1
|
Rawnsley DR, Islam M, Zhao C, Kargar Gaz Kooh Y, Mendoza A, Navid H, Kumari M, Guan X, Murphy JT, Nigro J, Kovacs A, Mani K, Huebsch N, Ma X, Diwan A. Mitophagy Facilitates Cytosolic Proteostasis to Preserve Cardiac Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.624947. [PMID: 39651239 PMCID: PMC11623534 DOI: 10.1101/2024.11.24.624947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Protein quality control (PQC) is critical for maintaining sarcomere structure and function in cardiac myocytes, and mutations in PQC pathway proteins, such as CRYAB (arginine to glycine at position 120, R120G) and BAG3 (proline to lysine at position 209, P209L) induce protein aggregate pathology with cardiomyopathy in humans. Novel observations in yeast and mammalian cells demonstrate mitochondrial uptake of cytosolic protein aggregates. We hypothesized that mitochondrial uptake of cytosolic protein aggregates and their removal by mitophagy, a lysosomal degradative pathway essential for myocardial homeostasis, facilitates cytosolic protein quality control in cardiac myocytes. Methods Mice with inducible cardiac myocyte specific ablation of TRAF2 (TRAF2icKO), which impairs mitophagy, were assessed for protein aggregates with biochemical fractionation and super-resolution imaging in comparison to floxed controls. Induced pluripotent stem cell (iPSC)-derived cardiac myocytes with R120G knock-in to the CRYAB locus were assessed for localization of the CRYAB protein. Transgenic mice expressing R120G CRYAB protein (R120G-TG) were subjected to both TRAF2 gain-of-function (with AAV9-cardiac Troponin T promoter-driven TRAF2 transduction) and TRAF2 loss-of-function (with tamoxifen-inducible ablation of one Traf2 allele) in cardiac myocytes to determine the effect of mitophagy modulation on cardiac structure, function, and protein aggregate pathology. Results Cardiomyocyte-specific ablation of TRAF2 results accumulation of mitochondrial and cytosolic protein aggregates and DESMIN mis-localization to protein aggregates. Isolated mitochondria take up cardiomyopathy-associated aggregate-prone cytosolic chaperone proteins, namely arginine to glycine (R120G) CRYAB mutant and proline to lysine (P209L) BAG3 mutant. R120G-CRYAB mutant protein increasingly localizes to mitochondria in human and mouse cardiomyocytes. R120G-TG mice demonstrate upregulation of TRAF2 in the mitochondrial fraction with increased mitophagy as compared with wild type. Adult-onset inducible haplo-insufficiency of TRAF2 resulted in accelerated mortality, impaired left ventricular systolic function and increased protein aggregates in R120G-TG mice as compared with controls. Conversely, AAV9-mediated TRAF2 transduction in R120G-TG mice reduced mortality and attenuated left ventricular systolic dysfunction, with reduced protein aggregates and restoration of normal localization of DESMIN, a cytosolic scaffolding protein chaperoned by CRYAB, as compared with control AAV9-GFP group. Conclusions TRAF2-mediated mitophagy in cardiac myocytes facilitates removal of cytosolic protein aggregates and can be stimulated to ameliorate proteotoxic cardiomyopathy.
Collapse
|
2
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
3
|
Lahiri SK, Lu J, Aguilar-Sanchez Y, Li H, Moreira LM, Hulsurkar MM, Mendoza A, Turkieltaub Paredes MR, Navarro-Garcia JA, Munivez E, Horist B, Moore OM, Weninger G, Brandenburg S, Lenz C, Lehnart SE, Sayeed R, Krasopoulos G, Srivastava V, Zhang L, Karch JM, Reilly S, Wehrens XHT. Targeting calpain-2-mediated junctophilin-2 cleavage delays heart failure progression following myocardial infarction. J Mol Cell Cardiol 2024; 194:85-95. [PMID: 38960317 PMCID: PMC11519832 DOI: 10.1016/j.yjmcc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.
Collapse
Affiliation(s)
- Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jiao Lu
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Hui Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lucia M Moreira
- Cardiovascular Medicine, Radcliffe Dept of Medicine, University of Oxford, UK
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Arielys Mendoza
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Mara R Turkieltaub Paredes
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jose Alberto Navarro-Garcia
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Elda Munivez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Brooke Horist
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sören Brandenburg
- Department of Cardiology & Pneumology, Heart Research Center Göttingen; Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology & Pneumology, Heart Research Center Göttingen; Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
| | - Rana Sayeed
- Cardiothoracic Unit, John Radcliffe Hospital, Oxford, UK
| | | | | | - Lilei Zhang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jason M Karch
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Svetlana Reilly
- Cardiovascular Medicine, Radcliffe Dept of Medicine, University of Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine/Cardiology, Baylor College of Medicine, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Meng J, Fang J, Bao Y, Chen H, Hu X, Wang Z, Li M, Cheng Q, Dong Y, Yang X, Zou Y, Zhao D, Tang J, Zhang W, Chen C. The biphasic role of Hspb1 on ferroptotic cell death in Parkinson's disease. Theranostics 2024; 14:4643-4666. [PMID: 39239519 PMCID: PMC11373631 DOI: 10.7150/thno.98457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/21/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Ferroptosis-driven loss of dopaminergic neurons plays a pivotal role in the pathogenesis of Parkinson's disease (PD). In PD patients, Hspb1 is commonly observed at abnormally high levels in the substantia nigra. The precise consequences of Hspb1 overexpression in PD, however, have yet to be fully elucidated. Methods: We used human iPSC-derived dopaminergic neurons and Coniferaldehyde (CFA)-an Nrf2 agonist known for its ability to cross the blood-brain barrier-to investigate the role of Hspb1 in PD. We examined the correlation between Hspb1 overexpression and Nrf2 activation and explored the transcriptional regulation of Hspb1 by Nrf2. Gene deletion techniques were employed to determine the necessity of Nrf2 and Hspb1 for CFA's neuroprotective effects. Results: Our research demonstrated that Nrf2 can upregulate the transcription of Hspb1 by directly binding to its promoter. Deletion of either Nrf2 or Hspb1 gene abolished the neuroprotective effects of CFA. The Nrf2-Hspb1 pathway, newly identified as a defense mechanism against ferroptosis, was shown to be essential for preventing neurodegeneration progression. Additionally, we discovered that prolonged overexpression of Hspb1 leads to neuronal death and that Hspb1 released from ruptured cells can trigger secondary cell death in neighboring cells, exacerbating neuroinflammatory responses. Conclusions: These findings highlight a biphasic role of Hspb1 in PD, where it initially provides neuroprotection through the Nrf2-Hspb1 pathway but ultimately contributes to neurodegeneration and inflammation when overexpressed. Understanding this dual role is crucial for developing therapeutic strategies targeting Hspb1 and Nrf2 in PD.
Collapse
Affiliation(s)
- Jieyi Meng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinyu Fang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huizhu Chen
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xiaodan Hu
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ziyuan Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Quancheng Cheng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yaqiong Dong
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xiaoda Yang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yushu Zou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jiping Tang
- Physiology and Pharmacology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92350, USA
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
5
|
Perez-Bonilla P, LaViolette B, Bhandary B, Ullas S, Chen X, Hirenallur-Shanthappa D. Isoproterenol induced cardiac hypertrophy: A comparison of three doses and two delivery methods in C57BL/6J mice. PLoS One 2024; 19:e0307467. [PMID: 39038017 PMCID: PMC11262646 DOI: 10.1371/journal.pone.0307467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Heart Failure (HF) continues to be a complex public health issue with increasing world population prevalence. Although overall mortality has decreased for HF and hypertrophic cardiomyopathy (HCM), a precursor for HF, their prevalence continues to increase annually. Because the etiology of HF and HCM is heterogeneous, it has been difficult to identify novel therapies to combat these diseases. Isoproterenol (ISP), a non-selective β-adrenoreceptor agonist, is commonly used to induce cardiotoxicity and cause acute and chronic HCM and HF in mice. However, the variability in dose and duration of ISP treatment used in studies has made it difficult to determine the optimal combination of ISP dose and delivery method to develop a reliable ISP-induced mouse model for disease. Here we examined cardiac effects induced by ISP via subcutaneous (SQ) and SQ-minipump (SMP) infusions across 3 doses (2, 4, and 10mg/kg/day) over 2 weeks to determine whether SQ and SMP ISP delivery induced comparable disease severity in C57BL/6J mice. To assess disease, we measured body and heart weight, surface electrocardiogram (ECG), and echocardiography recordings. We found all 3 ISP doses comparably increase heart weight, but these increases are more pronounced when ISP was administered via SMP. We also found that the combination of ISP treatment and delivery method induces contrasting heart rate, RR interval, and R and S amplitudes that may place SMP treated mice at higher risk for sustained disease burden. Mice treated via SMP also had increased heart wall thickness and LV Mass, but mice treated via SQ showed greater increase in gene markers for hypertrophy and fibrosis. Overall, these data suggest that at 2 weeks, mice treated with 2, 4, or 10mg/kg/day ISP via SQ and SMP routes cause similar pathological heart phenotypes but highlight the importance of drug delivery method to induce differing disease pathways.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Brianna LaViolette
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Bidur Bhandary
- Rare Diseases Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Soumya Ullas
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Xian Chen
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Dinesh Hirenallur-Shanthappa
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
6
|
Chi K, Liu J, Li X, Wang H, Li Y, Liu Q, Zhou Y, Ge Y. Biomarkers of heart failure: advances in omics studies. Mol Omics 2024; 20:169-183. [PMID: 38224222 DOI: 10.1039/d3mo00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Heart failure is a complex syndrome characterized by progressive circulatory dysfunction, manifesting clinically as pulmonary and systemic venous congestion, alongside inadequate tissue perfusion. The early identification of HF, particularly at the mild and moderate stages (stages B and C), presents a clinical challenge due to the overlap of signs, symptoms, and natriuretic peptide levels with other cardiorespiratory pathologies. Nonetheless, early detection coupled with timely pharmacological intervention is imperative for enhancing patient outcomes. Advances in high-throughput omics technologies have enabled researchers to analyze patient-derived biofluids and tissues, discovering biomarkers that are sensitive and specific for HF diagnosis. Due to the diversity of HF etiology, it is insufficient to study the diagnostic data of early HF using a single omics technology. This study reviewed the latest progress in genomics, transcriptomics, proteomics, and metabolomics for the identification of HF biomarkers, offering novel insights into the early clinical diagnosis of HF. However, the validity of biomarkers depends on the disease status, intervention time, genetic diversity and comorbidities of the subjects. Moreover, biomarkers lack generalizability in different clinical settings. Hence, it is imperative to conduct multi-center, large-scale and standardized clinical trials to enhance the diagnostic accuracy and utility of HF biomarkers.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Xinghua Li
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - He Wang
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yanliang Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yabin Zhou
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yuan Ge
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
7
|
Perez-Bermejo JA, Reisman SJ, Ma J, Carrison-Stone D, Cerrito C, Ribeiro AJS, Conklin BR, Yu K. Give heart cells a beat: An interactive museum exhibit that synchronizes stem cell-derived cardiomyocytes to visitors' heartbeat. Stem Cell Reports 2024; 19:426-433. [PMID: 38335963 PMCID: PMC10937149 DOI: 10.1016/j.stemcr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
Science museums play an important role in science education, engaging the public with science concepts and building support for scientific research. Here, we describe Give Heart Cells a Beat, an interactive exhibit that lets museum visitors synchronize the beating of live stem cell-derived cardiomyocytes to their own heart rate in real time. The beat rate of cells accurately matched the beat rate of visitors and responded dynamically to changes such as exercise. Visitor evaluation revealed that engagement with the specimen prompted curiosity in heart biology and stem cells. Give Heart Cells a Beat is the product of a close collaboration between a museum and an academic research laboratory, and to our knowledge, it is the first interactive exhibit to use live human heart cells. We hope this exhibit serves as an example for the implementation of stem cell technology in informal science education and inspires future relationships between academia and public science venues.
Collapse
Affiliation(s)
| | | | - Joyce Ma
- Exploratorium, San Francisco, CA, USA
| | | | | | | | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, Berkeley, CA 94704, USA; University of California, San Francisco Departments of Medicine and Ophthalmology, San Francisco, CA 94143, USA.
| | | |
Collapse
|
8
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
10
|
Martin TG, Pak H, Gerhard GS, Merali S, Merali C, Lemster B, Dubey P, McTiernan CF, Bristow MR, Feldman AM, Kirk JA. Dysregulated Autophagy and Sarcomere Dysfunction in Patients With Heart Failure With Co-Occurrence of P63A and P380S BAG3 Variants. J Am Heart Assoc 2023; 12:e029938. [PMID: 38108245 PMCID: PMC10863766 DOI: 10.1161/jaha.123.029938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mutations to the co-chaperone protein BAG3 (B-cell lymphoma-2-associated athanogene-3) are a leading cause of dilated cardiomyopathy (DCM). These mutations often impact the C-terminal BAG domain (residues 420-499), which regulates heat shock protein 70-dependent protein turnover via autophagy. While mutations in other regions are less common, previous studies in patients with DCM found that co-occurrence of 2 BAG3 variants (P63A, P380S) led to worse prognosis. However, the underlying mechanism for dysfunction is not fully understood. METHODS AND RESULTS In this study, we used proteomics, Western blots, and myofilament functional assays on left ventricular tissue from patients with nonfailing, DCM, and DCM with BAG363/380 to determine how these mutations impact protein quality control and cardiomyocyte contractile function. We found dysregulated autophagy and increased protein ubiquitination in patients with BAG363/380 compared with nonfailing and DCM, suggesting impaired protein turnover. Expression and myofilament localization of BAG3-binding proteins were also uniquely altered in the BAG3,63/380 including abolished localization of the small heat shock protein CRYAB (alpha-crystallin B chain) to the sarcomere. To determine whether these variants impacted sarcomere function, we used cardiomyocyte force-calcium assays and found reduced maximal calcium-activated force in DCM and BAG363/380. Interestingly, myofilament calcium sensitivity was increased in DCM but not with BAG363/380, which was not explained by differences in troponin I phosphorylation. CONCLUSIONS Together, our data support that the disease-enhancing mechanism for BAG3 variants outside of the BAG domain is through disrupted protein turnover leading to compromised sarcomere function. These findings suggest a shared mechanism of disease among pathogenic BAG3 variants, regardless of location.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Cell and Molecular PhysiologyLoyola University Chicago Stritch School of MedicineMaywoodIL
| | - Hana Pak
- Department of Cell and Molecular PhysiologyLoyola University Chicago Stritch School of MedicineMaywoodIL
| | - Glenn S. Gerhard
- Department of Medical Genetics and Molecular BiochemistryLewis Katz School of Medicine of Temple UniversityPhiladelphiaPA
| | - Salim Merali
- Temple University School of PharmacyPhiladelphiaPA
| | | | - Bonnie Lemster
- The Heart and Vascular Institute, The University of Pittsburgh School of MedicinePittsburghPA
| | - Praveen Dubey
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Charles F. McTiernan
- The Heart and Vascular Institute, The University of Pittsburgh School of MedicinePittsburghPA
| | | | - Arthur M. Feldman
- Department of Medicine, Division of CardiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Jonathan A. Kirk
- Department of Cell and Molecular PhysiologyLoyola University Chicago Stritch School of MedicineMaywoodIL
| |
Collapse
|
11
|
Thompson AD, Wagner MJ, Rodriguez J, Malhotra A, Vander Roest S, Lilienthal U, Shao H, Vignesh M, Weber K, Yob JM, Prosser BL, Helms AS, Gestwicki JE, Ginsburg D, Day SM. An Unbiased Screen Identified the Hsp70-BAG3 Complex as a Regulator of Myosin-Binding Protein C3. JACC Basic Transl Sci 2023; 8:1198-1211. [PMID: 37791314 PMCID: PMC10544073 DOI: 10.1016/j.jacbts.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 10/05/2023]
Abstract
Variants in the gene myosin-binding protein C3 (MYBPC3) account for approximately 50% of familial hypertrophic cardiomyopathy (HCM), leading to reduced levels of myosin-binding protein C3 (MyBP-C), the protein product made by gene MYBPC3. Elucidation of the pathways that regulate MyBP-C protein homeostasis could uncover new therapeutic strategies. Toward this goal, we screened a library of 2,426 bioactive compounds and identified JG98, an allosteric modulator of heat shock protein 70 that inhibits interaction with Bcl-2-associated athanogene (BAG) domain co-chaperones. JG98 reduces MyBP-C protein levels. Furthermore, genetic reduction of BAG3 phenocopies treatment with JG-98 by reducing MYBP-C protein levels.. Thus, an unbiased compound screen identified the heat shock protein 70-BAG3 complex as a regulator of MyBP-C stability.
Collapse
Affiliation(s)
- Andrea D. Thompson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcus J. Wagner
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliani Rodriguez
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alok Malhotra
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ulla Lilienthal
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mathav Vignesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Keely Weber
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaime M. Yob
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin L. Prosser
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam S. Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - David Ginsburg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharlene M. Day
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Perez-Bermejo JA, Judge LM, Jensen CL, Wu K, Watry HL, Truong A, Ho JJ, Carter M, Runyon WV, Kaake RM, Pulido EH, Mandegar MA, Swaney DL, So PL, Krogan NJ, Conklin BR. Functional analysis of a common BAG3 allele associated with protection from heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:615-628. [PMID: 39195919 DOI: 10.1038/s44161-023-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/18/2023] [Indexed: 08/29/2024]
Abstract
Multiple genetic association studies have correlated a common allelic block linked to the BAG3 gene with a decreased incidence of heart failure, but the molecular mechanism remains elusive. In this study, we used induced pluripotent stem cells to test if the only coding variant in this allele block, BAG3C151R, alters protein and cellular function in human cardiomyocytes. Quantitative protein interaction analysis identified changes in BAG3C151R protein partners specific to cardiomyocytes. Knockdown of genes encoding for BAG3-interacting factors in cardiomyocytes followed by myofibrillar analysis revealed that BAG3C151R associates more strongly with proteins involved in the maintenance of myofibrillar integrity. Finally, we demonstrate that cardiomyocytes expressing the BAG3C151R variant have improved response to proteotoxic stress in a dose-dependent manner. This study suggests that BAG3C151R could be responsible for the cardioprotective effect of the haplotype block, by increasing cardiomyocyte protection from stress. Preferential binding partners of BAG3C151R may reveal potential targets for cardioprotective therapies.
Collapse
Affiliation(s)
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kenneth Wu
- Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Jaclyn J Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
13
|
Koslow M, Mondaca-Ruff D, Xu X. Transcriptome studies of inherited dilated cardiomyopathies. Mamm Genome 2023; 34:312-322. [PMID: 36749382 PMCID: PMC10426000 DOI: 10.1007/s00335-023-09978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is a group of heart muscle diseases that often lead to heart failure, with more than 50 causative genes have being linked to DCM. The heterogenous nature of the inherited DCMs suggest the need of precision medicine. Consistent with this emerging concept, transcriptome studies in human patients with DCM indicated distinct molecular signature for DCMs of different genetic etiology. To facilitate this line of research, we reviewed the status of transcriptome studies of inherited DCMs by focusing on three predominant DCM causative genes, TTN, LMNA, and BAG3. Besides studies in human patients, we summarized transcriptomic analysis of these inherited DCMs in a variety of model systems ranging from iPSCs to rodents and zebrafish. We concluded that the RNA-seq technology is a powerful genomic tool that has already led to the discovery of new modifying genes, signaling pathways, and related therapeutic avenues. We also pointed out that both temporal (different pathological stages) and spatial (different cell types) information need to be considered for future transcriptome studies. While an important bottle neck is the low throughput in experimentally testing differentially expressed genes, new technologies in efficient animal models such as zebrafish starts to be developed. It is anticipated that the RNA-seq technology will continue to uncover both unique and common pathological events, aiding the development of precision medicine for inherited DCMs.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Brenner CM, Choudhary M, McCormick MG, Cheung D, Landesberg GP, Wang JF, Song J, Martin TG, Cheung JY, Qu HQ, Hakonarson H, Feldman AM. BAG3: Nature's Quintessential Multi-Functional Protein Functions as a Ubiquitous Intra-Cellular Glue. Cells 2023; 12:937. [PMID: 36980278 PMCID: PMC10047307 DOI: 10.3390/cells12060937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
BAG3 is a 575 amino acid protein that is found throughout the animal kingdom and homologs have been identified in plants. The protein is expressed ubiquitously but is most prominent in cardiac muscle, skeletal muscle, the brain and in many cancers. We describe BAG3 as a quintessential multi-functional protein. It supports autophagy of both misfolded proteins and damaged organelles, inhibits apoptosis, maintains the homeostasis of the mitochondria, and facilitates excitation contraction coupling through the L-type calcium channel and the beta-adrenergic receptor. High levels of BAG3 are associated with insensitivity to chemotherapy in malignant cells whereas both loss of function and gain of function variants are associated with cardiomyopathy.
Collapse
Affiliation(s)
- Caitlyn M. Brenner
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
| | - Muaaz Choudhary
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - David Cheung
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Gavin P. Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Thomas G. Martin
- Department of Molecular, Cellular and Developmental Biology, Colorado University School of Medicine, Aurora, CO 80045, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
- Division of Human Genetics and Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
- Department of Pediatrics, Division of Human Genetics and Division of Pulmonary Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Yang J, Grafton F, Ranjbarvaziri S, Budan A, Farshidfar F, Cho M, Xu E, Ho J, Maddah M, Loewke KE, Medina J, Sperandio D, Patel S, Hoey T, Mandegar MA. Phenotypic screening with deep learning identifies HDAC6 inhibitors as cardioprotective in a BAG3 mouse model of dilated cardiomyopathy. Sci Transl Med 2022; 14:eabl5654. [PMID: 35857625 DOI: 10.1126/scitranslmed.abl5654] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced cardiac output, as well as thinning and enlargement of left ventricular chambers. These characteristics eventually lead to heart failure. Current standards of care do not target the underlying molecular mechanisms associated with genetic forms of heart failure, driving a need to develop novel therapeutics for DCM. To identify candidate therapeutics, we developed an in vitro DCM model using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) deficient in B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). With these BAG3-deficient iPSC-CMs, we identified cardioprotective drugs using a phenotypic screen and deep learning. From a library of 5500 bioactive compounds and siRNA validation, we found that inhibiting histone deacetylase 6 (HDAC6) was cardioprotective at the sarcomere level. We translated this finding to a BAG3 cardiomyocyte-knockout (BAG3cKO) mouse model of DCM, showing that inhibiting HDAC6 with two isoform-selective inhibitors (tubastatin A and a novel inhibitor TYA-018) protected heart function. In BAG3cKO and BAG3E455K mice, HDAC6 inhibitors improved left ventricular ejection fraction and reduced left ventricular diameter at diastole and systole. In BAG3cKO mice, TYA-018 protected against sarcomere damage and reduced Nppb expression. Based on integrated transcriptomics and proteomics and mitochondrial function analysis, TYA-018 also enhanced energetics in these mice by increasing expression of targets associated with fatty acid metabolism, protein metabolism, and oxidative phosphorylation. Our results demonstrate the power of combining iPSC-CMs with phenotypic screening and deep learning to accelerate drug discovery, and they support developing novel therapies that address underlying mechanisms associated with heart disease.
Collapse
Affiliation(s)
- Jin Yang
- Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | | | | | - Ana Budan
- Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | | | - Marie Cho
- Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | - Emma Xu
- Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | - Jaclyn Ho
- Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | | | | | | | | | - Snahel Patel
- Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | - Tim Hoey
- Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | | |
Collapse
|
16
|
Orphanou N, Papatheodorou E, Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: latest concepts and developments. Heart Fail Rev 2022; 27:1173-1191. [PMID: 34263412 PMCID: PMC8279384 DOI: 10.1007/s10741-021-10139-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy (DCM) is an umbrella term entailing a wide variety of genetic and non-genetic etiologies, leading to left ventricular systolic dysfunction and dilatation, not explained by abnormal loading conditions or coronary artery disease. The clinical presentation can vary from asymptomatic to heart failure symptoms or sudden cardiac death (SCD) even in previously asymptomatic individuals. In the last 2 decades, there has been striking progress in the understanding of the complex genetic basis of DCM, with the discovery of additional genes and genotype-phenotype correlation studies. Rigorous clinical work-up of DCM patients, meticulous family screening, and the implementation of advanced imaging techniques pave the way for a more efficient and earlier diagnosis as well as more precise indications for implantable cardioverter defibrillator implantation and prevention of SCD. In the era of precision medicine, genotype-directed therapies have started to emerge. In this review, we focus on updates of the genetic background of DCM, characteristic phenotypes caused by recently described pathogenic variants, specific indications for prevention of SCD in those individuals and genotype-directed treatments under development. Finally, the latest developments in distinguishing athletic heart syndrome from subclinical DCM are described.
Collapse
Affiliation(s)
- Nicoletta Orphanou
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece.
- Cardiology Department, Athens General Hospital "G. Gennimatas", Athens, Greece.
| | - Efstathios Papatheodorou
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
17
|
Johnson OT, Gestwicki JE. Multivalent protein-protein interactions are pivotal regulators of eukaryotic Hsp70 complexes. Cell Stress Chaperones 2022; 27:397-415. [PMID: 35670950 PMCID: PMC9346034 DOI: 10.1007/s12192-022-01281-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is a molecular chaperone and central regulator of protein homeostasis (proteostasis). Paramount to this role is Hsp70's binding to client proteins and co-chaperones to produce distinct complexes, such that understanding the protein-protein interactions (PPIs) of Hsp70 is foundational to describing its function and dysfunction in disease. Mounting evidence suggests that these PPIs include both "canonical" interactions, which are universally conserved, and "non-canonical" (or "secondary") contacts that seem to have emerged in eukaryotes. These two categories of interactions involve discrete binding surfaces, such that some clients and co-chaperones engage Hsp70 with at least two points of contact. While the contributions of canonical interactions to chaperone function are becoming increasingly clear, it can be challenging to deconvolute the roles of secondary interactions. Here, we review what is known about non-canonical contacts and highlight examples where their contributions have been parsed, giving rise to a model in which Hsp70's secondary contacts are not simply sites of additional avidity but are necessary and sufficient to impart unique functions. From this perspective, we propose that further exploration of non-canonical contacts will generate important insights into the evolution of Hsp70 systems and inspire new approaches for developing small molecules that tune Hsp70-mediated proteostasis.
Collapse
Affiliation(s)
- Oleta T Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
18
|
Abstract
Purpose of Review The advent of induced pluripotent stem cells (iPSC) has paved the way for new in vitro models of human cardiomyopathy. Herein, we will review existing models of disease as well as strengths and limitations of the system. Recent Findings Preclinical studies have now demonstrated that iPSCs generated from patients with both acquired or heritable genetic diseases retain properties of the disease in vitro and can be used as a model to study novel therapeutics. iPSCs can be differentiated in vitro into the cardiomyocyte lineage into cells resembling adult ventricular myocytes that retain properties of cardiovascular disease from their respective donor. iPSC pluripotency allows for them to be frozen, stored, and continually used to generate iPSC-derived myocytes for future experiments without need for invasive procedures or repeat myocyte isolations to obtain animal or human cardiac tissues. Summary While not without their limitations, iPSC models offer new ways for studying patient-specific cardiomyopathies. iPSCs offer a high-throughput avenue for drug development, modeling of disease pathophysiology in vitro, and enabling experimental repair strategies without need for invasive procedures to obtain cardiac tissues.
Collapse
|
19
|
Wang J, Fan Y, Wang C, Dube S, Poiesz BJ, Dube DK, Ma Z, Sanger JM, Sanger JW. Inhibitors of the Ubiquitin Proteasome System block myofibril assembly in cardiomyocytes derived from chick embryos and human pluripotent stem cells. Cytoskeleton (Hoboken) 2022; 78:461-491. [PMID: 35502133 DOI: 10.1002/cm.21697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
Details of sarcomeric protein assembly during de novo myofibril formation closely resemble myofibrillogenesis in skeletal and cardiac myocytes in birds, rodents and zebrafish. The arrangement of proteins during myofibrillogenesis follows a three-step process: beginning with premyofibrils, followed by nascent myofibrils, and concluding with mature myofibrils (reviewed in Sanger et al., 2017). Our aim is to determine if the same pathway is followed in human cardiomyocytes derived from human inducible pluripotent stem cells. We found that the human cardiomyocytes developed patterns of protein organization identical to the three-step series seen in the model organisms cited above. Further experiments showed that myofibril assembly can be blocked at the nascent myofibril by five different inhibitors of the Ubiquitin Proteasome System (UPS) stage in both avian and human cardiomyocytes. With the exception of Carfilzomib, removal of the UPS inhibitors allows nascent myofibrils to proceed to mature myofibrils. Some proteasomal inhibitors, such as Bortezomib and Carfilzomib, used to treat multiple myeloma patients, have off-target effects of damage to hearts in three to six percent of these patients. These cardiovascular adverse events may result from prevention of mature myofibril formation in the cardiomyocytes. In summary, our results support a common three-step model for the formation of myofibrils ranging from avian to human cardiomyocytes. The Ubiquitin Proteasome System is required for progression from nascent myofibrils to mature myofibrils. Our experiments suggest a possible explanation for the cardiac and skeletal muscle off-target effects reported in multiple myeloma patients treated with proteasome inhibitors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
20
|
Singh MV, Dhanabalan K, Verry J, Dokun AO. MicroRNA regulation of BAG3. Exp Biol Med (Maywood) 2022; 247:617-623. [PMID: 35037515 PMCID: PMC9039493 DOI: 10.1177/15353702211066908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that modulates major biological processes, including apoptosis, autophagy, and development to promote cellular adaptive responses to stress stimuli. Although BAG3 is constitutively expressed in several cell types, its expression is also inducible and is regulated by microRNAs (miRNAs). miRNAs are small non-coding RNAs that mostly bind to the 3'-UTR (untranslated region) of mRNAs to inhibit their translation or to promote their degradation. miRNAs can potentially regulate over 50% of the protein-coding genes in a cell and therefore are involved in the regulation of all major functions, including cell differentiation, growth, proliferation, apoptosis, and autophagy. Dysregulation of miRNA expression is associated with pathogenesis of numerous diseases, including peripheral artery disease (PAD). BAG3 plays a critical role in regulating the response of skeletal muscle cells to ischemia by its ability to regulate autophagy. However, the biological role of miRNAs in the regulation of BAG3 in biological processes has only been elucidated recently. In this review, we discuss how miRNA may play a key role in regulating BAG3 expression under normal and pathological conditions.
Collapse
Affiliation(s)
- Madhu V Singh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Karthik Dhanabalan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph Verry
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ayotunde O Dokun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Martin TG, Delligatti CE, Muntu NA, Stachowski-Doll MJ, Kirk JA. Pharmacological inhibition of BAG3-HSP70 with the proposed cancer therapeutic JG-98 is toxic for cardiomyocytes. J Cell Biochem 2022; 123:128-141. [PMID: 34487557 PMCID: PMC10037808 DOI: 10.1002/jcb.30140] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/11/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
The co-chaperone Bcl2-associated athanogene-3 (BAG3) maintains cellular protein quality control through the regulation of heat shock protein 70 (HSP70). Cancer cells manipulate BAG3-HSP70-regulated pathways for tumor initiation and proliferation, which has led to the development of promising small molecule therapies, such as JG-98, which inhibit the BAG3-HSP70 interaction and mitigate tumor growth. However, it is not known how these broad therapies impact cardiomyocytes, where the BAG3-HSP70 complex is a key regulator of protein turnover and contractility. Here, we show that JG-98 exposure is toxic in neonatal rat ventricular myocytes (NRVMs). Using immunofluorescence microscopy to assess cell death, we found that apoptosis increased in NRVMs treated with JG-98 doses as low as 10 nM. JG-98 treatment also reduced autophagy flux and altered expression of BAG3 and several binding partners involved in BAG3-dependent autophagy, including SYNPO2 and HSPB8. We next assessed protein half-life with disruption of the BAG3-HSP70 complex by treating with JG-98 in the presence of cycloheximide and found BAG3, HSPB5, and HSPB8 half-lives were reduced, indicating that complex formation with HSP70 is important for their stability. Next, we assessed sarcomere structure using super-resolution microscopy and found that disrupting the interaction with HSP70 leads to sarcomere structural disintegration. To determine whether the effects of JG-98 could be mitigated by pharmacological autophagy induction, we cotreated NRVMs with rapamycin, which partially reduced the extent of apoptosis and sarcomere disarray. Finally, we investigated whether the effects of JG-98 extended to skeletal myocytes using C2C12 myotubes and found again increased apoptosis and reduced autophagic flux. Together, our data suggest that nonspecific targeting of the BAG3-HSP70 complex to treat cancer may be detrimental for cardiac and skeletal myocytes.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan A. Kirk
- Corresponding Author: Jonathan A. Kirk, Ph.D., Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Center for Translational Research, Room 522, 2160 S. First Ave., Maywood, IL 60153, Ph: 708-216-6348,
| |
Collapse
|
22
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
23
|
Maffioli P, D'Angelo A, Tinelli C, Falcone C, Galasso G, Derosa G. Detection of sieric BAG3 in patients affected by cardiovascular diseases: State of art and perspectives. J Cell Biochem 2021; 123:54-58. [PMID: 34908187 DOI: 10.1002/jcb.30192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/07/2022]
Abstract
BAG3 is highly expressed in the heart and its functions are essential in maintaining cardiac muscle cells homeostasis. In the past, BAG3 was detected in serum from advanced heart failure patients and its higher levels were correlated to an increased death risk. Moreover, it has also been reported that BAG3 levels in serum are increased in patients with hypertension, a known cardiovascular risk marker. Evidence from different laboratories suggested the possibility to use BAG3-based strategies to improve the clinical outcome of cardiovascular disease patients. This review aims to highlight the biological roles of intracellular or secreted BAG3 in myocardiocytes and propose additional new data on the levels of sieric BAG3 in patients with acute myocardial infarction (AMI), never assessed before. We evaluated BAG3 serum levels in relation to cardiovascular risk parameters in 64 AMI patients aged ≥18 years of either sex. We observed significant (p < .01) correlations of BAG3 positivity with dyslipidemic status and diabetic disease. We did not observe any significant correlations of BAG3 levels with smoking habit, hypertension or familiarity for AMI, although BAG3-positive seemed to be more numerous than BAG3-negative patients among hypertensives and among patients with familiarity for AMI. Furthermore, a significant (p < .001) correlation of BAG3 positivity with diuretics assumption was also noted. In conclusion, 32.8% of the patients were BAG3-positive and were characterized by some particular features as comorbidity presence or concomitant therapies. The significance of these observations needs to be verified by more extensive studies and could help in the validation of the use of BAG3 as a biomarker in heart attack risk stratification.
Collapse
Affiliation(s)
- Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Angela D'Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carmine Tinelli
- Clinical Epidemiology and Biometric Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Colomba Falcone
- Cardiology Unit, Istituto di Cura Città di Pavia, University of Pavia, Pavia, Italy
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Silva AC, Matthys OB, Joy DA, Kauss MA, Natarajan V, Lai MH, Turaga D, Blair AP, Alexanian M, Bruneau BG, McDevitt TC. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell 2021; 28:2137-2152.e6. [PMID: 34861147 DOI: 10.1016/j.stem.2021.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/13/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
During embryogenesis, paracrine signaling between tissues in close proximity contributes to the determination of their respective cell fate(s) and development into functional organs. Organoids are in vitro models that mimic organ formation and cellular heterogeneity, but lack the paracrine input of surrounding tissues. Here, we describe a human multilineage iPSC-derived organoid that recapitulates cooperative cardiac and gut development and maturation, with extensive cellular and structural complexity in both tissues. We demonstrate that the presence of endoderm tissue (gut/intestine) in the organoids contributed to the development of cardiac tissue features characteristic of stages after heart tube formation, including cardiomyocyte expansion, compartmentalization, enrichment of atrial/nodal cells, myocardial compaction, and fetal-like functional maturation. Overall, this study demonstrates the ability to generate and mature cooperative tissues originating from different germ lineages within a single organoid model, an advance that will further the examination of multi-tissue interactions during development, physiological maturation, and disease.
Collapse
Affiliation(s)
- Ana C Silva
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Oriane B Matthys
- Gladstone Institutes, San Francisco, CA 94158, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - David A Joy
- Gladstone Institutes, San Francisco, CA 94158, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Mara A Kauss
- Gladstone Institutes, San Francisco, CA 94158, USA; UC San Francisco Graduate Program in Biomedical Sciences, San Francisco, CA 94143, USA
| | | | | | | | | | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
26
|
Mellis IA, Edelstein HI, Truitt R, Goyal Y, Beck LE, Symmons O, Dunagin MC, Linares Saldana RA, Shah PP, Pérez-Bermejo JA, Padmanabhan A, Yang W, Jain R, Raj A. Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Syst 2021; 12:885-899.e8. [PMID: 34352221 PMCID: PMC8522198 DOI: 10.1016/j.cels.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/27/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Identifying the particular transcription factors that maintain cell type in vitro is important for manipulating cell type. Identifying such transcription factors by their cell-type-specific expression or their involvement in developmental regulation has had limited success. We hypothesized that because cell type is often resilient to perturbations, the transcriptional response to perturbations would reveal identity-maintaining transcription factors. We developed perturbation panel profiling (P3) as a framework for perturbing cells across many conditions and measuring gene expression responsiveness transcriptome-wide. In human iPSC-derived cardiac myocytes, P3 showed that transcription factors important for cardiac myocyte differentiation and maintenance were among the most frequently upregulated (most responsive). We reasoned that one function of responsive genes may be to maintain cellular identity. We identified responsive transcription factors in fibroblasts using P3 and found that suppressing their expression led to enhanced reprogramming. We propose that responsiveness to perturbations is a property of transcription factors that help maintain cellular identity in vitro. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ian A Mellis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hailey I Edelstein
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Truitt
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogesh Goyal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E Beck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Orsolya Symmons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo A Linares Saldana
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisha P Shah
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arun Padmanabhan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Kirk JA, Cheung JY, Feldman AM. Therapeutic targeting of BAG3: considering its complexity in cancer and heart disease. J Clin Invest 2021; 131:e149415. [PMID: 34396980 DOI: 10.1172/jci149415] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bcl2-associated athanogene-3 (BAG3) is expressed ubiquitously in humans, but its levels are highest in the heart, the skeletal muscle, and the central nervous system; it is also elevated in many cancers. BAG3's diverse functions are supported by its multiple protein-protein binding domains, which couple with small and large heat shock proteins, members of the Bcl2 family, other antiapoptotic proteins, and various sarcomere proteins. In the heart, BAG3 inhibits apoptosis, promotes autophagy, couples the β-adrenergic receptor with the L-type Ca2+ channel, and maintains the structure of the sarcomere. In cancer cells, BAG3 binds to and supports an identical array of prosurvival proteins, and it may represent a therapeutic target. However, the development of strategies to block BAG3 function in cancer cells may be challenging, as they are likely to interfere with the essential roles of BAG3 in the heart. In this Review, we present the current knowledge regarding the biology of this complex protein in the heart and in cancer and suggest several therapeutic options.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Joseph Y Cheung
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
29
|
Grafton F, Ho J, Ranjbarvaziri S, Farshidfar F, Budan A, Steltzer S, Maddah M, Loewke KE, Green K, Patel S, Hoey T, Mandegar MA. Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes. eLife 2021; 10:68714. [PMID: 34338636 PMCID: PMC8367386 DOI: 10.7554/elife.68714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.
Collapse
Affiliation(s)
| | - Jaclyn Ho
- Tenaya Therapeutics, South San Francisco, United States
| | - Sara Ranjbarvaziri
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, United States
| | | | | | | | | | | | | | - Snahel Patel
- Tenaya Therapeutics, South San Francisco, United States
| | - Tim Hoey
- Tenaya Therapeutics, South San Francisco, United States
| | | |
Collapse
|
30
|
Teles D, Kim Y, Ronaldson-Bouchard K, Vunjak-Novakovic G. Machine Learning Techniques to Classify Healthy and Diseased Cardiomyocytes by Contractility Profile. ACS Biomater Sci Eng 2021; 7:3043-3052. [PMID: 34152732 DOI: 10.1021/acsbiomaterials.1c00418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiomyocytes derived from human induced pluripotent stem (iPS) cells enable the study of cardiac physiology and the developmental testing of new therapeutic drugs in a human setting. In parallel, machine learning methods are being applied to biomedical science in unprecedented ways. Machine learning has been used to distinguish healthy from diseased cardiomyocytes using calcium (Ca2+) transient signals. Most Ca2+ transient signals are obtained via terminal assays that do not permit longitudinal studies, although some recently developed options can circumvent these concerns. Here, we describe the use of machine learning to identify healthy and diseased cardiomyocytes according to their contractility profiles, which are derived from brightfield videos. This noncontact, label-free approach allows for the continued cultivation of cells after they have been evaluated for use in other assays and can be readily extended to organs-on-chip. To demonstrate utility, we assessed contractility profiles of cardiomyocytes obtained from patients with Timothy Syndrome (TS), a long QT disease which can lead to fatal arrhythmias, and from healthy individuals. The videos were processed and classified using machine learning methods and their performance was evaluated according to several parameters. The trained algorithms were able to distinguish the TS cardiomyocytes from healthy controls and classify two different healthy controls. The proposed computational machine learning evaluation of human iPS cell-derived cardiomyocytes' contractility profiles has the potential to identify other genetic proarrhythmic events, screen therapeutic agents for inducing or suppressing long QT events, and predict drug-target interactions. The same approach could be readily extended to the evaluation of engineered cardiac tissues within single-tissue and multi-tissue organs-on-chip.
Collapse
Affiliation(s)
- Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimara̅es, Braga, Portugal
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States.,Department of Medicine, Columbia University, New York, New York 10032, United States
| |
Collapse
|
31
|
Nguyen N, Souza T, Verheijen MCT, Gmuender H, Selevsek N, Schlapbach R, Kleinjans J, Jennen D. Translational Proteomics Analysis of Anthracycline-Induced Cardiotoxicity From Cardiac Microtissues to Human Heart Biopsies. Front Genet 2021; 12:695625. [PMID: 34211507 PMCID: PMC8239409 DOI: 10.3389/fgene.2021.695625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 01/17/2023] Open
Abstract
Anthracyclines, including doxorubicin, idarubicin, and epirubicin, are common antitumor drugs as well as well-known cardiotoxic agents. This study analyzed the proteomics alteration in cardiac tissues caused by these 3 anthracyclines analogs. The in vitro human cardiac microtissues were exposed to drugs in 2 weeks; the proteomic data were measured at 7 time points. The heart biopsy data were collected from heart failure patients, in which some patients underwent anthracycline treatment. The anthracyclines-affected proteins were separately identified in the in vitro and in vivo dataset using the WGCNA method. These proteins engage in different cellular pathways including translation, metabolism, mitochondrial function, muscle contraction, and signaling pathways. From proteins detected in 2 datasets, a protein-protein network was established with 4 hub proteins, and 7 weighted proteins from both cardiac microtissue and human biopsies data. These 11 proteins, which involve in mitochondrial functions and the NF-κB signaling pathway, could provide insights into the anthracycline toxic mechanism. Some of them, such as HSPA5, BAG3, and SH3BGRL, are cardiac therapy targets or cardiotoxicity biomarkers. Other proteins, such as ATP5F1B and EEF1D, showed similar responses in both the in vitro and in vivo data. This suggests that the in vitro outcomes could link to clinical phenomena in proteomic analysis.
Collapse
Affiliation(s)
- Nhan Nguyen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Terezinha Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Marcha C T Verheijen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | | | | | - Ralph Schlapbach
- Functional Genomics Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jos Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
32
|
Gerbin KA, Grancharova T, Donovan-Maiye RM, Hendershott MC, Anderson HG, Brown JM, Chen J, Dinh SQ, Gehring JL, Johnson GR, Lee H, Nath A, Nelson AM, Sluzewski MF, Viana MP, Yan C, Zaunbrecher RJ, Cordes Metzler KR, Gaudreault N, Knijnenburg TA, Rafelski SM, Theriot JA, Gunawardane RN. Cell states beyond transcriptomics: Integrating structural organization and gene expression in hiPSC-derived cardiomyocytes. Cell Syst 2021; 12:670-687.e10. [PMID: 34043964 DOI: 10.1016/j.cels.2021.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/07/2020] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcellular organization in single cells. We use this platform to quantify subcellular organization and gene expression in >30,000 individual human induced pluripotent stem cell-derived cardiomyocytes, producing a publicly available dataset that describes the population distributions of local and global sarcomere organization, mRNA abundance, and correlations between these traits. While the mRNA abundance of some phenotypically important genes correlates with subcellular organization (e.g., the beta-myosin heavy chain, MYH7), these two cellular metrics are heterogeneous and often uncorrelated, which suggests that gene expression alone is not sufficient to classify cell states. Instead, we posit that cell state should be defined by observing full distributions of quantitative, multidimensional traits in single cells that also account for space, time, and function.
Collapse
Affiliation(s)
- Kaytlyn A Gerbin
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Tanya Grancharova
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | | | - Helen G Anderson
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jackson M Brown
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jianxu Chen
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Stephanie Q Dinh
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jamie L Gehring
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Gregory R Johnson
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - HyeonWoo Lee
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Aditya Nath
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | - M Filip Sluzewski
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Matheus P Viana
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Calysta Yan
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | | | | | | | | | - Julie A Theriot
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
33
|
Martin TG, Myers VD, Dubey P, Dubey S, Perez E, Moravec CS, Willis MS, Feldman AM, Kirk JA. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun 2021; 12:2942. [PMID: 34011988 PMCID: PMC8134551 DOI: 10.1038/s41467-021-23272-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
The association between reduced myofilament force-generating capacity (Fmax) and heart failure (HF) is clear, however the underlying molecular mechanisms are poorly understood. Here, we show impaired Fmax arises from reduced BAG3-mediated sarcomere turnover. Myofilament BAG3 expression decreases in human HF and positively correlates with Fmax. We confirm this relationship using BAG3 haploinsufficient mice, which display reduced Fmax and increased myofilament ubiquitination, suggesting impaired protein turnover. We show cardiac BAG3 operates via chaperone-assisted selective autophagy (CASA), conserved from skeletal muscle, and confirm sarcomeric CASA complex localization is BAG3/proteotoxic stress-dependent. Using mass spectrometry, we characterize the myofilament CASA interactome in the human heart and identify eight clients of BAG3-mediated turnover. To determine if increasing BAG3 expression in HF can restore sarcomere proteostasis/Fmax, HF mice were treated with rAAV9-BAG3. Gene therapy fully rescued Fmax and CASA protein turnover after four weeks. Our findings indicate BAG3-mediated sarcomere turnover is fundamental for myofilament functional maintenance. Decreased expression of BAG3 in the heart is associated with contractile dysfunction and heart failure. Here the authors show that this is due to decreased BAG3-dependent sarcomere protein turnover, which impairs mechanical function, and that sarcomere force-generating capacity is restored with BAG3 gene therapy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Valerie D Myers
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Praveen Dubey
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Shubham Dubey
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Christine S Moravec
- Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arthur M Feldman
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
34
|
Jiang X, Chen Y, Liu X, Ye L, Yu M, Shen Z, Lei W, Hu S. Uncovering Inherited Cardiomyopathy With Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:672039. [PMID: 34079803 PMCID: PMC8166268 DOI: 10.3389/fcell.2021.672039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
In the past decades, researchers discovered the contribution of genetic defects to the pathogenesis of primary cardiomyopathy and tried to explain the pathogenesis of these diseases by establishing a variety of disease models. Although human heart tissues and primary cardiomyocytes have advantages in modeling human heart diseases, they are difficult to obtain and culture in vitro. Defects developed in genetically modified animal models are notably different from human diseases at the molecular level. The advent of human induced pluripotent stem cells (hiPSCs) provides an unprecedented opportunity to further investigate the pathogenic mechanisms of inherited cardiomyopathies in vitro using patient-specific hiPSC-derived cardiomyocytes. In this review, we will make a summary of recent advances in in vitro inherited cardiomyopathy modeling using hiPSCs.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Xiaofeng Liu
- The Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Lingqun Ye
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Miao Yu
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Asnani A, Moslehi JJ, Adhikari BB, Baik AH, Beyer AM, de Boer RA, Ghigo A, Grumbach IM, Jain S, Zhu H. Preclinical Models of Cancer Therapy-Associated Cardiovascular Toxicity: A Scientific Statement From the American Heart Association. Circ Res 2021; 129:e21-e34. [PMID: 33934611 DOI: 10.1161/res.0000000000000473] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although cardiovascular toxicity from traditional chemotherapies has been well recognized for decades, the recent explosion of effective novel targeted cancer therapies with cardiovascular sequelae has driven the emergence of cardio-oncology as a new clinical and research field. Cardiovascular toxicity associated with cancer therapy can manifest as a broad range of potentially life-threatening complications, including heart failure, arrhythmia, myocarditis, and vascular events. Beyond toxicology, the intersection of cancer and heart disease has blossomed to include discovery of genetic and environmental risk factors that predispose to both. There is a pressing need to understand the underlying molecular mechanisms of cardiovascular toxicity to improve outcomes in patients with cancer. Preclinical cardiovascular models, ranging from cellular assays to large animals, serve as the foundation for mechanistic studies, with the ultimate goal of identifying biologically sound biomarkers and cardioprotective therapies that allow the optimal use of cancer treatments while minimizing toxicities. Given that novel cancer therapies target specific pathways integral to normal cardiovascular homeostasis, a better mechanistic understanding of toxicity may provide insights into fundamental pathways that lead to cardiovascular disease when dysregulated. The goal of this scientific statement is to summarize the strengths and weaknesses of preclinical models of cancer therapy-associated cardiovascular toxicity, to highlight overlapping mechanisms driving cancer and cardiovascular disease, and to discuss opportunities to leverage cardio-oncology models to address important mechanistic questions relevant to all patients with cardiovascular disease, including those with and without cancer.
Collapse
|
36
|
Micheu MM, Rosca AM. Patient-specific induced pluripotent stem cells as “disease-in-a-dish” models for inherited cardiomyopathies and channelopathies – 15 years of research. World J Stem Cells 2021; 13:281-303. [PMID: 33959219 PMCID: PMC8080539 DOI: 10.4252/wjsc.v13.i4.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Among inherited cardiac conditions, a special place is kept by cardiomyopathies (CMPs) and channelopathies (CNPs), which pose a substantial healthcare burden due to the complexity of the therapeutic management and cause early mortality. Like other inherited cardiac conditions, genetic CMPs and CNPs exhibit incomplete penetrance and variable expressivity even within carriers of the same pathogenic deoxyribonucleic acid variant, challenging our understanding of the underlying pathogenic mechanisms. Until recently, the lack of accurate physiological preclinical models hindered the investigation of fundamental cellular and molecular mechanisms. The advent of induced pluripotent stem cell (iPSC) technology, along with advances in gene editing, offered unprecedented opportunities to explore hereditary CMPs and CNPs. Hallmark features of iPSCs include the ability to differentiate into unlimited numbers of cells from any of the three germ layers, genetic identity with the subject from whom they were derived, and ease of gene editing, all of which were used to generate “disease-in-a-dish” models of monogenic cardiac conditions. Functionally, iPSC-derived cardiomyocytes that faithfully recapitulate the patient-specific phenotype, allowed the study of disease mechanisms in an individual-/allele-specific manner, as well as the customization of therapeutic regimen. This review provides a synopsis of the most important iPSC-based models of CMPs and CNPs and the potential use for modeling disease mechanisms, personalized therapy and deoxyribonucleic acid variant functional annotation.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Bucharest 014452, Romania
| | - Ana-Maria Rosca
- Cell and Tissue Engineering Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| |
Collapse
|
37
|
Proteomic and Glyco(proteo)mic tools in the profiling of cardiac progenitors and pluripotent stem cell derived cardiomyocytes: Accelerating translation into therapy. Biotechnol Adv 2021; 49:107755. [PMID: 33895330 DOI: 10.1016/j.biotechadv.2021.107755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/15/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
Research in stem cells paved the way to an enormous amount of knowledge, increasing expectations on cardio regenerative therapeutic approaches in clinic. While the first generation of clinical trials using cell-based therapies in the heart were performed with bone marrow and adipose tissue derived mesenchymal stem cells, second generation cell therapies moved towards the use of cardiac-committed cell populations, including cardiac progenitor cells and pluripotent stem cell derived cardiomyocytes. Despite all these progresses, translating the aptitudes of R&D and pre-clinical data into effective clinical treatments is still highly challenging, partially due to the demanding regulatory and safety concerns but also because of the lack of knowledge on the regenerative mechanisms of action of these therapeutic products. Thus, the need of analytical methodologies that enable a complete characterization of such complex products and a deep understanding of their therapeutic effects, at the cell and molecular level, is imperative to overcome the hurdles of these advanced therapies. Omics technologies, such as proteomics and glyco(proteo)mics workflows based on state of the art mass-spectrometry, have prompted some major breakthroughs, providing novel data on cell biology and a detailed assessment of cell based-products applied in cardiac regeneration strategies. These advanced 'omics approaches, focused on the profiling of protein and glycan signatures are excelling the identification and characterization of cell populations under study, namely unveiling pluripotency and differentiation markers, as well as paracrine mechanisms and signaling cascades involved in cardiac repair. The leading knowledge generated is supporting a more rational therapy design and the rethinking of challenges in Advanced Therapy Medicinal Products development. Herein, we review the most recent methodologies used in the fields of proteomics, glycoproteomics and glycomics and discuss their impact on the study of cardiac progenitor cells and pluripotent stem cell derived cardiomyocytes biology. How these discoveries will impact the speed up of novel therapies for cardiovascular diseases is also addressed.
Collapse
|
38
|
Genetic Cardiomyopathies: The Lesson Learned from hiPSCs. J Clin Med 2021; 10:jcm10051149. [PMID: 33803477 PMCID: PMC7967174 DOI: 10.3390/jcm10051149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in recent years; however, assessing the pathogenicity of new variants often needs in-depth characterization in order to ascertain a causal role in the disease. The application of human induced pluripotent stem cells has greatly helped to advance our knowledge in this field and enabled to obtain numerous in vitro patient-specific cellular models useful to study the underlying molecular mechanisms and test new therapeutic strategies. A milestone in the research of genetically determined heart disease was the introduction of genomic technologies that provided unparalleled opportunities to explore the genetic architecture of cardiomyopathies, thanks to the generation of isogenic pairs. The aim of this review is to provide an overview of the main research that helped elucidate the pathophysiology of the most common genetic cardiomyopathies: hypertrophic, dilated, arrhythmogenic, and left ventricular noncompaction cardiomyopathies. A special focus is provided on the application of gene-editing techniques in understanding key disease characteristics and on the therapeutic approaches that have been tested.
Collapse
|
39
|
Jiang H, Hooper C, Kelly M, Steeples V, Simon JN, Beglov J, Azad AJ, Leinhos L, Bennett P, Ehler E, Kalisch-Smith JI, Sparrow DB, Fischer R, Heilig R, Isackson H, Ehsan M, Patone G, Huebner N, Davies B, Watkins H, Gehmlich K. Functional analysis of a gene-edited mouse model to gain insights into the disease mechanisms of a titin missense variant. Basic Res Cardiol 2021; 116:14. [PMID: 33637999 PMCID: PMC7910237 DOI: 10.1007/s00395-021-00853-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/10/2021] [Indexed: 11/03/2022]
Abstract
Titin truncating variants are a well-established cause of cardiomyopathy; however, the role of titin missense variants is less well understood. Here we describe the generation of a mouse model to investigate the underlying disease mechanism of a previously reported titin A178D missense variant identified in a family with non-compaction and dilated cardiomyopathy. Heterozygous and homozygous mice carrying the titin A178D missense variant were characterised in vivo by echocardiography. Heterozygous mice had no detectable phenotype at any time point investigated (up to 1 year). By contrast, homozygous mice developed dilated cardiomyopathy from 3 months. Chronic adrenergic stimulation aggravated the phenotype. Targeted transcript profiling revealed induction of the foetal gene programme and hypertrophic signalling pathways in homozygous mice, and these were confirmed at the protein level. Unsupervised proteomics identified downregulation of telethonin and four-and-a-half LIM domain 2, as well as the upregulation of heat shock proteins and myeloid leukaemia factor 1. Loss of telethonin from the cardiac Z-disc was accompanied by proteasomal degradation; however, unfolded telethonin accumulated in the cytoplasm, leading to a proteo-toxic response in the mice.We show that the titin A178D missense variant is pathogenic in homozygous mice, resulting in cardiomyopathy. We also provide evidence of the disease mechanism: because the titin A178D variant abolishes binding of telethonin, this leads to its abnormal cytoplasmic accumulation. Subsequent degradation of telethonin by the proteasome results in proteasomal overload, and activation of a proteo-toxic response. The latter appears to be a driving factor for the cardiomyopathy observed in the mouse model.
Collapse
Affiliation(s)
- He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Matthew Kelly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Violetta Steeples
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Julia Beglov
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Amar J Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Lisa Leinhos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | | | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Roman Fischer
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Raphael Heilig
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Henrik Isackson
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Giannino Patone
- Max Delbrueck Centre for Molecular Medicine, Berlin, Germany
| | - Norbert Huebner
- Max Delbrueck Centre for Molecular Medicine, Berlin, Germany
| | - Benjamin Davies
- Transgenic Core, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
40
|
Kathiriya IS, Rao KS, Iacono G, Devine WP, Blair AP, Hota SK, Lai MH, Garay BI, Thomas R, Gong HZ, Wasson LK, Goyal P, Sukonnik T, Hu KM, Akgun GA, Bernard LD, Akerberg BN, Gu F, Li K, Speir ML, Haeussler M, Pu WT, Stuart JM, Seidman CE, Seidman JG, Heyn H, Bruneau BG. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Dev Cell 2021; 56:292-309.e9. [PMID: 33321106 PMCID: PMC7878434 DOI: 10.1016/j.devcel.2020.11.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023]
Abstract
Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.
| | - Kavitha S Rao
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Giovanni Iacono
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - W Patrick Devine
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Andrew P Blair
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Swetansu K Hota
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Michael H Lai
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Bayardo I Garay
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | | | - Henry Z Gong
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Piyush Goyal
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Tatyana Sukonnik
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Kevin M Hu
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Gunes A Akgun
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Laure D Bernard
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kai Li
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew L Speir
- Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | | | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02115, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Universitat Pompeu Fabra, 08028 Barcelona, Spain
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
41
|
Hrstka SCL, Ankam S, Agac B, Klein JP, Moore RA, Narapureddy B, Schneider I, Hrstka RF, Dasari S, Staff NP. Proteomic analysis of human iPSC-derived sensory neurons implicates cell stress and microtubule dynamics dysfunction in bortezomib-induced peripheral neurotoxicity. Exp Neurol 2021; 335:113520. [PMID: 33129842 PMCID: PMC7750199 DOI: 10.1016/j.expneurol.2020.113520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022]
Abstract
The neurotoxic effects of the chemotherapeutic agent bortezomib on dorsal root ganglia sensory neurons are well documented, yet the mechanistic underpinnings that govern these cellular processes remain incompletely understood. In this study, system-wide proteomic changes were identified in human induced pluripotent stem cell-derived sensory neurons (iSNs) exposed to a clinically relevant dose of bortezomib. Label-free mass spectrometry facilitated the identification of approximately 2800 iSN proteins that exhibited differential levels in the setting of bortezomib. A significant proportion of these proteins affect the cellular processes of microtubule dynamics, cytoskeletal and cytoplasmic organization, and molecular transport, and pathway analysis revealed an enrichment of proteins in signaling pathways attributable to the unfolded protein response and the integrated stress response. Alterations in microtubule-associated proteins suggest a multifaceted relationship exists between bortezomib-induced proteotoxicity and microtubule cytoskeletal architecture, and MAP2 was prioritized as a topmost influential candidate. We observed a significant reduction in the overall levels of MAP2c in somata without discernable changes in neurites. As MAP2 is known to affect cellular processes including axonogenesis, neurite extension and branching, and neurite morphology, its altered levels are suggestive of a prominent role in bortezomib-induced neurotoxicity.
Collapse
Affiliation(s)
- Sybil C L Hrstka
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Soneela Ankam
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Busranur Agac
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Jon P Klein
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Raymond A Moore
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Bhavya Narapureddy
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Isabella Schneider
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Ronald F Hrstka
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
42
|
BAG3 Proteomic Signature under Proteostasis Stress. Cells 2020; 9:cells9112416. [PMID: 33158300 PMCID: PMC7694386 DOI: 10.3390/cells9112416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidate the dynamic and multifunctional action of BAG3 in response to stress, we established BAG3 interactomes under basal and proteostasis stress conditions by employing affinity purification combined with quantitative mass spectrometry. In addition to the identification of novel potential BAG3 interactors, we defined proteins whose interaction with BAG3 was altered upon stress. By functional annotation and protein-protein interaction enrichment analysis of the identified potential BAG3 interactors, we confirmed the multifunctionality of BAG3 and highlighted its crucial role in diverse cellular signaling pathways and processes, ensuring cellular proteostasis and cell viability. These include protein folding and degradation, gene expression, cytoskeleton dynamics (including cell cycle and transport), as well as granulostasis, in particular.
Collapse
|
43
|
SRSF3 Is a Critical Requirement for Inclusion of Exon 3 of BIS Pre-mRNA. Cells 2020; 9:cells9102325. [PMID: 33086735 PMCID: PMC7589869 DOI: 10.3390/cells9102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
BCL-2 interacting cell death suppressor (BIS), also known as BAG3, is a multifunctional protein. Aberrant expression and mutation of BIS have been implicated in cancers and myopathy. However, there have only been a few studies on the splicing of BIS pre-mRNA. In the present study, through RT-PCR and sequencing in various cell lines and mouse tissues, we identified for the first time the presence of BIS mRNA isomers in which exon 3 or exons 2–3 are skipped. We also demonstrated that the depletion of SRSF3 promoted the skipping of exon 3 of BIS pre-mRNA in endogenous BIS and the GFP-BIS minigene. SRSF3 specifically interacts with the putative binding sites in exon 3, in which deletion promoted the skipping of exon 3 in the GFP-BIS minigene, which was comparable to the effect of SRSF knockdown. Even though acceleration of exon 3 skipping was not observed in response to various stimuli, SRSF3 depletion, accompanied by the production of a truncated BIS protein, inhibited the nuclear translocation of HSF1, which was restored by the wild-type BIS, not by exon 3-depleted BIS. Therefore, our results suggested that the maintenance of SRSF3 levels and subsequent preservation of the intact BIS protein is an important factor in modulating HSF1 localization upon cellular stress.
Collapse
|
44
|
Marzullo L, Turco MC, De Marco M. The multiple activities of BAG3 protein: Mechanisms. Biochim Biophys Acta Gen Subj 2020; 1864:129628. [DOI: 10.1016/j.bbagen.2020.129628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
|
45
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
46
|
Pioner JM, Fornaro A, Coppini R, Ceschia N, Sacconi L, Donati MA, Favilli S, Poggesi C, Olivotto I, Ferrantini C. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Front Physiol 2020; 11:368. [PMID: 32477154 PMCID: PMC7235370 DOI: 10.3389/fphys.2020.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM) is mostly caused by mutations in genes encoding cytoskeletal and sarcomeric proteins. In the pediatric population, DCM is the predominant type of primitive myocardial disease. A severe form of DCM is associated with mutations in the DMD gene encoding dystrophin, which are the cause of Duchenne Muscular Dystrophy (DMD). DMD-associated cardiomyopathy is still poorly understood and orphan of a specific therapy. In the last 5 years, a rise of interest in disease models using human induced pluripotent stem cells (hiPSCs) has led to more than 50 original studies on DCM models. In this review paper, we provide a comprehensive overview on the advances in DMD cardiomyopathy disease modeling and highlight the most remarkable findings obtained from cardiomyocytes differentiated from hiPSCs of DMD patients. We will also describe how hiPSCs based studies have contributed to the identification of specific myocardial disease mechanisms that may be relevant in the pathogenesis of DCM, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | | | - Raffaele Coppini
- Department of NeuroFarBa, Università degli Studi di Firenze, Florence, Italy
| | - Nicole Ceschia
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Sacconi
- LENS, Università degli Studi di Firenze and National Institute of Optics (INO-CNR), Florence, Italy
| | | | - Silvia Favilli
- Pediatric Cardiology, Meyer Children's Hospital, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
47
|
Abstract
The B cell lymphoma 2-associated anthanogene (BAG3) is an anti-apoptotic co-chaperone protein. Previous reports suggest that mutations in BAG3 are associated with dilated cardiomyopathy. This review aims to summarize the current understanding of the relationship between BAG3 mutations and dilated cardiomyopathy, primarily focusing on the role and protective mechanism of BAG3 in cardiomyocytes from individuals with dilated cardiomyopathy. The results of published studies show that BAG3 is critically important for reducing cardiomyocyte apoptosis, maintaining protein homeostasis, regulating mitochondrial stability, modulating myocardial contraction, and reducing cardiac arrhythmia, which suggests an indispensable protective mechanism of BAG3 in dilated cardiomyopathy. The significant role of BAG3 in protecting cardiomyocytes provides a new direction for the diagnosis and treatment of dilated cardiomyopathy. However, further research is required to explore the molecular mechanisms that regulate BAG3 expression, to identify a novel therapy for patients with dilated cardiomyopathy.
Collapse
|
48
|
Fatkin D, Huttner IG, Kovacic JC, Seidman J, Seidman CE. Precision Medicine in the Management of Dilated Cardiomyopathy. J Am Coll Cardiol 2019; 74:2921-2938. [DOI: 10.1016/j.jacc.2019.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
|
49
|
McDermott-Roe C, Lv W, Maximova T, Wada S, Bukowy J, Marquez M, Lai S, Shehu A, Benjamin I, Geurts A, Musunuru K. Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes. JCI Insight 2019; 4:128799. [PMID: 31723063 DOI: 10.1172/jci.insight.128799] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in B cell lymphoma 2-associated athanogene 3 (BAG3) are recurrently associated with dilated cardiomyopathy (DCM) and muscular dystrophy. Using isogenic genome-edited human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we examined how a DCM-causing BAG3 mutation (R477H), as well as complete loss of BAG3 (KO), impacts myofibrillar organization and chaperone networks. Although unchanged at baseline, fiber length and alignment declined markedly in R477H and KO iPSC-CMs following proteasome inhibition. RNA sequencing revealed extensive baseline changes in chaperone- and stress response protein-encoding genes, and protein levels of key BAG3 binding partners were perturbed. Molecular dynamics simulations of the BAG3-HSC70 complex predicted a partial disengagement by the R477H mutation. In line with this, BAG3-R477H bound less HSC70 than BAG3-WT in coimmunoprecipitation assays. Finally, myofibrillar disarray triggered by proteasome inhibition in R477H cells was mitigated by overexpression of the stress response protein heat shock factor 1 (HSF1). These studies reveal the importance of BAG3 in coordinating protein quality control subsystem usage within the cardiomyocyte and suggest that augmenting HSF1 activity might be beneficial as a means to mitigate proteostatic stress in the context of BAG3-associated DCM.
Collapse
Affiliation(s)
- Chris McDermott-Roe
- Division of Cardiology and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenjian Lv
- Division of Cardiology and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tania Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, USA
| | - Shogo Wada
- Division of Cardiology and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Bukowy
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maribel Marquez
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shuping Lai
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, USA
| | - Ivor Benjamin
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aron Geurts
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kiran Musunuru
- Division of Cardiology and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
50
|
Cresci S, Pereira NL, Ahmad F, Byku M, de las Fuentes L, Lanfear DE, Reilly CM, Owens AT, Wolf MJ. Heart Failure in the Era of Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:458-485. [PMID: 31510778 DOI: 10.1161/hcg.0000000000000058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of 5 people will develop heart failure over his or her lifetime. Early diagnosis and better understanding of the pathophysiology of this disease are critical to optimal treatment. The "omics"-genomics, pharmacogenomics, epigenomics, proteomics, metabolomics, and microbiomics- of heart failure represent rapidly expanding fields of science that have, to date, not been integrated into a single body of work. The goals of this statement are to provide a comprehensive overview of the current state of these omics as they relate to the development and progression of heart failure and to consider the current and potential future applications of these data for precision medicine with respect to prevention, diagnosis, and therapy.
Collapse
|