1
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Brooks GA, Osmond AD, Arevalo JA, Duong JJ, Curl CC, Moreno-Santillan DD, Leija RG. Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism. J Appl Physiol (1985) 2023; 134:529-548. [PMID: 36633863 PMCID: PMC9970662 DOI: 10.1152/japplphysiol.00497.2022] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
No longer viewed as a metabolic waste product and cause of muscle fatigue, a contemporary view incorporates the roles of lactate in metabolism, sensing and signaling in normal as well as pathophysiological conditions. Lactate exists in millimolar concentrations in muscle, blood, and other tissues and can rise more than an order of magnitude as the result of increased production and clearance limitations. Lactate exerts its powerful driver-like influence by mass action, redox change, allosteric binding, and other mechanisms described in this article. Depending on the condition, such as during rest and exercise, following carbohydrate nutrition, injury, or pathology, lactate can serve as a myokine or exerkine with autocrine-, paracrine-, and endocrine-like functions that have important basic and translational implications. For instance, lactate signaling is: involved in reproductive biology, fueling the heart, muscle adaptation, and brain executive function, growth and development, and a treatment for inflammatory conditions. Lactate also works with many other mechanisms and factors in controlling cardiac output and pulmonary ventilation during exercise. Ironically, lactate can be disruptive of normal processes such as insulin secretion when insertion of lactate transporters into pancreatic β-cell membranes is not suppressed, and in carcinogenesis when factors that suppress carcinogenesis are inhibited, whereas factors that promote carcinogenesis are upregulated. Lactate signaling is important in areas of intermediary metabolism, redox biology, mitochondrial biogenesis, neurobiology, gut physiology, appetite regulation, nutrition, and overall health and vigor. The various roles of lactate as a myokine and exerkine are reviewed.NEW & NOTEWORTHY Lactate sensing and signaling is a relatively new and rapidly changing field. As a physiological signal lactate works both independently and in concert with other signals. Lactate operates via covalent binding and canonical signaling, redox change, and lactylation of DNA. Lactate can also serve as an element of feedback loops in cardiopulmonary regulation. From conception through aging lactate is not the only a myokine or exerkine, but it certainly deserves consideration as a physiological signal.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Diana D Moreno-Santillan
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
3
|
Brooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP. Lactate in contemporary biology: a phoenix risen. J Physiol 2021; 600:1229-1251. [PMID: 33566386 PMCID: PMC9188361 DOI: 10.1113/jp280955] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
After a century, it's time to turn the page on understanding of lactate metabolism and appreciate that lactate shuttling is an important component of intermediary metabolism in vivo. Cell‐cell and intracellular lactate shuttles fulfil purposes of energy substrate production and distribution, as well as cell signalling under fully aerobic conditions. Recognition of lactate shuttling came first in studies of physical exercise where the roles of driver (producer) and recipient (consumer) cells and tissues were obvious. Moreover, the presence of lactate shuttling as part of postprandial glucose disposal and satiety signalling has been recognized. Mitochondrial respiration creates the physiological sink for lactate disposal in vivo. Repeated lactate exposure from regular exercise results in adaptive processes such as mitochondrial biogenesis and other healthful circulatory and neurological characteristics such as improved physical work capacity, metabolic flexibility, learning, and memory. The importance of lactate and lactate shuttling in healthful living is further emphasized when lactate signalling and shuttling are dysregulated as occurs in particular illnesses and injuries. Like a phoenix, lactate has risen to major importance in 21st century biology.
![]()
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ashley P Tovar
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Brooks GA. The Precious Few Grams of Glucose During Exercise. Int J Mol Sci 2020; 21:ijms21165733. [PMID: 32785124 PMCID: PMC7461129 DOI: 10.3390/ijms21165733] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
As exercise intensity exceeds 65% of maximal oxygen uptake carbohydrate energy sources predominate. However, relative to the meager 4-5 g blood glucose pool size in a postabsorptive individual (0.9-1.0 g·L-1 × 5 L blood = 18-20 kcal), carbohydrate (CHO) oxidation rates of 20 kcal·min-1 can be sustained in a healthy and fit person for one hour, if not longer, all the while euglycemia is maintained. While glucose rate of appearance (i.e., production, Ra) from splanchnic sources in a postabsorptive person can rise 2-3 fold during exercise, working muscle and adipose tissue glucose uptake must be restricted while other energy substrates such as glycogen, lactate, and fatty acids are mobilized and utilized. If not for the use of alternative energy substrates hypoglycemia would occur in less than a minute during hard exercise because blood glucose disposal rate (Rd) could easily exceed glucose production (Ra) from hepatic glycogenolysis and gluconeogenesis. The goal of this paper is to present and discuss the integration of physiological, neuroendocrine, circulatory, and biochemical mechanisms necessary for maintenance of euglycemia during sustained hard physical exercise.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, University of California, Berkeley, 5101 VLSB, Berkeley, CA 94720-3140, USA
| |
Collapse
|
5
|
Frye CW, Mann S, Joseph JL, Hansen C, Sass B, Wakshlag JJ. Serum Biochemistry and Inflammatory Cytokines in Racing Endurance Sled Dogs With and Without Rhabdomyolysis. Front Vet Sci 2018; 5:145. [PMID: 30073172 PMCID: PMC6060244 DOI: 10.3389/fvets.2018.00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/11/2018] [Indexed: 01/04/2023] Open
Abstract
Serum muscle enzymes in endurance sled dogs peak within 2–4 days of racing. The object of this study was to compare mid-race serum chemistry profiles, select hormones, markers of inflammation, and the acute phase response in dogs that successfully completed half of the 2015 Yukon Quest sled dog race to their pre-racing samples (n = 14), as well as mid-race samples of successful dogs to those who developed clinical exertional rhabdomyolysis (ER) (n = 5). Concentrations of serum phosphorus in ER dogs were significantly elevated compared to healthy dogs (median 5.5 vs. 4.25 mg/dL, P < 0.01) at mid race. ALT, AST, and CK show a significant increase from pre-race baseline to mid-race chemistries (P < 0.01), with more pronounced increases in dogs with ER compared to healthy racing dogs (CK- median 46,125 vs. 1,743 U/L; P < 0.01). Potassium concentrations were significantly decreased from pre-race baselines in all dogs (median 5.1 vs. 4.5 mEq/L; P < 0.01), and even lower in dogs with ER (median 3.5 mEq/L; P < 0.01) mid-race. No changes in serum pro-inflammatory cytokine concentrations were noted in any groups of dogs. C-reactive protein was elevated in both groups of dogs, but significantly higher in those with ER compared with healthy dogs mid-race (median 308 vs. 164 ug/mL; P < 0.01). Healthy dogs may have CK elevations over 10,000 U/L, and dogs with ER were over 30,000 U/L. Although potassium decreases in healthy endurance sled dogs during racing, it remains in the normal laboratory reference range; however ER dog potassium levels drop further to the point of hypokalemia. Lastly increases in CRP may be reflective of a physiological response to exercise over the course of a race; however high CRP in ER dogs may be capturing an early acute phase response.
Collapse
Affiliation(s)
- Chris W Frye
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Sabine Mann
- Department of Population Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Jodie L Joseph
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Cristina Hansen
- Veterinary Medicine, University of Alaska, Fairbanks, AK, United States
| | - Brent Sass
- Wild and Free Kennels, Manley Hot Springs, Ithaca, AK, United States
| | - Joseph J Wakshlag
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| |
Collapse
|
6
|
The effects of a post-exercise carbohydrate and protein supplement on repeat performance, serum chemistry, insulin and glucagon in competitive weight-pulling dogs. J Nutr Sci 2017. [PMID: 28630704 PMCID: PMC5468743 DOI: 10.1017/jns.2017.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The physiological demands of weight-pulling dogs have yet to be investigated. Two groups of competitive weight-pulling dogs both underwent two identical pull series 3 h apart. The control group (n 8) was compared with a group fed a rapidly digestible carbohydrate and protein supplement after the first pull series (n 9). Blood was drawn before and after each pull series as well as at 15 and 30 min after the first pull series finished. Biochemistry values remained unremarkable throughout the study in both groups regardless of supplementation or exercise over time. Lactic acid showed mild significant increases post-exercise (2·1 (sd 1·2) mmol/l) compared with baseline (1·4 (sd 0·3) mmol/l; P = 0·03) after the initial pull series. When examining the effects of time there was a significant increase in insulin from baseline (median of 10·8 (range 6·8–17·4) μIU/ml) compared with 30 min after supplementation (17·0 (range 8·1–33·0) μIU/ml) and at 3 h after supplementation (19·2 (range 9·7–53·4) μIU/ml). In the treatment group there was also a time effect, with glucagon being elevated from baseline (median of 100 (range 79–115) pg/ml) compared with 30 min after supplementation (114 (range 90–183) pg/ml) and after the second pull series (131 (range 107–152) pg/ml). Evaluation of each dog's ability to pull the same or greater amount of weight on the second pull series revealed no significant differences. In conclusion, weight-pulling dogs have mild elevations in lactate reflecting little anaerobic metabolism compared with other canine sprinting athletes; hormonal changes associated with carbohydrate absorption are reflected within the treatment group, and supplementation had no effect on performance.
Collapse
|
7
|
Montefusco F, Pedersen MG. Mathematical modelling of local calcium and regulated exocytosis during inhibition and stimulation of glucagon secretion from pancreatic alpha-cells. J Physiol 2015; 593:4519-30. [PMID: 26236035 DOI: 10.1113/jp270777] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023] Open
Abstract
Glucagon secretion from pancreatic alpha-cells is dysregulated in diabetes. Despite decades of investigations of the control of glucagon release by glucose and hormones, the underlying mechanisms are still debated. Recently, mathematical models have been applied to investigate the modification of electrical activity in alpha-cells as a result of glucose application. However, recent studies have shown that paracrine effects such as inhibition of glucagon secretion by glucagon-like peptide 1 (GLP-1) or stimulation of release by adrenaline involve cAMP-mediated effects downstream of electrical activity. In particular, depending of the intracellular cAMP concentration, specific types of Ca(2+) channels are inhibited or activated, which interacts with mobilization of secretory granules. To investigate these aspects of alpha-cell function theoretically, we carefully developed a mathematical model of Ca(2+) levels near open or closed Ca(2+) channels of various types, which was linked to a description of Ca(2+) below the plasma membrane, in the bulk cytosol and in the endoplasmic reticulum. We investigated how the various subcellular Ca(2+) compartments contribute to control of glucagon-exocytosis in response to glucose, GLP-1 or adrenaline. Our studies refine previous modelling studies of alpha-cell function, and provide deeper insight into the control of glucagon secretion.
Collapse
Affiliation(s)
- Francesco Montefusco
- Department of Information Engineering, University of Padova, Via Gradenigo 6/B, 35131, Padova, Italy
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padova, Via Gradenigo 6/B, 35131, Padova, Italy
| |
Collapse
|
8
|
Trefts E, Williams AS, Wasserman DH. Exercise and the Regulation of Hepatic Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:203-25. [PMID: 26477916 DOI: 10.1016/bs.pmbts.2015.07.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The accelerated metabolic demands of the working muscle cannot be met without a robust response from the liver. If not for the hepatic response, sustained exercise would be impossible. The liver stores, releases, and recycles potential energy. Exercise would result in hypoglycemia if it were not for the accelerated release of energy as glucose. The energetic demands on the liver are largely met by increased oxidation of fatty acids mobilized from adipose tissue. Adaptations immediately following exercise facilitate the replenishment of glycogen stores. Pancreatic glucagon and insulin responses orchestrate the hepatic response during and immediately following exercise. Like skeletal muscle and other physiological systems, liver adapts to repeated demands of exercise by increasing its capacity to produce energy by oxidizing fat. The ability of regular physical activity to increase fat oxidation is protective and can reverse fatty liver disease. Engaging in regular physical exercise has broad ranging positive health implications including those that improve the metabolic health of the liver.
Collapse
Affiliation(s)
- Elijah Trefts
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
9
|
Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 2015; 95:513-48. [PMID: 25834231 DOI: 10.1152/physrev.00013.2014] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preproglucagon gene (Gcg) is expressed by specific enteroendocrine cells (L-cells) of the intestinal mucosa, pancreatic islet α-cells, and a discrete set of neurons within the nucleus of the solitary tract. Gcg encodes multiple peptides including glucagon, glucagon-like peptide-1, glucagon-like peptide-2, oxyntomodulin, and glicentin. Of these, glucagon and GLP-1 have received the most attention because of important roles in glucose metabolism, involvement in diabetes and other disorders, and application to therapeutics. The generally accepted model is that GLP-1 improves glucose homeostasis indirectly via stimulation of nutrient-induced insulin release and by reducing glucagon secretion. Yet the body of literature surrounding GLP-1 physiology reveals an incompletely understood and complex system that includes peripheral and central GLP-1 actions to regulate energy and glucose homeostasis. On the other hand, glucagon is established principally as a counterregulatory hormone, increasing in response to physiological challenges that threaten adequate blood glucose levels and driving glucose production to restore euglycemia. However, there also exists a potential role for glucagon in regulating energy expenditure that has recently been suggested in pharmacological studies. It is also becoming apparent that there is cross-talk between the proglucagon derived-peptides, e.g., GLP-1 inhibits glucagon secretion, and some additive or synergistic pharmacological interaction between GLP-1 and glucagon, e.g., dual glucagon/GLP-1 agonists cause more weight loss than single agonists. In this review, we discuss the physiological functions of both glucagon and GLP-1 by comparing and contrasting how these peptides function, variably in concert and opposition, to regulate glucose and energy homeostasis.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
10
|
Hasenour CM, Berglund ED, Wasserman DH. Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver. Mol Cell Endocrinol 2013; 366:152-62. [PMID: 22796337 PMCID: PMC3538936 DOI: 10.1016/j.mce.2012.06.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/22/2012] [Accepted: 06/21/2012] [Indexed: 12/11/2022]
Abstract
This review summarizes the emerging role of AMP-activated protein kinase (AMPK) in mediating endocrine regulation of metabolic fluxes in the liver. There are a number of hormones which, when acting on the liver, alter AMPK activation. Here we describe those hormones associated with activation and de-activation of AMPK and the potential mechanisms for changes in AMPK activation state. The actions of these hormones, in many cases, are consistent with downstream effects of AMPK signaling thus strengthening the circumstantial case for AMPK-mediated hormone action. In recent years, genetic mouse models have also been used in an attempt to establish the role of AMPK in hormone-stimulated metabolism in the liver. Few experiments have, however, firmly established a causal relationship between hormone action at the liver and AMPK signaling.
Collapse
Affiliation(s)
- Clinton M Hasenour
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
11
|
Berglund ED, Lustig DG, Baheza RA, Hasenour CM, Lee-Young RS, Donahue EP, Lynes SE, Swift LL, Charron MJ, Damon BM, Wasserman DH. Hepatic glucagon action is essential for exercise-induced reversal of mouse fatty liver. Diabetes 2011; 60:2720-9. [PMID: 21885872 PMCID: PMC3198076 DOI: 10.2337/db11-0455] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Exercise is an effective intervention to treat fatty liver. However, the mechanism(s) that underlie exercise-induced reductions in fatty liver are unclear. Here we tested the hypothesis that exercise requires hepatic glucagon action to reduce fatty liver. RESEARCH DESIGN AND METHODS C57BL/6 mice were fed high-fat diet (HFD) and assessed using magnetic resonance, biochemical, and histological techniques to establish a timeline for fatty liver development over 20 weeks. Glucagon receptor null (gcgr(-/-)) and wild-type (gcgr(+/+)) littermate mice were subsequently fed HFD to provoke moderate fatty liver and then performed either 10 or 6 weeks of running wheel or treadmill exercise, respectively. RESULTS Exercise reverses progression of HFD-induced fatty liver in gcgr(+/+) mice. Remarkably, such changes are absent in gcgr(-/-) mice, thus confirming the hypothesis that exercise-stimulated hepatic glucagon receptor activation is critical to reduce HFD-induced fatty liver. CONCLUSIONS These findings suggest that therapies that use antagonism of hepatic glucagon action to reduce blood glucose may interfere with the ability of exercise and perhaps other interventions to positively affect fatty liver.
Collapse
Affiliation(s)
- Eric D Berglund
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wasserman DH, Kang L, Ayala JE, Fueger PT, Lee-Young RS. The physiological regulation of glucose flux into muscle in vivo. ACTA ACUST UNITED AC 2011; 214:254-62. [PMID: 21177945 DOI: 10.1242/jeb.048041] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Skeletal muscle glucose uptake increases dramatically in response to physical exercise. Moreover, skeletal muscle comprises the vast majority of insulin-sensitive tissue and is a site of dysregulation in the insulin-resistant state. The biochemical and histological composition of the muscle is well defined in a variety of species. However, the functional consequences of muscle biochemical and histological adaptations to physiological and pathophysiological conditions are not well understood. The physiological regulation of muscle glucose uptake is complex. Sites involved in the regulation of muscle glucose uptake are defined by a three-step process consisting of: (1) delivery of glucose to muscle, (2) transport of glucose into the muscle by GLUT4 and (3) phosphorylation of glucose within the muscle by a hexokinase (HK). Muscle blood flow, capillary recruitment and extracellular matrix characteristics determine glucose movement from the blood to the interstitium. Plasma membrane GLUT4 content determines glucose transport into the cell. Muscle HK activity, cellular HK compartmentalization and the concentration of the HK inhibitor glucose 6-phosphate determine the capacity to phosphorylate glucose. Phosphorylation of glucose is irreversible in muscle; therefore, with this reaction, glucose is trapped and the uptake process is complete. Emphasis has been placed on the role of the glucose transport step for glucose influx into muscle with the past assertion that membrane transport is rate limiting. More recent research definitively shows that the distributed control paradigm more accurately defines the regulation of muscle glucose uptake as each of the three steps that define this process are important sites of flux control.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics and the Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
13
|
Wasserman DH, Cherrington AD. Regulation of Extramuscular Fuel Sources During Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Vranic M. Odyssey between Scylla and Charybdis through storms of carbohydrate metabolism and diabetes: a career retrospective. Am J Physiol Endocrinol Metab 2010; 299:E849-67. [PMID: 20823450 DOI: 10.1152/ajpendo.00344.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This research perspective allows me to summarize some of my work completed over 50 years, and it is organized in seven sections. 1) The treatment of diabetes concentrates on the liver and/or the periphery. We quantified hormonal and metabolic interactions involved in physiology and the pathogenesis of diabetes by developing tracer methods to separate the effects of diabetes on both. We collaborated in the first tracer clinical studies on insulin resistance, hypertriglyceridemia, and the Cori cycle. 2) Diabetes reflects insulin deficiency and glucagon abundance. Extrapancreatic glucagon changed the prevailing dogma and permitted precise exploration of the roles of insulin and glucagon in physiology and diabetes. 3) We established the critical role of glucagon-insulin interaction and the control of glucose metabolism during moderate exercise and of catecholamines during strenuous exercise. Deficiencies of the release and effects of these hormones were quantified in diabetes. We also revealed how acute and chronic hyperglycemia affects the expression of GLUT2 gene and protein in diabetes. 4) We outlined molecular and physiological mechanisms whereby exercise training and repetitive neurogenic stress can prevent diabetes in ZDF rats. 5) We and others established that the indirect effect of insulin plays an important role in the regulation of glucose production in dogs. We confirmed this effect in humans and demonstrated that in type 2 diabetes it is mainly the indirect effect. 6) We indicated that the muscle and the liver protected against glucose changes. 7) We described molecular mechanisms responsible for increased HPA axis in diabetes and for the diminished responses of HPA axis, catecholamines, and glucagon to hypoglycemia. We proposed a new approach to decrease the threat of hypoglycemia.
Collapse
Affiliation(s)
- Mladen Vranic
- Dept. of Physiology, Univ. of Toronto, Toronto, ON. Canada M5S 1A8.
| |
Collapse
|
15
|
Berglund ED, Kang L, Lee-Young RS, Hasenour CM, Lustig DG, Lynes SE, Donahue EP, Swift LL, Charron MJ, Wasserman DH. Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARalpha and FGF21 transcripts in vivo. Am J Physiol Endocrinol Metab 2010; 299:E607-14. [PMID: 20663988 PMCID: PMC2957865 DOI: 10.1152/ajpendo.00263.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic glucagon action increases in response to accelerated metabolic demands and is associated with increased whole body substrate availability, including circulating lipids. The hypothesis that increases in hepatic glucagon action stimulate AMP-activated protein kinase (AMPK) signaling and peroxisome proliferator-activated receptor-α (PPARα) and fibroblast growth factor 21 (FGF21) expression in a manner modulated by fatty acids was tested in vivo. Wild-type (gcgr(+/+)) and glucagon receptor-null (gcgr(-/-)) littermate mice were studied using an 18-h fast, exercise, and hyperglucagonemic-euglycemic clamps plus or minus increased circulating lipids. Fasting and exercise in gcgr(+/+), but not gcgr(-/-) mice, increased hepatic phosphorylated AMPKα at threonine 172 (p-AMPK(Thr(172))) and PPARα and FGF21 mRNA. Clamp results in gcgr(+/+) mice demonstrate that hyperlipidemia does not independently impact or modify glucagon-stimulated increases in hepatic AMP/ATP, p-AMPK(Thr(172)), or PPARα and FGF21 mRNA. It blunted glucagon-stimulated acetyl-CoA carboxylase phosphorylation, a downstream target of AMPK, and accentuated PPARα and FGF21 expression. All effects were absent in gcgr(-/-) mice. These findings demonstrate that glucagon exerts a critical regulatory role in liver to stimulate pathways linked to lipid metabolism in vivo and shows for the first time that effects of glucagon on PPARα and FGF21 expression are amplified by a physiological increase in circulating lipids.
Collapse
Affiliation(s)
- Eric D Berglund
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wasserman DH. Role of the Endocrine Pancreas in Glucose Homeostasis During Exercise. Can J Diabetes 2010. [DOI: 10.1016/s1499-2671(10)43016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Abstract
Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated. The body has a remarkable capacity to satisfy the nutritional need for glucose, while still maintaining blood glucose homeostasis. The essential role of glucagon and insulin and the importance of distributed control of glucose fluxes are highlighted in this review. With regard to the latter, studies are presented that show how regulation of muscle glucose uptake is regulated by glucose delivery to muscle, glucose transport into muscle, and glucose phosphorylation within muscle.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology, Vanderbilt Univ. School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Rantzau C, Christopher M, Alford FP. Contrasting effects of exercise, AICAR, and increased fatty acid supply on in vivo and skeletal muscle glucose metabolism. J Appl Physiol (1985) 2007; 104:363-70. [PMID: 18032581 DOI: 10.1152/japplphysiol.00500.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The increased energy required for acute moderate exercise by skeletal muscle (SkM) is derived equally from enhanced fatty acid (FA) oxidation and glucose oxidation. Availability of FA also influences contracting SkM metabolic responses. Whole body glucose turnover and SkM glucose metabolic responses were determined in paired dog studies during 1) a 30-min moderate exercise (maximal oxygen consumption of approximately 60%) test vs. a 60-min low-dose 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion, 2) a 150-min AICAR infusion vs. modest elevation of FA induced by a 150-min combined intralipid-heparin (IL/hep) infusion, and 3) an acute exercise test performed with vs. without IL/hep. The exercise responses differed from those observed with AICAR: plasma FA and glycerol rose sharply with exercise, whereas FA fell and glycerol was unchanged with AICAR; glucose turnover and glycolytic flux doubled with exercise but rose only by 50% with AICAR; SkM glucose-6-phosphate rose and glycogen content decreased with exercise, whereas no changes occurred with AICAR. The metabolic responses to AICAR vs. IL/hep differed: glycolytic flux was stimulated by AICAR but suppressed by IL/hep, and no changes in glucose turnover occurred with IL/hep. Glucose turnover responses to exercise were similar in the IL/hep and non-IL/hep, but SkM lactate and glycogen concentrations rose with IL/hep vs. that shown with exercise alone. In conclusion, the metabolic responses to acute exercise are not mimicked by a single dose of AICAR or altered by short-term enhancement of fatty acid supply.
Collapse
Affiliation(s)
- C Rantzau
- Dept. of Endocrinology and Diabetes, 4th Floor Daly Wing, St Vincent's Health, 35 Victoria St., Fitzroy Victoria 3065, Australia
| | | | | |
Collapse
|
19
|
Hultström M, Jansson L, Bodin B, Källskog O. Moderate hypothermia induces a preferential increase in pancreatic islet blood flow in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1438-43. [PMID: 17626132 DOI: 10.1152/ajpregu.00259.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the study was to characterize the effects of induced moderate hypothermia on splanchnic blood flow, with particular reference to that of the pancreas and the islets of Langerhans. We also investigated how interference with the autonomic nervous system at different levels influenced the blood perfusion during hypothermia. For this purpose, hypothermia (body temperature of 28°C) was induced by external cooling, whereas normothermic (37.5°C) anesthetized Sprague-Dawley rats were used as controls. Some rats were pretreated with either propranolol, yohimbine, atropine, hexamethonium, or a bilateral abdominal vagotomy. Our findings suggest that moderate hypothermia elicits complex, organ-specific circulatory changes, with increased perfusion noted in the pylorus, as well as the whole pancreas and the pancreatic islets. The pancreatic islets maintain their high blood perfusion through mechanisms involving both sympathetic and parasympathetic mediators, whereas the increased pyloric blood flow is mediated through parasympathetic mechanisms. Renal blood flow was decreased, and this can be prevented by ganglionic blockade and is also influenced by β-adrenoceptors.
Collapse
Affiliation(s)
- Michael Hultström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
20
|
Horton TJ, Grunwald GK, Lavely J, Donahoo WT. Glucose kinetics differ between women and men, during and after exercise. J Appl Physiol (1985) 2006; 100:1883-94. [PMID: 16714415 DOI: 10.1152/japplphysiol.01431.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As exercise can improve the regulation of glucose and carbohydrate metabolism, it is important to establish biological factors, such as sex, that may influence these outcomes. Glucose kinetics, therefore, were compared between women and men at rest, during exercise, and postexercise. It was hypothesized that glucose flux would be significantly lower in women than men during both the exercise and postexercise periods. Subjects included normal weight, healthy, eumenorrehic women and men, matched for habitual activity level and maximal oxygen uptake per kilogram lean body mass. Testing occurred following 3 days of diet control, with no exercise the day before. Subjects were tested in the overnight-fasted condition with women studied in the midluteal phase of the menstrual cycle. Resting (120 min), exercise (85% lactate threshold, 90 min), and postexercise (180 min) measurements of glucose flux and substrate metabolism were made. During exercise, women had a significantly lower rate of glucose appearance (Ra) (P<0.001) and disappearance (Rd) (P<0.002) compared with men. Maximal values were achieved at 90 min of exercise for both glucose Ra (mean+/-SE: 22.8+/-1.12 micromol.kg body wt-1.min-1 women and 33.6+/-1.79 micromol.kg body wt-1.min-1 men) and glucose Rd (23.2+/-1.26 and 34.1+/-1.71 micromol.kg body wt-1.min-1, respectively). Exercise epinephrine concentration was significantly lower in women compared with men (P<0.02), as was the increment in glucagon from rest to exercise (P<0.04). During the postexercise period, glucose Ra and Rd were also significantly lower in women vs. men (P<0.001), with differences diminishing over time. In conclusion, circulating blood glucose flux was significantly lower during 90 min of moderate exercise, and immediately postexercise, in women compared with men. Sex differences in the glucagon increase to exercise, and/or the epinephrine levels during exercise, may play a role in determining these sex differences in exercise glucose turnover.
Collapse
Affiliation(s)
- Tracy J Horton
- Section of Nutrition, Box C225, Department of Pediatrics, University of Colorado Health Sciences Center, 4200 East 9th Ave., and Department of Preventive Medicine, Kaiser Permanente, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
One paradox of hormonal regulation during exercise is the maintenance of glucose homeostasis after endurance training despite a lower increase in plasma glucagon. One explanation could be that liver sensitivity to glucagon is increased by endurance training. Glucagon exerts its effect through a 62 KDa glycoprotein receptor, member of the G protein-coupled receptor. To determine whether changes with exercise in glucagon sensitivity occurred at the level of the glucagon receptor (GR), binding characteristics of hepatic glucagon receptors were ascertained in rat purified plasma membranes. Saturation kinetics indicated no difference in the dissociation constant or affinity of glucagon receptor, but a significantly higher glucagon receptor binding density in liver in endurance trained compared to untrained animals. Along with endurance training, it appears that fasting also changes GR binding characteristics. In animals fasting 24 hrs, a significant increase in glucagon receptor density was also reported. Although the exact mechanism remains unknown, there is no doubt that the liver can adapt to physiological stress through modulation of GR binding characteristics to enhance the hepatic glucose production responsiveness to glucagon. Key words: glucagon sensitivity, liver, endurance training, rats
Collapse
Affiliation(s)
- Carole Lavoie
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivieres, Case Postale 500, Trois-Rivieres, Québec, Canada
| |
Collapse
|
22
|
Couturier K, Servais S, Koubi H, Sempore B, Cottet-Emard JM, Guigas B, Lavoie JM, Favier R. Metabolic and hormonal responses to exercise in the anti-obese Lou/C rats. Int J Obes (Lond) 2004; 28:972-8. [PMID: 15211361 DOI: 10.1038/sj.ijo.0802717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Lou/C rats are a substrain of Wistar rats that exhibit a spontaneous low caloric intake and no development of obesity with age. Recently, we reported that Lou/C rats, compared to equally food-restricted Wistar counterparts, show lower resting levels of plasma glucose, epinephrine and liver glycogen. To further explore this metabolic particularity, we used exercise (swimming 60 min) as a situation of high-energy demand, to test the ability of Lou/C rats to maintain euglycemia. DESIGN Male Lou/C rats (14-week-old) were compared to age-matched male Wistar rats fed either ad libitum (WAL) or Wistar rats whose food was chronically restricted (WFR) to the same caloric intake as the Lou/C rats. RESULTS In spite of low liver glycogen stores ( approximately 50% of normal values), Lou/C rats were able to maintain euglycemia during exercise even though liver glycogen breakdown was blunted. The decreased use of glycogen during exercise in Lou/C rats was associated with a reduced epinephrine response compared to WFR animals. By contrast, WFR were also able to maintain euglycemia during exercise but at the expense of a significant (P<0.01) decrease in liver and muscle glycogen content. Plasma free fatty acid and glycerol concentrations were increased (P<0.01) similarly in all three groups during exercise. In a separate experiment conducted in isolated hepatocytes from 24 h fasted Lou/C and Wistar rats, it was found that gluconeogenic flux from glycerol was found to be significantly (P<0.01) higher in Lou/C than in Wistar rats (5.4+/-0.2 vs 3.7+/-0.1 micromol/min/g dry cells). Resting and exercising plasma leptin levels were also significantly (P<0.05) lower in Lou/C than in the two other groups. CONCLUSION It is concluded that Lou/C rats have the particularity to rely spontaneously less on their liver glycogen stores to meet their energy demands during exercise while maintaining euglycemia.
Collapse
Affiliation(s)
- K Couturier
- UMR 5123 CNRS, Laboratoire de Physiologie, Université Claude Bernard, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Petersen KF, Price TB, Bergeron R. Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: impact of type 1 diabetes. J Clin Endocrinol Metab 2004; 89:4656-64. [PMID: 15356077 PMCID: PMC2995531 DOI: 10.1210/jc.2004-0408] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of type 1 diabetes on the contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production (GP) at rest and during moderate (MOD) and high (HI) intensity running were examined in healthy control (n = 6) and type 1 diabetic (n = 5) subjects matched for age, weight, and maximum aerobic capacity by combined noninvasive measurements of hepatic glycogen content using (13)C nuclear magnetic resonance spectroscopy and determination of GP using [6,6-(2)H(2)]glucose. In the control subjects, GP increased in proportion to the intensity of the exercise [at rest (REST), 14.3 +/- 0.5; MOD, 18.1 +/- 0.9; HI, 28.8 +/- 1.3 micromol/(kg-min); P = 0.001, three-way comparison], and this was accounted for by an increase in the percent contribution of net hepatic glycogenolysis to GP (REST, 32 +/- 1%; MOD, 49 +/- 5%; HI, 57 +/- 5%; P = 0.006). In the diabetic subjects, resting rates of GP were 60% higher than those in the control subjects (P < 0.0001) and increased in proportion to the workload. In contrast, the contributions of net hepatic glycogenolysis to GP were consistently lower than those in the control subjects (REST, 20 +/- 6%; MOD, 32 +/- 13%; HI, 32 +/- 3%; P = 0.006 vs. control), and the exaggerated rates of GP could be entirely accounted for by increased rates of gluconeogenesis. In conclusion, 1) increases in GP in healthy control subjects with exercise intensity can be entirely attributed to increases in net hepatic glycogenolysis. 2) In contrast, moderately controlled type 1 diabetic subjects exhibit increased rates of GP both at rest and during exercise, which can be entirely accounted for by increased gluconeogenesis.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, S263, P.O. Box 208020, New Haven, Connecticut 06520-8020, USA
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Jeanne H Steppel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
25
|
Abstract
The present study was designed to determine the effects of various levels of capsaicin (CAP) on endurance capacity in forty-nine male Sprague-Dawley rats, aged 4 weeks, which were assigned to four groups. Rats were given orally either control (0) or 6, 10 or 15 mg CAP/kg body weight 2 h before exercise by stomach intubations using a round-ended needle. The rats in each group were divided into two subgroups for resting or swimming exercise. Swimming exercise was performed with a weight corresponding to 3 % body weight attached to the tail, and endurance capacity was evaluated by swimming time to exhaustion. The highest dose (15 mg/kg) of CAP significantly (P<0.05) increased endurance performance time and caused plasma non-esterified fatty acid to rise significantly by about 1.4-fold compared with that of non-CAP treated rats at exhaustion (P<0.05). The highest dose of CAP had no effect on liver and gastrocnemius muscle glycogen (white and red) in resting rats, but significantly increased glycogen contents of both muscles at exhaustion (P<0.05). At rest, plasma noradrenalin levels of the rats receiving the highest dose were greater than that of non-CAP-treated rats and remained greater until exhaustion. The effects of CAP on endurance capacity have received little attention and have conveyed conflicting impressions. Kim et al. (1997) failed to show the maximal effect of 10 mg/kg doses of CAP on swimming endurance time in mice. The influences of various doses of CAP on endurance capacity were still unclear. Matsuo et al. (1996) reported that the intake of CAP have little sparing effect on glycogen in the liver and soleus muscles at rest and during exercise in rats previously fed a CAP-containing diet ad libitum for 1 week. Our present results suggest more than the highest dose of CAP (15 mg/kg) can cause the increase of endurance capacity, which might be induced through the sparing of muscle glycogen and the rise of non-esterfied fatty acids following the increase of circulating catecholamine.
Collapse
Affiliation(s)
- Tae-Woong Oh
- Department of Sports Sciences, School of Human Sciences, Waseda University, Japan.
| | | | | |
Collapse
|
26
|
Bélanger P, Fillion Y, Couturier K, Gauthier MS, Lavoie JM. Effects of inducing physiological hyperglucagonemia on metabolic responses to exercise. Eur J Appl Physiol 2003; 89:8-13. [PMID: 12627299 DOI: 10.1007/s00421-002-0766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2002] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to assess the effects of exogenously increasing the circulating levels of glucagon on the metabolic responses to exercise in rats. A total of six groups of rats were infused (iv) either with glucagon (20 or 50 ng x kg(-1) x min(-1)) or saline (0.9% NaCl), either in the resting state or during a bout of running exercise (45 min, 26 m x min(-1), 0% grade). Blood samples were taken at the end of the 45-min experiment. Animals infused with glucagon at 50 ng x kg(-1) x min(-1) showed significantly (P<0.01) higher mean plasma glucagon concentrations than animals infused with saline or glucagon at 20 ng x kg(-1) x min(-1). In addition, exercise resulted in significantly (P<0.05) higher mean plasma glucagon concentrations, compared to rest, in all groups. In spite of these differences in glucagon concentrations, there were no significant (P>0.05) effects of exercise and glucagon infusion on mean hepatic glycogen, plasma glucose, insulin, C-peptide, beta-hydroxybutyrate, or catecholamine concentrations. Although exercise resulted in a significant (P<0.01) increase in plasma glycerol and free fatty acid concentrations and a significant (P<0.05) decrease in glycogen in the soleus muscle, these responses were not affected by the glucagon infusion. These results suggest that the liver is non-responsive to physiological hyperglucagonemia in a short-term (45 min) exercise situation.
Collapse
Affiliation(s)
- Patrice Bélanger
- Département de kinésiologie, Université de Montréal, C.P. 6128 succ. Centre-ville, H3C 3J7 Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
27
|
Coker RH, Koyama Y, Denny JC, Camacho RC, Lacy DB, Wasserman DH. Prevention of overt hypoglycemia during exercise: stimulation of endogenous glucose production independent of hepatic catecholamine action and changes in pancreatic hormone concentration. Diabetes 2002; 51:1310-8. [PMID: 11978626 DOI: 10.2337/diabetes.51.5.1310] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
These studies were conducted to determine the magnitude and mechanism of compensation for impaired glucagon and insulin responses to exercise. For this purpose, dogs underwent surgery >16 days before experiments, at which time flow probes were implanted and silastic catheters were inserted. During experiments, glucagon and insulin were fixed at basal levels during rest and exercise using a pancreatic clamp with glucose clamped (PC/GC; n = 5), a pancreatic clamp with glucose unclamped (PC; n = 7), or a pancreatic clamp with glucose unclamped + intraportal propranolol and phentolamine hepatic alpha- and beta-adrenergic receptor blockade (PC/HAB; n = 6). Glucose production (R(a)) was measured isotopically. Plasma glucose was constant in PC/GC, but fell from basal to exercise in PC and PC/HAB. R(a) was unchanged with exercise in PC/GC, but was slightly increased during exercise in PC and PC/HAB. Despite minimal increases in epinephrine in PC/GC, epinephrine increased approximately sixfold in PC and PC/HAB during exercise. In summary, during moderate exercise, 1) the increase in R(a) is absent in PC/GC; 2) only a moderate fall in arterial glucose occurs in PC, due to a compensatory increase in R(a); and 3) the increase in R(a) is preserved in PC/HAB. In conclusion, stimulation of R(a) by a mechanism independent of pancreatic hormones and hepatic adrenergic stimulation is a primary defense against overt hypoglycemia.
Collapse
Affiliation(s)
- Robert H Coker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Marliss EB, Vranic M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes 2002; 51 Suppl 1:S271-83. [PMID: 11815492 DOI: 10.2337/diabetes.51.2007.s271] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In intense exercise (>80% VO(2max)), unlike at lesser intensities, glucose is the exclusive muscle fuel. It must be mobilized from muscle and liver glycogen in both the fed and fasted states. Therefore, regulation of glucose production (GP) and glucose utilization (GU) have to be different from exercise at <60% VO(2max), in which it is established that the portal glucagon-to-insulin ratio causes the less than or equal to twofold increase in GP. GU is subject to complex regulation by insulin, plasma glucose, alternate substrates, other humoral factors, and muscle factors. At lower intensities, plasma glucose is constant during postabsorptive exercise and declines during postprandial exercise (and often in persons with diabetes). During such exercise, insulin secretion is inhibited by beta-cell alpha-adrenergic receptor activation. In contrast, in intense exercise, GP rises seven- to eightfold and GU rises three- to fourfold; therefore, glycemia increases and plasma insulin decreases minimally, if at all. Indeed, even an increase in insulin during alpha-blockade or during a pancreatic clamp does not prevent this response, nor does pre-exercise hyperinsulinemia due to a prior meal or glucose infusion. At exhaustion, GU initially decreases more than GP, which leads to greater hyperglycemia, requiring a substantial rise in insulin for 40--60 min to restore pre-exercise levels. Absence of this response in type 1 diabetes leads to sustained hyperglycemia, and mimicking it by intravenous infusion restores the normal response. Compelling evidence supports the conclusion that the marked catecholamine responses to intense exercise are responsible for both the GP increment (that occurs even during glucose infusion and postprandially) and the restrained increase of GU. These responses are normal in persons with type 1 diabetes, who often report exercise-induced hyperglycemia, and in whom the clinical challenge is to reproduce the recovery period hyperinsulinemia. Intense exercise in type 2 diabetes requires additional study.
Collapse
Affiliation(s)
- Errol B Marliss
- McGill Nutrition and Food Science Centre, McGill University Health Centre/Royal Victoria Hospital, Montreal, Quebec, Canada.
| | | |
Collapse
|
29
|
Bonjorn VM, Latour MG, Bélanger P, Lavoie JM. Influence of prior exercise and liver glycogen content on the sensitivity of the liver to glucagon. J Appl Physiol (1985) 2002; 92:188-94. [PMID: 11744659 DOI: 10.1152/jappl.2002.92.1.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to test the hypothesis that a prior period of exercise is associated with an increase in hepatic glucagon sensitivity. Hepatic glucose production (HGP) was measured in four groups of anesthetized rats infused with glucagon (2 microg. kg(-1). min(-1) iv) over a period of 60 min. Among these groups, two were normally fed and, therefore, had a normal level of liver glycogen (NG). One of these two groups was killed at rest (NG-Re) and the other after a period of exercise (NG-Ex; 60 min of running, 15-26 m/min, 0% grade). The two other groups of rats had a high hepatic glycogen level (HG), which had been increased by a fast-refed diet, and were also killed either at rest (HG-Re) or after exercise (HG-Ex). Plasma glucagon and insulin levels were increased similarly in all four conditions. Glucagon-induced hyperglycemia was higher (P < 0.01) in the HG-Re group than in all other groups. HGP in the HG-Re group was not, however, on the whole more elevated than in the NG-Re group. Exercised rats (NG-Ex and HG-Ex) had higher hyperglycemia, HGP, and glucose utilization than rested rats in the first 10 min of the glucagon infusion. HG-Ex group had the highest HGP throughout the 60-min experiment. It is concluded that hyperglucagonemia-induced HGP is stimulated by a prior period of exercise, suggesting an increased sensitivity of the liver to glucagon during exercise.
Collapse
|
30
|
Koyama Y, Coker RH, Denny JC, Lacy DB, Jabbour K, Williams PE, Wasserman DH. Role of carotid bodies in control of the neuroendocrine response to exercise. Am J Physiol Endocrinol Metab 2001; 281:E742-8. [PMID: 11551850 DOI: 10.1152/ajpendo.2001.281.4.e742] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was aimed at assessing the role of carotid body function in neuroendocrine and glucoregulatory responses to exercise. The carotid bodies and associated nerves were removed (CBR, n = 6) or left intact (Sham, n = 6) in anesthetized dogs >16 days before experiments, and infusion and sampling catheters were implanted. Conscious dogs were studied at rest and during 150 min of exercise. Isotopic dilution was used to assess glucose production (R(a)) and disappearance (R(d)). Arterial glucagon was reduced in CBR compared with Sham at rest (29 +/- 3 vs. 47 +/- 3 pg/ml). During exercise, glucagon increased more in Sham than in CBR (47 +/- 9 vs. 15 +/- 2 pg/ml). Cortisol and epinephrine levels were similar in the two groups at rest and during exercise. Basal norepinephrine was similar in CBR and Sham. During exercise, norepinephrine increased by 432 +/- 124 pg/ml in Sham, but by only 201 +/- 28 pg/ml in CBR. Basal arterial plasma glucose was 108 +/- 2 and 105 +/- 2 mg/dl in CBR and Sham, respectively. Arterial glucose dropped by 10 +/- 3 mg/dl at onset of exercise in CBR (P < 0.01) but was unchanged in Sham (decrease of 3 +/- 2 mg/dl, not significant). Basal glucose kinetics were equal in Sham and CBR. At onset of exercise, R(a) and R(d) were transiently uncoupled in CBR (i.e., R(d) > R(a)) but were closely matched in Sham. In steady-state exercise, R(a) and R(d) were closely matched in both groups. Insulin was equal in the basal period and decreased similarly during exercise. These studies suggest that input from the carotid bodies, or receptors anatomically close to them, 1) is important in control of basal glucagon and the exercise-induced increment in glucagon, 2) is involved in the sympathetic response to exercise, and 3) participates in the non-steady-state coupling of R(a) to R(d), but 4) is not essential to glucoregulation during sustained exercise.
Collapse
Affiliation(s)
- Y Koyama
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Coker RH, Simonsen L, Bülow J, Wasserman DH, Kjaer M. Stimulation of splanchnic glucose production during exercise in humans contains a glucagon-independent component. Am J Physiol Endocrinol Metab 2001; 280:E918-27. [PMID: 11350773 DOI: 10.1152/ajpendo.2001.280.6.e918] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the importance of basal glucagon to the stimulation of net splanchnic glucose output (NSGO) during exercise, seven healthy males performed cycle exercise during a pancreatic islet cell clamp. In one group (BG), glucagon was replaced at basal levels and insulin was adjusted to achieve euglycemia. In another group (GD), only insulin was replaced at the identical rate used in BG, and basal glucagon was not replaced. Exogenous glucose infusion was necessary to maintain euglycemia during exercise in BG and during rest and exercise in GD. Arterial glucagon was at least twofold greater in BG than in GD throughout the pancreatic islet cell clamp. Although basal NSGO remained stable in BG (2.5 +/- 0.5 mg x kg(-1) x min(-1)), basal NSGO dropped by 70% in GD (0.7 +/- 0.3 mg. kg(-1) x min(-1)). NSGO was also greater in BG than in GD at 10 min of moderate exercise, most likely due to the residual effect of basal glucagon replacement. However, NSGO increased slightly and remained similar throughout the remainder of moderate and heavy exercise in BG and GD. Therefore, a mechanism independent of changes in pancreatic hormones and/or the level of glycemia contributes toward modest stimulation of NSGO during moderate and heavy exercise.
Collapse
Affiliation(s)
- R H Coker
- Division of Exercise Science, University of Mississippi, University, Mississippi 38677, USA.
| | | | | | | | | |
Collapse
|
32
|
Coker RH, Lacy DB, Williams PE, Wasserman DH. Hepatic alpha- and beta-adrenergic receptors are not essential for the increase in R(a) during exercise in diabetes. Am J Physiol Endocrinol Metab 2000; 278:E444-51. [PMID: 10710498 DOI: 10.1152/ajpendo.2000.278.3.e444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the role of direct hepatic adrenergic stimulation in the control of endogenous glucose production (R(a)) during moderate exercise in poorly controlled alloxan-diabetic dogs. Chronically catheterized and instrumented (flow probes on hepatic artery and portal vein) dogs were made diabetic by administration of alloxan. Each study consisted of a 120-min equilibration, 30-min basal, 150-min moderate exercise, 30-min recovery, and 30-min blockade test period. Either vehicle (control; n = 6) or alpha (phentolamine)- and beta (propranolol)-adrenergic blockers (HAB; n = 6) were infused in the portal vein. In both groups, epinephrine (Epi) and norepinephrine (NE) were infused in the portal vein during the blockade test period to create suprapharmacological levels at the liver. Isotopic ([3-(3)H]glucose, [U-(14)C]alanine) and arteriovenous difference methods were used to assess hepatic function. Arterial plasma glucose was similar in controls (345 +/- 24 mg/dl) and HAB (336 +/- 23 mg/dl) and was unchanged by exercise. Basal arterial insulin was 5 +/- 1 mU/ml in controls and 4 +/- 1 mU/ml in HAB and fell by approximately 50% during exercise in both groups. Basal arterial glucagon was similar in controls (56 +/- 10 pg/ml) and HAB (55 +/- 7 pg/ml) and rose similarly, by approximately 1.4-fold, with exercise in both groups. Despite greater arterial Epi and NE levels in HAB compared with controls during the basal and exercise periods, exercise-induced increases in catecholamines from basal were similar in both groups. Gluconeogenic conversion from alanine and lactate and the intrahepatic efficiency of this process were increased by twofold during exercise in both groups. R(a) rose similarly by 2.9 +/- 0.7 and 2.7 +/- 1.0 mg. kg(-1). min(-1) at time = 150 min during exercise in controls and HAB. During the blockade test period, arterial plasma glucose and R(a) rose to 454 +/- 43 mg/dl and 11.3 mg. kg(-1). min(-1) in controls, respectively, but were essentially unchanged in HAB. The attenuated response to the blockade test in HAB substantiates the effectiveness of the hepatic adrenergic blockade. In conclusion, these results demonstrate that direct hepatic adrenergic stimulation does not play a role in the stimulation of R(a) during exercise in poorly controlled diabetes.
Collapse
Affiliation(s)
- R H Coker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | | | | | |
Collapse
|
33
|
Coker RH, Koyama Y, Lacy DB, Williams PE, Rhèaume N, Wasserman DH. Pancreatic innervation is not essential for exercise-induced changes in glucagon and insulin or glucose kinetics. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E1122-9. [PMID: 10600803 DOI: 10.1152/ajpendo.1999.277.6.e1122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the role of pancreatic innervation in mediating exercise-induced changes in pancreatic hormone secretion and glucose kinetics. Dogs underwent surgery >16 days before an experiment, at which time flow probes were implanted on the portal vein and the hepatic artery, and Silastic catheters were inserted in the carotid artery, portal vein, and hepatic vein for sampling. In one group of dogs (DP) all nerves and plexuses to the pancreas were sectioned during surgery. A second group of dogs underwent sham denervation (SHAM). Pancreatic tissue norepinephrine was reduced by >98% in DP dogs. Each study consisted of basal (-30 to 0 min) and moderate exercise (0 to 150 min, 100 m/min, 12% grade) periods. Isotope ([3-(3)H]glucose) dilution and arteriovenous differences were used to assess hepatic function. Arterial and portal vein glucagon and insulin concentrations and the rate of net extrahepatic splanchnic glucagon release (NESGR) were similar in DP and SHAM during the basal period. Arterial and portal vein glucagon and NESGR increased similarly in DP and SHAM during exercise. Arterial and portal vein insulin were similar during exercise. Arterial glucose, tracer-determined endogenous glucose production, and net hepatic glucose output were similar in DP and SHAM during the basal and exercise periods. These results demonstrate that pancreatic nerves are not essential to pancreatic hormone secretion or glucose homeostasis during rest or moderate exercise.
Collapse
Affiliation(s)
- R H Coker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Lekas MC, Fisher SJ, El-Bahrani B, van Delangeryt M, Vranic M, Shi ZQ. Glucose uptake during centrally induced stress is insulin independent and enhanced by adrenergic blockade. J Appl Physiol (1985) 1999; 87:722-31. [PMID: 10444633 DOI: 10.1152/jappl.1999.87.2.722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucose utilization increases markedly in the normal dog during stress induced by the intracerebroventricular (ICV) injection of carbachol. To determine the extent to which insulin, glucagon, and selective (alpha/beta)-adrenergic activation mediate the increment in glucose metabolic clearance rate (MCR) and glucose production (R(a)), we used five groups of normal mongrel dogs: 1) pancreatic clamp (PC; n = 7) with peripheral somatostatin (0.8 microg x kg(-1) x min(-1)) and intraportal replacement of insulin (1,482 +/- 84 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)) infusions; 2) PC plus combined alpha (phentolamine)- and beta (propranolol)-blockade (7 and 5 microg x kg(-1) x min(-1), respectively; alpha+beta; n = 5); 3) PC plus alpha-blockade (alpha; n = 6); 4) PC plus beta-blockade (beta; n = 5); and 5) a carbachol control group without PC (Con; n = 10). During ICV carbachol stress (0-120 min), catecholamines, ACTH, and cortisol increased in all groups. Baseline insulin and glucagon levels were maintained in all groups except Con, where glucagon rose 33%, and alpha, where insulin increased slightly but significantly. Stress increased (P < 0.05) plasma glucose in Con, PC, and alpha but decreased it in beta and alpha+beta. The MCR increment was greater (P < 0.05) in beta and alpha+beta than in Con, PC, and alpha. R(a) increased (P < 0.05) in all groups but was attenuated in alpha+beta. Stress-induced lipolysis was abolished in beta (P < 0.05). The marked rise in lactate in Con, PC, and alpha was abolished in alpha+beta and beta. We conclude that the stress-induced increase in MCR is largely independent of changes in insulin, markedly augmented by beta-blockade, and related, at least in part, to inhibition of lipolysis and glycogenolysis, and that R(a) is augmented by glucagon and alpha- and beta-catecholamine effects.
Collapse
Affiliation(s)
- M C Lekas
- Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
35
|
Zinker BA, Allison RG, Lacy DB, Wasserman DH. Interaction of exercise, insulin, and hypoglycemia studied using euglycemic and hypoglycemic insulin clamps. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:E530-42. [PMID: 9142871 DOI: 10.1152/ajpendo.1997.272.4.e530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hyperinsulinemic euglycemic and hypoglycemic clamps were used to study the interaction of exercise, insulin, and hypoglycemia at rest and during exercise in the dog. Sampling (artery and portal, hepatic, and iliac veins) and infusion (vena cava) catheters and a flow probe (external iliac artery) were implanted surgically >16 days before study. After an 18-h fast and an 80-min tracer equilibration period, dogs were studied in the basal state (t = -40 to 0 min) and during a moderate treadmill exercise (t = 0-150 min) period or an equivalent duration sedentary period. Insulin was infused at 1 mU x kg(-1) x min(-1) from t = 0-150 min. In one group of sedentary (n = 7) and one group of exercised (n = 6) dogs, glucose was clamped at basal during the insulin infusion. In another group of sedentary (n = 6) and another group of exercised (n = 6) dogs, arterial glucose was clamped at hypoglycemic levels (approximately 65 mg/dl) during the insulin infusion. Arteriovenous difference and isotopic ([3-(3)H]glucose, [U-(14)C]glucose) techniques were used to assess glucose metabolism. Insulin levels were approximately 40 microU/ml in all groups. Data show that 1) counterregulatory hormone (glucagon, catecholamines, and cortisol) responses to exercise and hypoglycemia combined are synergistically higher than the response to either stimulus alone; 2) exercise-induced increases in insulin action are negated during hypoglycemia by the counterregulatory response; 3) decreased need for exogenous glucose during hypoglycemic compared with euglycemic exercise is due to stimulation of endogenous glucose production, which accounts for approximately 30% of the decrease, and reduction of glucose utilization, which accounts for approximately 70%; and 4) insulin-stimulated nonoxidative glucose metabolism is unaffected by exercise or hypoglycemia, whereas insulin-stimulated oxidative glucose metabolism is selectively increased by exercise and decreased by hypoglycemia. In conclusion, the marked rise in insulin action during exercise is matched, under insulin-induced hypoglycemic conditions, by an equally profound increase in counterregulation. The effectiveness of the potent insulin counterregulatory response may be important in decreasing the magnitude and frequency of exercise-induced hypoglycemia.
Collapse
Affiliation(s)
- B A Zinker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The purpose of our study was to clarify the role of capsaicin-sensitive nerves in the control of plasma catecholamine and glucose concentrations during exercise. In vehicle-treated rats, plasma epinephrine (E) and norepinephrine (NE) levels were significantly higher in animals exercised to exhaustion than in the group sacrificed at rest. However, it was not the case for the neonatally capsaicin-treated animals. The epinephrine and norepinephrine levels were not significantly higher in the capsaicinized animals exercised to exhaustion than in those studied at rest. As a result, plasma epinephrine and norepinephrine levels were higher in control than in capsaicinized exhausted animals. Impairment of capsaicin-sensitive nerves by the neonatal capsaicin treatment prevented the exercise-induced increase of catecholamine output despite a significant decrease in plasma glucose levels and a lower liver glycogen content at rest. We suggest that this impairment of catecholamine output during exercise was caused by depletion of substance P in C-fibers directed to the adrenal medulla. This is supported by the observation of a lower plasma epinephrine level in capsaicin-treated rats. We conclude that C-fibers are therefore involved in the control of catecholamine secretion by the adrenal medulla during exercise to exhaustion. However, such an impairment of catecholamine output was not associated with a further decrease in plasma glucose levels or a shorter time-to-exhaustion. This also suggests that a partial dysfunction of the adrenal medulla is not sufficient to alter exercise endurance and plasma glucose levels.
Collapse
Affiliation(s)
- F Trudeau
- Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Canada
| | | |
Collapse
|
37
|
Kjaer M, Keiding S, Engfred K, Rasmussen K, Sonne B, Kirkegård P, Galbo H. Glucose homeostasis during exercise in humans with a liver or kidney transplant. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:E636-44. [PMID: 7733262 DOI: 10.1152/ajpendo.1995.268.4.e636] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To investigate the role of liver nerve activity on hepatic glucose production during exercise, liver-transplant subjects (LTX, n = 7, 25-62 yr, 4-18 mo postoperative) cycled for 40 min, 20 min at 52 +/- 3% (SE) maximal O2 consumption (VO2max) and 20 min at 83 +/- 1% VO2max, respectively. Kidney-transplant (KTX) and healthy control subjects (C) matched for sex and age exercised at the same %VO2max as LTX. VO2max was lower in both LTX (1.59 +/- 0.12 l/min) and KTX (1.59 +/- 0.07) than in C (2.60 +/- 0.26). At rest plasma renin and insulin were higher and plasma adrenocorticotropic hormone and cortisol lower in transplant corticosteroid-treated subjects compared with C. In LTX, hepatic glucose production (Ra) increased from 11.9 +/- 0.9 (rest) to 17.6 +/- 1.8 and 25.5 +/- 1.8 mumol.min-1.kg-1 at 52 and 82% VO2max, respectively. Peripheral glucose uptake was similar to Ra, and glucose remained at basal postabsorptive levels. During exercise the Ra increase as well as norepinephrine, insulin, and growth hormone responses were similar in LTX compared with both KTX and C. The increase in epinephrine was smaller in LTX than in C, the only group showing an increase in cortisol. The increase in plasma renin activity during exercise was attenuated in KTX compared with LTX and C. During exercise blood lactate rose more and plasma glycerol and free fatty acid levels were lower in LTX and KTX compared with C.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Kjaer
- Department of Internal Medicine TTA, Copenhagen Muscle Research Centre, State University Hospital (Rigshospitalet), Denmark
| | | | | | | | | | | | | |
Collapse
|
38
|
Berger CM, Sharis PJ, Bracy DP, Lacy DB, Wasserman DH. Sensitivity of exercise-induced increase in hepatic glucose production to glucose supply and demand. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:E411-21. [PMID: 7943221 DOI: 10.1152/ajpendo.1994.267.3.e411] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It was hypothesized that the exercise-induced changes in glucoregulatory hormones and glucose production (Ra) occur as a result of a small deficit in glucose availability. To test this, 18-h fasted dogs performed 150 min of treadmill exercise with either the liver as the sole source of glucose (controls, n = 5) or with glucose infused from 0 to 50 min (period 1) and from 100 to 150 min (period 3) at rates designed to track the glucose utilization (Rd) response (ExoGlc, n = 5). The liver alone supplied glucose from 50 to 100 min (period 2). Isotopic and arteriovenous methods were used to assess Ra, Rd, and gluconeogenesis (GNG). Variable [3H]glucose infusion and frequent sampling were used to facilitate Ra measurements. Arterial glucose declined by -3.1 +/- 1.4, -4.3 +/- 2.9, and -6.4 +/- 3.7 mg/dl in periods 1-3 in controls (changes are mean values during each of the 50-min periods; P < 0.05). In ExoGlc, arterial glucose did not deviate from basal in periods 1 (+0.1 +/- 1.8 mg/dl) and 3 (+1.5 +/- 4.5 mg/dl) but fell from basal (P < 0.05) by the same amount as controls in period 2 (-5.7 +/- 2.1 mg/dl). Matching the Rd response with exogenous glucose led to increases in arterial and portal vein plasma insulin levels (P < 0.05) but did not affect glucagon, norepinephrine, epinephrine, and cortisol levels. Ra was elevated by 3.1 +/- 0.5, 4.0 +/- 1.1, and 4.7 +/- 1.1 mg.kg-1.min-1 in periods 1-3 in controls (P < 0.05). In ExoGlc, Ra rose by 0.0 +/- 0.4, 4.1 +/- 1.4 (P < 0.05), and 0.4 +/- 0.7 mg.kg-1.min-1, respectively, in periods 1-3. The rise in Ra was reduced in periods 1 and 3 of ExoGlc compared with controls (P < 0.02). GNG rose to approximately 250% basal in controls and did not respond with any significant difference in ExoGlc. In summary, the exercise-induced increases in counterregulatory hormones and GNG are present even when a deficit in glucose supply is eliminated by an exogenous glucose infusion. In contrast, the fall in insulin and the rise in hepatic glycogenolysis are greatly attenuated. The regulatory components affected by exogenous glucose predominate at the liver as deviations in plasma glucose of approximately 4% correspond to approximately 60% changes in Ra.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C M Berger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | | | | | |
Collapse
|
39
|
Miles PD, Yamatani K, Brown MR, Lickley HL, Vranic M. Intracerebroventricular administration of somatostatin octapeptide counteracts the hormonal and metabolic responses to stress in normal and diabetic dogs. Metabolism 1994; 43:1134-43. [PMID: 7916119 DOI: 10.1016/0026-0495(94)90056-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intracerebroventricular (ICV) injection of carbachol elicits hormonal and metabolic responses similar to moderate stress. In normal dogs, ICV carbachol stimulated marked counterregulatory hormone release, but altered plasma glucose only marginally because the marked increment in glucose production (Ra) was almost matched by the increment of utilization (Rd), even though plasma insulin was unchanged. In alloxan-diabetic dogs, Rd did not match Ra and plasma glucose increased substantially. Since somatostatin octapeptide (ODT8-SS) inhibits some sympathetic mechanisms of the stress response, we explored the extent to which ODT8-SS can alleviate the counterregulatory responses to stress induced by carbachol, and particularly whether it can restore glycemic control in diabetes. ODT8-SS (20 nmol) was ICV-injected (1) in normal dogs (n = 5), and (2) prior to ICV carbachol before (n = 7) and after (n = 6) the induction of alloxan-diabetes. ODT8-SS did not affect basal values, but when administered before ICV carbachol there were no significant increments in plasma epinephrine, cortisol, arginine vasopressin (AVP), insulin, glucose, or lactate. There were significant increases in norepinephrine, glucagon, Ra, Rd, and the glucose metabolic clearance rate (MCR), although they were much smaller than seen previously with ICV carbachol alone. After induction of alloxan-diabetes, Rd and MCR did not change with ICV ODT8-SS and carbachol as in normal dogs, but norepinephrine, epinephrine, glucagon, lactate, plasma glucose, and Ra increased, although with the exception of glucagon these increases were much smaller than seen previously with ICV carbachol alone. ODT8-SS administered before ICV carbachol in normal or diabetic animals resulted in increased free fatty acid (FFA) levels. The increases in glycerol were less than and those in FFA greater than seen previously with ICV carbachol alone. Since ODT8-SS does not alter basal counterregulatory hormone release but suppresses the release during stress, this is a useful probe to analyze some of the metabolic responses to stress. When the response to carbachol from our previous report is compared with the responses to carbachol + ODT8-SS, it is indicated that the stress-related increase in Ra was consistent with stimulation of the sympathetic nervous system, whereas increased Rd is related to an unknown stress-related neuroendocrine mechanism that requires a permissive effect of insulin, since it was not seen in the frankly diabetic animals. We hypothesize that the stress-induced increase in Rd occurs not only in muscle but also in adipocytes, and that the somatostatin-induced attenuation of Rd decreased FFA re-esterification and consequently markedly increased stress-induced FFA release.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P D Miles
- Department of Physiology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
40
|
Zinker BA, Mohr T, Kelly P, Namdaran K, Bracy DP, Wasserman DH. Exercise-induced fall in insulin: mechanism of action at the liver and effects on muscle glucose metabolism. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:E683-9. [PMID: 7911275 DOI: 10.1152/ajpendo.1994.266.5.e683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To determine the importance of the fall in insulin on whole body glucose fluxes and muscle glucose metabolism during exercise, dogs ran on a motorized treadmill for 90 min at a moderate work rate with somatostatin (SRIF) infused to suppress insulin and glucagon and basal (B-INS; n = 6 dogs) or exercise-stimulated (S-INS; n = 8 dogs) insulin replacement. The fall in insulin during exercise potently stimulates glucose production at least in part by potentiating the actions of glucagon. To assess the hepatic effects of insulin in the absence of its potentiating effect on glucagon action, glucagon levels were not restored during SRIF infusion. At least 17 days before experimentation, dogs underwent surgery for chronic placement of sampling (carotid artery and femoral vein) and infusion (inferior vena cava and portal vein) catheters. Hindlimb blood flow was assessed by placement of a Doppler flow cuff on the external iliac artery. Whole body glucose production (Ra) and disappearance (Rd) were assessed with [3-3H]glucose, and hindlimb glucose uptake and metabolism were assessed with arterial-venous differences and [U-14C]glucose. Insulin levels were 69 +/- 6 and 61 +/- 7 pM at rest in B-INS and S-INS and 62 +/- 10 and 41 +/- 6 pM at 30 min of exercise. Glucose levels were clamped at euglycemic levels with an exogenous glucose infusion during rest and exercise in both groups. Exercise-induced increases in Ra, Rd, hindlimb glucose uptake, and hindlimb oxidative and nonoxidative glucose metabolism were not affected by maintenance of basil insulin levels during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B A Zinker
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232-0615
| | | | | | | | | | | |
Collapse
|
41
|
Mendenhall LA, Swanson SC, Habash DL, Coggan AR. Ten days of exercise training reduces glucose production and utilization during moderate-intensity exercise. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:E136-43. [PMID: 8304438 DOI: 10.1152/ajpendo.1994.266.1.e136] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously shown that 12 wk of endurance training reduces the rate of glucose appearance (Ra) during submaximal exercise (Coggan, A. R., W. M. Kohrt, R. J. Spina, D. M. Bier, and J. O. Holloszy. J. Appl. Physiol. 68: 990-996, 1990). The purpose of the present study was to examine the time course of and relationship between training-induced alterations in glucose kinetics and endocrine responses during prolonged exercise. Accordingly, seven men were studied during 2 h of cycle ergometer exercise at approximately 60% of pretraining peak oxygen uptake on three occasions: before, after 10 days, and after 12 wk of endurance training. Ra was determined using a primed, continuous infusion of [6,6-2H]glucose. Ten days of training reduced mean Ra during exercise from 36.9 +/- 3.3 (SE) to 28.5 +/- 3.4 mumol.min-1.kg-1 (P < 0.001). Exercise-induced changes in insulin, C-peptide, glucagon, norepinephrine, and epinephrine were also significantly blunted. After 12 wk of training, Ra during exercise was further reduced to 21.5 +/- 3.1 mumol.min-1.kg-1 (P < 0.001 vs. 10 days), but hormone concentrations were not significantly different from 10-day values. The lower glucose Ra during exercise after short-term (10 days) training is accompanied by, and may be due to, altered plasma concentrations of the major glucoregulatory hormones. However, other adaptations must be responsible for the further reduction in Ra with more prolonged training.
Collapse
Affiliation(s)
- L A Mendenhall
- Exercise Physiology Laboratory, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
42
|
Kjaer M, Engfred K, Fernandes A, Secher NH, Galbo H. Regulation of hepatic glucose production during exercise in humans: role of sympathoadrenergic activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:E275-83. [PMID: 8368297 DOI: 10.1152/ajpendo.1993.265.2.e275] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To investigate the role of sympathoadrenergic activity on glucose production (Ra) during exercise, eight healthy males bicycled 20 min at 41 +/- 2 and 74 +/- 4% maximal O2 uptake (VO2max; mean +/- SE) either without (control; Co) or with blockade of sympathetic nerve activity to liver and adrenal medulla by local anesthesia of the celiac ganglion (Bl). Epinephrine (Epi) was in some experiments infused during blockade to match (normal Epi) or exceed (high Epi) Epi levels during Co. A constant infusion of somatostatin and glucagon was given before and during exercise. At rest, insulin was infused at a rate maintaining euglycemia. During intense exercise, insulin infusion was halved to mimic physiological conditions. During exercise, Ra increased in Co from 14.4 +/- 1.0 to 27.8 +/- 3.0 mumol.min-1.kg-1 (41% VO2max) and to 42.3 +/- 5.2 (74% VO2max; P < 0.05). At 41% VO2max, plasma glucose decreased, whereas it increased during 74% VO2max. Ra was not influenced by Bl. In high Epi, Ra rose more markedly compared with control (P < 0.05), and plasma glucose did not fall during mild exercise and increased more during intense exercise (P < 0.05). Free fatty acid and glycerol concentrations were always lower during exercise with than without celiac blockade. We conclude that high physiological concentrations of Epi can enhance Ra in exercising humans, but normally Epi is not a major stimulus. The study suggests that neither sympathetic liver nerve activity is a major stimulus for Ra during exercise. The Ra response is enhanced by a decrease in insulin and probably by unknown stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Kjaer
- Department of Internal Medicine TTA, University Hospital of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
43
|
Abstract
The purpose of this investigation was to examine the effect of phenylethanolamine N-methyltransferase (PNMT) inhibition on the regulation of peripheral metabolic and hormonal responses during treadmill exercise in the rat. Changes in plasma catecholamine (epinephrine, norepinephrine, and dopamine), glucagon and glucose, and the glycogen content of the liver and two skeletal muscles were studied in four groups of rats. Two groups of rats were studied at rest: one group had been treated with LY134046, an inhibitor of PNMT, and the second group was treated with physiological saline. A third group treated with LY134046 was studied after treadmill exercise (28 m.min-1 and 8% slope). In this group of rats, exhaustion came after 37.5 +/- 7.9 minutes of exercise. In order to make appropriate comparisons, a fourth group of rats treated with physiological saline was exercised for 37.5 min. Running endurance during the treadmill exercise was thus reduced in LY134046-treated rats. Plasma epinephrine and glucagon concentrations and other metabolic (plasma glucose and gastrocnemius lateralis and superficial vastus lateralis muscles and liver glycogen contents) responses were similar between LY134046- and saline-treated rats at rest and after exercise. These results suggest that PNMT inhibition in epinephrine brain neurons might be the principal factor involved in the LY134046-induced reduction of exercise endurance.
Collapse
Affiliation(s)
- F Trudeau
- Ecole de l'activité physique, Université Laurentienne, Sudbury, Ontario, Canada
| | | | | |
Collapse
|
44
|
Burgess WA, Davis JM, Bartoli WP, Woods JA. Failure of low dose carbohydrate feeding to attenuate glucoregulatory hormone responses and improve endurance performance. INTERNATIONAL JOURNAL OF SPORT NUTRITION 1991; 1:338-52. [PMID: 1668907 DOI: 10.1123/ijsn.1.4.338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of ingesting a low dose of CHO on plasma glucose, glucoregulatory hormone responses, and performance during prolonged cycling were investigated. Nine male subjects cycled for 165 min at approximately 67% peak VO2 followed by a two-stage performance ride to exhaustion on two occasions in the laboratory. Every 20 min during exercise, subjects consumed either a flavored water placebo (P) or a dilute carbohydrate beverage (C). Blood samples were collected immediately before, every 20 min throughout, and immediately after exercise. Plasma was analyzed for glucose, lactate, free fatty acids (FFA), and various glucoregulatory hormones. VO2, RER, heart rate, perceived exertion, and exercise performance were also measured. Lactate, FFA, epinephrine, norepinephrine, ACTH, cortisol, and glucagon increased with exercise whereas glucose and insulin decreased (p < or = .05). Except for a small difference in glucose at 158 min of exercise and at exhaustion, no significant differences were found between drinks for any of the variables studied (P > or = .05). Ingestion of 13 g carbohydrate per hour is not sufficient to maintain plasma glucose, attenuate the glucoregulatory hormone response, and improve performance during prolonged moderate intensity cycling.
Collapse
Affiliation(s)
- W A Burgess
- Dept. of Pathology, University of South Carolina School of Medicine, Columbia
| | | | | | | |
Collapse
|
45
|
Wasserman DH, Lacy DB, Colburn CA, Bracy D, Cherrington AD. Efficiency of compensation for absence of fall in insulin during exercise. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 261:E587-97. [PMID: 1951683 DOI: 10.1152/ajpendo.1991.261.5.e587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To assess compensation for the absence of the exercise-induced fall in insulin, dogs underwent 150 min of treadmill exercise with insulin infused intraportally with (IC + Glc; n = 7) or without (IC; n = 6) glucose clamped. Glucose production (Ra), gluconeogenic conversion (Conv), and intrahepatic gluconeogenic efficiency (Eff) were assessed with tracers ([3H]glucose, [14C]alanine) and arteriovenous differences. Glucose fell by 6 +/- 4 and 11 +/- 2 mg/dl at 30 min of exercise and by 8 +/- 2 and 36 +/- 5 mg/dl at 150 min in IC + Glc and IC. Glucagon rose by 16 +/- 8 and 55 +/- 17 pg/ml by 30 min of exercise and by 18 +/- 6 and 93 +/- 22 pg/ml by 150 min in IC + Glc and IC. Norepinephrine was unaffected by the glycemic decrement in IC, whereas epinephrine was greater for the last 60 min of exercise. Ra rose by an average of 0.9 +/- 0.3 and 3.7 +/- 0.2 mg.kg-1.min-1 in IC + Glc and IC. Conv rose by 91 +/- 39 and 325 +/- 75% in IC + Glc and IC at 150 min of exercise, and Eff rose by 87 +/- 57 and 358 +/- 99%. The compensatory Ra exceeded the maximum possible gluconeogenic rate, indicating that glycogenolysis was also stimulated. In summary, in the absence of the exercise-induced fall in insulin 1) glycemia falls approximately fourfold faster; 2) minimal glycemic decrements elicit a large and rapid increase in Ra; 3) this compensation involves a glycogenolytic and gluconeogenic response; 4) the accelerated gluconeogenic rate is due, in large part, to stimulation of Eff; and 5) the compensatory Ra is likely mediated, in part, by glucagon. Hence, although the fall in insulin is essential for normal glucoregulation during exercise, a highly sensitive counterregulatory response prevents severe hypoglycemia. The remarkable sensitivity of the liver to small changes in glycemia implies that the normal coupling of the exercise-induced increase in Ra to glucose utilization may be signaled by small, nearly imperceptible changes in glucose.
Collapse
Affiliation(s)
- D H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | | | | | |
Collapse
|
46
|
Hirsch IB, Marker JC, Smith LJ, Spina RJ, Parvin CA, Holloszy JO, Cryer PE. Insulin and glucagon in prevention of hypoglycemia during exercise in humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:E695-704. [PMID: 2035626 DOI: 10.1152/ajpendo.1991.260.5.e695] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To assess the roles of decrements in insulin and increments in glucagon in the prevention of hypoglycemia during moderate exercise (approximately 60% peak O2 consumption for 60 min), normal young men were studied during somatostatin infusions with insulin and glucagon infused to 1) hold insulin and glucagon levels constant, 2) decrease insulin, 3) increase glucagon, and 4) decrease insulin and increase glucagon during exercise. In contrast to a comparison study (saline infusion), when insulin and glucagon were held constant, glucose production did not increase and plasma glucose decreased from 5.5 +/- 0.2 to 3.4 +/- 0.2 mmol/l (P less than 0.001) initially during exercise. Notably, plasma glucose then plateaued and was 3.3 +/- 0.2 mmol/l at the end of exercise. This decrease was at most only delayed when either insulin was decreased or glucagon was increased independently. However, when insulin was decreased and glucagon was increased simultaneously, there was an initial increase in glucose production, and the glucose level was 4.5 +/- 0.2 mmol/l at 60 min, a value not different from that in the comparison study. Thus we conclude that both decrements in insulin and increments in glucagon play important roles in the prevention of hypoglycemia during exercise and do so by signaling increments in glucose production. However, since hypoglycemia did not develop during exercise when changes in insulin and glucagon were prevented, an additional counterregulatory factor, such as epinephrine, must be involved in the prevention of hypoglycemia during exercise, at least when the primary factors, insulin and glucagon, are inoperative.
Collapse
Affiliation(s)
- I B Hirsch
- Division of Endocrinology, Diabetes and Metabolism, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | | | | | |
Collapse
|
47
|
Marker JC, Hirsch IB, Smith LJ, Parvin CA, Holloszy JO, Cryer PE. Catecholamines in prevention of hypoglycemia during exercise in humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:E705-12. [PMID: 1674642 DOI: 10.1152/ajpendo.1991.260.5.e705] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To assess the role of catecholamines in the prevention of hypoglycemia during moderate exercise (approximately 60% peak O2 consumption for 60 min), normal humans were studied with combined alpha- and beta-adrenergic blockade and with adrenergic blockade while changes in insulin and glucagon were prevented with the islet clamp technique (somatostatin infusion with insulin and glucagon infused at fixed rates). The results were compared with those from an islet clamp alone study. In contrast to a comparison study (saline infusion), adrenergic blockade resulted in a small initial decrease in plasma glucose during exercise, from 5.0 +/- 0.2 to 4.4 +/- 0.2 mmol/l (P less than 0.01), but the level then plateaued. There was a substantial exercise-associated decrement in plasma glucose when insulin and glucagon were held constant, i.e., from 5.5 +/- 0.2 to 3.4 +/- 0.2 mmol/l (P less than 0.0001), but the level again plateaued. However, when insulin and glucagon were held constant and catecholamine actions were blocked simultaneously, progressive hypoglycemia, to 2.6 +/- 0.6 mmol/l (P less than 0.001), developed during exercise. Hypoglycemia was the result of an absent increase in glucose production and an exaggerated initial increase in glucose utilization. Thus we conclude that sympathochromaffin activation plays a minor role when insulin and glucagon are operative, but a catecholamine, probably epinephrine, becomes critical to the prevention of hypoglycemia during exercise when changes in insulin and glucagon do not occur.
Collapse
Affiliation(s)
- J C Marker
- Division of Endocrinology, Diabetes, and Metabolism, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | | | |
Collapse
|
48
|
Mechanism of glucoregulatory responses to stress and their deficiency in diabetes. Proc Natl Acad Sci U S A 1991; 88:1296-300. [PMID: 1996330 PMCID: PMC51004 DOI: 10.1073/pnas.88.4.1296] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During exercise, increased energy demands are met by increased glucose production that occurs simultaneously with the increased glucose uptake. We had previously observed that, during exercise, metabolic clearance rate of glucose (MCR) increases markedly in normal, but only marginally in poorly controlled diabetic dogs. We wished to determine (i) whether in a more general model of stress matched increases in rate of appearance of glucose and MCR also occur, or if MCR is suppressed, as during catecholamine infusion; and (ii) whether diabetes affects stress-induced changes in rate of glucose appearance and MCR. Therefore, we injected carbachol (27 nmol/50 microliters), an analog of acetylcholine, intracerebroventricularly in seven conscious dogs before and after induction of alloxan diabetes. In normal dogs, plasma epinephrine and cortisol increased 4- to 5-fold, whereas norepinephrine and glucagon doubled. Plasma insulin, however, remained unchanged. Tracer-determined hepatic glucose production increased rapidly, but transiently, by 2.5-fold. This increment can be fully explained by the observed increments in the counterregulatory hormones. Surprisingly, however, MCR also promptly increased, and therefore, plasma glucose changed only marginally. After induction of diabetes, the animals were given intracerebroventricular carbachol while plasma glucose was maintained at moderate hyperglycemia (9.0 +/- 0.4 mM). Increments in counterregulatory hormones were similar to those seen in normal dogs, except for exaggerated norepinephrine release. Peripheral insulin levels were higher in diabetic than in normal dogs; however, MCR was markedly reduced and the lipolytic response to stress increased, indicating insulin resistance. Interestingly, the hyperglycemic response to stress was 6-fold greater in diabetic than normal animals, relating mainly to the failure of MCR to rise. Plasma lactate increased equivalently in diabetic and normal animals despite suppression of MCR in the diabetics, indicating either greater muscle glycogenolysis and/or impairment in glucose oxidation. We conclude that in this stress model MCR increases as in exercise in normal but not in diabetic dogs. We speculate that glucose uptake in stress could be mediated through an insulin-dependent neural mechanism.
Collapse
|
49
|
Vranic M, Miles P, Rastogi K, Yamatani K, Shi Z, Lickley L, Hetenyi G. Effect of stress on glucoregulation in physiology and diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 291:161-83. [PMID: 1927681 DOI: 10.1007/978-1-4684-5931-9_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To examine the glucoregulatory responses to stress and their impact on diabetes, we used the following models of stress: A) Hypoglycemia; B) Epinephrine infusion; C) intracerebroventricular (ICV) injection of carbachol, an analog of acetylcholine. A) Hypoglycemia induces release of all counterregulatory hormones. During acute hypoglycemia, glucose production increases initially mainly due to glucagon release but eventually also due to a very large increment in catecholamines. In newborn dogs, neither epinephrine nor glucagon respond to a decrease in plasma glucose. This lack of a safeguard against hypoglycemia may indicate that the brain in pups is less dependent on a normal supply of glucose as a fuel, than in adult dogs. Counterregulation is enhanced when the effects of endogenous opiates are blocked by naloxone, indicating that endogenous opiates play a regulatory role during hypoglycemia. However, beta-endorphins which can be released with epinephrine during various stress situations, potentiate the peripheral effect of epinephrine. Glucoregulatory responses, even to slight changes in plasma glucose, are greatly enhanced during glucocorticoid treatment. This apparently reflects the greater sensitivity of the liver to glucagon. In diabetic dogs, similar to human diabetics, the glucagon response is abolished and the response of the catecholamines is partially decreased. On the basis of histological studies, we proposed that the deficient glucagon response in diabetes could be related to an increase in the somatostatin-glucagon ratio in the diabetic pancreas. This ratio is further augmented when normoglycemia is maintained with insulin. In response to a decrease in plasma glucose, there is a biphasic increment in glucose production in normal dogs, which is missing in diabetes. When normoglycemia is restored in diabetic dogs with phlorizin treatment, the second but not the first increment in glucose production is restored. We postulated, therefore, that the toxic effect of hyperglycemia, in addition to the lack of glucagon response, is the main reason why in diabetes, glucose production cannot respond promptly to a decrease in plasma glucose. The low rate of metabolic clearance of glucose seen in diabetes in the post-absorptive state, also reflects, at least in part, the toxic effect of glucose, because with acute normalization of glucose with phlorizin, metabolic glucose clearance substantially improves. Hyperglycemia is the main reason for the decreased number of glucose transporters in diabetic muscle. B) Epinephrine infusion in normal dogs mimics some effects of stress, in that it increases glucose production, inhibits metabolic glucose clearance and increases lipolysis. These metabolic effects of epinephrine are independent of glucagon release.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Vranic
- Department of Physiology, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Wasserman DH, Williams PE, Lacy DB, Bracy D, Cherrington AD. Hepatic nerves are not essential to the increase in hepatic glucose production during muscular work. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 259:E195-203. [PMID: 2200275 DOI: 10.1152/ajpendo.1990.259.2.e195] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To establish the role of hepatic nerves in hepatic glycogenolytic and gluconeogenic regulation during exercise, dogs underwent a laparotomy during which the hepatic nerves were either left intact (C; n = 8) or cut (DN; n = 5). At least 17 days after surgery, dogs were studied during 150 min of treadmill exercise (12% grade, 100 m/min). Glucose production (Ra) and gluconeogenesis (GNG) were assessed by combining [3-3H]glucose, [U-14C]alanine, and indocyanine green infusions with arterial, portal vein, and hepatic vein sampling. Glucagon and insulin were similar at rest and exercise in both groups. Norepinephrine rose from 145 +/- 10 to 242 +/- 32 pg/ml by 150 min of exercise in C and from 150 +/- 25 to 333 +/- 83 pg/ml in DN. Epinephrine rose from 66 +/- 7 pg/ml at rest to 108 +/- 10 and 148 +/- 24 pg/ml after 30 and 150 min of exercise in C and from 90 +/- 15 pg/ml at rest to 185 +/- 33 (P less than 0.05 compared with C) and 194 +/- 36 pg/ml after 30 and 150 min of exercise in DN. Plasma glucose fell gradually from 108 +/- 2 and 106 +/- 3 mg/dl at rest to 96 +/- 4 and 92 +/- 8 by the end of exercise in C and DN, respectively. Ra was similar in C and DN rising from 3.2 +/- 0.2 to 8.7 +/- 0.6 and 2.6 +/- 0.2 to 7.5 +/- 1.1 mg.kg-1.min-1, respectively, by the end of exercise. Minimum and maximum rates of GNG from alanine, glycerol, and lactate were elevated in DN compared with C during rest and exercise. However, the exercise-induced changes in GNG were similar in both groups. In conclusion, nerves to the liver are not essential to the increased Ra and glucose homeostasis during moderate-intensity exercise.
Collapse
Affiliation(s)
- D H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | | | | | |
Collapse
|