1
|
Wang XY, Yan Y, Guo XR, Lu A, Jiang LX, Zhu YJ, Shi YJ, Liu XY, Wang JC. Enhanced Tumor Immunotherapy by Triple Amplification Effects of Nanomedicine on the STING Signaling Pathway in Dendritic Cells. Adv Healthc Mater 2024:e2403143. [PMID: 39440648 DOI: 10.1002/adhm.202403143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Insufficient activation of stimulator of interferon genes (STING) signaling pathway in tumor-associated dendritic cells limits the efficiency of tumor immunotherapy. Herein, the "three-in-one" IAHA-LaP/siPTPN6 NPs containing lanthanum ions (La3+), cGAMP, and PTPN6 siRNA are developed for triple amplification of the STING pathway. In vitro results demonstrate that La3+ significantly promotes cGAMP-mediated activation of the STING pathway by enhancing the phosphorylation of STING, TBK1, IRF3, and NF-κB p65. Moreover, the IAHA-LaP/siPTPN6 NPs further significantly enhance the phosphorylation of STING and NF-κB p65 and augment K63-linked ubiquitination of STING protein via siPTPN6-mediated downregulation of SHP-1 protein. Furthermore, NPs improve the secretion of IFNβ (2.4-fold), IL-6 (1.5-fold), and TNF-α (1.4-fold), thereby promoting DCs maturation compared to the mixture of La3+ and cGAMP. In vivo results show that the IAHA-LaP/siPTPN6 NPs remarkably inhibit primary tumor growth by increasing the percentage of mature DCs in tumor-draining lymph nodes, polarizing M2/M1 phenotype in TME, and promoting the infiltration of CD8+T cells into tumors. Moreover, these NPs dramatically prevent the growth of distal tumor by inducing systemic anti-tumor immunity and generating a long-term anti-tumor memory for protection against tumor recurrence in mice bearing bilateral B16F10. These IAHA-LaP/siPTPN6 NPs may offer a promising platform for robust anti-tumor immune responses.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Ru Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lin-Xia Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuan-Jun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Jie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Peking University Ningbo Institute of Marine Medicine, Ningbo, 315832, China
| |
Collapse
|
2
|
Morgan NR, Ramdas P, Bhuvanendran S, Radhakrishnan AK. Delineating the Immunotherapeutic Potential of Vitamin E and Its Analogues in Cancer: A Comprehensive Narrative Review. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5512422. [PMID: 39416707 PMCID: PMC11480965 DOI: 10.1155/2024/5512422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
Cancer is a disease resulting from uncontrolled cell division, which significantly contributes to human mortality rates. An alternative approach to cancer treatment, such as cancer immunotherapy, is needed as the existing chemotherapy and radiotherapy approaches target the cancer cells and healthy dividing cells. Vitamin E is a plant-derived lipid-soluble antioxidant with numerous health-promoting benefits, including anticancer and immunomodulatory properties. Vitamin E comprises eight natural isoforms: tocopherols (α, β, δ, and γ) and tocotrienols (α, β, δ, and γ). While initial research focused on the anticancer properties of α-tocopherol, there is growing interest in other natural forms and modified synthetic analogues of vitamin E due to their unique properties and enhanced anticancer effects. Hence, this review is aimed at outlining the effect of vitamin E and its analogues at various steps of the cancer-immunity cycle that can be used to stimulate anticancer immune responses.
Collapse
Affiliation(s)
- Nevvin Raaj Morgan
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Ammu Kutty Radhakrishnan
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Farhat-Younis L, Na M, Zarfin A, Khateeb A, Santana-Magal N, Richter A, Gutwillig A, Rasoulouniriana D, Gleiberman A, Beck L, Giger T, Ashkenazi A, Barzel A, Rider P, Carmi Y. Expression of modified FcγRI enables myeloid cells to elicit robust tumor-specific cytotoxicity. eLife 2024; 12:RP91999. [PMID: 38885133 PMCID: PMC11182644 DOI: 10.7554/elife.91999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Despite the central role of T cells in tumor immunity, attempts to harness their cytotoxic capacity as a therapy have met limited efficacy, partially as a result of the suppressive microenvironment which limits their migration and activation. In contrast, myeloid cells massively infiltrate tumors and are well adapted to survive these harsh conditions. While they are equipped with cell-killing abilities, they often adopt an immunosuppressive phenotype upon migration to tumors. Therefore, the questions of how to modify their activation programming against cancer, and what signaling cascades should be activated in myeloid cells to elicit their cytotoxicity have remained unclear. Here, we found that activation of IgM-induced signaling in murine myeloid cells results in secretion of lytic granules and massive tumor cell death. These findings open venues for designing novel immunotherapy by equipping monocytes with chimeric receptors that target tumor antigens and consequently, signal through IgM receptor. Nonetheless, we found that myeloid cells do not express the antibody-derived portion used to recognize the tumor antigen due to the induction of an ER stress response. To overcome this limitation, we designed chimeric receptors that are based on the high-affinity FcγRI for IgG. Incubation of macrophages expressing these receptors along with tumor-binding IgG induced massive tumor cell killing and secretion of reactive oxygen species and Granzyme B. Overall, this work highlights the challenges involved in genetically reprogramming the signaling in myeloid cells and provides a framework for endowing myeloid cells with antigen-specific cytotoxicity.
Collapse
Affiliation(s)
- Leen Farhat-Younis
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Manho Na
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Amichai Zarfin
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Aseel Khateeb
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | | | - Alon Richter
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Amit Gutwillig
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | | | - Annette Gleiberman
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Lir Beck
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv UniversityTel AvivIsrael
| | - Tamar Giger
- Department of Molecular Cell Biology, Weizmann InstituteRehovotIsrael
| | - Avraham Ashkenazi
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Adi Barzel
- Department of Biochemistry Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Peleg Rider
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Yaron Carmi
- Department of Pathology, School of Medicine, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
4
|
Liu Y, Huang Y, Cui HW, Wang Y, Ma Z, Xiang Y, Xin HY, Liang JQ, Xin HW. Perspective view of allogeneic IgG tumor immunotherapy. Cancer Cell Int 2024; 24:100. [PMID: 38461238 PMCID: PMC10924995 DOI: 10.1186/s12935-024-03290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yuanyi Huang
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| | - Hong-Wei Cui
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China
| | - YingYing Wang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - ZhaoWu Ma
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Jun-Qing Liang
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
- Key Laboratory of Human Genetic Diseases Research of Inner Mongolia, Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng, 024000, Inner Mongolian Autonomous Region, China.
| |
Collapse
|
5
|
Prognostic Signature Development on the Basis of Macrophage Phagocytosis-Mediated Oxidative Phosphorylation in Bladder Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4754935. [PMID: 36211821 PMCID: PMC9537622 DOI: 10.1155/2022/4754935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Background Macrophages are correlated with the occurrence and progression of bladder cancer (BCa). However, few research has focused on the predictive relevance of macrophage phagocytosis-mediated oxidative phosphorylation (MPOP) with BCa overall survival. Herein, we aimed to propose the targeted macrophage control based on MPOP as a treatment method for BCa immunotherapy. Methods The mRNA expression data sets and clinical data of bladder cancer originated from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data set. A systematic study of several GEO data sets found differentially expressed macrophage phagocytosis regulators (DE-MPR) between BCa and normal tissues. To discover overall survival-associated DE-MPR and develop prognostic gene signature with performance validated based on receiver operating curves and Kaplan-Meier curves, researchers used univariate and Lasso Cox regression analysis (ROC). External validation was done with GSE13057 and GSE69795. To clarify its molecular mechanism and immune relevance, GO/KEGG enrichment analysis and tumor immune analysis were used. To find independent bladder cancer prognostic variables, researchers employed multivariate Cox regression analysis. Finally, using TCGA data set, a predictive nomogram was built. Results In BCa, a four-gene signature of oxidative phosphorylation composed of PTPN6, IKZF3, HDLBP, and EMC1 was found to predict overall survival. With the MPOP feature, the ROC curve showed that TCGA data set and the external validation data set performed better in predicting overall survival than the traditional AJCC stage. The four-gene signature can identify cancers from normal tissue and separate patients into the high-risk and low-risk groups with different overall survival rates. The four MPOP-gene signature was an independent predictive factor for BCa. In predicting overall survival, a nomogram integrating genetic and clinical prognostic variables outperformed AJCC staging. Multiple oncological features and invasion-associated pathways were identified in the high-risk group, which were also correlated with significantly lower levels of immune cell infiltration. Conclusion This paper found the MPOP-feature gene and developed a predictive nomogram capable of accurately predicting bladder cancer overall survival. The above discoveries can contribute to the development of personalized treatments and medical decisions.
Collapse
|
6
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
7
|
Lao Y, Shen D, Zhang W, He R, Jiang M. Immune Checkpoint Inhibitors in Cancer Therapy—How to Overcome Drug Resistance? Cancers (Basel) 2022; 14:cancers14153575. [PMID: 35892835 PMCID: PMC9331941 DOI: 10.3390/cancers14153575] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICIs) are an important strategy in cancer therapy. However, with the widespread clinical use of ICIs, people gradually found that ICIs may not be effective enough to eliminate tumor tissue for certain patients. The resistance to ICI treatment makes some patients unable to benefit from their antitumor effects. Therefore, it is vital to understand their antitumor and drug resistance mechanisms to better narrow the ICI-resistant patient population. This review outlines the antitumor action sites and mechanisms of different types of ICIs and lists the main reason of ICI resistance based on recent studies. Finally, we propose current and future solutions for resistance to ICIs. Abstract Immune checkpoint inhibitors (ICIs), antagonists used to remove tumor suppression of immune cells, have been widely used in clinical settings. Their high antitumor effect makes them crucial for treating cancer after surgery, radiotherapy, chemotherapy, and targeted therapy. However, with the advent of ICIs and their use by a large number of patients, more clinical data have gradually shown that some cancer patients still have resistance to ICI treatment, which makes some patients unable to benefit from their antitumor effect. Therefore, it is vital to understand their antitumor and drug resistance mechanisms. In this review, we focused on the antitumor action sites and mechanisms of different types of ICIs. We then listed the main possible mechanisms of ICI resistance based on recent studies. Finally, we proposed current and future solutions for the resistance of ICIs, providing theoretical support for improving their clinical antitumor effect.
Collapse
Affiliation(s)
- Yefang Lao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Daoming Shen
- Department of Internal Medicine, Xiangcheng People’s Hospital, Suzhou 215131, China;
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People’s Hospital, Suzhou 215131, China;
| | - Rui He
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Shanghai 200433, China
- Correspondence: (R.H.); (M.J.); Tel.: +86-18862185684 (R.H.); +86-13776022109 (M.J.)
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
- Correspondence: (R.H.); (M.J.); Tel.: +86-18862185684 (R.H.); +86-13776022109 (M.J.)
| |
Collapse
|
8
|
Yuan X, Duan Y, Xiao Y, Sun K, Qi Y, Zhang Y, Ahmed Z, Moiani D, Yao J, Li H, Zhang L, Yuzhalin AE, Li P, Zhang C, Badu-Nkansah A, Saito Y, Liu X, Kuo WL, Ying H, Sun SC, Chang JC, Tainer JA, Yu D. Vitamin E Enhances Cancer Immunotherapy by Reinvigorating Dendritic Cells via Targeting Checkpoint SHP1. Cancer Discov 2022; 12:1742-1759. [PMID: 35420681 PMCID: PMC9262841 DOI: 10.1158/2159-8290.cd-21-0900] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 01/09/2023]
Abstract
Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with cancer who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DC). VitE entered DCs via the SCARB1 receptor and restored tumor-associated DC functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EV), triggering systemic antigen-specific T-cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines or immunogenic chemotherapies greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement or SHP1-inhibited DCs/DC-EVs with DC-enrichment therapies could substantially augment T-cell antitumor immunity and enhance the efficacy of cancer immunotherapies. SIGNIFICANCE The impacts of nutritional supplements on responses to immunotherapies remain unexplored. Our study revealed that dietary vitamin E binds to and inhibits DC checkpoint SHP1 to increase antigen presentation, prime antitumor T-cell immunity, and enhance immunotherapy efficacy. VitE-treated or SHP1-silenced DCs/DC-EVs could be developed as potent immunotherapies. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Xiangliang Yuan
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Yimin Duan
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yutao Qi
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Yuan Zhang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Davide Moiani
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Hongzhong Li
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Arseniy E. Yuzhalin
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Chenyu Zhang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Akosua Badu-Nkansah
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Yohei Saito
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Xianghua Liu
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Wen-Ling Kuo
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA.,Corresponding Author: Dihua Yu, M.D., Ph.D., Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center. 6565 MD Anderson Blvd., Unit 108, Houston, TX 77030-4009, USA. Phone: 713-792-3636,
| |
Collapse
|
9
|
Xie F, Dong H, Zhang H. Regulatory Functions of Protein Tyrosine Phosphatase Receptor Type O in Immune Cells. Front Immunol 2021; 12:783370. [PMID: 34880876 PMCID: PMC8645932 DOI: 10.3389/fimmu.2021.783370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
The members of the protein tyrosine phosphatase (PTP) family are key regulators in multiple signal transduction pathways and therefore they play important roles in many cellular processes, including immune response. As a member of PTP family, protein tyrosine phosphatase receptor type O (PTPRO) belongs to the R3 receptor-like protein tyrosine phosphatases. The expression of PTPRO isoforms is tissue-specific and the truncated PTPRO (PTPROt) is mainly observed in hematopoietic cells, including B cells, T cells, macrophages and other immune cells. Therefore, PTPROt may play an important role in immune cells by affecting their growth, differentiation, activation and immune responses. In this review, we will focus on the regulatory roles and underlying molecular mechanisms of PTPRO/PTPROt in immune cells, including B cells, T cells, and macrophages.
Collapse
Affiliation(s)
- Feiling Xie
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Cui ZY, Wang G, Zhang J, Song J, Jiang YC, Dou JY, Lian LH, Nan JX, Wu YL. Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytother Res 2021; 35:5680-5693. [PMID: 34250656 DOI: 10.1002/ptr.7214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/21/2021] [Accepted: 06/19/2021] [Indexed: 01/05/2023]
Abstract
The current study focused on the regulatory effects of parthenolide (PNL), a bioactive component derived from Chrysanthemum parthenium L., against hepatic fibrosis via regulating the crosstalk of toll-like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) in activated hepatic stellate cells (HSCs). HSCs or Raw 264.7 macrophages were activated by TGF-β or LPS for 1 hr, respectively, and then treated with PNL, CLI-095 (TLR4 inhibitor), or Niclosamide (STAT3 inhibitor) for the indicated time to detect the crosstalk of TLR4 and STAT3. PNL significantly decreased the expressions of α-SMA, collagen I, and the ratio of TIMP1 and MMP13 in TGF-β-activated HSCs. PNL significantly reduced the releases of pro-inflammatory cytokines, including IL-6, IL-1β, IL-1α, IL-18, and regulated signaling P2X7r/NLRP3 axis activation. PNL obviously induced the apoptosis of activated HSCs by regulating bcl-2 and caspases family. PNL significantly inhibited the expressions of TLR4 and STAT3, including their downstream signaling. PNL could regulate the crosstalk of TLR4 and STAT3, which were verified by their inhibitors in activated HSCs or Raw 264.7 cell macrophages. Thus, PNL could decrease the expressions of fibrosis markers, reduce the releases of inflammatory cytokines, and also induce the apoptosis of activated HSCs. In conclusion, PNL could bi-directionally inhibit TLR4 and STAT3 signaling pathway, suggesting that blocking the crosstalk of TLR4 and STAT3 might be the potential mechanism of PNL against hepatic fibrosis.
Collapse
Affiliation(s)
- Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ge Wang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jing Zhang
- Research and Development Center, Liaoning Shengjing Stem cell technology Co., Ltd, Shenyang, China
| | - Jian Song
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Centre, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
11
|
Immunization with alloantibodies-covered melanoma cells induces regional antitumor effects that become systemic when combined with 5-FU treatment. Cancer Lett 2021; 503:151-162. [PMID: 33545224 DOI: 10.1016/j.canlet.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
Alloantibodies, in particular immunoglobulin G (allo-IgG), confer a rejection advantage to tumors sharing the same major histocompatibility complex (MHC) in mice. However, when administrated intratumorally, this effect can only be achieved in combination with dendritic cells (DCs) activation. Here, we developed high titer allo-IgG by multiple rounds of immunization with allogenic B16 melanoma cells, which allows for the strong binding with B16 cells. We demonstrate that B16 cells incubated with these allo-IgG (referred to as allo-IgG-B16) become highly immunogenic, which release tumor antigens that are efficiently presented by classic DCs in lymph nodes (LNs). Injection of allo-IgG-B16 turns the tumor into an immune hot one and even elicits a systemic antitumor response when used together with 5-fluorouracil (5-FU). This systemic response is tumor-specific and relies on the critical site - LNs. Our findings provide a rationale for the use of allo-IgG in cancer treatment.
Collapse
|
12
|
Ackerman SE, Pearson CI, Gregorio JD, Gonzalez JC, Kenkel JA, Hartmann FJ, Luo A, Ho PY, LeBlanc H, Blum LK, Kimmey SC, Luo A, Nguyen ML, Paik JC, Sheu LY, Ackerman B, Lee A, Li H, Melrose J, Laura RP, Ramani VC, Henning KA, Jackson DY, Safina BS, Yonehiro G, Devens BH, Carmi Y, Chapin SJ, Bendall SC, Kowanetz M, Dornan D, Engleman EG, Alonso MN. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. NATURE CANCER 2021; 2:18-33. [PMID: 35121890 PMCID: PMC9012298 DOI: 10.1038/s43018-020-00136-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Innate pattern recognition receptor agonists, including Toll-like receptors (TLRs), alter the tumor microenvironment and prime adaptive antitumor immunity. However, TLR agonists present toxicities associated with widespread immune activation after systemic administration. To design a TLR-based therapeutic suitable for systemic delivery and capable of safely eliciting tumor-targeted responses, we developed immune-stimulating antibody conjugates (ISACs) comprising a TLR7/8 dual agonist conjugated to tumor-targeting antibodies. Systemically administered human epidermal growth factor receptor 2 (HER2)-targeted ISACs were well tolerated and triggered a localized immune response in the tumor microenvironment that resulted in tumor clearance and immunological memory. Mechanistically, ISACs required tumor antigen recognition, Fcγ-receptor-dependent phagocytosis and TLR-mediated activation to drive tumor killing by myeloid cells and subsequent T-cell-mediated antitumor immunity. ISAC-mediated immunological memory was not limited to the HER2 ISAC target antigen since ISAC-treated mice were protected from rechallenge with the HER2- parental tumor. These results provide a strong rationale for the clinical development of ISACs.
Collapse
Affiliation(s)
- Shelley E Ackerman
- Department of Bioengineering, Stanford University Schools of Medicine and Engineering, Stanford, CA, USA
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
| | | | | | | | - Justin A Kenkel
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Felix J Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela Luo
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
| | - Po Y Ho
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
| | | | - Lisa K Blum
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
| | - Samuel C Kimmey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Luo
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
| | | | - Jason C Paik
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren Y Sheu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Ackerman
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arthur Lee
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
| | - Hai Li
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
| | | | | | | | | | | | | | | | | | - Yaron Carmi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - David Dornan
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael N Alonso
- Bolt Biotherapeutics, Inc., Redwood City, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Cham LB, Adomati T, Li F, Ali M, Lang KS. CD47 as a Potential Target to Therapy for Infectious Diseases. Antibodies (Basel) 2020; 9:antib9030044. [PMID: 32882841 PMCID: PMC7551396 DOI: 10.3390/antib9030044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The integrin associated protein (CD47) is a widely and moderately expressed glycoprotein in all healthy cells. Cancer cells are known to induce increased CD47 expression. Similar to cancer cells, all immune cells can upregulate their CD47 surface expression during infection. The CD47-SIRPa interaction induces an inhibitory effect on macrophages and dendritic cells (dendritic cells) while CD47-thrombospondin-signaling inhibits T cells. Therefore, the disruption of the CD47 interaction can mediate several biologic functions. Upon the blockade and knockout of CD47 reveals an immunosuppressive effect of CD47 during LCMV, influenza virus, HIV-1, mycobacterium tuberculosis, plasmodium and other bacterial pneumonia infections. In our recent study we shows that the blockade of CD47 using the anti-CD47 antibody increases the activation and effector function of macrophages, dendritic cells and T cells during viral infection. By enhancing both innate and adaptive immunity, CD47 blocking antibody promotes antiviral effect. Due to its broad mode of action, the immune-stimulatory effect derived from this antibody could be applicable in nonresolving and (re)emerging infections. The anti-CD47 antibody is currently under clinical trial for the treatment of cancer and could also have amenable therapeutic potential against infectious diseases. This review highlights the immunotherapeutic targeted role of CD47 in the infectious disease realm.
Collapse
|
14
|
Abstract
Tumor immunology is undergoing a renaissance due to the recent profound clinical successes of tumor immunotherapy. These advances have coincided with an exponential growth in the development of -omics technologies. Armed with these technologies and their associated computational and modeling toolsets, systems biologists have turned their attention to tumor immunology in an effort to understand the precise nature and consequences of interactions between tumors and the immune system. Such interactions are inherently multivariate, spanning multiple time and size scales, cell types, and organ systems, rendering systems biology approaches particularly amenable to their interrogation. While in its infancy, the field of 'Cancer Systems Immunology' has already influenced our understanding of tumor immunology and immunotherapy. As the field matures, studies will move beyond descriptive characterizations toward functional investigations of the emergent behavior that govern tumor-immune responses. Thus, Cancer Systems Immunology holds incredible promise to advance our ability to fight this disease.
Collapse
Affiliation(s)
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
15
|
Rasoulouniriana D, Santana-Magal N, Gutwillig A, Farhat-Younis L, Wine Y, Saperia C, Tal L, Gutman H, Tsivian A, Brenner R, Bandora EA, Reticker-Flynn NE, Rider P, Carmi Y. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest 2020; 129:4151-4164. [PMID: 31449054 DOI: 10.1172/jci127590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
While a high frequency of Th1 cells in tumors is associated with improved cancer prognosis, this benefit has been attributed mainly to support of cytotoxic activity of CD8+ T cells. By attempting to potentiate antibody-driven immunity, we found a remarkable synergy between CD4+ T cells and tumor-binding antibodies. This surprising synergy was mediated by a small subset of tumor-infiltrating CD4+ T cells that express the high-affinity Fcγ receptor for IgG (FcγRI) in both mouse and human patients. These cells efficiently lyse tumor cells coated with antibodies through concomitant crosslinking of their T cell receptor (TCR) and FcγRI. By expressing FcγRI and its signaling chain in conventional CD4+ T cells, we successfully employed this mechanism to treat established solid cancers. Overall, this discovery sheds new light on the biology of this T cell subset, their function during tumor immunity, and the means to utilize their unique killing signals in immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haim Gutman
- Department of Surgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Surgical Oncology Unit, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Alexander Tsivian
- Surgical Oncology Unit, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Ronen Brenner
- Surgical Oncology Unit, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel.,Wolfson Medical Center, Holon, Israel
| | | | | | | | | |
Collapse
|
16
|
The Analysis of PTPN6 for Bladder Cancer: An Exploratory Study Based on TCGA. DISEASE MARKERS 2020; 2020:4312629. [PMID: 32454905 PMCID: PMC7243021 DOI: 10.1155/2020/4312629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
PTPN6 (protein tyrosine phosphatase nonreceptor type 6), a tyrosine phosphatase, is known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Previous studies have demonstrated that PTPN6 expression is relatively elevated in several malignancies. However, the role of PTPN6 in bladder cancer (BC) remains unclear. The purpose of this study was to explore the prognostic value of PTPN6 in BC. RNA-seq data from The Cancer Genome Atlas (TCGA) was used to identify the expression level of PTPN6 in BC. The relationship between clinical pathologic features and PTPN6 were analyzed with the Wilcoxon signed-rank test. The prognostic and predictive value of PTPN6 was evaluated by survival analysis and nomogram. Gene Set Enrichment Analysis (GSEA) was conducted to explore the potential molecular mechanisms of PTPN6 in BC. Finally, Tumor Immune Estimation Resource (TIMER) was applied to investigate the relationship between PTPN6 and immune cell infiltration in the tumor microenvironment. Results indicated that PTPN6 was overexpressed in BC tissues compared with normal bladder tissues and was significantly correlated with grade, stage, T, and N. Survival analysis showed that low expression of PTPN6 was significantly related to the poor overall survival (OS) in BC patients. Coexpression analysis showed that PTPN6 and TNFRSF14 (Tumor necrosis factor receptor superfamily member 14) have a close correlation in BC. GSEA showed that multiple cancer-associated signaling pathways are differentially enriched in the PTPN6 high expression phenotype. Moreover, the expression level of PTPN6 was positively associated with the infiltration of B cells, CD4+T cells, dendritic cells, and neutrophils and negatively associated with CD8+ T cells and macrophages in BC. In conclusion, we identified that PTPN6 may be a novel prognostic biomarker in BC based on the TCGA database. Further clinical trials are needed to confirm our observations and mechanisms underlying the prognostic value of PTPN6 in BC also deserve further experimental exploration.
Collapse
|
17
|
Santana-Magal N, Farhat-Younis L, Gutwillig A, Gleiberman A, Rasoulouniriana D, Tal L, Netanely D, Shamir R, Blau R, Feinmesser M, Zlotnik O, Gutman H, Linde IL, Reticker-Flynn NE, Rider P, Carmi Y. Melanoma-Secreted Lysosomes Trigger Monocyte-Derived Dendritic Cell Apoptosis and Limit Cancer Immunotherapy. Cancer Res 2020; 80:1942-1956. [PMID: 32127354 DOI: 10.1158/0008-5472.can-19-2944] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/15/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022]
Abstract
The recent success of checkpoint blockade therapies has established immunotherapy as one of the most promising treatments for melanoma. Nonetheless, a complete curative response following immunotherapy is observed only in a fraction of patients. To identify what factors limit the efficacy of immunotherapies, we established mouse models that cease to respond to immunotherapies once their tumors exceed a certain stage. Analysis of the immune systems of the organisms revealed that the numbers of tumor-infiltrating dendritic cells (TIDC) drastically decreased with time. Further, in contrast to the current paradigm, once melanoma was established, TIDC did not migrate into sentinel lymph nodes. Instead, they underwent local cell death due to excessive phagocytosis of lysosomes. Importantly, TIDC were required to license the cytotoxic activity of tumor CD8+ T cells, and in their absence, T cells did not lyse melanoma cells. Our results offer a paradigm shift regarding the role of TIDC and a framework to increase the efficacy of immunotherapies. SIGNIFICANCE: This work redefines the role of monocyte-derived dendritic cells in melanoma and provides a novel strategy to increase the efficacy of T-cell-based immunotherapies in nonresponding individuals. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/1942/F1.large.jpg.
Collapse
Affiliation(s)
- Nadine Santana-Magal
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leen Farhat-Younis
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amit Gutwillig
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Annette Gleiberman
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Diana Rasoulouniriana
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Tal
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dvir Netanely
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Blau
- Department of Physiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meora Feinmesser
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Pathology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Oran Zlotnik
- Department of Surgical Oncology Unit, Rabin Medical Center-Beilinson Campus, Petach Tikva, Israel
| | - Haim Gutman
- Department of Surgical Oncology Unit, Rabin Medical Center-Beilinson Campus, Petach Tikva, Israel
| | - Ian L Linde
- School of Medicine, Department of Pathology, Stanford University, Palo Alto, California
| | | | - Peleg Rider
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Kozlovski S, Atrakchi O, Feigelson SW, Shulman Z, Alon R. Stable contacts of naïve CD4 T cells with migratory dendritic cells are ICAM-1-dependent but dispensable for proliferation in vivo. Cell Adh Migr 2019; 13:315-321. [PMID: 31328672 PMCID: PMC6682365 DOI: 10.1080/19336918.2019.1644857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/02/2022] Open
Abstract
It is unclear if naïve T cells require dendritic cell ICAMs to proliferate inside lymph nodes. To check if and when CD4 lymphocytes use ICAMs on migratory DCs, wild-type and ICAM-1 and 2 double knock out bone marrow-derived DCs pulsed with saturating levels of an OT-II transgene-specific ovalbumin-derived peptide were co-transferred into skin-draining lymph nodes. Intravital imaging of OT-II lymphocytes entering these lymph nodes revealed that ICAM-1 and -2 deficient migratory DCs formed fewer stable conjugates with OT-II lymphocytes but promoted normal T cell proliferation. DC ICAMs were also not required for unstable TCR-dependent lymphocyte arrests on antigen presenting migratory DCs. Thus, rare antigen-stimulated ICAM-stabilized T-DC conjugates are dispensable for CD4 lymphocyte proliferation inside lymph nodes.
Collapse
Affiliation(s)
- Stav Kozlovski
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofir Atrakchi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Santana-Magal N, Rasoulouniriana D, Saperia C, Gutwillig A, Rider P, Engleman EG, Carmi Y. Isolation Protocol of Mouse Monocyte-derived Dendritic Cells and Their Subsequent In Vitro Activation with Tumor Immune Complexes. J Vis Exp 2018. [PMID: 29912184 DOI: 10.3791/57188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DC) are heterogeneous cell populations that differ in their cell membrane markers, migration patterns and distribution, and in their antigen presentation and T cell activation capacities. Since most vaccinations of experimental tumor models require millions of DC, they are widely isolated from the bone marrow or spleen. However, these DC significantly differ from blood and tumor DC in their responses to immune complexes (IC), and presumably to other Syk-coupled lectin receptors. Importantly, given the sensitivity of DC to danger-associated molecules, the presence of endotoxins or antibodies that crosslink activation receptors in one of the isolating steps could result in the priming of DC and thus affect the parameters, or at least the dosage, required to activate them. Therefore, here we describe a detailed protocol for isolating MoDC from blood and tumors while avoiding their premature activation. In addition, a protocol is provided for MoDC activation with tumor IC, and their subsequent analyses.
Collapse
Affiliation(s)
| | | | - Corey Saperia
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University
| | - Amit Gutwillig
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University
| | - Peleg Rider
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University
| | - Edgar G Engleman
- Department of Pathology, School of Medicine, Stanford University
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University;
| |
Collapse
|
20
|
Mining the Complex Family of Protein Tyrosine Phosphatases for Checkpoint Regulators in Immunity. Curr Top Microbiol Immunol 2017; 410:191-214. [PMID: 28929190 DOI: 10.1007/82_2017_68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The family of protein tyrosine phosphatases (PTPs) includes 107 genes in humans that are diverse in their structures and expression profiles. The majority are present in immune cells and play various roles in either inhibiting or promoting the duration and amplitude of signaling cascades. Several PTPs, including TC-PTP (PTPN2) and SHP-1 (PTPN6), have been recognized as being crucial for maintaining proper immune response and self-tolerance, and have gained recognition as true immune system checkpoint modulators. This chapter details the most recent literature on PTPs and immunity by examining their known functions in regulating signaling from either established checkpoint inhibitors or by their intrinsic properties, as modulators of the immune response. Notably, we review PTP regulatory properties in macrophages, antigen-presenting dendritic cells, and T cells. Overall, we present the PTP gene family as a remarkable source of novel checkpoint inhibitors wherein lies a great number of new targets for immunotherapies.
Collapse
|