1
|
Lékó AH, Gregory-Flores A, Marchette RCN, Gomez JL, Vendruscolo JCM, Repunte-Canonigo V, Choung V, Deschaine SL, Whiting KE, Jackson SN, Cornejo MP, Perello M, You ZB, Eckhaus M, Rasineni K, Janda KD, Zorman B, Sumazin P, Koob GF, Michaelides M, Sanna PP, Vendruscolo LF, Leggio L. Genetic or pharmacological GHSR blockade has sexually dimorphic effects in rodents on a high-fat diet. Commun Biol 2024; 7:632. [PMID: 38796563 PMCID: PMC11127961 DOI: 10.1038/s42003-024-06303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.
Collapse
Affiliation(s)
- András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Gregory-Flores
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Renata C N Marchette
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vicky Choung
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Shelley N Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Maria Paula Cornejo
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Eckhaus
- Pathology Service, Division of Veterinary Resources, Office of Research Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
2
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
3
|
Chen YK, Liu TT, Teia FKF, Xie MZ. Exploring the underlying mechanisms of obesity and diabetes and the potential of Traditional Chinese Medicine: an overview of the literature. Front Endocrinol (Lausanne) 2023; 14:1218880. [PMID: 37600709 PMCID: PMC10433171 DOI: 10.3389/fendo.2023.1218880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity and diabetes are closely related metabolic disorders that have become major public health concerns worldwide. Over the past few decades, numerous studies have explored the underlying mechanisms of these disorders and identified various risk factors, including genetics, lifestyle, and dietary habits. Traditional Chinese Medicine (TCM) has been increasingly recognized for its potential to manage obesity and diabetes. Weight loss is difficult to sustain, and several diabetic therapies, such as sulfonylureas, thiazolidinediones, and insulin, might make it harder to lose weight. While lifestyle changes should be the primary approach for people interested in lowering weight, drugs are also worth investigating. Since some of the newer glucose-lowering medications that cause weight loss, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2i), are additionally utilized or are under consideration for use as anti-obesity drugs, the frontier between glucose-lowering medication and weight loss drugs appears to be shifting. This review provides an overview of the literature on the underlying mechanisms of obesity and diabetes and the prospect of TCM in their management. We discuss the various TCM interventions, including acupuncture, herbal medicine, and dietary therapy, and their effects on metabolic health. We also highlight the potential of TCM in regulating gut microbiota, reducing inflammation, and improving insulin sensitivity. The findings suggest that TCM may provide a promising approach to preventing and managing obesity and diabetes. However, further well-designed studies are needed to confirm the efficacy and safety of TCM interventions and to elucidate their underlying mechanisms of action.
Collapse
Affiliation(s)
- Yan-kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Ting-ting Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Farah Khameis Farag Teia
- Department of Agro-technology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Meng-zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Shimizu K, Kaneko K, Koyama D, Ohinata K. Soy-fortelin: A ghrelin sensitivity-enhancing peptide that stimulates food intake in aged mice. FASEB J 2023; 37:e22836. [PMID: 36856734 PMCID: PMC11977597 DOI: 10.1096/fj.202201482r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Ghrelin sensitivity is known to decrease with aging in mice and humans, and the decrease contributes to anorexia with aging. In this study, we discovered novel ghrelin sensitivity-enhancing peptides. Ghrelin sensitivity was evaluated by examining whether dipeptide samples enhanced the calcium response to ghrelin in the growth hormone secretagogue receptor-transfected cell line. First, dipeptides were screened using a 336-dipeptide library and we revealed that Ser-Tyr (SY) potentiated ghrelin sensitivity in particular. Based on the structure-activity relationship determined using the dipeptide library and comprehensive analysis of peptides in the chymotrypsin digest of soy β-conglycinin (β-CG), which enhanced ghrelin sensitivity, candidate peptides were narrowed down. Among the chemosynthesized peptides, we discovered that an undecapeptide, SLVNNDDRDSY, corresponding to β-CGα(267-277), stimulated ghrelin sensitivity in vitro. This peptide enhanced the orexigenic activity of ghrelin in C57BL/6 mice and stimulated food intake. Thus, we demonstrated that SLVNNDDRDSY stimulated ghrelin sensitivity in vitro and in vivo and named it "soy-fortelin". Moreover, orally administered soy-fortelin had a similar but smaller effect in the young C57BL/6 mice, whereas it strongly stimulated food intake in 2-year-old aged mice that exhibited high blood ghrelin levels and low ghrelin sensitivity. In conclusion, we discovered soy-fortelin as a novel peptide that enhances ghrelin sensitivity in vivo and in vitro and increases food intake in young and aged ghrelin-resistant mice. Soy-fortelin is the first food-derived peptide reported to enhance ghrelin sensitivity.
Collapse
Affiliation(s)
- Ken Shimizu
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Daiki Koyama
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
5
|
Chen D, Li Y, Wu H, Wu Y, Tang N, Chen S, Liu Y, Wang J, Zhang X, Li Z. Ghrelin-Ghrelin receptor (GSHR) pathway via endocannabinoid signal affects the expression of NPY to promote the food intake of Siberian sturgeon (Acipenser baerii). Horm Behav 2022; 143:105199. [PMID: 35597053 DOI: 10.1016/j.yhbeh.2022.105199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Previous data suggested that activation of endocannabinoid receptor 1 (CB1) was necessary for the orexigenic effect of Ghrelin in rodents, but the information is limited in teleosts. To investigate the feeding regulation pathway of Ghrelin and CB1 in Siberian sturgeon (Acipenser baerii), this study first identified the Ghrelin (345 bp, complete coding sequence) and Ghrelin receptor (GHSR, 500 bp, partial coding sequence) sequences, and then detected their tissue distribution patterns, which showed that Ghrelin is mainly distribution in peripheral tissues, while GSHR is mainly in different brain divisions. Besides, the qPCR before and after feeding showed that the mRNA expressions of Ghrelin and GHSR were inhibited after feeding in telencephalon, diencephalon and mesencephalon. Subsequently, the food intake and appetite factor expressions were measured by i.c.v. co-injection of Ghrelin and GSHR antagonist. The results showed that Ghrelin promoted the food intake of Siberian sturgeon, which was reversed by its receptor antagonist. Besides, i.c.v. injection of Ghrelin decreased telencephalon CART expression while increased NPY expression in the three brain regions. In addition, to further explore the relationship of Ghrelin and CB1 signal regulating feeding, the co-injection of Ghrelin and CB1 antagonists was performed. The results showed that AM6545 (CB1 peripheral restricted antagonist) failed to affect the orexigenic effect of Ghrelin and the expression pattern of NPY mRNA in the telencephalon. While in the diencephalon, the increase of food intake and NPY mRNA expression induced by Ghrelin was completely reversed by Rimonabant (CB1 global antagonist). These results indicate Ghrelin-GSHR pathway promotes the food intake of Siberian sturgeon by inducing the expression of NPY in the diencephalon, and the stimulating effect will be reversed by cannabinoid receptor antagonism. This study provides a foundation for understanding the pathways Ghrelin and CB1 signals in appetite regulation of the teleost.
Collapse
Affiliation(s)
- Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China; Chengdu Agricultural College, 392#, Detong Bridge Road, Chengdu, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, 1124#, Dongtong Road, Neijiang, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China.
| |
Collapse
|
6
|
Okidono Y, Osada J, Otsu K, Kowase S, Aoki H, Yumoto K. Two cases of wide QRS complex tachycardia caused by anamorelin. J Cardiol Cases 2022; 26:212-216. [DOI: 10.1016/j.jccase.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
|
7
|
Herman-Bonert VS, Melmed S. Growth Hormone. THE PITUITARY 2022:91-129. [DOI: 10.1016/b978-0-323-99899-4.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Nakanishi Y, Higuchi J, Honda N, Komura N. [Pharmacological profile and clinical efficacy of anamorelin HCl (ADLUMIZ ®Tablets), the first orally available drug for cancer cachexia with ghrelin-like action in Japan]. Nihon Yakurigaku Zasshi 2021; 156:370-381. [PMID: 34719572 DOI: 10.1254/fpj.21046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anamorelin hydrochloride (hereinafter referred to as anamorelin) is an orally active, small-molecule drug with a similar pharmacological action to ghrelin, an endogenous ligand of growth hormone secretagogue receptor type 1a (GHS-R1a). It was first approved in Japan for the treatment of cancer cachexia, characterized by weight loss and anorexia. Anamorelin stimulated the secretion of growth hormone (GH) from cultured rat pituitary cells and increased plasma GH levels by oral administration to rats, pigs and humans. When anamorelin was orally administered once daily for 6 days to rats, larger body weight gain associated with increased food consumption compared to the control group was observed from after the first dose. Anamorelin is a selective agonist for GHS-R1a and enhanced GHS-R1a-mediated pituitary GH secretion and increased food consumption, resulting in body weight gain. In the two Japanese phase II studies in patients with cancer cachexia associated with non-small cell lung cancer (NSCLC), improvement of lean body mass (LBM) and body weight losses and anorexia were demonstrated. The tumor types of target patients in the Japanese phase III study were colorectal, gastric, and pancreatic cancer. As a result, maintenance and increase of LBM and body weight as well as improvement of anorexia were observed, and the efficacy against cancer cachexia associated with colorectal, gastric, and pancreatic cancer was confirmed. There were no observed events considered to be significant safety risks. In conclusion, anamorelin is expected to provide a new therapeutic option for cancer cachexia for which no effective treatment has been available.
Collapse
Affiliation(s)
- Yasutomo Nakanishi
- Discovery & Research, Research Center of Specialty, Ono Pharmaceutical Co., Ltd
| | - Junya Higuchi
- Discovery & Research, Research promotion, Ono Pharmaceutical Co., Ltd
| | | | - Naoyuki Komura
- Clinical Development, Clinical Development Planning II, Ono Pharmaceutical Co., Ltd
| |
Collapse
|
9
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Hassouna R, Fernandez G, Lebrun N, Fiquet O, Roelfsema F, Labarthe A, Zizzari P, Tomasetto C, Epelbaum J, Viltart O, Chauveau C, Perello M, Tolle V. Ghrelin Gene Deletion Alters Pulsatile Growth Hormone Secretion in Adult Female Mice. Front Endocrinol (Lausanne) 2021; 12:754522. [PMID: 34721302 PMCID: PMC8549963 DOI: 10.3389/fendo.2021.754522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Using preproghrelin-deficient mice (Ghrl-/-), we previously observed that preproghrelin modulates pulsatile growth hormone (GH) secretion in post-pubertal male mice. However, the role of ghrelin and its derived peptides in the regulation of growth parameters or feeding in females is unknown. We measured pulsatile GH secretion, growth, metabolic parameters and feeding behavior in adult Ghrl-/- and Ghrl+/+ male and female mice. We also assessed GH release from pituitary explants and hypothalamic growth hormone-releasing hormone (GHRH) expression and immunoreactivity. Body weight and body fat mass, linear growth, spontaneous food intake and food intake following a 48-h fast, GH pituitary contents and GH release from pituitary explants ex vivo, fasting glucose and glucose tolerance were not different among adult Ghrl-/- and Ghrl+/+ male or female mice. In vivo, pulsatile GH secretion was decreased, while approximate entropy, that quantified orderliness of secretion, was increased in adult Ghrl-/- females only, defining more irregular GH pattern. The number of neurons immunoreactive for GHRH visualized in the hypothalamic arcuate nucleus was increased in adult Ghrl-/- females, as compared to Ghrl+/+ females, whereas the expression of GHRH was not different amongst groups. Thus, these results point to sex-specific effects of preproghrelin gene deletion on pulsatile GH secretion, but not feeding, growth or metabolic parameters, in adult mice.
Collapse
Affiliation(s)
- Rim Hassouna
- Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Nicolas Lebrun
- Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Oriane Fiquet
- Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Ferdinand Roelfsema
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Labarthe
- Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Philippe Zizzari
- Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Catherine Tomasetto
- Institut de génétique et de biologie moléculaire et cellulaire (IGBMC), UMR7104 CNRS/U1258 INSERM, Université de Strasbourg, Illkirch, France
| | - Jacques Epelbaum
- Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Odile Viltart
- Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
- Université de Lille, Faculté des Sciences et Technologies, Villeneuve d’Ascq, France
| | - Christophe Chauveau
- Marrow Adiposity and Bone Lab - MABLab ULR 4490, Univ. Littoral Côte d’Opale, Boulogne-sur-Mer, Univ. Lille and CHU Lille, Lille, France
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Virginie Tolle
- Université de Paris, UMR-S 1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| |
Collapse
|
11
|
Gupta D, Patterson AM, Osborne-Lawrence S, Bookout AL, Varshney S, Shankar K, Singh O, Metzger NP, Richard CP, Wyler SC, Elmquist JK, Zigman JM. Disrupting the ghrelin-growth hormone axis limits ghrelin's orexigenic but not glucoregulatory actions. Mol Metab 2021; 53:101258. [PMID: 34023483 PMCID: PMC8203846 DOI: 10.1016/j.molmet.2021.101258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Acyl-ghrelin regulates eating, body weight, blood glucose, and GH secretion upon binding to its receptor GHSR (growth hormone secretagogue receptor; ghrelin receptor). GHSR is distributed in several brain regions and some peripheral cell-types including pituitary somatotrophs. The objective of the current study was to determine the functional significance of acyl-ghrelin's action on GHSR-expressing somatotrophs in mediating GH secretion and several of acyl-ghrelin's metabolic actions. Methods GH-IRES-Cre mice and loxP-flanked (floxed) GHSR mice were newly developed and then crossed to one another to generate mice that lacked GHSR selectively from somatotrophs. Following validation of mice with somatotroph-selective GHSR deletion, metabolic responses of these mice and control littermates were assessed following both acute and chronic acyl-ghrelin administration, a 24-h fast, and a prolonged 60% chronic caloric restriction protocol modeling starvation. Results In mice with somatotroph-selective GHSR deletion, a single peripheral injection of acyl-ghrelin failed to induce GH secretion or increase food intake, unlike wild-type and other littermate control groups. However, the usual acute blood glucose increase in response to the acyl-ghrelin bolus was preserved. Similarly, chronic s.c. acyl-ghrelin administration to mice with somatotroph-selective GHSR deletion failed to increase plasma GH, food intake, or body weight. Physiologically elevating plasma acyl-ghrelin via a 24-h fast also failed to raise plasma GH and resulted in a limited hyperphagic response upon food reintroduction in mice with somatotroph-selective GHSR deletion, although those mice nonetheless did not exhibit an exaggerated reduction in blood glucose. Physiologically elevating plasma acyl-ghrelin via a 15-day caloric restriction protocol which provided only 40% of usual daily calories failed to raise plasma GH in mice with somatotroph-selective GHSR deletion, although those mice did not exhibit life-threatening hypoglycemia. Conclusions These results reveal that direct engagement of GHSR-expressing somatotrophs is required for a peripheral ghrelin bolus to acutely stimulate GH secretion and the actions of chronic acyl-ghrelin delivery and physiological plasma acyl-ghrelin elevations to increase plasma GH. These results also suggest that actions of acyl-ghrelin to increase food intake and body weight are reliant on direct activation of GHSRs expressed on somatotrophs. Furthermore, these results suggest that the glucoregulatory actions of acyl-ghrelin – in particular, its actions to raise blood glucose when acutely administered, prevent small blood glucose drops following a 24-h fast, and avert life-threatening hypoglycemia during an acute-on-chronic caloric restriction protocol – do not depend on GHSR expression by somatotrophs. Mice with pituitary somatotroph-selective GHSR deletion were generated. Somatotroph-expressed GHSRs mediate GH secretion and food intake after acute ghrelin. Body weight effects of chronic ghrelin infusion require somatotroph-expressed GHSRs. Somatotroph-expressed GHSRs enable GH to increase upon chronic caloric restriction. Mice lacking somatotroph GHSRs maintain euglycemia upon chronic caloric restriction.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anna M Patterson
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angie L Bookout
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven C Wyler
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Farokhnia M, Abshire KM, Hammer A, Deschaine SL, Saravanakumar A, Cobbina E, You ZB, Haass-Koffler CL, Lee MR, Akhlaghi F, Leggio L. Neuroendocrine Response to Exogenous Ghrelin Administration, Combined With Alcohol, in Heavy-Drinking Individuals: Findings From a Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study. Int J Neuropsychopharmacol 2021; 24:464-476. [PMID: 33560411 PMCID: PMC8278796 DOI: 10.1093/ijnp/pyab004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulating evidence has established a role for the orexigenic hormone ghrelin in alcohol-seeking behaviors. Accordingly, the ghrelin system may represent a potential pharmacotherapeutic target for alcohol use disorder. Ghrelin modulates several neuroendocrine pathways, such as appetitive, metabolic, and stress-related hormones, which are particularly relevant in the context of alcohol use. The goal of the present study was to provide a comprehensive assessment of neuroendocrine response to exogenous ghrelin administration, combined with alcohol, in heavy-drinking individuals. METHODS This was a randomized, crossover, double-blind, placebo-controlled human laboratory study, which included 2 experimental alcohol administration paradigms: i.v. alcohol self-administration and i.v. alcohol clamp. Each paradigm consisted of 2 counterbalanced sessions of i.v. ghrelin or placebo administration. Repeated blood samples were collected during each session, and peripheral concentrations of the following hormones were measured: leptin, glucagon-like peptide-1, pancreatic polypeptide, gastric inhibitory peptide, insulin, insulin-like growth factor-1, cortisol, prolactin, and aldosterone. RESULTS Despite some statistical differences, findings were consistent across the 2 alcohol administration paradigms: i.v. ghrelin, compared to placebo, increased blood concentrations of glucagon-like peptide-1, pancreatic polypeptide, cortisol, and prolactin, both acutely and during the whole session. Lower levels of leptin and higher levels of aldosterone were also found during the ghrelin vs placebo session. CONCLUSION These findings, gathered from a clinically relevant sample of heavy-drinking individuals with alcohol use disorder, provide a deeper insight into the complex interplay between ghrelin and appetitive, metabolic, and stress-related neuroendocrine pathways in the context of alcohol use.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly M Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Aaron Hammer
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Anitha Saravanakumar
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | | | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carolina L Haass-Koffler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Mary R Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA,Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA,Correspondence: Lorenzo Leggio, MD, PhD, NIDA and NIAAA, NIH, Biomedical Research Center, 251 Bayview Boulevard, Suite 200, Room 01A844, Baltimore, MD 21224 ()
| |
Collapse
|
14
|
Batury VL, Walton E, Tam F, Wronski ML, Buchholz V, Frieling H, Ehrlich S. DNA methylation of ghrelin and leptin receptors in underweight and recovered patients with anorexia nervosa. J Psychiatr Res 2020; 131:271-278. [PMID: 33091847 DOI: 10.1016/j.jpsychires.2020.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 12/25/2022]
Abstract
Epigenetic mechanisms, which modulate gene expression, are becoming increasingly important in the research on anorexia nervosa (AN). Patients with AN have difficulties with the perception of hunger even though hormones like high ghrelin and low leptin signal the need for energy intake. Given the prominent role of the growth hormone secretagogue receptor (GHS-R1a) and the leptin receptor (LEPR) in appetite regulation, a dysregulation of the receptors' expression levels, possibly resulting from altered DNA promoter methylation, may contribute to the pathophysiology of AN. Such alterations could be secondary effects of undernutrition (state markers) or biological processes that may play an antecedent, possibly causal, role in the pathophysiology (trait markers). Therefore, the objective of this study was to examine DNA promoter methylation of the GHS-R1a and LEPR gene promoter regions and investigate whether methylation levels are associated with AN symptoms. We studied medication-free underweight patients with acute AN as well as weight-recovered patients and normal-weight, healthy female control subjects. While DNA methylation of the LEPR gene was similar across groups, GHS-R1a promoter methylation was increased in underweight AN compared to healthy controls - a finding which can be interpreted within the framework of the "ghrelin-resistance" hypothesis in AN. The results of the current study suggest for the first time a potential epigenetic mechanism underlying altered GHS-R1a sensitivity or altered ghrelin signaling in acutely underweight AN. If a ghrelin-centered model of AN can be verified, a next step could be the search for a dietary or psychopharmacological modulation at the ghrelin receptor, potentially via epigenetic mechanisms.
Collapse
Affiliation(s)
- Victoria-Luise Batury
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Friederike Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Marie-Louis Wronski
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Vanessa Buchholz
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School (MHH), Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School (MHH), Hannover, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Gray SM, Page LC, Tong J. Ghrelin regulation of glucose metabolism. J Neuroendocrinol 2019; 31:e12705. [PMID: 30849212 PMCID: PMC6688917 DOI: 10.1111/jne.12705] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Ghrelin and its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), are implicated in the regulation of glucose metabolism via direct actions in the pancreatic islet, as well as peripheral insulin-sensitive tissues and the brain. Although many studies have explored the role of ghrelin in glucose tolerance and insulin secretion, a complete mechanistic understanding remains to be clarified. This review highlights the local expression and function of ghrelin and GHSR1a in pancreatic islets and how this axis may modulate insulin secretion from pancreatic β-cells. Additionally, we discuss the effect of ghrelin on in vivo glucose metabolism in rodents and humans, as well as the metabolic circumstances under which the action of ghrelin may predominate.
Collapse
Affiliation(s)
- Sarah. M. Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701
| | - Laura C. Page
- Division of Endocrinology, Department of Pediatrics, Duke University, Durham, NC 27701
| | - Jenny Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701
- Division of Endocrinology, Department of Pediatrics, Duke University, Durham, NC 27701
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University, Durham, NC 27701
| |
Collapse
|
16
|
Yang J, Luo S, Li J, Zheng Z, Du X, Deng Y. Transcriptome analysis of growth heterosis in pearl oyster Pinctada fucata martensii. FEBS Open Bio 2018; 8:1794-1803. [PMID: 30410859 PMCID: PMC6212643 DOI: 10.1002/2211-5463.12502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023] Open
Abstract
Heterosis improves growth and survival of shellfish species. Although breeders have widely exploited heterosis, its underlying molecular mechanisms remain unclear. In this study, a 2 × 2 complete diallel cross was facilitated between two full-sib families to produce two inbred families (A and D) and their reciprocal hybrid families (B and C) of pearl oyster Pinctada fucata martensii. Growth traits of the four families were compared at the adult stages. Transcriptome analysis was conducted on the four families using an Illumina sequencing platform. The results revealed that the growth traits of the four families significantly varied (P < 0.05). The mid-parent heterosis values of shell length, shell height, shell width, shell weight, and total weight were 12.9%, 14.9%, 18.2%, 17.2%, and 33.2%, respectively. The B- and C-inbred (A and D) triads had 79 and 68 differentially expressed genes (DEGs), respectively, which were dominantly nonadditive, including overdominance, underdominance, and low-parent dominance. Gene ontology term analysis showed that the DEGs in the B- and C-inbred triads were enriched for metabolic process, cellular process cell part, binding, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs in the B- and C-inbred triads were involved in focal adhesion, the P13K-Akt signaling pathway, the mRNA surveillance pathway, and the focal adhesion pathway. The reliability of the sequencing data was confirmed by real-time polymerase chain reaction analysis of six growth-related genes. The findings of this study provide new insights into heterosis for growth traits and the design of genetic breeding programs for this species.
Collapse
Affiliation(s)
- Jingmiao Yang
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Shaojie Luo
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Junhui Li
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Zhe Zheng
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Xiaodong Du
- Fisheries College Guangdong Ocean University Zhanjiang China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province Zhanjiang China
| | - Yuewen Deng
- Fisheries College Guangdong Ocean University Zhanjiang China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province Zhanjiang China
| |
Collapse
|
17
|
Development and initial characterization of a novel ghrelin receptor CRISPR/Cas9 knockout wistar rat model. Int J Obes (Lond) 2018; 43:344-354. [PMID: 29453460 PMCID: PMC6066458 DOI: 10.1038/s41366-018-0013-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/11/2017] [Accepted: 12/10/2017] [Indexed: 01/18/2023]
Abstract
Background/objectives Ghrelin, a stomach-derived hormone implicated in numerous behaviors including feeding, reward, stress, and addictive behaviors, acts through binding to the growth hormone secretagogue receptor (GHSR). Here, we present the development, verification and initial characterization of a novel GHSR knockout (KO) Wistar rat model created with CRISPR genome editing. Methods Using CRISPR/Cas9, we developed a GHSR knockout (KO) in a Wistar background. Loss of GHSR mRNA expression was histologically verified using RNAscope in wild-type WT (n = 2) and KO (n = 2) rats. We tested the effects of intraperitoneal acyl-ghrelin administration on food consumption and plasma growth hormone (GH) concentrations in WT (n = 8) and KO (n = 8) rats. We also analyzed locomotion, food consumption, and body fat composition in these animals. Body weight was monitored from early development to adulthood. Results The RNAscope analysis revealed an abundance of GHSR mRNA expression in the hypothalamus, midbrain, and hippocampus in WTs, and no observed probe binding in KOs. Ghrelin administration increased plasma GH levels (p = 0.0067) and food consumption (p = 0.0448) in WT rats but not KOs. KO rats consumed less food overall at basal conditions and weighed significantly less compared with WTs throughout development (p = 0.0001). Compared with WTs, KOs presented higher concentrations of brown adipose tissue (BAT) (p = 0.0322). Conclusions We have verified GHSR deletion in our KO model using histological, physiological, neuroendocrinological and behavioral measures. Our findings indicate that GHSR deletion in rats is not only associated with a lack of response to ghrelin, but also associated with decreases in daily food consumption and body growth, and increases in BAT. This GHSR KO Wistar rat model provides a novel tool for studying the role of the ghrelin system in obesity and in a wide range of medical and neuropsychiatric disorders.
Collapse
|
18
|
The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Mol Metab 2017; 6:882-896. [PMID: 28752052 PMCID: PMC5518774 DOI: 10.1016/j.molmet.2017.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Objective Ghrelin is a stomach-derived hormone that affects food intake and regulates blood glucose. The best-characterized actions of ghrelin are mediated by its binding to and activation of the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Adequate examination of the identity, function, and relevance of specific subsets of GHSR-expressing neurons has been hampered by the absence of a suitable Cre recombinase (Cre)-expressing mouse line with which to manipulate gene expression in a targeted fashion within GHSR-expressing neurons. The present study aims to characterize the functional significance and neurocircuitry of GHSR-expressing neurons in the mediobasal hypothalamus (MBH), as they relate to ghrelin-induced food intake and fasting-associated rebound hyperphagia, using a novel mouse line in which Cre expression is controlled by the Ghsr promoter. Methods A Ghsr-IRES-Cre mouse line that expresses Cre directed by the Ghsr promoter was generated. The line was validated by comparing Cre activity in reporter mice to the known brain distribution pattern of GHSR. Next, the requirement of MBH GHSR-expressing neuronal activity in mediating food intake in response to administered ghrelin and in response to fasting was assessed after stereotaxic delivery of inhibitory designer receptor exclusively activated by designer drugs (DREADD) virus to the MBH. In a separate cohort of Ghsr-IRES-Cre mice, stereotaxic delivery of stimulatory DREADD virus to the MBH was performed to assess the sufficiency of MBH GHSR-expressing neuronal activity on food intake. Finally, the distribution of MBH GHSR-expressing neuronal axonal projections was assessed in the DREADD virus-injected animals. Results The pattern of Cre activity in the Ghsr-IRES-Cre mouse line mostly faithfully reproduced the known GHSR expression pattern. DREADD-assisted inhibition of MBH GHSR neuronal activity robustly suppressed the normal orexigenic response to ghrelin and fasting-associated rebound food intake. DREADD-assisted stimulation of MBH GHSR neuronal activity was sufficient to induce food intake. Axonal projections of GHSR-expressing MBH neurons were observed in a subset of hypothalamic and extra-hypothalamic regions. Conclusions These results suggest that 1) activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2) activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3) axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act. We generated a novel Ghsr-IRES-Cre knock-in mouse line. Cre activity in the line mirrors the known GHSR expression pattern. Chemogenetic modulation of neuronal activity reveals a required role of MBH GHSR neurons in rebound food intake after a fast. Neuronal projections of mediobasal hypothalamic GHSR neurons are reminiscent of AgRP neuronal projections.
Collapse
|
19
|
Donald JA, Hamid NKA, McLeod JL. The role of leptin and ghrelin in appetite regulation in the Australian Spinifex hopping mouse, Notomys alexis, during long-term water deprivation. Gen Comp Endocrinol 2017; 244:201-208. [PMID: 27102941 DOI: 10.1016/j.ygcen.2016.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/06/2016] [Accepted: 04/16/2016] [Indexed: 11/23/2022]
Abstract
Water deprivation of the Spinifex hopping mouse, Notomys alexis, induced a biphasic pattern of food intake with an initial hypophagia that was followed by an increased, and then sustained food intake. The mice lost approximately 20% of their body mass and there was a loss of white adipose tissue. Stomach ghrelin mRNA was significantly higher at day 2 of water deprivation but then returned to the same levels as water-replete (day 0) mice for the duration of the experiment. Plasma ghrelin was unaffected by water deprivation except at day 10 where it was significantly increased. Plasma leptin levels decreased at day 2 and day 5 of water deprivation, and then increased significantly by the end of the water deprivation period. Water deprivation caused a significant decrease in skeletal muscle leptin mRNA expression at days 2 and 5, but then it returned to day 0 levels by day 29. In the hypothalamus, water deprivation caused a significant up-regulation in both ghrelin and neuropeptide Y mRNA expression, respectively. In contrast, hypothalamic GHSR1a mRNA expression was significantly down-regulated. A significant increase in LepRb mRNA expression was observed at days 17 and 29 of water deprivation. This study demonstrated that the sustained food intake in N. alexis during water deprivation was uncoupled from peripheral appetite-regulating signals, and that the hypothalamus appears to play an important role in regulating food intake; this may contribute to the maintenance of fluid balance in the absence of free water.
Collapse
Affiliation(s)
- John A Donald
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environmental, Waurn Ponds, Victoria 3216, Australia.
| | - Noor Khalidah Abdul Hamid
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environmental, Waurn Ponds, Victoria 3216, Australia; Universiti Sains Malaysia, School of Biological Sciences, Penang, Malaysia
| | - Janet L McLeod
- Deakin University, School of Medicine, Faculty of Health, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
20
|
Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells. Cell Tissue Res 2017; 369:353-368. [DOI: 10.1007/s00441-017-2603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/08/2023]
|
21
|
|
22
|
Jiao Q, Du X, Li Y, Gong B, Shi L, Tang T, Jiang H. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions. Neurosci Biobehav Rev 2016; 73:98-111. [PMID: 27993602 DOI: 10.1016/j.neubiorev.2016.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 12/01/2016] [Accepted: 12/10/2016] [Indexed: 02/08/2023]
Abstract
Ghrelin, a peptide released by the stomach that plays a major role in regulating energy metabolism, has recently been shown to have effects on neurobiological behaviors. Ghrelin enhances neuronal survival by reducing apoptosis, alleviating inflammation and oxidative stress, and accordingly improving mitochondrial function. Ghrelin also stimulates the proliferation, differentiation and migration of neural stem/progenitor cells (NS/PCs). Additionally, the ghrelin is benefit for the recovery of memory, mood and cognitive dysfunction after stroke or traumatic brain injury. Because of its neuroprotective and neurogenic roles, ghrelin may be used as a therapeutic agent in the brain to combat neurodegenerative disease. In this review, we highlight the pre-clinical evidence and the proposed mechanisms underlying the role of ghrelin in physiological and pathological brain function.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Bing Gong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China.
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Tingting Tang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
23
|
Beck B, Richy S, Stricker-Krongrad A. Ghrelin and Body Weight Regulation in the Obese Zucker Rat in Relation to Feeding State and Dark/Light Cycle. Exp Biol Med (Maywood) 2016; 228:1124-31. [PMID: 14610250 DOI: 10.1177/153537020322801005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ghrelin is a new orexigenic peptide primarily produced by the stomach but also present in the hypothalamus. It has adipogenic effects when it is chronically injected in rodents but in obese humans, its plasma concentration is decreased. It can reverse the anorectic effects of leptin when it is co-injected with this peptide in the brain ventricles. The Zucker fa/fa rat is a genetic model of obesity related to a default in the leptin receptor. It is characterized by a large dysregulation of numerous hypothalamic peptides but the ghrelin status of this rat has not yet been determined. Through several experiments, we determine in lean and obese Zucker rats its circulating form in the plasma, its tissue levels and/or expression, and studied the influence of different feeding conditions and its light/dark variations. Ghrelin expression was higher in the obese stomach and hypothalamus (P < 0.05 and P < 0.02, respectively). The ratio of [Octanoyl-Ser3]-ghrelin (active form) to [Des-Octanoyl-Ser3]-ghrelin (inactive form) was approximately 1:1 in the stomach and 2:1 in the plasma in lean and obese rats (no differences). After fasting, plasma ghrelin concentrations increased significantly in lean (+ 64%; P < 0.001) and obese (+ 60%; P < 0.02) rats. After 24 hours of refeeding, they returned to their initial ad lib levels. Ghrelin concentrations were higher in obese rats by 69% (P < 0.005), 65% (P < 0.02), and 73% (P < 0.005) in the ad libitum, fast, and refed states respectively. These results indicate that the obese Zucker rat is characterized by increases in the stomach mRNA expression and in peptide release in the circulation. They clearly support a role for ghrelin in the development of obesity in the absence of leptin signaling.
Collapse
Affiliation(s)
- Bernard Beck
- Systèmes Neuromodulateurs des Comportements Ingestifs, Nancy, France.
| | | | | |
Collapse
|
24
|
El-Magd MA, Saleh AA, Abdel-Hamid TM, Saleh RM, Afifi MA. Is really endogenous ghrelin a hunger signal in chickens? Association of GHSR SNPs with increase appetite, growth traits, expression and serum level of GHRL, and GH. Gen Comp Endocrinol 2016; 237:131-139. [PMID: 27591070 DOI: 10.1016/j.ygcen.2016.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 07/22/2016] [Accepted: 08/29/2016] [Indexed: 01/12/2023]
Abstract
Chicken growth hormone secretagogue receptor (GHSR) is a receptor for ghrelin (GHRL), a peptide hormone produced by chicken proventriculus, which stimulates growth hormone (GH) release and food intake. The purpose of this study was to search for single nucleotide polymorphisms (SNPs) in exon 2 of GHSR gene and to analyze their effect on the appetite, growth traits and expression levels of GHSR, GHRL, and GH genes as well as serum levels of GH and GHRL in Mandara chicken. Two adjacent SNPs, A239G and G244A, were detected in exon 2 of GHSR gene. G244A SNP was non-synonymous mutation and led to replacement of lysine amino acid (aa) by arginine aa, while A239G SNP was synonymous mutation. The combined genotypes of A239G and G244A SNPs produced three haplotypes; GG/GG, GG/AG, AG/AG, which associated significantly (P<0.05) with growth traits (body weight, average daily gain, shank length, keel length, chest circumference) at age from >4 to 16w. Chickens with the homozygous GG/GG haplotype showed higher growth performance than other chickens. The two SNPs were also correlated with mRNA levels of GHSR and GH (in pituitary gland), and GHRL (in proventriculus and hypothalamus) as well as with serum level of GH and GHRL. Also, chickens with GG/GG haplotype showed higher mRNA and serum levels. This is the first study to demonstrate that SNPs in GHSR can increase appetite, growth traits, expression and level of GHRL, suggesting a hunger signal role for endogenous GHRL.
Collapse
Affiliation(s)
- Mohammed Abu El-Magd
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - Ayman A Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Tamer M Abdel-Hamid
- Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansura University, Egypt
| | - Mohammed A Afifi
- Department of Animal Wealth Development, Biostatistics, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
25
|
Zhang Y, Li F, Liu FQ, Chu C, Wang Y, Wang D, Guo TS, Wang JK, Guan GC, Ren KY, Mu JJ. Elevation of Fasting Ghrelin in Healthy Human Subjects Consuming a High-Salt Diet: A Novel Mechanism of Obesity? Nutrients 2016; 8:nu8060323. [PMID: 27240398 PMCID: PMC4924164 DOI: 10.3390/nu8060323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 12/16/2022] Open
Abstract
Overweight/obesity is a chronic disease that carries an increased risk of hypertension, diabetes mellitus, and premature death. Several epidemiological studies have demonstrated a clear relationship between salt intake and obesity, but the pathophysiologic mechanisms remain unknown. We hypothesized that ghrelin, which regulates appetite, food intake, and fat deposition, becomes elevated when one consumes a high-salt diet, contributing to the progression of obesity. We, therefore, investigated fasting ghrelin concentrations during a high-salt diet. Thirty-eight non-obese and normotensive subjects (aged 25 to 50 years) were selected from a rural community in Northern China. They were sequentially maintained on a normal diet for three days at baseline, a low-salt diet for seven days (3 g/day, NaCl), then a high-salt diet for seven days (18 g/day). The concentration of plasma ghrelin was measured using an immunoenzyme method (ELISA). High-salt intake significantly increased fasting ghrelin levels, which were higher during the high-salt diet (320.7 ± 30.6 pg/mL) than during the low-salt diet (172.9 ± 8.9 pg/mL). The comparison of ghrelin levels between the different salt diets was statistically-significantly different (p < 0.01). A positive correlation between 24-h urinary sodium excretion and fasting ghrelin levels was demonstrated. Our data indicate that a high-salt diet elevates fasting ghrelin in healthy human subjects, which may be a novel underlying mechanism of obesity.
Collapse
Affiliation(s)
- Yong Zhang
- Cardiovascular Department, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Fenxia Li
- Cardiovascular Department, Second Affiliated Hospital, Xi'an Medical University, Xi'an 710038, China.
| | - Fu-Qiang Liu
- Cardiovascular Department, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Chao Chu
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yang Wang
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Dan Wang
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Tong-Shuai Guo
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jun-Kui Wang
- Cardiovascular Department, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| | - Gong-Chang Guan
- Cardiovascular Department, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Ke-Yu Ren
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jian-Jun Mu
- Cardiovascular Department, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
26
|
Wauson SER, Sarkodie K, Schuette LM, Currie PJ. Midbrain raphe 5-HT1A receptor activation alters the effects of ghrelin on appetite and performance in the elevated plus maze. J Psychopharmacol 2015; 29:836-44. [PMID: 25922422 DOI: 10.1177/0269881115581981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prior research suggests that midbrain serotonergic signaling and hypothalamic ghrelinergic signaling both play critical roles in appetitive and emotional behaviors. In the present study, we investigated the effects of median raphe nucleus (MRN) somatodentritic 5-HT1A receptor activation on the feeding-stimulant and anxiogenic action of paraventricular nucleus (PVN) ghrelin. In an initial experiment, adult male Sprague-Dawley rats were injected with either ghrelin (200-800 pmol) into the PVN or 8-OH-DPAT (2.5-10 nmol), a 5-HT1A receptor agonist, into the MRN. Performance on the elevated plus maze (EPM) was then assessed. In separate rats, MRN 8-OH-DPAT (2.5-5 nmol) was administered 5 min prior to PVN injection of ghrelin (400 pmol) followed by EPM testing. The orexigenic effects of MRN 8-OH-DPAT (0.1-1.6 nmol) paired with PVN ghrelin (50 pmol) were also examined. When administered alone into the PVN, ghrelin significantly decreased the number of entries and time spent in the open arms of the EPM. This anxiogenic effect was blocked if rats were allowed to eat immediately after ghrelin administration and then tested in the plus maze. MRN injections of 8-OH-DPAT were anxiolytic, and when rats were pretreated with 8-OH-DPAT prior to ghrelin, the anxiogenic action of the peptide was attenuated. In contrast, MRN administration of 8-OH-DPAT potentiated the eating-stimulant effect of PVN ghrelin. Overall, our findings demonstrate that ghrelinergic and serotonergic circuits interact in the neural control of eating and anxiety-like behaviors, with 5-HT1A receptor mechanisms potentiating the orexigenic action of ghrelin while inhibiting ghrelin-induced anxiogenesis as measured via the EPM.
Collapse
Affiliation(s)
| | - Kwaku Sarkodie
- Department of Psychology, Reed College, Portland, OR, USA
| | | | - Paul J Currie
- Department of Psychology, Reed College, Portland, OR, USA
| |
Collapse
|
27
|
Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F, Casanueva FF, D'Alessio D, Depoortere I, Geliebter A, Ghigo E, Cole PA, Cowley M, Cummings DE, Dagher A, Diano S, Dickson SL, Diéguez C, Granata R, Grill HJ, Grove K, Habegger KM, Heppner K, Heiman ML, Holsen L, Holst B, Inui A, Jansson JO, Kirchner H, Korbonits M, Laferrère B, LeRoux CW, Lopez M, Morin S, Nakazato M, Nass R, Perez-Tilve D, Pfluger PT, Schwartz TW, Seeley RJ, Sleeman M, Sun Y, Sussel L, Tong J, Thorner MO, van der Lely AJ, van der Ploeg LHT, Zigman JM, Kojima M, Kangawa K, Smith RG, Horvath T, Tschöp MH. Ghrelin. Mol Metab 2015; 4:437-60. [PMID: 26042199 PMCID: PMC4443295 DOI: 10.1016/j.molmet.2015.03.005] [Citation(s) in RCA: 772] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - R Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - M L Andermann
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Z B Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - S D Anker
- Applied Cachexia Research, Department of Cardiology, Charité Universitätsmedizin Berlin, Germany
| | - J Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain ; Department of Pediatrics, Universidad Autónoma de Madrid and CIBER Fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - R L Batterham
- Centre for Obesity Research, University College London, London, United Kingdom
| | - S C Benoit
- Metabolic Disease Institute, Division of Endocrinology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - C Y Bowers
- Tulane University Health Sciences Center, Endocrinology and Metabolism Section, Peptide Research Section, New Orleans, LA, USA
| | - F Broglio
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - F F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (CHUS), CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - D D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - A Geliebter
- New York Obesity Nutrition Research Center, Department of Medicine, St Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Ghigo
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P A Cole
- Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - M Cowley
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia ; Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - D E Cummings
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - A Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S Diano
- Dept of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - S L Dickson
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - C Diéguez
- Department of Physiology, School of Medicine, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Spain
| | - R Granata
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - H J Grill
- Department of Psychology, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - K Grove
- Department of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K M Habegger
- Comprehensive Diabetes Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - K Heppner
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - M L Heiman
- NuMe Health, 1441 Canal Street, New Orleans, LA 70112, USA
| | - L Holsen
- Departments of Psychiatry and Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - B Holst
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - A Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J O Jansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - H Kirchner
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - B Laferrère
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - C W LeRoux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Ireland
| | - M Lopez
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - S Morin
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - M Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - R Nass
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - D Perez-Tilve
- Department of Internal Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - P T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - T W Schwartz
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - M Sleeman
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Y Sun
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - L Sussel
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - J Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - M O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - A J van der Lely
- Department of Medicine, Erasmus University MC, Rotterdam, The Netherlands
| | | | - J M Zigman
- Departments of Internal Medicine and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - K Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - R G Smith
- The Scripps Research Institute, Florida Department of Metabolism & Aging, Jupiter, FL, USA
| | - T Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany ; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
28
|
Cameron KO, Bhattacharya SK, Loomis AK. Small Molecule Ghrelin Receptor Inverse Agonists and Antagonists. J Med Chem 2014; 57:8671-91. [DOI: 10.1021/jm5003183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kimberly O. Cameron
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - Samit K. Bhattacharya
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - A. Katrina Loomis
- Pharmatherapeutics
Precision Medicine, Pfizer Worldwide Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
29
|
Molecular cloning, regulation, and functional analysis of two GHS-R genes in zebrafish. Exp Cell Res 2014; 326:10-21. [DOI: 10.1016/j.yexcr.2014.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/15/2014] [Accepted: 06/04/2014] [Indexed: 12/19/2022]
|
30
|
Darzi Niarami M, Masoudi AA, Vaez Torshizi R. Association of single nucleotide polymorphism of GHSR and TGFB2 genes with growth and body composition traits in sire and dam lines of a broiler chicken. Anim Biotechnol 2014; 25:13-22. [PMID: 24299181 DOI: 10.1080/10495398.2013.803478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Growth hormone secretagogue receptor (GHSR) modulates many physiological processes by binding to its ligand, as well as transforming growth factor-beta 2 (TGFB2) regulates cell growth and development in animals and, therefore, are candidate genes for performance in chickens. In the current study, single nucleotide polymorphisms of GHSR C3286 > T and TGFB2 T(-640) > C were genotyped in sire and dam lines of a broiler chicken to evaluate the association with the growth and body composition traits. Least squares means analysis showed that the GHSR C3286 > T SNP was significantly (P < 0.01) associated with growth (DFI and ADG) and body composition traits (AFW and %AFW). In addition, the TGFB2 T(-640) > C SNP was associated with ADG (P < 0.05) and DFI and body composition traits (DW, LBW, BAKWT, %BMW, %HNDWT and %CW) (P < 0.01). Significant associations of the single nucleotide polymorphisms (SNPs) on the traits reported in the present study might be the distinct usage of codons in avian, or relating to an enhancer element and modulating the expression of the gene in chicken. The data indicated that these SNPs could be valuable genetic elements for selection of chickens for better performance in the population.
Collapse
Affiliation(s)
- Mojtaba Darzi Niarami
- a Department of Animal Science, Faculty of Agriculture , Tarbiat Modares University , Tehran , Iran
| | | | | |
Collapse
|
31
|
Sárvári M, Kocsis P, Deli L, Gajári D, Dávid S, Pozsgay Z, Hegedűs N, Tihanyi K, Liposits Z. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat. PLoS One 2014; 9:e97651. [PMID: 24830778 PMCID: PMC4022590 DOI: 10.1371/journal.pone.0097651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022] Open
Abstract
The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1A) are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain. These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance. Experimental groups involved male, ovariectomized female and ovariectomized estradiol-replaced rats. Putative modulation of ghrelin signaling by endocannabinoids was also studied. Ghrelin-evoked effects were calculated as mean of the BOLD responses 30 minutes after administration. In the male rat, ghrelin evoked a slowly decreasing BOLD response in all studied regions of interest (ROI) within the limbic system. This effect was antagonized by pretreatment with GHS-R1A antagonist JMV2959. The comparison of ghrelin effects in the presence or absence of JMV2959 in individual ROIs revealed significant changes in the prefrontal cortex, nucleus accumbens of the telencephalon, and also within hypothalamic centers like the lateral hypothalamus, ventromedial nucleus, paraventricular nucleus and suprachiasmatic nucleus. In the female rat, the ghrelin effects were almost identical to those observed in males. Ovariectomy and chronic estradiol replacement had no effect on the BOLD response. Inhibition of the endocannabinoid signaling by rimonabant significantly attenuated the response of the nucleus accumbens and septum. In summary, ghrelin can modulate hypothalamic and mesolimbic structures controlling energy balance in both sexes. The endocannabinoid signaling system contributes to the manifestation of ghrelin's BOLD effect in a region specific manner. In females, the estradiol milieu does not influence the BOLD response to ghrelin.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| | - Pál Kocsis
- Preclinical Imaging Center, Gedeon Richter Ltd., Budapest, Hungary
| | - Levente Deli
- Preclinical Imaging Center, Gedeon Richter Ltd., Budapest, Hungary
| | - Dávid Gajári
- Preclinical Imaging Center, Gedeon Richter Ltd., Budapest, Hungary
| | - Szabolcs Dávid
- Preclinical Imaging Center, Gedeon Richter Ltd., Budapest, Hungary
| | - Zsófia Pozsgay
- Preclinical Imaging Center, Gedeon Richter Ltd., Budapest, Hungary
| | - Nikolett Hegedűs
- Preclinical Imaging Center, Gedeon Richter Ltd., Budapest, Hungary
| | - Károly Tihanyi
- Preclinical Imaging Center, Gedeon Richter Ltd., Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
32
|
Abstract
Night eating syndrome (NES) has recently been getting more attention as a recognized eating disorder. NES is characterized by a delay in the circadian pattern of food intake, associated with morning anorexia, evening hyperphagia, awakenings from sleep with ingestion of food, depressed mood, and obesity. Although the behavioral characteristics of NES were first described in 1955, the neuroendocrine characteristics have only been described recently. Researchers have examined several hormones that appear to differ in night eaters compared to controls, including melatonin, leptin, and cortisol. Researchers have more recently examined the hypothalamic-pituitary-adrenal axis in more detail, with emphasis on corticotrophin releasing hormone. Further studies have examined ghrelin, growth hormone, prolactin, and IGF-1, with differences observed in the circadian pattern of these hormones in those with NES compared to controls. Despite increasing interest in the neuroendocrine profile of night eating behavior, the biological basis of NES is still not well understood.
Collapse
Affiliation(s)
| | - Allan Geliebter
- NY Obesity Nutrition Center, St. Luke's Hospital, Columbia University, New York, NY, 10025, USA.
| | - Jon Florholmen
- Department of Gastroenterology, University Hospital of the North, Tromsø, Norway.
| | - Marci E Gluck
- Obesity and Diabetes Clinical Research Section, NIH/NIDDK, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA.
| |
Collapse
|
33
|
Jin S, Chen S, Li H, Lu Y, Xu G, Yang N. Associations of polymorphisms in GHRL, GHSR, and IGF1R genes with feed efficiency in chickens. Mol Biol Rep 2014; 41:3973-9. [PMID: 24566683 DOI: 10.1007/s11033-014-3265-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023]
Abstract
The ghrelin (GHRL), ghrelin receptor (GHSR), and insulin-like growth factor 1 receptor (IGF1R) genes have crucial effects on body weight (BW), body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) in many species. However, few studies on associations of GHRL, GHSR, and IGF1R with BWG, FI, and FCR have been reported in chickens. In this study, 16 SNPs in GHRL, GHSR, and IGF1R genes were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The objective of this study was to examine the associations of GHRL, GHSR, and IGF1R genes polymorphisms with BW at 49 days (BW49) and 70 days (BW70) of age, BWG, FI, and FCR in the interval in two yellow meat-type populations with a total of 724 birds. The results showed that rs15675067 of GHRL was significantly associated with BW70, BWG, and FCR (P < 0.05). For GHSR, rs16675844 had significant effects on FI and FCR (P < 0.01), and that rs14678932 showed significant association with BWG and FI (P < 0.05). Rs14011780 of IGF1R was strongly associated with BW49, BW70, and FCR (P < 0.05). Furthermore, haplotypes based on three SNPs of rs14986828, rs15675067, and rs15675065 in GHRL were significantly associated with BW70 and FCR (P < 0.05). Meanwhile, a three-SNP haplotype comprising rs14011783, rs14011780, and rs14011776 in IGF1R showed significant effects on BW49, BW70, and FCR (P < 0.05). Therefore, it was concluded that the identified SNPs and analyzed haplotypes in this study might be useful for broiler breeding programs.
Collapse
Affiliation(s)
- Sihua Jin
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The prevalence of obesity continues to increase and has reached epidemic proportions. Accumulating data over the past few decades have given us key insights and broadened our understanding of the peripheral and central regulation of energy homeostasis. Despite this, the currently available pharmacological treatments, reducing body weight, remain limited due to poor efficacy and side effects. The gastric peptide ghrelin has been identified as the only orexigenic hormone from the periphery to act in the hypothalamus to stimulate food intake. Recently, a role for ghrelin and its receptor at the interface between homeostatic control of appetite and reward circuitries modulating the hedonic aspects of food has also emerged. Nonhomeostatic factors such as the rewarding and motivational value of food, which increase with food palatability and caloric content, can override homeostatic control of food intake. This nonhomeostatic decision to eat leads to overconsumption beyond nutritional needs and is being recognized as a key component in the underlying causes for the increase in obesity incidence worldwide. In addition, the hedonic feeding behavior has been linked to food addiction and an important role for ghrelin in the development of addiction has been suggested. Moreover, plasma ghrelin levels are responsive to conditions of stress, and recent evidence has implicated ghrelin in stress-induced food-reward behavior. The prominent role of the ghrelinergic system in the regulation of feeding gives rise to it as an effective target for the development of successful antiobesity pharmacotherapies that not only affect satiety but also selectively modulate the rewarding properties of food and reduce the desire to eat.
Collapse
|
35
|
Mason BL, Wang Q, Zigman JM. The central nervous system sites mediating the orexigenic actions of ghrelin. Annu Rev Physiol 2013; 76:519-33. [PMID: 24111557 DOI: 10.1146/annurev-physiol-021113-170310] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight.
Collapse
Affiliation(s)
- B L Mason
- Departments of Internal Medicine (Divisions of Hypothalamic Research and of Endocrinology & Metabolism) and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077; , ,
| | | | | |
Collapse
|
36
|
Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep. Gene 2013; 527:397-404. [PMID: 23747407 DOI: 10.1016/j.gene.2013.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/27/2013] [Indexed: 11/24/2022]
Abstract
The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies.
Collapse
|
37
|
Norman C, Miles J, Bowers CY, Veldhuis JD. Differential pulsatile secretagogue control of GH secretion in healthy men. Am J Physiol Regul Integr Comp Physiol 2013; 304:R712-9. [PMID: 23485864 DOI: 10.1152/ajpregu.00069.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulsatile growth hormone (GH) secretion putatively reflects integrated regulation by GH-releasing hormone (GHRH), somatostatin (SST), and GH-releasing peptide (GHRP). GHRH and SST secretion is itself pulsatile. However, how GHRH and SST pulses act along with GHRP to jointly determine pulsatile GH secretion is unclear. Moreover, how testosterone (T) modulates such interactions is unknown. These queries were assessed in a prospectively randomized, placebo-controlled double-blind cohort comprising 26 healthy older men randomized to testosterone (T) vs. placebo supplementation. Pulses of GHRH, SST, or saline were infused intravenously at 90-min intervals for 13 h, along with either continuous saline or ghrelin analog (GHRP-2). The train of pulses was followed by a triple stimulus (combined l-arginine, GHRH, and GHRP-2) to estimate near-maximal GH secretion over a final 3 h. Testosterone vs. placebo supplementation doubled pulsatile GH secretion during GHRH pulses combined with continuous saline (GHRH/saline) (P < 0.01). Pulsatile GH secretion correlated positively with T concentrations (270-1,170 ng/dl) in the 26 men during saline pulses/saline (P = 0.015, R(2) = 0.24), GHRH pulses/saline (P = 0.020, R(2) = 0.22), and combined GHRH pulses/GHRP-2 (P = 0.016, R(2) = 0.25) infusions. Basal nonpulsatile GH secretion correlated with T during saline pulses/GHRP-2 drive (P = 0.020, R(2) = 0.16). By regression analysis, pulsatile GH secretion varied negatively with body mass index (BMI) during saline/GHRP-2 infusion (P = 0.001, R(2) = 0.36), as well as after the triple stimulus preceded by GHRH/GHRP-2 (P = 0.013, R(2) = 0.23). Mean (10-h) GH concentrations under GHRP-2 were predicted jointly by estradiol (positively) and BMI (negatively) (P < 0.001, R(2) = 0.520). These data indicate that estradiol, T, and BMI control pulsatile secretagogue-specific GH-regulatory mechanisms in older men.
Collapse
Affiliation(s)
- Catalina Norman
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
38
|
Birketvedt GS, Geliebter A, Kristiansen I, Firgenschau Y, Goll R, Florholmen JR. Diurnal secretion of ghrelin, growth hormone, insulin binding proteins, and prolactin in normal weight and overweight subjects with and without the night eating syndrome. Appetite 2012; 59:688-92. [DOI: 10.1016/j.appet.2012.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/11/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022]
|
39
|
Perelló M, Zigman JM. The role of ghrelin in reward-based eating. Biol Psychiatry 2012; 72:347-53. [PMID: 22458951 PMCID: PMC3388148 DOI: 10.1016/j.biopsych.2012.02.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/03/2012] [Accepted: 02/17/2012] [Indexed: 01/18/2023]
Abstract
The peptide hormone ghrelin acts in the central nervous system as a potent orexigenic signal. Not only is ghrelin recognized as playing an important role in feeding circuits traditionally thought of as affecting body weight homeostasis, but also an accumulating number of scientific studies have identified ghrelin as being a key regulator of reward-based, hedonic eating behaviors. In the current article, we review ghrelin's orexigenic actions, the evidence linking ghrelin to food reward behavior, potential mechanisms by which ghrelin mediates reward-based eating behavior, and those studies suggesting an obligatory role for ghrelin in the changed eating behaviors induced by stress.
Collapse
Affiliation(s)
- Mario Perelló
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology (IMBICE-CONICET/CICPBA), Calle 526 s/n entre 10 y 11, La Plata, Buenos Aires, Argentina 1900
| | - Jeffrey M. Zigman
- Department of Internal Medicine (Divisions of Hypothalamic Research and of Endocrinology & Metabolism), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9077,Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9077
| |
Collapse
|
40
|
Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther 2012; 135:316-26. [PMID: 22749794 DOI: 10.1016/j.pharmthera.2012.06.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022]
Abstract
The neuronal circuitry underlying the complex relationship between stress, mood and food intake are slowly being unravelled and several studies suggest a key role herein for the peripherally derived hormone, ghrelin. Evidence is accumulating linking obesity as an environmental risk factor to psychiatric disorders such as stress, anxiety and depression. Ghrelin is the only known orexigenic hormone from the periphery to stimulate food intake. Plasma ghrelin levels are enhanced under conditions of physiological stress and ghrelin has recently been suggested to play an important role in stress-induced food reward behaviour. In addition, chronic stress or atypical depression has often demonstrated to correlate with an increase in ingestion of caloric dense 'comfort foods' and have been implicated as one of the major contributor to the increased prevalence of obesity. Recent evidence suggests ghrelin as a critical factor at the interface of homeostatic control of appetite and reward circuitries, modulating the hedonic aspects of food intake. Therefore, the reward-related feeding of ghrelin may reveal itself as an important factor in the development of addiction to certain foods, similar to its involvement in the dependence to drugs of abuse, including alcohol. This review will highlight the accumulating evidence demonstrating the close interaction between food, mood and stress and the development of obesity. We consider the ghrelinergic system as an effective target for the development of successful anti-obesity pharmacotherapies, which not only affects appetite but also selectively modulates the rewarding properties of food and impact on psychological well-being in conditions of stress, anxiety and depression.
Collapse
|
41
|
Bahrami A, Miraei-Ashtiani SR, Mehrabani-Yeganeh H. Associations of growth hormone secretagogue receptor (GHSR) genes polymorphisms and protein structure changes with carcass traits in sheep. Gene 2012; 505:379-83. [PMID: 22735618 DOI: 10.1016/j.gene.2012.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 01/27/2023]
Abstract
Growth hormone secretagogue receptor (GHSR), a G protein-coupled receptor that binds ghrelin, plays an important role in the central regulation of pituitary growth hormone secretion, food intake, and energy homeostasis. Ghrelin receptor (GHSR) modulates many physiological effects and therefore is a candidate gene for sheep production performance. Polymorphism of the GHSR gene was detected by PCR-SSCP and DNA sequencing methods in 463 individuals. Two different structures in protein and nine single nucleotide polymorphisms (SNPs) were identified. The evaluation of the associations between these SSCP patterns with carcass traits suggests a positive effect of genotype TT and B structure on carcass weight, and body length (P<0.05). In addition, the animal with TC had greater abdominal fat than those with TT and CC (P<0.05) while CC genotype contributed to low blood cholesterol (P=0.04). The results confirm the hints suggesting that GHSR is a preferential target for further investigation on mutations that influence carcass trait variations.
Collapse
Affiliation(s)
- A Bahrami
- Department of Animal Science, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
| | | | | |
Collapse
|
42
|
Currie PJ, Khelemsky R, Rigsbee EM, Dono LM, Coiro CD, Chapman CD, Hinchcliff K. Ghrelin is an orexigenic peptide and elicits anxiety-like behaviors following administration into discrete regions of the hypothalamus. Behav Brain Res 2012; 226:96-105. [PMID: 21907737 PMCID: PMC4104180 DOI: 10.1016/j.bbr.2011.08.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/04/2011] [Accepted: 08/25/2011] [Indexed: 12/11/2022]
Abstract
Previous evidence indicates that peripherally administered ghrelin significantly increases corticotropin releasing hormone (CRH) mRNA and serum corticosterone. In addition, intraventricular administration of ghrelin has been reported to elicit anxiety-like behaviors suggesting that the peptide plays a role in mediating neuroendocrine and behavioral responses to stress. In the present study, we characterized the orexigenic, metabolic, and anxiogenic actions of ghrelin following microinjection into the arcuate nucleus (ARN), paraventricular nucleus (PVN), perifornical hypothalamus (PFH), and ventromedial nucleus (VMN). To assess ghrelin's role in anxiogenic behavior, rats were injected with vehicle or 50-800pmol of ghrelin and then placed in an elevated plus maze (EPM) for 10min. Each test was performed as a single trial per animal. In separate behavioral testing we measured the induction of stereotypic behaviors. Doses of 200pmol or higher administered into the ARN and PVN elicited anxiety-like behaviors, including an increased avoidance of the open arms of the EPM. However, in the PFH and VMN, higher doses of ghrelin (400-800pmol) were required to induce anxiety. Ghrelin doses as low as 50pmol stimulated eating and altered energy substrate oxidation (respiratory quotient; RQ) when injected into the ARN and PVN. Injections into the PFH and VMN elicited more modest effects on eating and RQ at doses of 400pmol or greater. Our findings indicate that regions of the hypothalamus appear to be differentially sensitive and responsive to the feeding-stimulant, metabolic, and anxiogenic actions of ghrelin and that the ARN and PVN, in particular, exert a primary role in mediating these effects.
Collapse
Affiliation(s)
- Paul J. Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Renata Khelemsky
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Elizabeth M. Rigsbee
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Lindsey M. Dono
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Christina D. Coiro
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Colin D. Chapman
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Kate Hinchcliff
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| |
Collapse
|
43
|
Abstract
Ghrelin is the only potent orexigenic peptide in circulation. It stimulates food intake and leads to positive energy balance, adipogenesis, and body weight gain. However, the physiological significance of ghrelin in the regulation of energy homeostasis is controversial, since loss of ghrelin function in rodents does not necessarily lead to anorexia and weight loss. In this chapter, we discuss the metabolic function of ghrelin and are highlighting recent findings including the discovery and function of ghrelin-acylating enzyme ghrelin O-acyltransferase (GOAT). Based on available published data, we conclude that ghrelin is a principally important endogenous regulator of energy balance, which however may affect both food intake and systemic metabolism via independent mechanisms. Importantly, ghrelin, when acylated by GOAT, might represent a key molecular link between the sensing of consumed calories and the neuroendocrine control of energy homeostasis. Thus, agents antagonizing the action of ghrelin may have therapeutic potential in the therapy of obesity.
Collapse
|
44
|
Baragli A, Lanfranco F, Allasia S, Granata R, Ghigo E. Neuroendocrine and metabolic activities of ghrelin gene products. Peptides 2011; 32:2323-32. [PMID: 22056513 DOI: 10.1016/j.peptides.2011.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/03/2011] [Accepted: 10/25/2011] [Indexed: 12/15/2022]
Abstract
Acylated ghrelin (AG) is a 28 amino acid gastric peptide a natural ligand for the growth hormone secretagogue (GHS) receptor type 1a (GHS-R1a), endowed with GH-secreting and orexigenic properties. Besides, ghrelin exerts several peripheral metabolic actions, including modulation of glucose homeostasis and stimulation of adipogenesis. Notably, AG administration causes hyperglycemia in rodents as in humans. Ghrelin pleiotropy is supported by a widespread expression of the ghrelin gene, of GHS-R1a and other unknown ghrelin binding sites. The existence of alternative receptors for AG, of several natural ligands for GHS-R1a and of acylation-independent ghrelin non-neuroendocrine activities, suggests that there might be a complex 'ghrelin system' not yet completely explored. Moreover, the patho-physiological implications of unacylated ghrelin (UAG), and obestatin (Ob), the other two ghrelin gene-derived peptides, need to be clarified. Within the next few years, we may better understand the 'ghrelin system', where we might envisage clinical applications.
Collapse
Affiliation(s)
- Alessandra Baragli
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Department of Internal Medicine, University of Turin, Turin, Italy.
| | | | | | | | | |
Collapse
|
45
|
Andrews ZB. Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 2011; 32:2248-55. [PMID: 21619904 DOI: 10.1016/j.peptides.2011.05.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 02/04/2023]
Abstract
Ghrelin is a stomach hormone, secreted into the bloodstream, that initiates food intake by activating NPY/AgRP neurons in the hypothalamic acruate nucleus. This review focuses on recent evidence that details the mechanisms through which ghrelin activate receptors on NPY neurons and downstream signaling within NPY neurons. The downstream signaling involves a novel CaMKK-AMPK-CPT1-UCP2 pathway that enhances mitochondrial efficiency and buffers reactive oxygen species in order to maintain an appropriate firing response in NPY. Recent evidence that shows metabolic status affects ghrelin signaling in NPY is also described. In particular, ghrelin does not activate NPY neurons in diet-induced obese mice and ghrelin does not increase food intake. The potential mechanisms and implications of ghrelin resistance are discussed.
Collapse
Affiliation(s)
- Zane B Andrews
- Department of Physiology, Monash University, Clayton, Victoria 3183, Australia.
| |
Collapse
|
46
|
Jacoby SM, Currie PJ. SKF 83566 attenuates the effects of ghrelin on performance in the object location memory task. Neurosci Lett 2011; 504:316-20. [PMID: 21982806 DOI: 10.1016/j.neulet.2011.09.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/28/2011] [Accepted: 09/23/2011] [Indexed: 01/08/2023]
Abstract
Increasing research implicates ghrelin, a metabolic signaling peptide, in memory processes including acquisition, consolidation, and retention. The present study investigated the effects of ghrelin on spatial memory acquisition by utilizing the object location memory task paradigm. Given the co-expression of ghrelin and dopamine D(1) receptors within hippocampal neurons, we examined a potential interaction between these two systems on memory performance. When injected into the dorsal third ventricle (D3V) of male Sprague-Dawley rats, proximal to hippocampal tissue, ghrelin (500 pmol) increased the amount of time spent with objects in novel locations. This effect was completely reversed by the D(1) antagonist SKF 83566 (100 μg/kg IP), although when administered alone, the antagonist had no effect on task performance (10-100 μg/kg). We also examined the feeding effects of D3V ghrelin and found that the peptide reliably increased food intake (500 pmol) but that this effect was not blocked by SKF 83566 (100 μg/kg). When given alone, SKF 83566 did not alter food intake (10-100 μg/kg). Our findings indicate that, in addition to an orexigenic effect, ghrelin improves acquisition of spatial location memories. Furthermore, D(1) receptor activation is necessary for ghrelin to improve the encoding of spatial memories but does not impact the increase in food intake elicited by the peptide.
Collapse
Affiliation(s)
- Sarah M Jacoby
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | | |
Collapse
|
47
|
Pirnik Z, Bundziková J, Holubová M, Pýchová M, Fehrentz JA, Martinez J, Zelezná B, Maletínská L, Kiss A. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice. Neurochem Int 2011; 59:889-95. [PMID: 21843570 DOI: 10.1016/j.neuint.2011.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/18/2022]
Abstract
Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in trials for clinical purposes.
Collapse
Affiliation(s)
- Z Pirnik
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska Str. 3, 83306 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Álvarez-Castro P, Sangiao-Alvarellos S, Brandón-Sandá I, Cordido F. [Endocrine function in obesity]. ACTA ACUST UNITED AC 2011; 58:422-32. [PMID: 21824829 DOI: 10.1016/j.endonu.2011.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/28/2022]
Abstract
Obesity is associated to significant disturbances in endocrine function. Hyper insulinemia and insulin resistance are the best known changes in obesity, but their mechanisms and clinical significance are not clearly established. Adipose tissue is considered to be a hormone-secreting endocrine organ; and increased leptin secretion from the adipocyte, a satiety signal, is a well-established endocrine change in obesity. In obesity there is a decreased GH secretion. Impairment of somatotropic function in obesity is functional and may be reversed in certain circumstances. The pathophysiological mechanism responsible for low GH secretion in obesity is probably multifactorial. There are many data suggesting that a chronic state of somatostatin hypersecretion results in inhibition of GH release. Increased FFA levels, as well as a deficient ghrelin secretion, probably contribute to the impaired GH secretion. In women, abdominal obesity is associated to hyperandrogenism and low sex hormone-binding globulin levels. Obese men, particularly those with morbid obesity, have decreased testosterone and gonadotropin levels. Obesity is associated to an increased cortisol production rate, which is compensated for by a higher cortisol clearance, resulting in plasma free cortisol levels that do not change when body weight increases. Ghrelin is the only known circulating orexigenic factor, and has been found to be decreased in obese people. In obesity there is also a trend to increased TSH and free T3 levels.
Collapse
|
49
|
Chuang JC, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M, Zigman JM. Ghrelin mediates stress-induced food-reward behavior in mice. J Clin Invest 2011; 121:2684-92. [PMID: 21701068 DOI: 10.1172/jci57660] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/13/2011] [Indexed: 11/17/2022] Open
Abstract
The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.
Collapse
Affiliation(s)
- Jen-Chieh Chuang
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Veldhuis JD, Erickson D, Miles JM, Bowers CY. Complex regulation of GH autofeedback under dual-peptide drive: studies under a pharmacological GH and sex steroid clamp. Am J Physiol Endocrinol Metab 2011; 300:E1158-65. [PMID: 21467302 PMCID: PMC3118586 DOI: 10.1152/ajpendo.00054.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the postulate that sex difference, sex steroids, and peptidyl secretagogues control GH autofeedback, 11 healthy postmenopausal women and 14 older men were each given 1) a single iv pulse of GH to enforce negative feedback and 2) continuous iv infusion of saline vs. combined GHRH/GHRP-2 to drive feedback escape during pharmacological estradiol (E(2); women) or testosterone (T; men) supplementation vs. placebo in a double-blind, prospectively randomized crossover design. By three-way ANCOVA, sex difference, sex hormone treatment, peptide stimulation, and placebo/saline responses (covariate) controlled total (integrated) GH recovery during feedback (each P < 0.001). Both sex steroid milieu (P = 0.019) and dual-peptide stimulation (P < 0.001) determined nadir (maximally feedback-suppressed) GH concentrations. E(2)/T exposure elevated nadir GH concentrations during saline infusion (P = 0.003), whereas dual-peptide infusion did so independently of T/E(2) and sex difference (P = 0.001). All three of sex difference (P = 0.001), sex steroid treatment (P = 0.005), and double-peptide stimulation (P < 0.001) augmented recovery of peak (maximally feedback-escaped) GH concentrations. Peak GH responses to dual-peptidyl agonists were greater in women than in men (P = 0.016). E(2)/T augmented peak GH recovery during saline infusion (P < 0.001). Approximate entropy analysis corroborated independent effects of sex steroid treatment (P = 0.012) and peptide infusion (P < 0.001) on GH regularity. In summary, sex difference, sex steroid supplementation, and combined peptide drive influence nadir, peak, and entropic measurements of GH release under controlled negative feedback. To the degree that the pharmacological sex steroid, GH, and dual-peptide clamps provide prephysiological regulatory insights, these outcomes suggest major determinants of pulsatile GH secretion in the feedback domain.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, MayoClinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|