1
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
2
|
Walker MA, Tian R. NAD metabolism and heart failure: Mechanisms and therapeutic potentials. J Mol Cell Cardiol 2024; 195:45-54. [PMID: 39096536 PMCID: PMC11390314 DOI: 10.1016/j.yjmcc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Nicotinamide adenine dinucleotide provides the critical redox pair, NAD+ and NADH, for cellular energy metabolism. In addition, NAD+ is the precursor for de novo NADP+ synthesis as well as the co-substrates for CD38, poly(ADP-ribose) polymerase and sirtuins, thus, playing a central role in the regulation of oxidative stress and cell signaling. Declines of the NAD+ level and altered NAD+/NADH redox states have been observed in cardiometabolic diseases of various etiologies. NAD based therapies have emerged as a promising strategy to treat cardiovascular disease. Strategies that reduce NAD+ consumption or promote NAD+ production have repleted intracellular NAD+ or normalized NAD+/NADH redox in preclinical studies. These interventions have shown cardioprotective effects in multiple models suggesting a great promise of the NAD+ elevating therapy. Mechanisms for the benefit of boosting NAD+ level, however, remain incompletely understood. Moreover, despite the robust pre-clinical studies there are still challenges to translate the therapy to clinic. Here, we review the most up to date literature on mechanisms underlying the NAD+ elevating interventions and discuss the progress of human studies. We also aim to provide a better understanding of how NAD metabolism is changed in failing hearts with a particular emphasis on types of strategies employed and methods to target these pathways. Finally, we conclude with a comprehensive assessment of the challenges in developing NAD-based therapies for heart diseases, and to provide a perspective on the future of the targeting strategies.
Collapse
Affiliation(s)
- Matthew A Walker
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
3
|
Yu B, Jing X, Jia L, Wang M, Liu L, Ping S, Wang Y, Yang M. The versatile multi-functional substance NMN: its unique characteristics, metabolic properties, pharmacodynamic effects, clinical trials, and diverse applications. Front Pharmacol 2024; 15:1436597. [PMID: 39411062 PMCID: PMC11473484 DOI: 10.3389/fphar.2024.1436597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
β-nicotinamide mononucleotide (NMN) is a naturally occurring biologically active nucleotide widely present in organisms and an inherent substance in the human body. As a critical intermediate in synthesizing coenzyme I (NAD+), it widely participates in multiple biochemical reactions in the human body and is closely related to immunity, metabolism, and other factors. In recent years, NMN has rapidly developed and made significant progress in medicine, food, and healthcare. However, there is currently a lack of comprehensive reports on the research progress of NMN, as well as exploration and analysis of the current research achievements and progress of NMN. Therefore, this review is based on retrieving relevant research on NMN from multiple databases at home and abroad, with the retrieval time from database establishment to 20 May 2024. Subsequently, literature search, reading, key information extraction, organization, and summarization were conducted with the aim of providing a comprehensive and in-depth analysis of the characteristics, metabolic pathways, pharmacological effects, progress in human clinical trials, and wide applications of NMN in drug development and food applications. Furthermore, it offers personal insights into NMN's potential future developments and advancements to present the current development state and existing challenges comprehensively. Ultimately, this review aims to provide guidance and serve as a reference for the future application, innovation, and progression of NMN research.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Xiaotong Jing
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Lina Jia
- Department of Central Sterile Supply Department, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Maoru Wang
- Drug Dispensing Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Liying Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Songyuge Ping
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Yu Wang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Min Yang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
4
|
Deng H, Ding D, Ma Y, Zhang H, Wang N, Zhang C, Yang G. Nicotinamide Mononucleotide: Research Process in Cardiovascular Diseases. Int J Mol Sci 2024; 25:9526. [PMID: 39273473 PMCID: PMC11394709 DOI: 10.3390/ijms25179526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite that plays a crucial role in diverse biological processes, including energy metabolism, gene expression, DNA repair, and mitochondrial function. An aberrant NAD+ level mediates the development of cardiovascular dysfunction and diseases. Both in vivo and in vitro studies have demonstrated that nicotinamide mononucleotide (NMN), as a NAD+ precursor, alleviates the development of cardiovascular diseases such as heart failure, atherosclerosis, and myocardial ischemia/reperfusion injury. Importantly, NMN has suggested pharmacological activities mostly through its involvement in NAD+ biosynthesis. Several clinical studies have been conducted to investigate the efficacy and safety of NMN supplementation, indicating its potential role in cardiovascular protection without significant adverse effects. In this review, we systematically summarize the impact of NMN as a nutraceutical and potential therapeutic drug on cardiovascular diseases and emphasize the correlation between NMN supplementation and cardiovascular protection.
Collapse
Affiliation(s)
- Haoyuan Deng
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ding Ding
- School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yu Ma
- Department of Health Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Hao Zhang
- School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
5
|
Beaudin M, Dupre N, Manto M. The importance of synthetic pharmacotherapy for recessive cerebellar ataxias. Expert Rev Neurother 2024; 24:897-912. [PMID: 38980086 DOI: 10.1080/14737175.2024.2376840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicolas Dupre
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgique
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgique
| |
Collapse
|
6
|
Liao G, Xie Y, Peng H, Li T, Zou X, Yue F, Guo J, Rong L. Advancements in NMN biotherapy and research updates in the field of digestive system diseases. J Transl Med 2024; 22:805. [PMID: 39215316 PMCID: PMC11363601 DOI: 10.1186/s12967-024-05614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), a crucial intermediate in NAD + synthesis, can rapidly transform into NAD + within the body after ingestion. NMN plays a pivotal role in several important biological processes, including energy metabolism, cellular aging, circadian rhythm regulation, DNA repair, chromatin remodeling, immunity, and inflammation. NMN has emerged as a key focus of research in the fields of biomedicine, health care, and food science. Recent years have witnessed extensive preclinical studies on NMN, offering valuable insights into the pathogenesis of age- and aging-related diseases. Given the sustained global research interest in NMN and the substantial market expectations for the future, here, we comprehensively review the milestones in research on NMN biotherapy over the past 10 years. Additionally, we highlight the current research on NMN in the field of digestive system diseases, identifying existing problems and challenges in the field of NMN research. The overarching aim of this review is to provide references and insights for the further exploration of NMN within the spectrum of digestive system diseases.
Collapse
Affiliation(s)
- Guanyi Liao
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Yuchen Xie
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Tianke Li
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Xinsen Zou
- Department of Intensive Unit Care, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China.
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China.
| |
Collapse
|
7
|
Zheng C, Li Y, Wu X, Gao L, Chen X. Advances in the Synthesis and Physiological Metabolic Regulation of Nicotinamide Mononucleotide. Nutrients 2024; 16:2354. [PMID: 39064797 PMCID: PMC11279976 DOI: 10.3390/nu16142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+), is involved in the regulation of many physiological and metabolic reactions in the body. NMN can indirectly affect cellular metabolic pathways, DNA repair, and senescence, while also being essential for maintaining tissues and dynamic metabolic equilibria, promoting healthy aging. Therefore, NMN has found many applications in the food, pharmaceutical, and cosmetics industries. At present, NMN synthesis strategies mainly include chemical synthesis and biosynthesis. Despite its potential benefits, the commercial production of NMN by organic chemistry approaches faces environmental and safety problems. With the rapid development of synthetic biology, it has become possible to construct microbial cell factories to produce NMN in a cost-effective way. In this review, we summarize the chemical and biosynthetic strategies of NMN, offering an overview of the recent research progress on host selection, chassis cell optimization, mining of key enzymes, metabolic engineering, and adaptive fermentation strategies. In addition, we also review the advances in the role of NMN in aging, metabolic diseases, and neural function. This review provides comprehensive technical guidance for the efficient biosynthesis of NMN as well as a theoretical basis for its application in the fields of food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Chuxiong Zheng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Yumeng Li
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xin Wu
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Le Gao
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
8
|
Perry CE, Halawani SM, Mukherjee S, Ngaba LV, Lieu M, Lee WD, Davis JG, Adzika GK, Bebenek AN, Bazianos DD, Chen B, Mercado-Ayon E, Flatley LP, Suryawanshi AP, Ho I, Rabinowitz JD, Serai SD, Biko DM, Tamaroff J, DeDio A, Wade K, Lin KY, Livingston DJ, McCormack SE, Lynch DR, Baur JA. NAD+ precursors prolong survival and improve cardiac phenotypes in a mouse model of Friedreich's Ataxia. JCI Insight 2024; 9:e177152. [PMID: 39171530 PMCID: PMC11343603 DOI: 10.1172/jci.insight.177152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.
Collapse
Affiliation(s)
- Caroline E. Perry
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah M. Halawani
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lucie V. Ngaba
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Melissa Lieu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - James G. Davis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabriel K. Adzika
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa N. Bebenek
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Bazianos
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beishan Chen
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Mercado-Ayon
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liam P. Flatley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arjun P. Suryawanshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabelle Ho
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Suraj D. Serai
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - David M. Biko
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - Jaclyn Tamaroff
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna DeDio
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristin Wade
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kimberly Y. Lin
- Division of Pediatric Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Shana E. McCormack
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A. Baur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Wang L, Peng T, Deng J, Gao W, Wang H, Junhong Luo O, Huang L, Chen G. Nicotinamide riboside alleviates brain dysfunction induced by chronic cerebral hypoperfusion via protecting mitochondria. Biochem Pharmacol 2024; 225:116272. [PMID: 38723719 DOI: 10.1016/j.bcp.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is an enduring inadequate blood flow to the brain, resulting in vascular dementia (VaD). However, the effective treatment strategies are lacking. Supplementing with nicotinamide adenine dinucleotide (NAD+) has shown neuroprotective benefits in other neurodegenerative disorders. Nicotinamide riboside (NR), as a precursor of NAD+, is believed to hold promise in improving mitochondrial health, autophagy, and cognitive function. Meanwhile, NR has unique oral bioavailability, good tolerability, and minimal side effects, and it is the most promising for clinical translation. However, the effectiveness of NR in treating CCH-related VaD is still uncertain. The present study examined the neuroprotective effects of NR supplementation and its underlying mechanisms in a CCH rat model. The rats with CCH were given NR at a daily dosage of 400 mg/kg for 3 months. NR supplementation increased blood and brain NAD+ levels and improved brain function in CCH rats, including cognitive function and oxygenation capacity. It also reduced hippocampal neuronal loss and abnormalities and mitigated the decrease in dendritic spine density. The analysis of RNA sequencing in hippocampal tissue supports these findings. Electron microscopy and protein detection results suggest that NR may maintain mitochondrial structural integrity and exert a protective role by attenuating mitochondrial fission and impaired autophagy flux caused by CCH. In conclusion, these findings offer evidence for the neuroprotective potential of NR supplementation in ameliorating cognitive impairment induced by CCH.
Collapse
Affiliation(s)
- Lina Wang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China
| | - Tianchan Peng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China
| | - Jieping Deng
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China
| | - Wen Gao
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China
| | - Haoyun Wang
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China
| | - Oscar Junhong Luo
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China
| | - Li'an Huang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guobing Chen
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China.
| |
Collapse
|
10
|
Benjamin C, Crews R. Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites 2024; 14:341. [PMID: 38921475 PMCID: PMC11205942 DOI: 10.3390/metabo14060341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a surge in research focused on NAD+ decline and potential interventions, and despite significant progress, new discoveries continue to highlight the complexity of NAD+ biology. Nicotinamide mononucleotide (NMN), a well-established NAD+ precursor, has garnered considerable interest due to its capacity to elevate NAD+ levels and induce promising health benefits in preclinical models. Clinical trials investigating NMN supplementation have yielded variable outcomes while shedding light on the intricacies of NMN metabolism and revealing the critical roles played by gut microbiota and specific cellular uptake pathways. Individual variability in factors such as lifestyle, health conditions, genetics, and gut microbiome composition likely contributes to the observed discrepancies in clinical trial results. Preliminary evidence suggests that NMN's effects may be context-dependent, varying based on a person's physiological state. Understanding these nuances is critical for definitively assessing the impact of manipulating NAD+ levels through NMN supplementation. Here, we review NMN metabolism, focusing on current knowledge, pinpointing key areas where further research is needed, and outlining future directions to advance our understanding of its potential clinical significance.
Collapse
|
11
|
Tan Z, Yang Y, Wu Y, Yan J, Zhang B, Hou Y, Jia S. Biosynthesis of β-nicotinamide mononucleotide from glucose via a new pathway in Bacillus subtilis. Front Microbiol 2024; 15:1405736. [PMID: 38919503 PMCID: PMC11197623 DOI: 10.3389/fmicb.2024.1405736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction β-nicotinamide mononucleotide (β-NMN) is an essential precursor of nicotinamide adenine dinucleotide (NAD+) and plays a key role in supplying NAD+ and maintaining its levels. Existing methods for NMN production have some limitations, including low substrate availability, complex synthetic routes, and low synthetic efficiency, which result in low titers and high costs. Methods We constructed high-titer, genetically engineered strains that produce NMN through a new pathway. Bacillus subtilis WB600 was used as a safe chassis strain. Multiple strains overexpressing NadE, PncB, and PnuC in various combinations were constructed, and NMN titers of different strains were compared via shake-flask culture. Results The results revealed that the strain B. subtilis PncB1-PnuC exhibited the highest total and extracellular NMN titers. Subsequently, the engineered strains were cultured in a 5-L fermenter using batch and fed-batch fermentation. B. subtilis PncB1-PnuC achieved an NMN titer of 3,398 mg/L via fed-batch fermentation and glucose supplementation, which was 30.72% higher than that achieved via batch fermentation. Discussion This study provides a safe and economical approach for producing NMN on an industrial scale.
Collapse
Affiliation(s)
- Zhilei Tan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Liu S, Deshmukh V, Wang F, Liang J, Cusick J, Li X, Martin JF. Myocardial Infarction Suppresses Protein Synthesis and Causes Decoupling of Transcription and Translation. JACC Basic Transl Sci 2024; 9:792-807. [PMID: 39070274 PMCID: PMC11282883 DOI: 10.1016/j.jacbts.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 07/30/2024]
Abstract
Gene expression involves transcription, translation, and mRNA and protein degradation. Advanced RNA sequencing measures mRNA levels for cell state assessment, but mRNA level does not fully reflect protein level. Identifying heart cell proteomes and their stress response is crucial. Using a cardiomyocyte-specific mouse model, we tracked protein synthesis after myocardial infarction. Our results showed that myocardial infarction suppresses protein synthesis and unveils a decoupling of translation and transcription regulation in cardiomyocytes.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- (currently) Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Fangfei Wang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jie Liang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jenna Cusick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiao Li
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Yu J, Shen Q, Li J. Toxicology study profile of Nicotinamide mononucleotide after acute and 90-day sub chronic dosing in Wistar rats and mutagenicity tests. Curr Res Toxicol 2024; 6:100171. [PMID: 38765763 PMCID: PMC11101926 DOI: 10.1016/j.crtox.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Nicotinamide mononucleotide (NMN) is an intermediate in biosynthesis pathway of Nicotinamide adenine dinucleotide (NAD+), an essential cofactor in all living cells involved in fundamental biological processes. Evidence stemming from recent studies have unveiled numerous roles of NAD+ metabolism on aging, longevity, delaying the progression of age-related diseases. A three-study genetic toxicity (genetox) battery (bacterial mutagenesis, in vitro cytogenetics, and in vivo mammalian test) is usually required to confirm safety of a new dietary ingredient and this study showed the data from in vivo mutagenicity test for the first time. The acute oral LD50 of NMN was greater than 2000 mg/kg body weight with 5000 mg/kg body weight as LD50 cut-off value and was classified under "Category 5 or Unclassified" as per Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Based on 90 days repeated dose toxicity test the NOAEL was considered to be NLT 800 mg NMN/kg body weight in Wistar rats. The bacterial reverse mutation test, the in vitro and in vivo chromosomal aberration test, found NMN to be non-mutagenic. In the mammalian bone marrow chromosomal aberration test, it was concluded that NMN is non clastogenic at and up to 2,000 mg/kg body weight in all the animals tested to confirm safety of a new dietary ingredient and this study showed the data from in vivo mutagenicity test for the first time.
Collapse
Affiliation(s)
- Jianjun Yu
- Effepharm (Shanghai) Co. Ltd, Shanghai, China
| | - Qiang Shen
- Effepharm (Shanghai) Co. Ltd, Shanghai, China
| | - Jiayan Li
- Effepharm (Shanghai) Co. Ltd, Shanghai, China
| |
Collapse
|
14
|
Rahman SU, Qadeer A, Wu Z. Role and Potential Mechanisms of Nicotinamide Mononucleotide in Aging. Aging Dis 2024; 15:565-583. [PMID: 37548938 PMCID: PMC10917541 DOI: 10.14336/ad.2023.0519-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 08/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) has recently attracted much attention due to its role in aging and lifespan extension. NAD+ directly and indirectly affects many cellular processes, including metabolic pathways, DNA repair, and immune cell activities. These mechanisms are critical for maintaining cellular homeostasis. However, the decline in NAD+ levels with aging impairs tissue function, which has been associated with several age-related diseases. In fact, the aging population has been steadily increasing worldwide, and it is important to restore NAD+ levels and reverse or delay these age-related disorders. Therefore, there is an increasing demand for healthy products that can mitigate aging, extend lifespan, and halt age-related consequences. In this case, several studies in humans and animals have targeted NAD+ metabolism with NAD+ intermediates. Among them, nicotinamide mononucleotide (NMN), a precursor in the biosynthesis of NAD+, has recently received much attention from the scientific community for its anti-aging properties. In model organisms, ingestion of NMN has been shown to improve age-related diseases and probably delay death. Here, we review aspects of NMN biosynthesis and the mechanism of its absorption, as well as potential anti-aging mechanisms of NMN, including recent preclinical and clinical tests, adverse effects, limitations, and perceived challenges.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Abdul Qadeer
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ziyun Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Norambuena-Soto I, Deng Y, Brenner C, Lavandero S, Wang ZV. NAD in pathological cardiac remodeling: Metabolic regulation and beyond. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167038. [PMID: 38281710 PMCID: PMC10922927 DOI: 10.1016/j.bbadis.2024.167038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) coenzymes are carriers of high energy electrons in metabolism and also play critical roles in numerous signaling pathways. NAD metabolism is decreased in various cardiovascular diseases. Importantly, stimulation of NAD biosynthesis protects against heart disease under different pathological conditions. In this review, we describe pathways for both generation and catabolism of NAD coenzymes and the respective changes of these pathways in the heart under cardiac diseases, including pressure overload, myocardial infarction, cardiometabolic disease, cancer treatment cardiotoxicity, and heart failure. We next provide an update on the strategies and treatments to increase NAD levels, such as supplementation of NAD precursors, in the heart that prevent or reverse cardiomyopathy. We also introduce the approaches to manipulate NAD consumption enzymes to ameliorate cardiac disease. Finally, we discuss the mechanisms associated with improvements in cardiac function by NAD coenzymes, differentiating between mitochondria-dependent effects and those independent of mitochondrial metabolism.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago 8380494, Chile
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago 8380494, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| | - Zhao V Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
16
|
Brandauer J, Receno CN, Anyaoku C, Cooke LE, Schwarzer HM, DeRuisseau KC, Cunningham CM, DeRuisseau LR. Senescent hearts from male Ts65Dn mice exhibit preserved function but altered size and nicotinamide adenine dinucleotide pathway signaling. Am J Physiol Regul Integr Comp Physiol 2024; 326:R176-R183. [PMID: 38047317 PMCID: PMC11283890 DOI: 10.1152/ajpregu.00164.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Down syndrome (DS) is associated with congenital heart defects at birth, but cardiac function has not been assessed at older ages. We used the Ts65Dn mouse, a model of DS, to quantify heart structure and function with echocardiography in 18-mo male Ts65Dn and wild-type (WT) mice. Heart weight, nicotinamide adenine dinucleotide (NAD) signaling, and mitochondrial (citrate synthase) activity were investigated, as these pathways may be implicated in the cardiac pathology of DS. The left ventricle was smaller in Ts65Dn versus WT, as well as the anterior wall thickness of the left ventricle during both diastole (LVAW_d; mm) and systole (LVAW_s; mm) as assessed by echocardiography. Other functional metrics were similar between groups including left ventricular area end systole (mm2), left ventricular area end diastole (mm2), left ventricular diameter end systole (mm), left ventricular diameter end diastole (mm), isovolumetric relaxation time (ms), mitral valve atrial peak velocity (mm/s), mitral valve early peak velocity (mm/s), ratio of atrial and early peak velocities (E/A), heart rate (beats/min), ejection fraction (%), and fractional shortening (%). Nicotinamide phosphoribosyltransferase (NAMPT) protein expression, NAD concentration, and tissue weight were lower in the left ventricle of Ts65Dn versus WT mice. Sirtuin 3 (SIRT3) protein expression and citrate synthase activity were not different between groups. Although cardiac function was generally preserved in male Ts65Dn, the altered heart size and bioenergetic disturbances may contribute to differences in aging for DS.
Collapse
Affiliation(s)
- Josef Brandauer
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, New York, United States
| | - Cynthia Anyaoku
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Lauren E Cooke
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Hannalyn M Schwarzer
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Keith C DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, United States
| | - Caitlin M Cunningham
- Department of Computer Science, Mathematics, and Statistics, Le Moyne College, Syracuse, New York, United States
| | - Lara R DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, United States
| |
Collapse
|
17
|
Drekolia MK, Karantanou C, Wittig I, Li Y, Fuhrmann DC, Brüne B, Katsouda A, Hu J, Papapetropoulos A, Bibli SI. Loss of cardiac mitochondrial complex I persulfidation impairs NAD + homeostasis in aging. Redox Biol 2024; 69:103014. [PMID: 38171255 PMCID: PMC10792955 DOI: 10.1016/j.redox.2023.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Protein persulfidation is a significant post-translational modification that involves addition of a sulfur atom to the cysteine thiol group and is facilitated by sulfide species. Persulfidation targets reactive cysteine residues within proteins, influencing their structure and/or function across various biological systems. This modification is evolutionarily conserved and plays a crucial role in preventing irreversible cysteine overoxidation, a process that becomes prominent with aging. While, persulfidation decreases with age, its levels in the aged heart and the functional implications of such a reduction in cardiac metabolism remain unknown. Here we interrogated the cardiac persulfydome in wild-type adult mice and age-matched mice lacking the two sulfide generating enzymes, namely cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). Our findings revealed that cardiac persulfidated proteins in wild type hearts are less abundant compared to those in other organs, with a primary involvement in mitochondrial metabolic processes. We further focused on one specific target, NDUFB7, which undergoes persulfidation by both CSE and 3MST derived sulfide species. In particular, persulfidation of cysteines C80 and C90 in NDUFB7 protects the protein from overoxidation and maintains the complex I activity in cardiomyocytes. As the heart ages, the levels of CSE and 3MST in cardiomyocytes decline, leading to reduced NDUFB7 persulfidation and increased cardiac NADH/NAD+ ratio. Collectively, our data provide compelling evidence for a direct link between cardiac persulfidation and mitochondrial complex I activity, which is compromised in aging.
Collapse
Affiliation(s)
- Maria-Kyriaki Drekolia
- Department of Vascular Dysfunction, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany
| | - Christina Karantanou
- Department of Vascular Dysfunction, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe-University Frankfurt, Germany
| | - Yuanyuan Li
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Sofia-Iris Bibli
- Department of Vascular Dysfunction, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
18
|
Yang S, Jing S, Wang S, Jia F. From drugs to biomaterials: a review of emerging therapeutic strategies for intervertebral disc inflammation. Front Cell Infect Microbiol 2024; 14:1303645. [PMID: 38352058 PMCID: PMC10861683 DOI: 10.3389/fcimb.2024.1303645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shanxi Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fajing Jia
- Department of General Practice, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
19
|
Liang J, Zhou C, Zhang C, Liang S, Zhou Z, Zhou Z, Wu C, Zhao H, Meng X, Zou F, Yu C, Cai S. Nicotinamide mononucleotide attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Int Immunopharmacol 2024; 127:111328. [PMID: 38064810 DOI: 10.1016/j.intimp.2023.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential element in cellular metabolism that regulates fundamental biological processes. Growing evidence suggests that a decline in NAD+ is a common pathological factor in various diseases and aging. However, its role in airway epithelial barrier function in response to asthma remains underexplored. The current study aims to explore the efficacy of restoring cellular NAD+ concentration through supplementation with the NAD+ precursor, nicotinamide mononucleotide (NMN), in the treatment of allergic asthma and to investigate the role of SIRT3 in mediating the effects of NAD+ precursors. In this research, NMN alleviated airway inflammation and reduced mucus secretion in house dust mite (HDM)-induced asthmatic mice. It also mitigated airway epithelial barrier disruption in HDM-induced asthma in vitro and in vivo. But inhibition of SIRT3 expression abolished the effects of NMN. Mechanistically, HDM induced SIRT3 SUMOylation and proteasomal degradation. Mutation of these two SIRT3 SUMO modification sites enhanced the stability of SIRT3. Additionally, SIRT3 was targeted by SENP1 which acted to de-conjugate SUMO. And down-regulation of SENP1 expression in HDM-induced models was reversed by NMN. Collectively, these findings suggest that NMN attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Blockage of SIRT3 SUMOylation emerges as for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jiayuan Liang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changyun Zhang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixiu Liang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zili Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zicong Zhou
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuiwen Wu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haijin Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhui Yu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Sanz-Alcázar A, Britti E, Delaspre F, Medina-Carbonero M, Pazos-Gil M, Tamarit J, Ros J, Cabiscol E. Mitochondrial impairment, decreased sirtuin activity and protein acetylation in dorsal root ganglia in Friedreich Ataxia models. Cell Mol Life Sci 2023; 81:12. [PMID: 38129330 PMCID: PMC10739563 DOI: 10.1007/s00018-023-05064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Friedreich ataxia (FA) is a rare, recessive neuro-cardiodegenerative disease caused by deficiency of the mitochondrial protein frataxin. Mitochondrial dysfunction, a reduction in the activity of iron-sulfur enzymes, iron accumulation, and increased oxidative stress have been described. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in the early stages of this disease. However, its effect on mitochondrial function remains to be elucidated. In the present study, we found that in primary cultures of DRG neurons as well as in DRGs from the FXNI151F mouse model, frataxin deficiency resulted in lower activity and levels of the electron transport complexes, mainly complexes I and II. In addition, altered mitochondrial morphology, indicative of degeneration was observed in DRGs from FXNI151F mice. Moreover, the NAD+/NADH ratio was reduced and sirtuin activity was impaired. We identified alpha tubulin as the major acetylated protein from DRG homogenates whose levels were increased in FXNI151F mice compared to WT mice. In the mitochondria, superoxide dismutase (SOD2), a SirT3 substrate, displayed increased acetylation in frataxin-deficient DRG neurons. Since SOD2 acetylation inactivates the enzyme, and higher levels of mitochondrial superoxide anion were detected, oxidative stress markers were analyzed. Elevated levels of hydroxynonenal bound to proteins and mitochondrial Fe2+ accumulation was detected when frataxin decreased. Honokiol, a SirT3 activator, restores mitochondrial respiration, decreases SOD2 acetylation and reduces mitochondrial superoxide levels. Altogether, these results provide data at the molecular level of the consequences of electron transport chain dysfunction, which starts negative feedback, contributing to neuron lethality. This is especially important in sensory neurons which have greater susceptibility to frataxin deficiency compared to other tissues.
Collapse
Affiliation(s)
- Arabela Sanz-Alcázar
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Elena Britti
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Fabien Delaspre
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Marta Medina-Carbonero
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Maria Pazos-Gil
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
21
|
Walker MA, Chen H, Yadav A, Ritterhoff J, Villet O, McMillen T, Wang Y, Purcell H, Djukovic D, Raftery D, Isoherranen N, Tian R. Raising NAD + Level Stimulates Short-Chain Dehydrogenase/Reductase Proteins to Alleviate Heart Failure Independent of Mitochondrial Protein Deacetylation. Circulation 2023; 148:2038-2057. [PMID: 37965787 PMCID: PMC10842390 DOI: 10.1161/circulationaha.123.066039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox-sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.
Collapse
Affiliation(s)
- Matthew A. Walker
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Hongye Chen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Aprajita Yadav
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Tim McMillen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Yuliang Wang
- Department of Computer Science & Engineering,
University of Washington, Seattle, WA 98195
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Danijel Djukovic
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Daniel Raftery
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| |
Collapse
|
22
|
Zhang C, Li Y, Bai F, Talifu Z, Ke H, Xu X, Li Z, Liu W, Pan Y, Gao F, Yang D, Wang X, Du H, Guo S, Gong H, Du L, Yu Y, Li J. The identification of new roles for nicotinamide mononucleotide after spinal cord injury in mice: an RNA-seq and global gene expression study. Front Cell Neurosci 2023; 17:1323566. [PMID: 38155866 PMCID: PMC10752985 DOI: 10.3389/fncel.2023.1323566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Nicotinamide mononucleotide (NMN), an important transforming precursor of nicotinamide adenine dinucleotide (NAD+). Numerous studies have confirmed the neuroprotective effects of NMN in nervous system diseases. However, its role in spinal cord injury (SCI) and the molecular mechanisms involved have yet to be fully elucidated. Methods We established a moderate-to-severe model of SCI by contusion (70 kdyn) using a spinal cord impactor. The drug was administered immediately after surgery, and mice were intraperitoneally injected with either NMN (500 mg NMN/kg body weight per day) or an equivalent volume of saline for seven days. The central area of the spinal cord was harvested seven days after injury for the systematic analysis of global gene expression by RNA Sequencing (RNA-seq) and finally validated using qRT-PCR. Results NMN supplementation restored NAD+ levels after SCI, promoted motor function recovery, and alleviated pain. This could potentially be associated with alterations in NAD+ dependent enzyme levels. RNA sequencing (RNA-seq) revealed that NMN can inhibit inflammation and potentially regulate signaling pathways, including interleukin-17 (IL-17), tumor necrosis factor (TNF), toll-like receptor, nod-like receptor, and chemokine signaling pathways. In addition, the construction of a protein-protein interaction (PPI) network and the screening of core genes showed that interleukin 1β (IL-1β), interferon regulatory factor 7 (IRF 7), C-X-C motif chemokine ligand 10 (Cxcl10), and other inflammationrelated factors, changed significantly after NMN treatment. qRT-PCR confirmed the inhibitory effect of NMN on inflammatory factors (IL-1β, TNF-α, IL-17A, IRF7) and chemokines (chemokine ligand 3, Cxcl10) in mice following SCI. Conclusion The reduction of NAD+ levels after SCI can be compensated by NMN supplementation, which can significantly restore motor function and relieve pain in a mouse model. RNA-seq and qRT-PCR systematically revealed that NMN affected inflammation-related signaling pathways, including the IL-17, TNF, Toll-like receptor, NOD-like receptor and chemokine signaling pathways, by down-regulating the expression of inflammatory factors and chemokines.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Li
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xiaoxin Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Huayong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Shuang Guo
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Yagi M, Do Y, Hirai H, Miki K, Toshima T, Fukahori Y, Setoyama D, Abe C, Nabeshima YI, Kang D, Uchiumi T. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci Alliance 2023; 6:e202302116. [PMID: 37793777 PMCID: PMC10551641 DOI: 10.26508/lsa.202302116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Myocardial mitochondria are primary sites of myocardial energy metabolism. Mitochondrial disorders are associated with various cardiac diseases. We previously showed that mice with cardiomyocyte-specific knockout of the mitochondrial translation factor p32 developed heart failure from dilated cardiomyopathy. Mitochondrial translation defects cause not only mitochondrial dysfunction but also decreased nicotinamide adenine dinucleotide (NAD+) levels, leading to impaired lysosomal acidification and autophagy. In this study, we investigated whether nicotinamide mononucleotide (NMN) administration, which compensates for decreased NAD+ levels, improves heart failure because of mitochondrial dysfunction. NMN administration reduced damaged lysosomes and improved autophagy, thereby reducing heart failure and extending the lifespan in p32cKO mice. We found that lysosomal damage due to mitochondrial dysfunction induced ferroptosis, involving the accumulation of iron in lysosomes and lipid peroxide. The ameliorative effects of NMN supplementation were found to strongly affect lysosomal function rather than mitochondrial function, particularly lysosome-mediated ferroptosis. NMN supplementation can improve lysosomal, rather than mitochondrial, function and prevent chronic heart failure.
Collapse
Affiliation(s)
- Mikako Yagi
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Miki
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Toshima
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukina Fukahori
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Abe
- https://ror.org/02kpeqv85 Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Yo-Ichi Nabeshima
- https://ror.org/02kpeqv85 Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Dongchon Kang
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
25
|
Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Adv Nutr 2023; 14:1416-1435. [PMID: 37619764 PMCID: PMC10721522 DOI: 10.1016/j.advnut.2023.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The importance of nicotinamide adenine dinucleotide (NAD+) in human physiology is well recognized. As the NAD+ concentration in human skin, blood, liver, muscle, and brain are thought to decrease with age, finding ways to increase NAD+ status could possibly influence the aging process and associated metabolic sequelae. Nicotinamide mononucleotide (NMN) is a precursor for NAD+ biosynthesis, and in vitro/in vivo studies have demonstrated that NMN supplementation increases NAD+ concentration and could mitigate aging-related disorders such as oxidative stress, DNA damage, neurodegeneration, and inflammatory responses. The promotion of NMN as an antiaging health supplement has gained popularity due to such findings; however, since most studies evaluating the effects of NMN have been conducted in cell or animal models, a concern remains regarding the safety and physiological effects of NMN supplementation in the human population. Nonetheless, a dozen human clinical trials with NMN supplementation are currently underway. This review summarizes the current progress of these trials and NMN/NAD+ biology to clarify the potential effects of NMN supplementation and to shed light on future study directions.
Collapse
Affiliation(s)
- Qin Song
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xiaofeng Zhou
- Department of Radiotherapy, The 2(nd) Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Xu
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Sishi Liu
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xinqiang Zhu
- Core Facility, The 4(th) Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| | - Jun Yang
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
26
|
Wu W, Yuan S, Tang Y, Meng X, Peng M, Hu Z, Liu W. Effect of Exercise and Oral Niacinamide Mononucleotide on Improving Mitochondrial Autophagy in Alzheimer's Disease. Nutrients 2023; 15:2851. [PMID: 37447179 DOI: 10.3390/nu15132851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Oral niacinamide mononucleotide (NMN) and aerobic exercise have been shown to enhance niacinamide adenine dinucleotide (NAD+) in the body. NAD+ plays a critical role in the body and can directly and indirectly affect many key cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cell aging, and immune cell function. It is noteworthy that the level of NAD+ decreases gradually with increasing age. Decreased levels of NAD+ have been causally associated with a number of diseases associated with aging, including cognitive decline, cancer, metabolic diseases, sarcopenia, and frailty. Many diseases related to aging can be slowed down or even reversed by restoring NAD+ levels. For example, oral NMN or exercise to increase NAD+ levels in APP/PS1 mice have been proven to improve mitochondrial autophagy, but currently, there is no regimen combining oral NMN with exercise. This review summarizes recent studies on the effect of oral NMN on the enhancement of NAD+ in vivo and the improvements in mitochondrial autophagy abnormalities in AD through aerobic exercise, focusing on (1) how oral NMN improves the internal NAD+ level; (2) how exercise regulates the content of NAD+ in the body; (3) the relationship between exercise activation of NAD+ and AMPK; (4) how SIRT1 is regulated by NAD+ and AMPK and activates PGC-1α to mediate mitochondrial autophagy through changes in mitochondrial dynamics. By summarizing the results of the above four aspects, and combined with the synthesis of NAD+ in vivo, we can infer how exercise elevates the level of NAD+ in vivo to mediate mitochondrial autophagy, so as to propose a new hypothesis that exercise interferes with Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
27
|
Flam E, Arany Z. Metabolite signaling in the heart. NATURE CARDIOVASCULAR RESEARCH 2023; 2:504-516. [PMID: 39195876 DOI: 10.1038/s44161-023-00270-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 08/29/2024]
Abstract
The heart is the most metabolically active organ in the body, sustaining a continuous and high flux of nutrient catabolism via oxidative phosphorylation. The nature and relative contribution of these fuels have been studied extensively for decades. By contrast, less attention has been placed on how intermediate metabolites generated from this catabolism affect intracellular signaling. Numerous metabolites, including intermediates of glycolysis and the tricarboxylic acid (TCA) cycle, nucleotides, amino acids, fatty acids and ketones, are increasingly appreciated to affect signaling in the heart, via various mechanisms ranging from protein-metabolite interactions to modifying epigenetic marks. We review here the current state of knowledge of intermediate metabolite signaling in the heart.
Collapse
Affiliation(s)
- Emily Flam
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Li P, Newhardt MF, Matsuzaki S, Eyster C, Pranay A, Peelor FF, Batushansky A, Kinter C, Subramani K, Subrahmanian S, Ahamed J, Yu P, Kinter M, Miller BF, Humphries KM. The loss of cardiac SIRT3 decreases metabolic flexibility and proteostasis in an age-dependent manner. GeroScience 2023; 45:983-999. [PMID: 36460774 PMCID: PMC9886736 DOI: 10.1007/s11357-022-00695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
SIRT3 is a longevity factor that acts as the primary deacetylase in mitochondria. Although ubiquitously expressed, previous global SIRT3 knockout studies have shown primarily a cardiac-specific phenotype. Here, we sought to determine how specifically knocking out SIRT3 in cardiomyocytes (SIRTcKO mice) temporally affects cardiac function and metabolism. Mice displayed an age-dependent increase in cardiac pathology, with 10-month-old mice exhibiting significant loss of systolic function, hypertrophy, and fibrosis. While mitochondrial function was maintained at 10 months, proteomics and metabolic phenotyping indicated SIRT3 hearts had increased reliance on glucose as an energy substrate. Additionally, there was a significant increase in branched-chain amino acids in SIRT3cKO hearts without concurrent increases in mTOR activity. Heavy water labeling experiments demonstrated that, by 3 months of age, there was an increase in protein synthesis that promoted hypertrophic growth with a potential loss of proteostasis in SIRT3cKO hearts. Cumulatively, these data show that the cardiomyocyte-specific loss of SIRT3 results in severe pathology with an accelerated aging phenotype.
Collapse
Affiliation(s)
- Ping Li
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cardiology, Central South University, The Third Xiangya Hospital, Changsha, Hunan, China
| | - Maria F Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA.
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Craig Eyster
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Caroline Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Kumar Subramani
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sandeep Subrahmanian
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Pengchun Yu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
29
|
Liu LW, Xie Y, Li GQ, Zhang T, Sui YH, Zhao ZJ, Zhang YY, Yang WB, Geng XL, Xue DB, Chen H, Wang YW, Lu TQ, Shang LR, Li ZB, Li L, Sun B. Gut microbiota-derived nicotinamide mononucleotide alleviates acute pancreatitis by activating pancreatic SIRT3 signalling. Br J Pharmacol 2023; 180:647-666. [PMID: 36321732 DOI: 10.1111/bph.15980] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Gut microbiota dysbiosis induced by acute pancreatitis (AP) exacerbates pancreatic injury and systemic inflammatory responses. The alleviation of gut microbiota dysbiosis through faecal microbiota transplantation (FMT) is considered a potential strategy to reduce tissue damage and inflammation in many clinical disorders. Here, we aim to investigate the effect of gut microbiota and microbiota-derived metabolites on AP and further clarify the mechanisms associated with pancreatic damage and inflammation. EXPERIMENTAL APPROACH AP rat and mouse models were established by administration of caerulein or sodium taurocholate in vivo. Pancreatic acinar cells were exposed to caerulein and lipopolysaccharide in vitro to simulate AP. KEY RESULTS Normobiotic FMT alleviated AP-induced gut microbiota dysbiosis and ameliorated the severity of AP, including mitochondrial dysfunction, oxidative damage and inflammation. Normobiotic FMT induced higher levels of NAD+ (nicotinamide adenine dinucleotide)-associated metabolites, particularly nicotinamide mononucleotide (NMN). NMN administration mitigated AP-mediated mitochondrial dysfunction, oxidative damage and inflammation by increasing pancreatic NAD+ levels. Similarly, overexpression of the NAD+ -dependent mitochondrial deacetylase sirtuin 3 (SIRT3) alleviated the severity of AP. Furthermore, SIRT3 deacetylated peroxiredoxin 5 (PRDX5) and enhanced PRDX5 protein expression, thereby promoting its antioxidant and anti-inflammatory activities in AP. Importantly, normobiotic FMT-mediated NMN metabolism induced SIRT3-PRDX5 pathway activation during AP. CONCLUSION AND IMPLICATIONS Gut microbiota-derived NMN alleviates the severity of AP by activating the SIRT3-PRDX5 pathway. Normobiotic FMT could be served as a potential strategy for AP treatment.
Collapse
Affiliation(s)
- Li-Wei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Guan-Qun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yu-Hang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zhong-Jie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang-Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Bo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing-Long Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong-Bo Xue
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong-Wei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian-Qi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Ren Shang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi-Bo Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
30
|
Sanchez-Contreras M, Sweetwyne MT, Tsantilas KA, Whitson JA, Campbell MD, Kohrn BF, Kim HJ, Hipp MJ, Fredrickson J, Nguyen MM, Hurley JB, Marcinek DJ, Rabinovitch PS, Kennedy SR. The multi-tissue landscape of somatic mtDNA mutations indicates tissue-specific accumulation and removal in aging. eLife 2023; 12:e83395. [PMID: 36799304 PMCID: PMC10072880 DOI: 10.7554/elife.83395] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Accumulation of somatic mutations in the mitochondrial genome (mtDNA) has long been proposed as a possible mechanism of mitochondrial and tissue dysfunction that occurs during aging. A thorough characterization of age-associated mtDNA somatic mutations has been hampered by the limited ability to detect low-frequency mutations. Here, we used Duplex Sequencing on eight tissues of an aged mouse cohort to detect >89,000 independent somatic mtDNA mutations and show significant tissue-specific increases during aging across all tissues examined which did not correlate with mitochondrial content and tissue function. G→A/C→T substitutions, indicative of replication errors and/or cytidine deamination, were the predominant mutation type across all tissues and increased with age, whereas G→T/C→A substitutions, indicative of oxidative damage, were the second most common mutation type, but did not increase with age regardless of tissue. We also show that clonal expansions of mtDNA mutations with age is tissue- and mutation type-dependent. Unexpectedly, mutations associated with oxidative damage rarely formed clones in any tissue and were significantly reduced in the hearts and kidneys of aged mice treated at late age with elamipretide or nicotinamide mononucleotide. Thus, the lack of accumulation of oxidative damage-linked mutations with age suggests a life-long dynamic clearance of either the oxidative lesions or mtDNA genomes harboring oxidative damage.
Collapse
Affiliation(s)
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | | | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | | | - Brenden F Kohrn
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Hyeon Jeong Kim
- Department of Biology, University of WashingtonSeattleUnited States
| | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - James B Hurley
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - David J Marcinek
- Department of Radiology, University of WashingtonSeattleUnited States
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| |
Collapse
|
31
|
Poljšak B, Kovač V, Špalj S, Milisav I. The Central Role of the NAD+ Molecule in the Development of Aging and the Prevention of Chronic Age-Related Diseases: Strategies for NAD+ Modulation. Int J Mol Sci 2023; 24:2959. [PMID: 36769283 PMCID: PMC9917998 DOI: 10.3390/ijms24032959] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The molecule NAD+ is a coenzyme for enzymes catalyzing cellular redox reactions in several metabolic pathways, encompassing glycolysis, TCA cycle, and oxidative phosphorylation, and is a substrate for NAD+-dependent enzymes. In addition to a hydride and electron transfer in redox reactions, NAD+ is a substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases and even moderate decreases in its cellular concentrations modify signaling of NAD+-consuming enzymes. Age-related reduction in cellular NAD+ concentrations results in metabolic and aging-associated disorders, while the consequences of increased NAD+ production or decreased degradation seem beneficial. This article reviews the NAD+ molecule in the development of aging and the prevention of chronic age-related diseases and discusses the strategies of NAD+ modulation for healthy aging and longevity.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stjepan Špalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Profeta V, McIntyre K, Wells M, Park C, Lynch DR. Omaveloxolone: an activator of Nrf2 for the treatment of Friedreich ataxia. Expert Opin Investig Drugs 2023; 32:5-16. [PMID: 36708320 DOI: 10.1080/13543784.2023.2173063] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive degenerative disorder characterized by ataxia, dysarthria, diabetes, cardiomyopathy, scoliosis, and occasionally vision loss in late-stage disease. The discovery of the abnormal gene in FRDA and its product frataxin has provided insight into the pathophysiology and mechanisms of treatment. AREAS COVERED Although the neurologic phenotype of FRDA is well defined, there are currently no established pharmacological treatments. Omaveloxolone, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is currently under review by the Food and Drug Administration (FDA) and has the potential to be the first approved treatment for FRDA. In the present report, we have reviewed the basic and clinical literature on Nrf2 deficiency in FRDA, and evidence for the benefit of omaveloxolone. EXPERT OPINION The present perspective suggests that omaveloxolone is a rational and efficacious therapy that is possibly disease modifying in treatment of FRDA.
Collapse
Affiliation(s)
- Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - McKenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Fasting increases susceptibility to acute myocardial ischaemia/reperfusion injury through a sirtuin-3 mediated increase in fatty acid oxidation. Sci Rep 2022; 12:20551. [PMID: 36446868 PMCID: PMC9708654 DOI: 10.1038/s41598-022-23847-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Fasting increases susceptibility to acute myocardial ischaemia/reperfusion injury (IRI) but the mechanisms are unknown. Here, we investigate the role of the mitochondrial NAD+-dependent deacetylase, Sirtuin-3 (SIRT3), which has been shown to influence fatty acid oxidation and cardiac outcomes, as a potential mediator of this effect. Fasting was shown to shift metabolism from glucose towards fatty acid oxidation. This change in metabolic fuel substrate utilisation increased myocardial infarct size in wild-type (WT), but not SIRT3 heterozygous knock-out (KO) mice. Further analysis revealed SIRT3 KO mice were better adapted to starvation through an improved cardiac efficiency, thus protecting them from acute myocardial IRI. Mitochondria from SIRT3 KO mice were hyperacetylated compared to WT mice which may regulate key metabolic processes controlling glucose and fatty acid utilisation in the heart. Fasting and the associated metabolic switch to fatty acid respiration worsens outcomes in WT hearts, whilst hearts from SIRT3 KO mice are better adapted to oxidising fatty acids, thereby protecting them from acute myocardial IRI.
Collapse
|
34
|
Omoto ACM, do Carmo JM, Nelson B, Aitken N, Dai X, Moak S, Flynn E, Wang Z, Mouton AJ, Li X, Hall JE, da Silva AA. Central Nervous System Actions of Leptin Improve Cardiac Function After Ischemia–Reperfusion: Roles of Sympathetic Innervation and Sex Differences. J Am Heart Assoc 2022; 11:e027081. [DOI: 10.1161/jaha.122.027081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Therapeutic strategies for preventing paradoxical reperfusion injury after myocardial ischemia are limited. We tested whether central nervous system actions of leptin induce important protective effects on cardiac function and metabolism after myocardial ischemia/reperfusion (I/R) injury, the role of cardiac sympathetic innervation in mediating these effects, and whether there are major sex differences in the cardioprotective effects of chronic central nervous system leptin infusion.
Methods and Results
Myocardial I/R was induced by temporary ligation of the left descending coronary artery in male and female Wistar rats instrumented with intracerebroventricular cannula in the lateral ventricle. Vehicle or leptin (0.62 μg/h) infusion was started immediately after reperfusion and continued for 28 days using osmotic minipumps connected to the intracerebroventricular cannula. Cardiac function was assessed by echocardiography, ventricular pressures, and exercise performance. Intracerebroventricular leptin treatment markedly attenuated cardiac dysfunction post‐I/R as evidenced by improved ejection fraction (56.7±1.9 versus 22.6%±1.1%), maximal rate of left ventricle rise (11 680±2122 versus 5022±441 mm Hg) and exercise performance (−4.2±7.9 versus −68.2±3.8 Δ%) compared with vehicle‐treated rats. Intracerebroventricular leptin infusion reduced infarct size in females, but not males, when compared with ad‐lib fed or pair‐fed saline‐treated rats. Intracerebroventricular leptin treatment also increased cardiac NAD
+
/NADH content (≈10‐fold) and improved mitochondrial function when compared with vehicle treatment. Cervical ganglia denervation did not attenuate the cardiac protective effects of leptin after I/R injury.
Conclusions
These data indicate that leptin, via its central nervous system actions, markedly improves overall heart function and mitochondrial metabolism after I/R injury regardless of sex, effects that are largely independent of cardiac sympathetic innervation.
Collapse
Affiliation(s)
- Ana C. M. Omoto
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Benjamin Nelson
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Nikaela Aitken
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuemei Dai
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Sydney Moak
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Elizabeth Flynn
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Zhen Wang
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alan J. Mouton
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuan Li
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - John E. Hall
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| |
Collapse
|
35
|
Wang DD, Airhart SE, Zhou B, Shireman LM, Jiang S, Melendez Rodriguez C, Kirkpatrick JN, Shen DD, Tian R, O’Brien KD. Safety and Tolerability of Nicotinamide Riboside in Heart Failure With Reduced Ejection Fraction. JACC Basic Transl Sci 2022; 7:1183-1196. [PMID: 36644285 PMCID: PMC9831861 DOI: 10.1016/j.jacbts.2022.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
The mitochondrial dysfunction characteristic of heart failure (HF) is associated with changes in intracellular nicotinamide adenine dinucleotide (NAD+) and NADH levels. Raising NAD+ levels with the NAD+ precursor, nicotinamide riboside (NR), may represent a novel HF treatment. In this 30-participant trial of patients with clinically stable HF with reduced ejection fraction, NR, at a dose of 1,000 mg twice daily, appeared to be safe and well tolerated, and approximately doubled whole blood NAD+ levels. Intraindividual NAD+ increases in response to NR correlated with increases in peripheral blood mononuclear cell basal (R 2 = 0.413, P = 0.003) and maximal (R 2 = 0.434, P = 0.002) respiration, and with decreased NLRP3 expression (R 2 = 0.330, P = 0.020). (Nicotinamide Riboside in Systolic Heart Failure; NCT03423342).
Collapse
Key Words
- AE, adverse event
- E/e′, ratio of the early transmitral flow velocity to the early diastolic tissue velocity
- GLS, global longitudinal strain
- HF, heart failure
- HFrEF
- HFrEF, heart failure with reduced rejection fraction
- IL, interleukin
- LV, left ventricular
- NAD+
- NAD+, nicotinamide adenine dinucleotide
- NLRP3, NOD-like receptor family pyrin domain containing 3
- NR
- NR, nicotinamide riboside
- PBMC, peripheral blood mononuclear cell
- TNF, tumor necrosis factor
- heart failure with reduced ejection fraction
- mitochondrial dysfunction
- nicotinamide adenine dinucleotide
- nicotinamide riboside
- sterile inflammation
Collapse
Affiliation(s)
- Dennis D. Wang
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sophia E. Airhart
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA,Providence St. Vincent Medical Center, Portland, Oregon, USA
| | - Bo Zhou
- Mitochondrial and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Laura M. Shireman
- School of Medicine and Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Siyi Jiang
- Mitochondrial and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | | | - James N. Kirkpatrick
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Danny D. Shen
- School of Medicine and Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondrial and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA,Dr Rong Tian, Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, Washington 98105, USA.
| | - Kevin D. O’Brien
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA,Address for correspondence: Dr Kevin D. O’Brien, Division of Cardiology, Box 356422, University of Washington, 1959 Northeast Pacific Street, Seattle, Washington 98195-6422, USA.
| |
Collapse
|
36
|
Qin X, Qin Q, Ran K, Yuan G, Chang Y, Wang Y, Xiao Y. Sevoflurane preconditioning alleviates myocardial ischemia reperfusion injury through mitochondrial NAD +-SIRT3 pathway in rats. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1108-1119. [PMID: 36097779 PMCID: PMC10950099 DOI: 10.11817/j.issn.1672-7347.2022.200708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Myocardial ischemia reperfusion injury (IRI) occurs occasionally in the process of ischemic heart disease. Sevoflurane preconditioning has an effect on attenuating IRI. Preserving the structural and functional integrity of mitochondria is the key to reduce myocardial IRI. Silent information regulator 3 (SIRT3), a class of nicotinamide adenine dinucleotide (NAD+) dependent deacetylases, is an important signal-regulating molecule in mitochondria. This study aims to explore the role of mitochondrial NAD+-SIRT3 pathway in attenuating myocardial IRI in rats by sevoflurane preconditioning. METHODS A total of 60 male Sprague Dawley (SD) rats were randomly divided into 5 groups (n=12): A sham group (Sham group), an ischemia reperfusion group (IR group), a sevoflurane preconditioning group (Sev group, inhaled 2.5% sevoflurane for 30 min), a sevoflurane preconditioning+SIRT3 inhibitor 3-TYP group (Sev+3-TYP group, inhaled 2.5% sevoflurane for 30 min and received 5 mg/kg 3-TYP), and a 3-TYP group (5 mg/kg 3-TYP). Except for the Sham group, the IR model in the other 4 groups was established by ligating the left anterior descending coronary artery. The size of myocardial infarction was determined by double staining. Serum cardiac troponin I (cTnI) level was measured. The contents of NAD+ and ATP, the activities of mitochondrial complexes I, II, and IV, the content of MDA, the activity of SOD, and the changes of mitochondrial permeability were measured. The protein expression levels of SIRT3, SOD2, catalase (CAT), and voltage dependent anion channel 1 (VDAC1) were detected by Western blotting. The ultrastructure of myocardium was observed under transmission electron microscope. MAP and HR were recorded immediately before ischemia (T0), 30 min after ischemia (T1), 30 min after reperfusion (T2), 60 min after reperfusion (T3), and 120 min after reperfusion (T4). RESULTS After ischemia reperfusion, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased (both P<0.01), and an obvious myocardial injury occurred, including the increase of myocardial infarction size and serum cTnI level (both P<0.01). Correspondingly, the mitochondria also showed obvious damage on energy metabolism, antioxidant function, and structural integrity, which was manifested as: the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level and mitochondrial permeability were increased (all P<0.01). Compared with the IR group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were increased in the Sev group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were decreased in the Sev group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were increased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were decreased in the Sev group (all P<0.01). Compared with the Sev group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased in the Sev+3-TYP group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were increased in the Sev+3-TYP group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were increased in the Sev+3-TYP group (all P<0.01). CONCLUSIONS Sevoflurane preconditioning attenuates myocardial IRI through activating the mitochondrial NAD+-SIRT3 pathway to preserve the mitochondrial function.
Collapse
Affiliation(s)
- Xiunan Qin
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Qin Qin
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Ran
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Guixiu Yuan
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yetian Chang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yaping Wang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yanying Xiao
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
37
|
Poljšak B, Kovač V, Milisav I. Current Uncertainties and Future Challenges Regarding NAD+ Boosting Strategies. Antioxidants (Basel) 2022; 11:1637. [PMID: 36139711 PMCID: PMC9495723 DOI: 10.3390/antiox11091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Precursors of nicotinamide adenine dinucleotide (NAD+), modulators of enzymes of the NAD+ biosynthesis pathways and inhibitors of NAD+ consuming enzymes, are the main boosters of NAD+. Increasing public awareness and interest in anti-ageing strategies and health-promoting lifestyles have grown the interest in the use of NAD+ boosters as dietary supplements, both in scientific circles and among the general population. Here, we discuss the current trends in NAD+ precursor usage as well as the uncertainties in dosage, timing, safety, and side effects. There are many unknowns regarding pharmacokinetics and pharmacodynamics, particularly bioavailability, metabolism, and tissue specificity of NAD+ boosters. Given the lack of long-term safety studies, there is a need for more clinical trials to determine the proper dose of NAD+ boosters and treatment duration for aging prevention and as disease therapy. Further research will also need to address the long-term consequences of increased NAD+ and the best approaches and combinations to increase NAD+ levels. The answers to the above questions will contribute to the more efficient and safer use of NAD+ boosters.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Irina Milisav
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Liu M, Lv J, Pan Z, Wang D, Zhao L, Guo X. Mitochondrial dysfunction in heart failure and its therapeutic implications. Front Cardiovasc Med 2022; 9:945142. [PMID: 36093152 PMCID: PMC9448986 DOI: 10.3389/fcvm.2022.945142] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
The ATP consumption in heart is very intensive to support muscle contraction and relaxation. Mitochondrion is the power plant of the cell. Mitochondrial dysfunction has long been believed as the primary mechanism responsible for the inability of energy generation and utilization in heart failure. In addition, emerging evidence has demonstrated that mitochondrial dysfunction also contributes to calcium dysregulation, oxidative stress, proteotoxic insults and cardiomyocyte death. These elements interact with each other to form a vicious circle in failing heart. The role of mitochondrial dysfunction in the pathogenesis of heart failure has attracted increasing attention. The complex signaling of mitochondrial quality control provides multiple targets for maintaining mitochondrial function. Design of therapeutic strategies targeting mitochondrial dysfunction holds promise for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Miaosen Liu
- Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liding Zhao
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaogang Guo,
| |
Collapse
|
39
|
Tong WH, Ollivierre H, Noguchi A, Ghosh MC, Springer DA, Rouault TA. Hyperactivation of mTOR and AKT in a cardiac hypertrophy animal model of Friedreich ataxia. Heliyon 2022; 8:e10371. [PMID: 36061025 PMCID: PMC9433723 DOI: 10.1016/j.heliyon.2022.e10371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/28/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy is a primary cause of death in Friedreich ataxia (FRDA) patients with defective iron-sulfur cluster (ISC) biogenesis due to loss of functional frataxin and in rare patients with functional loss of other ISC biogenesis factors. The mechanistic target of rapamycin (mTOR) and AKT signaling cascades that coordinate eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors, are crucial regulators of cardiovascular growth and homeostasis. We observed increased phosphorylation of AKT and dysregulation of multiple downstream effectors of mTORC1, including S6K1, S6, ULK1 and 4EBP1, in a cardiac/skeletal muscle specific FRDA conditional knockout (cKO) mouse model and in human cell lines depleted of ISC biogenesis factors. Knockdown of several mitochondrial metabolic proteins that are downstream targets of ISC biogenesis, including lipoyl synthase and subunit B of succinate dehydrogenase, also resulted in activation of mTOR and AKT signaling, suggesting that mTOR and AKT hyperactivations are part of the metabolic stress response to ISC deficiencies. Administration of rapamycin, a specific inhibitor of mTOR signaling, enhanced the survival of the Fxn cKO mice, providing proof of concept for the potential of mTOR inhibition to ameliorate cardiac disease in patients with defective ISC biogenesis. However, AKT phosphorylation remained high in rapamycin-treated Fxn cKO hearts, suggesting that parallel mTOR and AKT inhibition might be necessary to further improve the lifespan and healthspan of ISC deficient individuals.
Collapse
Affiliation(s)
- Wing-Hang Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Hayden Ollivierre
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States
| | - Manik C. Ghosh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Danielle A. Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States
| | - Tracey A. Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
- Corresponding author.
| |
Collapse
|
40
|
O'Connell TM, Logsdon DL, Payne RM. Metabolomics analysis reveals dysregulation in one carbon metabolism in Friedreich Ataxia. Mol Genet Metab 2022; 136:306-314. [PMID: 35798654 DOI: 10.1016/j.ymgme.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/14/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
Friedreich Ataxia (FA) is a rare and often fatal autosomal recessive disease in which a mitochondrial protein, frataxin (FXN), is severely reduced in all tissues. With loss of FXN, mitochondrial metabolism is severely disrupted. Multiple therapeutic approaches are in development, but a key limitation is the lack of biomarkers reflecting the activity of FXN in a timely fashion. We predicted this dysregulated metabolism would present a unique metabolite profile in blood of FA patients versus Controls (Con). Plasma from 10 FA and 11 age and sex matched Con subjects was analyzed by targeted mass spectrometry and untargeted NMR. This combined approach yielded quantitative measurements for 540 metabolites and found 59 unique metabolites (55 from MS and 4 from NMR) that were significantly different between cohorts. Correlation-based network analysis revealed several clusters of pathway related metabolites including a cluster associated with one‑carbon (1C) metabolism composed of formate, sarcosine, hypoxanthine, and homocysteine. Receiver operator characteristics analyses demonstrated an excellent ability to discriminate between Con and FA with AUC values >0.95. These results are the first reported metabolomic analyses of human patients with FA. The metabolic perturbations, especially those related to 1C metabolism, may serve as a valuable biomarker panel of disease progression and response to therapy. The identification of dysregulated 1C metabolism may also inform the search for new therapeutic targets related to this pathway.
Collapse
Affiliation(s)
- Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - David L Logsdon
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - R Mark Payne
- Department of Pediatrics, Division of Cardiology, and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
41
|
Payne RM. Cardiovascular Research in Friedreich Ataxia: Unmet Needs and Opportunities. JACC Basic Transl Sci 2022; 7:1267-1283. [PMID: 36644283 PMCID: PMC9831864 DOI: 10.1016/j.jacbts.2022.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
Abstract
Friedreich Ataxia (FRDA) is an autosomal recessive disease in which a mitochondrial protein, frataxin, is severely decreased in its expression. In addition to progressive ataxia, patients with FRDA often develop a cardiomyopathy that can be hypertrophic. This cardiomyopathy is unlike the sarcomeric hypertrophic cardiomyopathies in that the hypertrophy is associated with massive mitochondrial proliferation within the cardiomyocyte rather than contractile protein overexpression. This is associated with atrial arrhythmias, apoptosis, and fibrosis over time, and patients often develop heart failure leading to premature death. The differences between this mitochondrial cardiomyopathy and the more common contractile protein hypertrophic cardiomyopathies can be a source of misunderstanding in the management of these patients. Although imaging studies have revealed much about the structure and function of the heart in this disease, we still lack an understanding of many important clinical and fundamental molecular events that determine outcome of the heart in FRDA. This review will describe the current basic and clinical understanding of the FRDA heart, and most importantly, identify major gaps in our knowledge that represent new directions and opportunities for research.
Collapse
Affiliation(s)
- R. Mark Payne
- Address for correspondence: Dr R. Mark Payne, Division of Pediatric Cardiology, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, R4 302b, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
42
|
Luo C, Ding W, Yang C, Zhang W, Liu X, Deng H. Nicotinamide Mononucleotide Administration Restores Redox Homeostasis via the Sirt3-Nrf2 Axis and Protects Aged Mice from Oxidative Stress-Induced Liver Injury. J Proteome Res 2022; 21:1759-1770. [PMID: 35699728 DOI: 10.1021/acs.jproteome.2c00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Altered adaptive homeostasis contributes to aging and lifespan regulation. In the present study, to characterize the mechanism of aging in mouse liver, we performed quantitative proteomics and found that the most upregulated proteins were related to the oxidation-reduction process. Further analysis revealed that malondialdehyde (MDA) and protein carbonyl (PCO) levels were increased, while nuclear Nrf2 and downstream genes were significantly increased, indicating that oxidative stress induced Nrf2 activation in aged mouse liver. Importantly, nicotinamide mononucleotide (NMN) administration decreased the oxidative stress and the nuclear Nrf2 and Nrf2 downstream gene levels. Indeed, aged mice treated with NMN improved stress resistance against acetaminophen (APAP)-induced liver injury, indicating that NMN restored Nrf2-mediated adaptive homeostasis. Further studies found that NMN increased Sirt3 activities to deacetylate age-associated acetylation at K68 and K122 in Sod2, while its effects on nuclear Nrf2 levels were diminished in Sirt3-deficient mice, suggesting that NMN-enhanced adaptive homeostasis was Sirt3-dependent. Taken together, we demonstrated that Nrf2-regulated adaptive homeostasis was decreased in aged mouse liver and NMN supplementation restored liver redox homeostasis via the Sirt3-Nrf2 axis and protected aged liver from oxidative stress-induced injury.
Collapse
Affiliation(s)
- Chengting Luo
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenxi Ding
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Nicotinamide Mononucleotide Administration Amends Protein Acetylome of Aged Mouse Liver. Cells 2022; 11:cells11101654. [PMID: 35626691 PMCID: PMC9139684 DOI: 10.3390/cells11101654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/21/2022] Open
Abstract
It is known that the activities of nicotine adenine dinucleotide (NAD+)-dependent deacetylase decline in the aging mouse liver, and nicotinamide mononucleotide (NMN)-mediated activation of deacetylase has been shown to increase healthspans. However, age-induced changes of the acetylomic landscape and effects of NMN treatment on protein acetylation have not been reported. Here, we performed immunoprecipitation coupled with label-free quantitative LC-MS/MS (IPMS) to identify the acetylome and investigate the effects of aging and NMN on liver protein acetylation. In total, 7773 acetylated peptides assigned to 1997 proteins were commonly identified from young and aged livers treated with vehicle or NMN. The major biological processes associated with proteins exhibiting increased acetylation from aged livers were oxidation-reduction and metabolic processes. Proteins with decreased acetylation from aged livers mostly participated in transport and translation processes. Furthermore, NMN treatment inhibited the aging-related increase of acetylation on proteins regulating fatty acid β oxidation, the tricarboxylic acid (TCA) cycle and valine degradation. In particular, NAD (P) transhydrogenase (NNT) was markedly hyperacetylated at K70 in aged livers, and NMN treatment decreased acetylation intensity without altering protein levels. Acetylation at cytochrome 3a25 (Cyp3a25) at K141 was also greatly increased in aged livers, and NMN treatment totally arrested this increase. Our extensive identification and analysis provide novel insight and potential targets to combat aging and aging-related functional decline.
Collapse
|
44
|
Chakraborty A, Minor KE, Nizami HL, Chiao YA, Lee CF. Harnessing NAD + Metabolism as Therapy for Cardiometabolic Diseases. Curr Heart Fail Rep 2022; 19:157-169. [PMID: 35556214 PMCID: PMC9339518 DOI: 10.1007/s11897-022-00550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes current understanding on the roles of nicotinamide adenine dinucleotide (NAD+) metabolism in the pathogeneses and treatment development of metabolic and cardiac diseases. RECENT FINDINGS NAD+ was identified as a redox cofactor in metabolism and a co-substrate for a wide range of NAD+-dependent enzymes. NAD+ redox imbalance and depletion are associated with many pathologies where metabolism plays a key role, for example cardiometabolic diseases. This review is to delineate the current knowledge about harnessing NAD+ metabolism as potential therapy for cardiometabolic diseases. The review has summarized how NAD+ redox imbalance and depletion contribute to the pathogeneses of cardiometabolic diseases. Therapeutic evidence involving activation of NAD+ synthesis in pre-clinical and clinical studies was discussed. While activation of NAD+ synthesis shows great promise for therapy, the field of NAD+ metabolism is rapidly evolving. Therefore, it is expected that new mechanisms will be discovered as therapeutic targets for cardiometabolic diseases.
Collapse
Affiliation(s)
- Akash Chakraborty
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Keaton E Minor
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hina Lateef Nizami
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
45
|
Abdellatif M, Bugger H, Kroemer G, Sedej S. NAD + and Vascular Dysfunction: From Mechanisms to Therapeutic Opportunities. J Lipid Atheroscler 2022; 11:111-132. [PMID: 35656147 PMCID: PMC9133775 DOI: 10.12997/jla.2022.11.2.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential and pleiotropic coenzyme involved not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and post-translational protein modifications. Vascular disease risk factors are associated with aberrant NAD+ metabolism. Conversely, the therapeutic increase of NAD+ levels through the administration of NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular pathologies. As such, NAD+ has emerged as a potential target for combatting age-related cardiovascular and cerebrovascular disorders. This review discusses NAD+-regulated mechanisms critical for vascular health and summarizes new advances in NAD+ research directly related to vascular aging and disease, including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and opportunities for NAD+ repletion therapy while anticipating the future of this exciting research field, which will have a major impact on vascular medicine.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
46
|
Murugasamy K, Munjal A, Sundaresan NR. Emerging Roles of SIRT3 in Cardiac Metabolism. Front Cardiovasc Med 2022; 9:850340. [PMID: 35369299 PMCID: PMC8971545 DOI: 10.3389/fcvm.2022.850340] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
The heart is a highly metabolically active organ that predominantly utilizes fatty acids as an energy substrate. The heart also derives some part of its energy by oxidation of other substrates, including glucose, lactose, amino acids and ketones. The critical feature of cardiac pathology is metabolic remodeling and loss of metabolic flexibility. Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins (SIRT1 to SIRT7), with NAD+ dependent deacetylase activity. SIRT3 is expressed in high levels in healthy hearts but downregulated in the aged or diseased hearts. Experimental evidence shows that increasing SIRT3 levels or activity can ameliorate several cardiac pathologies. The primary deacetylation targets of SIRT3 are mitochondrial proteins, most of which are involved in energy metabolism. Thus, SIRT3 improves cardiac health by modulating cardiac energetics. In this review, we discuss the essential role of SIRT3 in regulating cardiac metabolism in the context of physiology and pathology. Specifically, we summarize the recent advancements that emphasize the critical role of SIRT3 as a master regulator of cardiac metabolism. We also present a comprehensive view of all known activators of SIRT3, and elaborate on their therapeutic potential to ameliorate energetic abnormalities in various cardiac pathologies.
Collapse
|
47
|
Pei Z, Wang F, Wang K, Wang L. Nicotinamide Adenine Dinucleotide in the Development and Treatment of Cardiac Remodeling and Aging. Mini Rev Med Chem 2022; 22:2310-2317. [DOI: 10.2174/1389557522666220304121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
Abstract
Background:
Recently, the beneficial effects of nicotinamide adenine dinucleotide (NAD+) as an antiaging and antioxidant molecule have become a focus of research. However, the mechanisms by which NAD+ supplementation affects the associated metabolites under physiological conditions remain unclear. Specifically, although NAD+ is involved in several processes that are dysregulated in cardiovascular diseases, some effects of NAD+ precursors and NAD+ on cardiac diseases have started to gain recognition only recently.
Objective:
To discuss the influence of NAD+ supplementation on adverse cardiac remodeling and aging.
Results:
Supplementation with NAD+ precursors or nicotinamide riboside, which enhances or supplements the NAD+ metabolome, might have a protective effect on the heart. NAD+ can alleviate chronic heart failure via a mitochondrial oxidation–reduction (redox) state mechanism. Furthermore, NAD+ replenishment can improve the life span of mice.
Conclusion:
NAD+ exerts considerable antiaging and antioxidant effects with promising therapeutic effects. However, its effect in humans and use as a dietary supplement need to be studied further.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, P. R. China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, P. R. China
| | - Kanglin Wang
- Hefei Knature Bio-pharm Co., Ltd., No. 32 Meichong Lake Road, Hefei, P. R. China
| | - Lei Wang
- Hefei Knature Bio-pharm Co., Ltd., No. 32 Meichong Lake Road, Hefei, P. R. China
| |
Collapse
|
48
|
Rufini A, Malisan F, Condò I, Testi R. Drug Repositioning in Friedreich Ataxia. Front Neurosci 2022; 16:814445. [PMID: 35221903 PMCID: PMC8863941 DOI: 10.3389/fnins.2022.814445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.
Collapse
Affiliation(s)
- Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
- *Correspondence: Alessandra Rufini,
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
| |
Collapse
|
49
|
Ji J, Damschroder D, Bessert D, Lazcano P, Wessells R, Reynolds CA, Greenberg ML. NAD supplementation improves mitochondrial performance of cardiolipin mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159094. [PMID: 35051613 PMCID: PMC8883178 DOI: 10.1016/j.bbalip.2021.159094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022]
Abstract
Cardiolipin (CL) deficiency causes mitochondrial dysfunction and aberrant metabolism that are associated in humans with the severe disease Barth syndrome (BTHS). Several metabolic abnormalities are observed in BTHS patients and model systems, including decreased oxidative phosphorylation, reduced tricarboxylic acid (TCA) cycle flux, and accumulated lactate and D-β-hydroxybutyrate, which strongly suggests that nicotinamide adenine dinucleotide (NAD) redox metabolism may be altered in CL-deficient cells. In this study, we identified abnormal NAD+ metabolism in multiple BTHS model systems and demonstrate that supplementation of NAD+ precursors such as nicotinamide mononucleotide (NMN) improves mitochondrial function. Improved mitochondrial function in the Drosophila model was associated with restored exercise endurance, which suggests a potential therapeutic benefit of NAD+ precursor supplementation in the management of BTHS patients.
Collapse
Affiliation(s)
- Jiajia Ji
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States of America
| | - Deena Damschroder
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Denise Bessert
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Pablo Lazcano
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States of America
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Christian A Reynolds
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, United States of America.
| | - Miriam L Greenberg
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
50
|
Ramanathan C, Lackie T, Williams DH, Simone PS, Zhang Y, Bloomer RJ. Oral Administration of Nicotinamide Mononucleotide Increases Nicotinamide Adenine Dinucleotide Level in an Animal Brain. Nutrients 2022; 14:nu14020300. [PMID: 35057482 PMCID: PMC8778478 DOI: 10.3390/nu14020300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/04/2023] Open
Abstract
As a redox-sensitive coenzyme, nicotinamide adenine dinucleotide (NAD+) plays a central role in cellular energy metabolism and homeostasis. Low NAD+ levels are linked to multiple disease states, including age-related diseases, such as metabolic and neurodegenerative diseases. Consequently, restoring/increasing NAD+ levels in vivo has emerged as an important intervention targeting age-related neurodegenerative diseases. One of the widely studied approaches to increase NAD+ levels in vivo is accomplished by using NAD+ precursors, such as nicotinamide mononucleotide (NMN). Oral administration of NMN has been shown to successfully increase NAD+ levels in a variety of tissues; however, it remains unclear whether NMN can cross the blood–brain barrier to increase brain NAD+ levels. This study evaluated the effects of oral NMN administration on NAD+ levels in C57/B6J mice brain tissues. Our results demonstrate that oral gavage of 400 mg/kg NMN successfully increases brain NAD+ levels in mice after 45 min. These findings provide evidence that NMN may be used as an intervention to increase NAD+ levels in the brain.
Collapse
Affiliation(s)
- Chidambaram Ramanathan
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (T.L.); (Y.Z.); (R.J.B.)
- Correspondence:
| | - Thomas Lackie
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (T.L.); (Y.Z.); (R.J.B.)
| | - Drake H. Williams
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (D.H.W.); (P.S.S.)
| | - Paul S. Simone
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (D.H.W.); (P.S.S.)
| | - Yufeng Zhang
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (T.L.); (Y.Z.); (R.J.B.)
| | - Richard J. Bloomer
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (T.L.); (Y.Z.); (R.J.B.)
| |
Collapse
|