Electrical and Computer Engineering, Center for Computational Systems Biology, Prairie View A&M University, Prairie View, Texas
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Mutgan AC, Jandl K, Kwapiszewska G. Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension? Cells 2020; 9:cells9092029. [PMID: 32899187 PMCID: PMC7563239 DOI: 10.3390/cells9092029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Correspondence:
| |
Collapse
|
27
|
Layton TB, Williams L, Colin-York H, McCann FE, Cabrita M, Feldmann M, Brown C, Xie W, Fritzsche M, Furniss D, Nanchahal J. Single cell force profiling of human myofibroblasts reveals a biophysical spectrum of cell states. Biol Open 2020; 9:bio049809. [PMID: 32139395 PMCID: PMC7104857 DOI: 10.1242/bio.049809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/21/2020] [Indexed: 01/31/2023] Open
Abstract
Mechanical force is a fundamental regulator of cell phenotype. Myofibroblasts are central mediators of fibrosis, a major unmet clinical need characterised by the deposition of excessive matrix proteins. Traction forces of myofibroblasts play a key role in remodelling the matrix and modulate the activities of embedded stromal cells. Here, we employ a combination of unsupervised computational analysis, cytoskeletal profiling and single cell traction force microscopy as a functional readout to uncover how the complex spatiotemporal dynamics and mechanics of living human myofibroblast shape sub-cellular profiling of traction forces in fibrosis. We resolve distinct biophysical communities of myofibroblasts, and our results provide a new paradigm for studying functional heterogeneity in human stromal cells.
Collapse
Affiliation(s)
- Thomas B Layton
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Lynn Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Fiona E McCann
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Marisa Cabrita
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Marc Feldmann
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Cameron Brown
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Weilin Xie
- Department of Inflammation Research, Celgene Corporation, San Diego, CA 92121, USA
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Jagdeep Nanchahal
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
28
|
Ding Y, Johnson R, Sharma S, Ding X, Bryant SJ, Tan W. Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells. Acta Biomater 2020; 105:68-77. [PMID: 31982589 DOI: 10.1016/j.actbio.2020.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) hold great promise for vascular smooth muscle regeneration. However, most studies have mainly relied on extended supplementation of sophisticated biochemical regimen to drive MSC differentiation towards vascular smooth muscle cells (vSMCs). Herein we demonstrate a concomitant method that exploits the advantages of biomimetic matrix stiffness and tethered transforming growth factor β1 (TGF-β1) to guide vSMC commitment from human MSCs. Our designed poly(ethylene glycol) hydrogels, presenting a biomimetic stiffness and tethered TGF-β1, provide an instructive environment to potently upregulate smooth muscle marker expression in vitro and in vivo. Importantly, it significantly enhances the functional contractility of vSMCs derived from MSCs within 3 days. Interestingly, compared to non-tethered one, tethered TGF-β1 enhanced the potency of vSMC commitment on hydrogels. We provide compelling evidence that combining stiffness and tethered TGF-β1 on poly(ethylene glycol) hydrogels can be a promising approach to drastically enhance maturation and function of vSMCs from stem cell differentiation in vitro and in vivo. STATEMENT OF SIGNIFICANCE: A fast, reliable and safe regeneration of vascular smooth muscle cells (vSMCs) from stem cell differentiation is promising for vascular tissue engineering and regenerative medicine applications, but remains challenging. Herein, a photo-click hydrogel platform is devised to recapitulate the stiffness of vascular tissue and appropriate presentation of transforming growth factor β1 (TGF-β1) to guide vSMC commitment from mesenchymal stem cells (MSCs). We demonstrate that such concomitant method drastically enhanced regeneration of mature, functional vSMCs from MSCs in vitro and in vivo within only a 3-days span. This work is not only of fundamental scientific importance, revealing how physiochemical factors and the manner of their presentation direct stem cell differentiation, but also attacks the long-standing difficulty in regenerating highly functional vSMCs within a short period.
Collapse
|
29
|
Guzmán EAT, Sun Q, Meenach SA. Development and Evaluation of Paclitaxel-Loaded Aerosol Nanocomposite Microparticles and Their Efficacy Against Air-Grown Lung Cancer Tumor Spheroids. ACS Biomater Sci Eng 2019; 5:6570-6580. [PMID: 32133390 DOI: 10.1021/acsbiomaterials.9b00947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Paclitaxel (as intravenous Taxol) is one of the most applied chemotherapeutics used for the treatment of lung cancer. This project involves the development of a dry powder nanocomposite microparticle (nCmP) aerosol containing PTX-loaded nanoparticles (NP) to be delivered via a dry powder inhaler to the lungs for the treatment of non-small cell lung cancer (NSCLC). Nanoparticles were formulated by a single emulsion and solvent evaporation method, producing smooth, neutral PTX NP of approximately 200 nm in size. PTX nCmP were obtained via spray drying PTX NP with mannitol, producing amorphous wrinkled particles that demonstrated optimal aerosol deposition for in vitro pulmonary delivery. Free PTX, PTX NP, and PTX nCmP were evaluated in vitro in both 2D monolayers and 3D multicellular spheroids (MCS). PTX NP enhanced cytotoxicity when compared to pure drug in the 2D evaluation. However, on a liquid culture 3D tumor spheroid model, PTX NP and pure PTX showed similar efficacy in growth inhibition of MCS. The PTX nCmP formulation had a comparable cytotoxicity impact on MCS compared with free PTX. Finally, PTX nCmP were evaluated in an air-grown 3D MCS platform that mimics the pulmonary environment, representing a new model for the assessment of dry powder formulations.
Collapse
Affiliation(s)
- Elisa A Torrico Guzmán
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, 360 Fascitelli Center of Advanced Engineering, 2 Upper College Road, Kingston, RI 02881, USA
| | - Qihua Sun
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, 360 Fascitelli Center of Advanced Engineering, 2 Upper College Road, Kingston, RI 02881, USA
| | - Samantha A Meenach
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, 360 Fascitelli Center of Advanced Engineering, 2 Upper College Road, Kingston, RI 02881, USA.,University of Rhode Island, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Avedisian Hall, 7 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
30
|
Bloodworth NC, Clark CR, West JD, Snider JC, Gaskill C, Shay S, Scott C, Bastarache J, Gladson S, Moore C, D'Amico R, Brittain EL, Tanjore H, Blackwell TS, Majka SM, Merryman WD. Bone Marrow-Derived Proangiogenic Cells Mediate Pulmonary Arteriole Stiffening via Serotonin 2B Receptor Dependent Mechanism. Circ Res 2019; 123:e51-e64. [PMID: 30566041 DOI: 10.1161/circresaha.118.313397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Pulmonary arterial hypertension is a deadly disease of the pulmonary vasculature for which no disease-modifying therapies exist. Small-vessel stiffening and remodeling are fundamental pathological features of pulmonary arterial hypertension that occur early and drive further endovascular cell dysfunction. Bone marrow (BM)-derived proangiogenic cells (PACs), a specialized heterogeneous subpopulation of myeloid lineage cells, are thought to play an important role in pathogenesis. OBJECTIVE To determine whether BM-derived PACs directly contributed to experimental pulmonary hypertension (PH) by promoting small-vessel stiffening through 5-HT2B (serotonin 2B receptor)-mediated signaling. METHODS AND RESULTS We performed BM transplants using transgenic donor animals expressing diphtheria toxin secondary to activation of an endothelial-specific tamoxifen-inducible Cre and induced experimental PH using hypoxia with SU5416 to enhance endovascular injury and ablated BM-derived PACs, after which we measured right ventricular systolic pressures in a closed-chest procedure. BM-derived PAC lineage tracing was accomplished by transplanting BM from transgenic donor animals with fluorescently labeled hematopoietic cells and treating mice with a 5-HT2B antagonist. BM-derived PAC ablation both prevented and reversed experimental PH with SU5416-enhanced endovascular injury, reducing the number of muscularized pulmonary arterioles and normalizing arteriole stiffness as measured by atomic force microscopy. Similarly, treatment with a pharmacological antagonist of 5-HT2B also prevented experimental PH, reducing the number and stiffness of muscularized pulmonary arterioles. PACs accelerated pulmonary microvascular endothelial cell injury response in vitro, and the presence of BM-derived PACs significantly correlated with stiffer pulmonary arterioles in pulmonary arterial hypertension patients and mice with experimental PH. RNA sequencing of BM-derived PACs showed that 5-HT2B antagonism significantly altered biologic pathways regulating cell proliferation, locomotion and migration, and cytokine production and response to cytokine stimulus. CONCLUSIONS Together, our findings illustrate that BM-derived PACs directly contribute to experimental PH with SU5416-enhanced endovascular injury by mediating small-vessel stiffening and remodeling in a 5-HT2B signaling-dependent manner.
Collapse
Affiliation(s)
- Nathaniel C Bloodworth
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Cynthia R Clark
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - James D West
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - J Caleb Snider
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Christa Gaskill
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Christine Scott
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Julie Bastarache
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Santhi Gladson
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Christy Moore
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Reid D'Amico
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Department of Medicine (E.L.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs Medical Center, Nashville, TN (T.S.B.)
| | - Susan M Majka
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - W David Merryman
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
31
|
Brittain EL, Thennapan T, Maron BA, Chan SY, Austin ED, Spiekerkoetter E, Bogaard HJ, Guignabert C, Paulin R, Machado RF, Yu PB. Update in Pulmonary Vascular Disease 2016 and 2017. Am J Respir Crit Care Med 2019. [PMID: 29533671 DOI: 10.1164/rccm.201801-0062up] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Evan L Brittain
- 1 Division of Cardiovascular Medicine, Department of Medicine.,2 Vanderbilt Translational and Clinical Cardiovascular Research Center.,3 Pulmonary Vascular Center, Department of Medicine, and
| | | | - Bradley A Maron
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,6 Department of Cardiology, Boston VA Healthcare System, Boston, Massachusetts
| | - Stephen Y Chan
- 7 Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric D Austin
- 3 Pulmonary Vascular Center, Department of Medicine, and.,8 Pediatric Pulmonary Hypertension Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edda Spiekerkoetter
- 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,10 Vera Moulton Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, California
| | - Harm J Bogaard
- 11 Pulmonary Hypertension Expert Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Christophe Guignabert
- 12 INSERM UMR-S 999, Le Plessis-Robinson, France.,13 Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Roxane Paulin
- 14 Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada; and
| | - Roberto F Machado
- 15 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Paul B Yu
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Boodagh P, Johnson R, Maly C, Ding Y, Tan W. Soft-sheath, stiff-core microfiber hydrogel for coating vascular implants. Colloids Surf B Biointerfaces 2019; 183:110395. [PMID: 31386934 DOI: 10.1016/j.colsurfb.2019.110395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022]
Abstract
Vascular implants remain clinically challenged due to often-occurring thrombosis and stenosis. Critical to addressing these complications is the design of implant material surfaces to inhibit the activities of platelets, smooth muscle cells (SMCs) and inflammatory cells. Recent mechanobiology studies accentuate the significance of material elasticity to cells and tissues. We thus developed and characterized an implant coating composed of hybrid, viscoelastic microfibers with coaxial core-sheath nanostructure. The coating over metallic stent material was formed by first depositing coaxially-electrospun fibers of poly(L-lactic acid) core and polyethylene glycol dimethacrylate sheath, and then polymerizing fibers with various UV times. Material characterizations were performed to evaluate the coating structure, mechanical property and biocompatibility. Results showed that coaxial microfibers exhibited arterial-like mechanics. The soft surface, high water content and swelling ratio of the coaxial fibers resemble hydrogels, while they are mechanically strong with an elastic modulus of 172-729 kPa. The coating strength and surface elasticity were tunable with the photopolymerization time. Further, the elastic fibers, as conformal coating on stent metal, strongly reduced SMC overgrowth and discouraged platelet adhesion and activation, compared to bare metals. Importantly, after 7-day subcutaneous implantation, coaxial fiber-coated implants showed more favorable in vivo responses with reduced tissue encapsulation, compared to bare stent metals or those coated with a two-layered fiber mixture composed of fibers from individual polymers. The excellent biocompatibility aroused from nanostructural interfaces of hybrid fibers offering hydrated, soft, nonfouling microenvironments. Such integrated fiber system may allow creation of advanced vascular implants that possess physico-mechanical properties of native arteries.
Collapse
Affiliation(s)
- P Boodagh
- Department of Mechanical Engineering, University of Colorado at Boulder, CO, USA; Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| | - R Johnson
- Department of Mechanical Engineering, University of Colorado at Boulder, CO, USA
| | - C Maly
- Department of Mechanical Engineering, University of Colorado at Boulder, CO, USA
| | - Y Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, CO, USA
| | - W Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, CO, USA
| |
Collapse
|
33
|
Rafuse M, Xu X, Stenmark K, Neu CP, Yin X, Tan W. Layer-specific arterial micromechanics and microstructure: Influences of age, anatomical location, and processing technique. J Biomech 2019; 88:113-121. [PMID: 31010593 DOI: 10.1016/j.jbiomech.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/24/2019] [Accepted: 03/18/2019] [Indexed: 01/15/2023]
Abstract
The importance of matrix micromechanics is increasingly recognized in cardiovascular research due to the intimate role they play in local vascular cell physiology. However, variations in micromechanics among arterial layers (i.e. intima, media, adventitia), as well as dependency on local matrix composition and/or structure, anatomical location or developmental stage remain largely unknown. This study determined layer-specific stiffness in elastic arteries, including the main pulmonary artery, ascending aorta, and carotid artery using atomic force indentation. To compare stiffness with age and frozen processing techniques, neonatal and adult pulmonary arteries were tested, while fresh (vibratomed) and frozen (cryotomed) tissues were tested from the adult aorta. Results revealed that the mean compressive modulus varied among the intima, sub-luminal media, inner-middle media, and adventitia layers in the range of 1-10 kPa for adult arteries. Adult samples, when compared to neonatal pulmonary arteries, exhibited increased stiffness in all layers except adventitia. Compared to freshly isolated samples, frozen preparation yielded small stiffness increases in each layer to varied degrees, thus inaccurately representing physiological stiffness. To interpret micromechanics measurements, composition and structure analyses of structural matrix proteins were conducted with histology and multiphoton imaging modalities including second harmonic generation and two-photon fluorescence. Composition analysis of matrix protein area density demonstrated that decrease in the elastin-to-collagen and/or glycosaminoglycan-to-collagen ratios corresponded to stiffness increases in identical layers among different types of arteries. However, composition analysis was insufficient to interpret stiffness variations between layers which had dissimilar microstructure. Detailed microstructure analyses may contribute to more complete understanding of arterial micromechanics.
Collapse
Affiliation(s)
- Michael Rafuse
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xiaobo Yin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
34
|
Bailey KE, Floren ML, D'Ovidio TJ, Lammers SR, Stenmark KR, Magin CM. Tissue-informed engineering strategies for modeling human pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 316:L303-L320. [PMID: 30461289 PMCID: PMC6397349 DOI: 10.1152/ajplung.00353.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo. As a result, pulmonary medicine has recently experienced a rapid expansion in the application of engineering principles to characterize changes in human tissues in vivo and model the resulting pathogenic alterations in vitro. We envision that engineering strategies using precision biomaterials and advanced biomanufacturing will revolutionize current approaches to disease modeling and accelerate the development and validation of personalized therapies. This review highlights how advances in lung tissue characterization reveal dynamic changes in the structure, mechanics, and composition of the extracellular matrix in chronic pulmonary diseases and how this information paves the way for tissue-informed engineering of more organotypic models of human pathology. Current translational challenges are discussed as well as opportunities to overcome these barriers with precision biomaterial design and advanced biomanufacturing techniques that embody the principles of personalized medicine to facilitate the rapid development of novel therapeutics for this devastating group of chronic diseases.
Collapse
Affiliation(s)
- Kolene E Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael L Floren
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Tyler J D'Ovidio
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Lammers
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
35
|
Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metab 2019; 29:124-140.e10. [PMID: 30293773 PMCID: PMC6432652 DOI: 10.1016/j.cmet.2018.09.012] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 05/30/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Dysregulation of extracellular matrix (ECM) deposition and cellular metabolism promotes tumor aggressiveness by sustaining the activity of key growth, invasion, and survival pathways. Yet mechanisms by which biophysical properties of ECM relate to metabolic processes and tumor progression remain undefined. In both cancer cells and carcinoma-associated fibroblasts (CAFs), we found that ECM stiffening mechanoactivates glycolysis and glutamine metabolism and thus coordinates non-essential amino acid flux within the tumor niche. Specifically, we demonstrate a metabolic crosstalk between CAF and cancer cells in which CAF-derived aspartate sustains cancer cell proliferation, while cancer cell-derived glutamate balances the redox state of CAFs to promote ECM remodeling. Collectively, our findings link mechanical stimuli to dysregulated tumor metabolism and thereby highlight a new metabolic network within tumors in which diverse fuel sources are used to promote growth and aggressiveness. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in cancer.
Collapse
|
36
|
Tang H, Wu K, Wang J, Vinjamuri S, Gu Y, Song S, Wang Z, Zhang Q, Balistrieri A, Ayon RJ, Rischard F, Vanderpool R, Chen J, Zhou G, Desai AA, Black SM, Garcia JGN, Yuan JXJ, Makino A. Pathogenic Role of mTORC1 and mTORC2 in Pulmonary Hypertension. JACC Basic Transl Sci 2018; 3:744-762. [PMID: 30623134 PMCID: PMC6314964 DOI: 10.1016/j.jacbts.2018.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/23/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023]
Abstract
G protein-coupled receptors and tyrosine kinase receptors signal through the phosphoinositide 3-kinase/Akt/mTOR pathway to induce cell proliferation, survival, and growth. mTOR is a kinase present in 2 functionally distinct complexes, mTORC1 and mTORC2. Functional disruption of mTORC1 by knockout of Raptor (regulatory associated protein of mammalian target of rapamycin) in smooth muscle cells ameliorated the development of experimental PH. Functional disruption of mTORC2 by knockout of Rictor (rapamycin insensitive companion of mammalian target of rapamycin) caused spontaneous PH by up-regulating platelet-derived growth factor receptors. Use of mTOR inhibitors (e.g., rapamycin) to treat PH should be accompanied by inhibitors of platelet-derived growth factor receptors (e.g., imatinib).
Concentric lung vascular wall thickening due to enhanced proliferation of pulmonary arterial smooth muscle cells is an important pathological cause for the elevated pulmonary vascular resistance reported in patients with pulmonary arterial hypertension. We identified a differential role of mammalian target of rapamycin (mTOR) complex 1 and complex 2, two functionally distinct mTOR complexes, in the development of pulmonary hypertension (PH). Inhibition of mTOR complex 1 attenuated the development of PH; however, inhibition of mTOR complex 2 caused spontaneous PH, potentially due to up-regulation of platelet-derived growth factor receptors in pulmonary arterial smooth muscle cells, and compromised the therapeutic effect of the mTOR inhibitors on PH. In addition, we describe a promising therapeutic strategy using combination treatment with the mTOR inhibitors and the platelet-derived growth factor receptor inhibitors on PH and right ventricular hypertrophy. The data from this study provide an important mechanism-based perspective for developing novel therapies for patients with pulmonary arterial hypertension and right heart failure.
Collapse
Key Words
- EC, endothelial cell
- FOXO3a, Forkhead box O3a
- GPCR, G protein-coupled receptor
- HPH, hypoxia-induced pulmonary hypertension
- PA, pulmonary artery
- PAEC, pulmonary arterial endothelial cell
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary arterial smooth muscle cell
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- PH, pulmonary hypertension
- PI3K, phosphoinositide 3-kinase
- PTEN, phosphatase and tensin homolog
- PVR, pulmonary vascular resistance
- RVH, right ventricular hypertrophy
- RVSP, right ventricular systolic pressure
- Raptor
- Raptor, regulatory associated protein of mammalian target of rapamycin
- Rictor
- Rictor, rapamycin insensitive companion of mammalian target of rapamycin
- SM, smooth muscle
- TKR, tyrosine kinase receptor
- WT, wild-type
- mTOR
- mTORC1, mammalian target of rapamycin complex 1
- mTORC2, mammalian target of rapamycin complex 2
- pAKT, phosphorylated AKT
- pulmonary hypertension
- right ventricle
Collapse
Affiliation(s)
- Haiyang Tang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kang Wu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sujana Vinjamuri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Yali Gu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ziyi Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Zhang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Angela Balistrieri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Franz Rischard
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Rebecca Vanderpool
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jiwang Chen
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois
| | - Guofei Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois
| | - Ankit A Desai
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Cardiology, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
37
|
Culley MK, Chan SY. Mitochondrial metabolism in pulmonary hypertension: beyond mountains there are mountains. J Clin Invest 2018; 128:3704-3715. [PMID: 30080181 DOI: 10.1172/jci120847] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous and fatal disease of the lung vasculature, where metabolic and mitochondrial dysfunction may drive pathogenesis. Similar to the Warburg effect in cancer, a shift from mitochondrial oxidation to glycolysis occurs in diseased pulmonary vessels and the right ventricle. However, appreciation of metabolic events in PH beyond the Warburg effect is only just emerging. This Review discusses molecular, translational, and clinical concepts centered on the mitochondria and highlights promising, controversial, and challenging areas of investigation. If we can move beyond the "mountains" of obstacles in this field and elucidate these fundamental tenets of pulmonary vascular metabolism, such work has the potential to usher in much-needed diagnostic and therapeutic approaches for the mitochondrial and metabolic management of PH.
Collapse
Affiliation(s)
- Miranda K Culley
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Bertero T, Handen AL, Chan SY. Factors Associated with Heritable Pulmonary Arterial Hypertension Exert Convergent Actions on the miR-130/301-Vascular Matrix Feedback Loop. Int J Mol Sci 2018; 19:ijms19082289. [PMID: 30081553 PMCID: PMC6121519 DOI: 10.3390/ijms19082289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by occlusion of lung arterioles, leading to marked increases in pulmonary vascular resistance. Although heritable forms of PAH are known to be driven by genetic mutations that share some commonality of function, the extent to which these effectors converge to regulate shared processes in this disease is unknown. We have causally connected extracellular matrix (ECM) remodeling and mechanotransduction to the miR-130/301 family in a feedback loop that drives vascular activation and downstream PAH. However, the molecular interconnections between factors genetically associated with PAH and this mechano-driven feedback loop remain undefined. We performed systematic manipulation of matrix stiffness, the miR-130/301 family, and factors genetically associated with PAH in primary human pulmonary arterial cells and assessed downstream and reciprocal consequences on their expression. We found that a network of factors linked to heritable PAH converges upon the matrix stiffening-miR-130/301-PPARγ-LRP8 axis in order to remodel the ECM. Furthermore, we leveraged a computational network biology approach to predict a number of additional molecular circuits functionally linking this axis to the ECM. These results demonstrate that multiple genes associated with heritable PAH converge to control the miR-130/301 circuit, triggering a self-amplifying feedback process central to pulmonary vascular stiffening and disease.
Collapse
Affiliation(s)
- Thomas Bertero
- Université Côte d'Azur, CNRS UMR7284, INSERM U1081, IRCAN, Nice 06100, France.
| | - Adam L Handen
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
39
|
Dieffenbach PB, Maracle M, Tschumperlin DJ, Fredenburgh LE. Mechanobiological Feedback in Pulmonary Vascular Disease. Front Physiol 2018; 9:951. [PMID: 30090065 PMCID: PMC6068271 DOI: 10.3389/fphys.2018.00951] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/28/2018] [Indexed: 01/06/2023] Open
Abstract
Vascular stiffening in the pulmonary arterial bed is increasingly recognized as an early disease marker and contributor to right ventricular workload in pulmonary hypertension. Changes in pulmonary artery stiffness throughout the pulmonary vascular tree lead to physiologic alterations in pressure and flow characteristics that may contribute to disease progression. These findings have led to a greater focus on the potential contributions of extracellular matrix remodeling and mechanical signaling to pulmonary hypertension pathogenesis. Several recent studies have demonstrated that the cellular response to vascular stiffness includes upregulation of signaling pathways that precipitate further vascular remodeling, a process known as mechanobiological feedback. The extracellular matrix modifiers, mechanosensors, and mechanotransducers responsible for this process have become increasingly well-recognized. In this review, we discuss the impact of vascular stiffening on pulmonary hypertension morbidity and mortality, evidence in favor of mechanobiological feedback in pulmonary hypertension pathogenesis, and the major contributors to mechanical signaling in the pulmonary vasculature.
Collapse
Affiliation(s)
- Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Marcy Maracle
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
40
|
Sun W, Chan SY. Pulmonary Arterial Stiffness: An Early and Pervasive Driver of Pulmonary Arterial Hypertension. Front Med (Lausanne) 2018; 5:204. [PMID: 30073166 PMCID: PMC6058030 DOI: 10.3389/fmed.2018.00204] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a historically neglected and highly morbid vascular disease that leads to right heart failure and, in some cases, death. The molecular origins of this disease have been poorly defined, and as such, current pulmonary vasodilator therapies do not cure or reverse this disease. Although extracellular matrix (ECM) remodeling and pulmonary arterial stiffening have long been associated with end-stage PAH, recent studies have reported that such vascular stiffening can occur early in pathogenesis. Furthermore, there is emerging evidence that ECM stiffening may represent a key first step in pathogenic reprogramming and molecular crosstalk among endothelial, smooth muscle, and fibroblast cells in the remodeled pulmonary vessel. Such processes represent the convergence of activation of a number of specific mechanoactivated signaling pathways, microRNAs, and metabolic pathways in pulmonary vasculature. In this review, we summarize the contemporary understanding of vascular stiffening as a driver of PAH, its mechanisms, potential therapeutic targets and clinical perspectives. Of note, early intervention targeting arterial stiffness may break the vicious cycle of PAH progression, leading to outcome improvement which has not been demonstrated by current vasodilator therapy.
Collapse
Affiliation(s)
| | - Stephen Y. Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
41
|
Ding Y, Xu X, Sharma S, Floren M, Stenmark K, Bryant SJ, Neu CP, Tan W. Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomater 2018; 74:121-130. [PMID: 29753912 DOI: 10.1016/j.actbio.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/22/2023]
Abstract
The ability to assess changes in smooth muscle contractility and pharmacological responsiveness in normal or pathological-relevant vascular tissue environments is critical to enable vascular drug discovery. However, major challenges remain in both capturing the complexity of in vivo vascular remodeling and evaluating cell contractility in complex, tissue-like environments. Herein, we developed a biomimetic fibrous hydrogel with tunable structure, stiffness, and composition to resemble the native vascular tissue environment. This hydrogel platform was further combined with the combinatory protein array technology as well as advanced approaches to measure cell mechanics and contractility, thus permitting evaluation of smooth muscle functions in a variety of tissue-like microenvironments. Our results demonstrated that biomimetic fibrous structure played a dominant role in smooth muscle function, while the presentation of adhesion proteins co-regulated it to various degrees. Specifically, fibre networks enabled cell infiltration and upregulated expression of actomyosin proteins in contrast to flat hydrogels. Remarkably, fibrous structure and physiologically relevant stiffness of hydrogels cooperatively enhanced smooth muscle contractility and pharmacological responses to vasoactive drugs at both the single cell and intact tissue levels. Together, this study is the first to demonstrate alterations of human vascular smooth muscle contractility and pharmacological responsiveness in biomimetic soft, fibrous environments with a cellular array platform. The integrated platform produced here could enable investigations for pathobiology and pharmacological interventions by developing a broad range of patho-physiologically relevant in vitro tissue models. STATEMENT OF SIGNIFICANCE Engineering functional smooth muscle in vitro holds the great potential for diseased tissue replacement and drug testing. A central challenge is recapitulating the smooth muscle contractility and pharmacological responses given its significant phenotypic plasticity in response to changes in environment. We present a biomimetic fibrous hydrogel with tunable structure, stiffness, and composition that enables the creation of functional smooth muscle tissues in the native-like vascular tissue microenvironment. Such fibrous hydrogel is further combined with the combinatory protein array technology to construct a cellular array for evaluation of smooth muscle phenotype, contraction, and cell mechanics. The integrated platform produced here could be promising for developing a broad range of normal or diseased in vitro tissue models.
Collapse
Affiliation(s)
- Yonghui Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Sadhana Sharma
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Michael Floren
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA; Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA; BioFrontiers Institute, Material Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
42
|
Samokhin AO, Stephens T, Wertheim BM, Wang RS, Vargas SO, Yung LM, Cao M, Brown M, Arons E, Dieffenbach PB, Fewell JG, Matar M, Bowman FP, Haley KJ, Alba GA, Marino SM, Kumar R, Rosas IO, Waxman AB, Oldham WM, Khanna D, Graham BB, Seo S, Gladyshev VN, Yu PB, Fredenburgh LE, Loscalzo J, Leopold JA, Maron BA. NEDD9 targets COL3A1 to promote endothelial fibrosis and pulmonary arterial hypertension. Sci Transl Med 2018; 10:eaap7294. [PMID: 29899023 PMCID: PMC6223025 DOI: 10.1126/scitranslmed.aap7294] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Germline mutations involving small mothers against decapentaplegic-transforming growth factor-β (SMAD-TGF-β) signaling are an important but rare cause of pulmonary arterial hypertension (PAH), which is a disease characterized, in part, by vascular fibrosis and hyperaldosteronism (ALDO). We developed and analyzed a fibrosis protein-protein network (fibrosome) in silico, which predicted that the SMAD3 target neural precursor cell expressed developmentally down-regulated 9 (NEDD9) is a critical ALDO-regulated node underpinning pathogenic vascular fibrosis. Bioinformatics and microscale thermophoresis demonstrated that oxidation of Cys18 in the SMAD3 docking region of NEDD9 impairs SMAD3-NEDD9 protein-protein interactions in vitro. This effect was reproduced by ALDO-induced oxidant stress in cultured human pulmonary artery endothelial cells (HPAECs), resulting in impaired NEDD9 proteolytic degradation, increased NEDD9 complex formation with Nk2 homeobox 5 (NKX2-5), and increased NKX2-5 binding to COL3A1 Up-regulation of NEDD9-dependent collagen III expression corresponded to changes in cell stiffness measured by atomic force microscopy. HPAEC-derived exosomal signaling targeted NEDD9 to increase collagen I/III expression in human pulmonary artery smooth muscle cells, identifying a second endothelial mechanism regulating vascular fibrosis. ALDO-NEDD9 signaling was not affected by treatment with a TGF-β ligand trap and, thus, was not contingent on TGF-β signaling. Colocalization of NEDD9 with collagen III in HPAECs was observed in fibrotic pulmonary arterioles from PAH patients. Furthermore, NEDD9 ablation or inhibition prevented fibrotic vascular remodeling and pulmonary hypertension in animal models of PAH in vivo. These data identify a critical TGF-β-independent posttranslational modification that impairs SMAD3-NEDD9 binding in HPAECs to modulate vascular fibrosis and promote PAH.
Collapse
Affiliation(s)
- Andriy O Samokhin
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Thomas Stephens
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bradley M Wertheim
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lai-Ming Yung
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Minwei Cao
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marcel Brown
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Arons
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Majed Matar
- Celsion Corporation, Lawrenceville, NJ 08648, USA
| | - Frederick P Bowman
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - George A Alba
- Department of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stefano M Marino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Biotechnology, Akdeniz University, Konyaaltı, Antalya 07058, Turkey
| | - Rahul Kumar
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dinesh Khanna
- Division of Rheumatology, University of Michigan Scleroderma Program, Ann Arbor, MI 48109, USA
| | - Brian B Graham
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sachiko Seo
- Department of Hematology and Oncology, National Cancer Research Center East, Kashiwa-shi, Chiba-ken 277-8577, Japan
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, Wang Y, Wen J, van Deursen J, Sicard D, Tschumperlin D, Zou H, Huang WC, Urrutia R, Shah VH, Kang N. P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts. Gastroenterology 2018; 154:2209-2221.e14. [PMID: 29454793 PMCID: PMC6039101 DOI: 10.1053/j.gastro.2018.02.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) contribute to desmoplasia and stiffness of liver metastases by differentiating into matrix-producing myofibroblasts. We investigated whether stiffness due to the presence of tumors increases activation of HSCs into myofibroblasts and their tumor-promoting effects, as well as the role of E1A binding protein p300, a histone acetyltransferase that regulates transcription, in these processes. METHODS HSCs were isolated from liver tissues of patients, mice in which the p300 gene was flanked by 2 loxP sites (p300F/F mice), and p300+/+ mice (controls). The HSCs were placed on polyacrylamide gels with precisely defined stiffness, and their activation (differentiation into myofibroblasts) was assessed by immunofluorescence and immunoblot analyses for alpha-smooth muscle actin. In HSCs from mice, the p300 gene was disrupted by cre recombinase. In human HSCs, levels of p300 were knocked down with small hairpin RNAs or a mutant form of p300 that is not phosphorylated by AKT (p300S1834A) was overexpressed. Human HSCs were also cultured with inhibitors of p300 (C646), PI3K signaling to AKT (LY294002), or RHOA (C3 transferase) and effects on stiffness-induced activation were measured. RNA sequencing and chromatin immunoprecipitation-quantitative polymerase chain reaction were used to identify HSC genes that changed expression levels in response to stiffness. We measured effects of HSC-conditioned media on proliferation of HT29 colon cancer cells and growth of tumors following subcutaneous injection of these cells into mice. MC38 colon cancer cells were injected into portal veins of p300F/Fcre and control mice, and liver metastases were measured. p300F/Fcre and control mice were given intraperitoneal injections of CCl4 to induce liver fibrosis. Liver tissues were collected and analyzed by immunofluorescence, immunoblot, and histology. RESULTS Substrate stiffness was sufficient to activate HSCs, leading to nuclear accumulation of p300. Disrupting p300 level or activity blocked stiffness-induced activation of HSCs. In HSCs, substrate stiffness activated AKT signaling via RHOA to induce phosphorylation of p300 at serine 1834; this caused p300 to translocate to the nucleus, where it up-regulated transcription of genes that increase activation of HSCs and metastasis, including CXCL12. MC38 cells, injected into portal veins, formed fewer metastases in livers of p300F/Fcre mice than control mice. Expression of p300 was increased in livers of mice following injection of CCl4; HSC activation and collagen deposition were reduced in livers of p300F/Fcre mice compared with control mice. CONCLUSIONS In studies of mice, we found liver stiffness to activate HSC differentiation into myofibroblasts, which required nuclear accumulation of p300. p300 increases HSC expression of genes that promote metastasis.
Collapse
Affiliation(s)
- Changwei Dou
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Department of Hepatobiliary Surgery, Zhejiang provincial People's Hospital, Hangzhou, China
| | - Zhikui Liu
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Hongbin Zhang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Chen Chen
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Usman Yaqoob
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Jialing Wen
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hongzhi Zou
- Guangdong Institute of Gastroenterology, 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taiwan, R.O.C
| | - Raul Urrutia
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,To whom correspondence should be addressed: Ningling Kang, Ph.D., Hormel Institute, 801 16th Ave NE Austin MN 55912. Fax: (507) 437-9606. Phone: (507) 437-9680. . Vijay Shah, M.D., Mayo Clinic, 200 1st ST SW Rochester MN 55915. Fax: (507) 255-6318. Phone: (507) 255-6028.
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
44
|
Oh RS, Haak AJ, Smith KMJ, Ligresti G, Choi KM, Xie T, Wang S, Walters PR, Thompson MA, Freeman MR, Manlove LJ, Chu VM, Feghali-Bostwick C, Roden AC, Schymeinsky J, Pabelick CM, Prakash YS, Vassallo R, Tschumperlin DJ. RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. J Cell Sci 2018; 131:jcs.209932. [PMID: 29678906 DOI: 10.1242/jcs.209932] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Myofibroblasts play key roles in wound healing and pathological fibrosis. Here, we used an RNAi screen to characterize myofibroblast regulatory genes, using a high-content imaging approach to quantify α-smooth muscle actin stress fibers in cultured human fibroblasts. Screen hits were validated on physiological compliance hydrogels, and selected hits tested in primary fibroblasts from patients with idiopathic pulmonary fibrosis. Our RNAi screen led to the identification of STAT3 as an essential mediator of myofibroblast activation and function. Strikingly, we found that STAT3 phosphorylation, while responsive to exogenous ligands on both soft and stiff matrices, is innately active on a stiff matrix in a ligand/receptor-independent, but ROCK- and JAK2-dependent fashion. These results demonstrate how a cytokine-inducible signal can become persistently activated by pathological matrix stiffening. Consistent with a pivotal role for this pathway in driving persistent fibrosis, a STAT3 inhibitor attenuated murine pulmonary fibrosis when administered in a therapeutic fashion after bleomycin injury. Our results identify novel genes essential for the myofibroblast phenotype, and point to STAT3 as an important target in pulmonary fibrosis and other fibrotic diseases.
Collapse
Affiliation(s)
- Raymond S Oh
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Karry M J Smith
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung Moo Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tiao Xie
- Image and Data Analysis Core, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula R Walters
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael A Thompson
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle R Freeman
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Logan J Manlove
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Vivian M Chu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jürgen Schymeinsky
- Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Christina M Pabelick
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Y S Prakash
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Sicard D, Haak AJ, Choi KM, Craig AR, Fredenburgh LE, Tschumperlin DJ. Aging and anatomical variations in lung tissue stiffness. Am J Physiol Lung Cell Mol Physiol 2018; 314:L946-L955. [PMID: 29469613 DOI: 10.1152/ajplung.00415.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung function is inherently mechanical in nature and depends on the capacity to conduct air and blood to and from the gas exchange regions. Variations in the elastic properties of the human lung across anatomical compartments and with aging are likely important determinants of lung function but remain relatively poorly characterized. Here we applied atomic force microscopy microindentation to characterize human lung tissue from subjects ranging in age from 11 to 60 yr old. We observed striking anatomical variations in elastic modulus, with the airways (200- to 350-µm diameter) the stiffest and the parenchymal regions the most compliant. Vessels (diameter < 100 µm) represented an intermediate mechanical environment and displayed diameter-dependent trends in elastic modulus. Binning our samples into younger (11-30 yr old) and older (41-60 yr old) groups, we observed significant age-related increases in stiffness in parenchymal and vessel compartments, with the most pronounced changes in the vessels. To investigate cellular mechanisms that might contribute to vascular stiffening with aging, we studied primary human pulmonary artery smooth muscle cells from subjects ranging in age from 11 to 60 yr old. While we observed no change in the mechanical properties of the cells themselves, we did observe trends toward increases in traction forces and extracellular matrix deposition with aging. These results demonstrate age-related changes in tissue mechanical properties that likely contribute to impaired lung function with aging and underscore the potential to identify mechanisms that contribute to mechanical tissue remodeling through the study of human cells and tissues from across the aging spectrum.
Collapse
Affiliation(s)
- Delphine Sicard
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic , Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic , Rochester, Minnesota
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic , Rochester, Minnesota
| | - Alexandria R Craig
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic , Rochester, Minnesota
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
46
|
Haak AJ, Tan Q, Tschumperlin DJ. Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biol 2017; 73:64-76. [PMID: 29274939 DOI: 10.1016/j.matbio.2017.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/09/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
The composition and mechanical properties of the extracellular matrix are dramatically altered during the development and progression of pulmonary fibrosis. Recent evidence indicates that these changes in matrix composition and mechanics are not only end-results of fibrotic remodeling, but active participants in driving disease progression. These insights have stimulated interest in identifying the components and physical aspects of the matrix that contribute to cell activation and disease initiation and progression. This review summarizes current knowledge regarding the biomechanics and dynamics of the ECM in mouse models and human IPF, and discusses how matrix mechanical and compositional changes might be non-invasively assessed, therapeutically targeted, and biologically restored to resolve fibrosis.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States
| | - Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States.
| |
Collapse
|
47
|
Dieffenbach PB, Haeger CM, Coronata AMF, Choi KM, Varelas X, Tschumperlin DJ, Fredenburgh LE. Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2. Am J Physiol Lung Cell Mol Physiol 2017; 313:L628-L647. [PMID: 28642262 PMCID: PMC5625262 DOI: 10.1152/ajplung.00173.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial stiffness is an independent risk factor for mortality in pulmonary hypertension (PH) and plays a critical role in PH pathophysiology. Our laboratory has recently demonstrated arterial stiffening early in experimental PH, along with evidence for a mechanobiological feedback loop by which arterial stiffening promotes further cellular remodeling behaviors (Liu F, Haeger CM, Dieffenbach PB, Sicard D, Chrobak I, Coronata AM, Suárez Velandia MM, Vitali S, Colas RA, Norris PC, Marinković A, Liu X, Ma J, Rose CD, Lee SJ, Comhair SA, Erzurum SC, McDonald JD, Serhan CN, Walsh SR, Tschumperlin DJ, Fredenburgh LE. JCI Insight 1: e86987, 2016). Cyclooxygenase-2 (COX-2) and prostaglandin signaling have been implicated in stiffness-mediated regulation, with prostaglandin activity inversely correlated to matrix stiffness and remodeling behaviors in vitro, as well as to disease progression in rodent PH models. The mechanism by which mechanical signaling translates to reduced COX-2 activity in pulmonary vascular cells is unknown. The present work investigated the transcriptional regulators Yes-associated protein (YAP) and WW domain-containing transcription regulator 1 (WWTR1, a.k.a., TAZ), which are known drivers of downstream mechanical signaling, in mediating stiffness-induced changes in COX-2 and prostaglandin activity in pulmonary artery smooth muscle cells (PASMCs). We found that YAP/TAZ activity is increased in PAH PASMCs and experimental PH and is necessary for the development of stiffness-dependent remodeling phenotypes. Knockdown of YAP and TAZ markedly induces COX-2 expression and downstream prostaglandin production by approximately threefold, whereas overexpression of YAP or TAZ reduces COX-2 expression and prostaglandin production to near undetectable levels. Together, our findings demonstrate a stiffness-dependent YAP/TAZ-mediated positive feedback loop that drives remodeling phenotypes in PASMCs via reduced COX-2 and prostaglandin activity. The ability to interrupt this critical mechanobiological feedback loop and enhance local prostaglandin activity via manipulation of YAP/TAZ signaling presents a highly attractive novel strategy for the treatment of PH.
Collapse
Affiliation(s)
- Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Christina Mallarino Haeger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anna Maria F Coronata
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts;
| |
Collapse
|
48
|
Collum SD, Chen NY, Hernandez AM, Hanmandlu A, Sweeney H, Mertens TCJ, Weng T, Luo F, Molina JG, Davies J, Horan IP, Morrell NW, Amione-Guerra J, Al-Jabbari O, Youker K, Sun W, Rajadas J, Bollyky PL, Akkanti BH, Jyothula S, Sinha N, Guha A, Karmouty-Quintana H. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol 2017; 174:3284-3301. [PMID: 28688167 PMCID: PMC5595757 DOI: 10.1111/bph.13947] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Group III pulmonary hypertension (PH) is a highly lethal and widespread lung disorder that is a common complication in idiopathic pulmonary fibrosis (IPF) where it is considered to be the single most significant predictor of mortality. While increased levels of hyaluronan have been observed in IPF patients, hyaluronan-mediated vascular remodelling and the hyaluronan-mediated mechanisms promoting PH associated with IPF are not fully understood. EXPERIMENTAL APPROACH Explanted lung tissue from patients with IPF with and without a diagnosis of PH was used to identify increased levels of hyaluronan. In addition, an experimental model of lung fibrosis and PH was used to test the capacity of 4-methylumbeliferone (4MU), a hyaluronan synthase inhibitor to attenuate PH. Human pulmonary artery smooth muscle cells (PASMC) were used to identify the hyaluronan-specific mechanisms that lead to the development of PH associated with lung fibrosis. KEY RESULTS In patients with IPF and PH, increased levels of hyaluronan and expression of hyaluronan synthase genes are present. Interestingly, we also report increased levels of hyaluronidases in patients with IPF and IPF with PH. Remarkably, our data also show that 4MU is able to inhibit PH in our model either prophylactically or therapeutically, without affecting fibrosis. Studies to determine the hyaluronan-specific mechanisms revealed that hyaluronan fragments result in increased PASMC stiffness and proliferation but reduced cell motility in a RhoA-dependent manner. CONCLUSIONS AND IMPLICATIONS Taken together, our results show evidence of a unique mechanism contributing to PH in the context of lung fibrosis.
Collapse
Affiliation(s)
- Scott D Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Adriana M Hernandez
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Ankit Hanmandlu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Heather Sweeney
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Jose G Molina
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Jonathan Davies
- Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ian P Horan
- Cambridge BHF Centre for Cardiovascular Research Excellence, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nick W Morrell
- Cambridge BHF Centre for Cardiovascular Research Excellence, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Odeaa Al-Jabbari
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Keith Youker
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Wenchao Sun
- Biomaterials and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Neeraj Sinha
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Ashrith Guha
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
49
|
Dabral S, Pullamsetti SS. Vascular Stiffness and Mechanotransduction: Back in the Limelight. Am J Respir Crit Care Med 2017; 196:527-530. [DOI: 10.1164/rccm.201611-2254le] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Swati Dabral
- Max Planck Institute for Heart and Lung ResearchBad Nauheim, Germanyand
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung ResearchBad Nauheim, Germanyand
- Justus-Liebig UniversityGiessen, Germany
| |
Collapse
|
50
|
Penumatsa KC, Toksoz D, Warburton RR, Kharnaf M, Preston IR, Kapur NK, Khosla C, Hill NS, Fanburg BL. Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 313:L752-L762. [PMID: 28775095 DOI: 10.1152/ajplung.00170.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022] Open
Abstract
Tissue matrix remodeling and fibrosis leading to loss of pulmonary arterial and right ventricular compliance are important features of both experimental and clinical pulmonary hypertension (PH). We have previously reported that transglutaminase 2 (TG2) is involved in PH development while others have shown it to be a cross-linking enzyme that participates in remodeling of extracellular matrix in fibrotic diseases in general. In the present studies, we used a mouse model of experimental PH (Sugen 5416 and hypoxia; SuHypoxia) and cultured primary human cardiac and pulmonary artery adventitial fibroblasts to evaluate the relationship of TG2 to the processes of fibrosis, protein cross-linking, extracellular matrix collagen accumulation, and fibroblast-to-myofibroblast transformation. We report here that TG2 expression and activity as measured by serotonylated fibronectin and protein cross-linking activity along with fibrogenic markers are significantly elevated in lungs and right ventricles of SuHypoxic mice with PH. Similarly, TG2 expression and activity, protein cross-linking activity, and fibrogenic markers are significantly increased in cultured cardiac and pulmonary artery adventitial fibroblasts in response to hypoxia exposure. Pharmacological inhibition of TG2 activity with ERW1041E significantly reduced hypoxia-induced cross-linking activity and synthesis of collagen 1 and α-smooth muscle actin in both the in vivo and in vitro studies. TG2 short interfering RNA had a similar effect in vitro. Our results suggest that TG2 plays an important role in hypoxia-induced pulmonary and right ventricular tissue matrix remodeling in the development of PH.
Collapse
Affiliation(s)
- Krishna C Penumatsa
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Deniz Toksoz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Rod R Warburton
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Mousa Kharnaf
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Ioana R Preston
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Navin K Kapur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts; and
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California
| | - Nicholas S Hill
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Barry L Fanburg
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts;
| |
Collapse
|