1
|
Tan JM, Upton RN, Foster DJR, Proudman SM, Dhir V, Wiese MD. Pharmacokinetic-pharmacodynamic modelling and simulation of methotrexate dosing in patients with rheumatoid arthritis. Br J Clin Pharmacol 2024; 90:2763-2780. [PMID: 38967300 DOI: 10.1111/bcp.16158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
AIMS To develop a non-linear mixed-effects population pharmacokinetic and pharmacodynamic (PK-PD) model describing the change in the concentration of methotrexate polyglutamates in erythrocytes (ery-MTX-PGn with "n" number of glutamate, representing PK component) and how this relates to modified 28-joint Disease Activity Score incorporating erythrocyte sedimentation rate (DAS-28-3) for rheumatoid arthritis (RA), representing PD component. METHODS An existing PK model was fitted to data from a study consisting of 117 RA patients. The estimation of population PK-PD parameters was performed using stochastic approximation expectation maximisation algorithm in Monolix 2021R2. The model was used to perform Monte Carlo simulations of a loading dose regimen (50mg subcutaneous methotrexate as loading doses, then 20mg weekly oral methotrexate) compared to a standard dosing regimen (10mg weekly oral methotrexate for 2 weeks, then 20mg weekly oral methotrexate). RESULTS Every 40 nmol/L increase in ery-MTX-PG3-5 total concentration correlated with 1-unit reduction in DAS-28-3. Significant covariate effects on the therapeutic response of methotrexate included the use of prednisolone in the first 4 weeks (positive use correlated with 25% reduction in DAS-28-3 when other variables were constant) and patient age (every 10-year increase in age correlated with 3.4% increase in DAS-28-3 when other variables were constant). 4 methotrexate loading doses led to a higher percentage of patients achieving a good/moderate response compared to the standard regimen (Week 4: 87.6% vs. 39.8%; Week 10: 64.7% vs. 57.0%). CONCLUSIONS A loading dose regimen was more likely to achieve higher ery-MTX-PG concentration and better therapeutic response after 4 weeks of methotrexate treatment.
Collapse
Affiliation(s)
- Jiun Ming Tan
- University of South Australia (UniSA: Clinical and Health Sciences, Centre for Pharmaceutical Innovation), Adelaide, South Australia, Australia
| | - Richard N Upton
- Australian Centre for Pharmacometrics, University of South Australia, Adelaide, South Australia, Australia
| | - David J R Foster
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Susanna M Proudman
- Royal Adelaide Hospital, Adelaide (South Australia), Australia. Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Varun Dhir
- Clinical Immunology and Rheumatology Unit, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Michael D Wiese
- University of South Australia (UniSA: Clinical and Health Sciences, Centre for Pharmaceutical Innovation), Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Jesuthasan A, Baheerathan A, Auger S, Dorsey R, Coker R, Selvapatt N, Viegas S. Methotrexate for the neurologist. Pract Neurol 2024; 24:369-375. [PMID: 38821881 DOI: 10.1136/pn-2024-004156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/02/2024]
Abstract
The use of methotrexate in clinical practice has expanded significantly in recent years, as an effective chemotherapeutic agent as well as disease-modifying treatment for conditions such as rheumatoid arthritis, psoriasis and Crohn's disease. It is also used as a steroid-sparing agent for a range of inflammatory diseases of the central and peripheral nervous systems. Clinical neurologists must, therefore, know how to start and uptitrate methotrexate, its monitoring requirements and its potential toxicities. This review aims first to explore the evidence base for using methotrexate in various neurological diseases and second to discuss important practicalities around its use, ensuring its safe application and appropriate monitoring.
Collapse
Affiliation(s)
| | | | - Stephen Auger
- Department of Neurology, Charing Cross Hospital, London, UK
| | - Rachel Dorsey
- Department of Neurology, Charing Cross Hospital, London, UK
| | - Robina Coker
- Department of Respiratory Medicine, Hammersmith Hospital, London, UK
| | | | - Stuart Viegas
- Department of Neurology, Charing Cross Hospital, London, UK
| |
Collapse
|
3
|
Gupta J, Sharma G. Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Deliv Transl Res 2024:10.1007/s13346-024-01684-w. [PMID: 39103593 DOI: 10.1007/s13346-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Gaurang Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
4
|
Nayak RR, Orellana DA. The impact of the human gut microbiome on the treatment of autoimmune disease. Immunol Rev 2024; 325:107-130. [PMID: 38864582 PMCID: PMC11338731 DOI: 10.1111/imr.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Autoimmune (or rheumatic) diseases are increasing in prevalence but selecting the best therapy for each patient proceeds in trial-and-error fashion. This strategy can lead to ineffective therapy resulting in irreversible damage and suffering; thus, there is a need to bring the promise of precision medicine to patients with autoimmune disease. While host factors partially determine the therapeutic response to immunosuppressive drugs, these are not routinely used to tailor therapy. Thus, non-host factors likely contribute. Here, we consider the impact of the human gut microbiome in the treatment of autoimmunity. We propose that the gut microbiome can be manipulated to improve therapy and to derive greater benefit from existing therapies. We focus on the mechanisms by which the human gut microbiome impacts treatment response, provide a framework to interrogate these mechanisms, review a case study of a widely-used anti-rheumatic drug, and discuss challenges with studying multiple complex systems: the microbiome, the human immune system, and autoimmune disease. We consider open questions that remain in the field and speculate on the future of drug-microbiome-autoimmune disease interactions. Finally, we present a blue-sky vision for how the microbiome can be used to bring the promise of precision medicine to patients with rheumatic disease.
Collapse
Affiliation(s)
- Renuka R Nayak
- Rheumatology Division, Department of Medicine, University of California, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Diego A Orellana
- Rheumatology Division, Department of Medicine, University of California, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
5
|
Caracausi M, Ramacieri G, Catapano F, Cicilloni M, Lajin B, Pelleri MC, Piovesan A, Vitale L, Locatelli C, Pirazzoli GL, Strippoli P, Antonaros F, Vione B. The functional roles of S-adenosyl-methionine and S-adenosyl-homocysteine and their involvement in trisomy 21. Biofactors 2024; 50:709-724. [PMID: 38353465 DOI: 10.1002/biof.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 08/09/2024]
Abstract
The one-carbon metabolism pathway is involved in critical human cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. In the homocysteine-methionine cycle S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are synthetized, and their levels are finely regulated to ensure proper functioning of key enzymes which control cellular growth and differentiation. Here we review the main biological mechanisms involving SAM and SAH and the known related human diseases. It was recently demonstrated that SAM and SAH levels are altered in plasma of subjects with trisomy 21 (T21) but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. This review aims at providing an overview of the biological mechanisms which are altered in response to changes in the levels of SAM and SAH observed in DS.
Collapse
Affiliation(s)
- Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Speciality School of Child Neuropsychiatry-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bassam Lajin
- Institute of Chemistry, ChromICP, University of Graz, Graz, Austria
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Zarou MM, Rattigan KM, Sarnello D, Shokry E, Dawson A, Ianniciello A, Dunn K, Copland M, Sumpton D, Vazquez A, Helgason GV. Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing. Nat Commun 2024; 15:1931. [PMID: 38431691 PMCID: PMC10908830 DOI: 10.1038/s41467-024-46114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.
Collapse
Affiliation(s)
- Martha M Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Engy Shokry
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Amy Dawson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Alexei Vazquez
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
7
|
Hartung S, Herden C, Sparenberg M, Henrich M. In vitro chemosensitivity testing of the feline large granular lymphocyte cell line (S87). Vet Med Sci 2024; 10:e1350. [PMID: 38373050 PMCID: PMC10876096 DOI: 10.1002/vms3.1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Feline large granular lymphocyte (LGL) lymphoma is an aggressive neoplasia characterised by short survival and poor response to chemotherapy. OBJECTIVES In this study, the effect of different chemotherapeutic agents on the growth kinetics of the feline cell line S87, a non-MHC-restricted feline LGL cell line, was investigated. Where possible, IC50 (inhibitory concentration 50) values were determined. The IC50 values of the cell line as lymphoma models can provide clues to the situation in vivo and serve as a basis for studying resistance mechanisms. METHODS Cells were incubated with various concentrations of vincristine, doxorubicin, 4-hydroperoxycyclophosphamide, prednisolone, methotrexate and L-asparaginase for 24 and 48 h, respectively. RESULTS The IC50 values could be determined as 14.57 (7.49-28.32) μg/mL at 24 h incubation and 5.72 (4.05-8.07) μg/mL at 48 h incubation for doxorubicin and 9.12 (7.72-10.76) μg/mL at 24 h incubation and 4.53 (3.74-5.47) μg/mL at 48 h incubation for 4-hydroperpoxycyclophosphamide. Treatment with vincristine and methotrexate resulted in relatively high cell resistance whereas L-asparaginase and prednisolone treatment led to a reduction in cell number compared to control while cell viability was not affected (cytostatic effect). CONCLUSION Overall, the feline LGL cell line S87 proves to be relatively sensitive to doxorubicin and 4-hydroperoxycyclophosphamide and relatively resistant to treatment with vincristine, prednisolone, methotrexate and L-asparaginase. The results of this study can be used for further investigations on resistance mechanisms in feline LGL lymphoma. Doxorubicin and cyclophosphamide can be interpreted as promising candidates for the therapy of feline LGL lymphomas.
Collapse
Affiliation(s)
- Svenja Hartung
- Faculty of Veterinary MedicineInstitute of Veterinary PathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Christiane Herden
- Faculty of Veterinary MedicineInstitute of Veterinary PathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Marion Sparenberg
- Unit for Biomathematics and Data ProcessingFaculty of Veterinary MedicineJustus‐Liebig‐University GiessenGiessenGermany
| | - Manfred Henrich
- Faculty of Veterinary MedicineInstitute of Veterinary PathologyJustus‐Liebig‐University GiessenGiessenGermany
| |
Collapse
|
8
|
Kanatoula DD, Bodner E, Ghoreschi K, Meier K, Solimani F. Non-biologic immunosuppressive drugs for inflammatory and autoimmune skin diseases. J Dtsch Dermatol Ges 2024; 22:400-421. [PMID: 38259085 DOI: 10.1111/ddg.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 01/24/2024]
Abstract
Non-biologic immunosuppressive drugs, such as azathioprine, dapsone or methotrexate are fundamental treatment options for a wide range of autoimmune and chronic inflammatory skin diseases. Some of these drugs were initially used for malignancies (e.g., azathioprine or methotrexate) or infectious diseases (e.g., hydroxychloroquine or dapsone) but are nowadays mostly used for their immunosuppressive/immunomodulating action. Although dermatologists have years of clinical experience with these drugs, some of the mechanisms of action are not fully understood and are the subject of research. Although these drugs are commonly used, lack of experience or knowledge regarding their safety profiles and management leads to skepticism among physicians. Here, we summarize the mechanism of action and detailed management of adverse effects of the most commonly used immunosuppressive drugs for skin diseases. Furthermore, we discuss the management of these drugs during pregnancy and breastfeeding, as well as their interaction and handling during vaccination.
Collapse
Affiliation(s)
- Danai Dionysia Kanatoula
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Euna Bodner
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina Meier
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
9
|
Kanatoula DD, Bodner E, Ghoreschi K, Meier K, Solimani F. Nicht-Biologika-Immunsuppressiva bei entzündlichen und autoimmunen Hautkrankheiten: Non-biologic immunosuppressive drugs for inflammatory and autoimmune skin diseases. J Dtsch Dermatol Ges 2024; 22:400-423. [PMID: 38450929 DOI: 10.1111/ddg.15270_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 03/08/2024]
Abstract
ZusammenfassungNicht‐Biologika‐Immunsuppressiva wie Azathioprin, Dapson oder Methotrexat sind grundlegende Behandlungsmöglichkeiten für ein breites Spektrum von Autoimmunerkrankungen und chronisch‐entzündlichen Hauterkrankungen. Einige dieser Medikamente wurden ursprünglich bei malignen Erkrankungen (zum Beispiel Azathioprin oder Methotrexat) oder Infektionskrankheiten (zum Beispiel Hydroxychloroquin oder Dapson) eingesetzt, werden aber heute hauptsächlich wegen ihrer immunsuppressiven/immunmodulierenden Wirkung verwendet. Obwohl Dermatologen über jahrelange klinische Erfahrung mit diesen Arzneimitteln verfügen, sind einige der Wirkmechanismen noch nicht vollständig geklärt und noch Gegenstand der Forschung. Obwohl diese Medikamente häufig eingesetzt werden, führen mangelnde Erfahrung oder fehlendes Wissen über ihre Sicherheitsprofile und ihr Management zu einer skeptischen Haltung bei den Ärzten. Hier fassen wir den Wirkmechanismus und das detaillierte Management der Nebenwirkungen der am häufigsten verwendeten immunsuppressiven Medikamente für Hautkrankheiten zusammen. Darüber hinaus diskutieren wir den Umgang mit diesen Medikamenten während der Schwangerschaft und Stillzeit sowie ihre Wechselwirkung und Handhabung im Zusammenhang mit Impfungen.
Collapse
Affiliation(s)
- Danai Dionysia Kanatoula
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Euna Bodner
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Kamran Ghoreschi
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Katharina Meier
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Farzan Solimani
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
- BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité - Universitätsmedizin Berlin
| |
Collapse
|
10
|
Rana S, Dranchak P, Dahlin JL, Lamy L, Li W, Oliphant E, Shrimp JH, Rajacharya GH, Tharakan R, Holland DO, Whitten AS, Wilson KM, Singh PK, Durum SK, Tao D, Rai G, Inglese J. Methotrexate-based PROTACs as DHFR-specific chemical probes. Cell Chem Biol 2024; 31:221-233.e14. [PMID: 37875111 PMCID: PMC10922102 DOI: 10.1016/j.chembiol.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.
Collapse
Affiliation(s)
- Sandeep Rana
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Patricia Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Jayme L Dahlin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Laurence Lamy
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Wenqing Li
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Erin Oliphant
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Jonathan H Shrimp
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Girish H Rajacharya
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ravi Tharakan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - David O Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Apryl S Whitten
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Pankaj K Singh
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; OU Health Stephenson Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Scott K Durum
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Dingyin Tao
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA.
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA; Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Fischer JM, Lertkovit O, Howard SC, Assanasen C, Bleyer A. Severe Methotrexate Toxicity Following a Capizzi Cycle in an Obese Adolescent With Acute Lymphoblastic Leukemia and Hepatic Steatosis. J Pediatr Hematol Oncol 2024; 46:e107-e110. [PMID: 37916829 DOI: 10.1097/mph.0000000000002771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Methotrexate is a major component of pediatric leukemia treatment. While toxicities are common after high-dose methotrexate, escalating dose methotrexate (Capizzi methotrexate) is typically well-tolerated. We report an adolescent Hispanic female with pre-B acute lymphoblastic leukemia, preexisting obesity and hepatic steatosis who developed severe multiorgan failure following an escalating dose of methotrexate with delayed methotrexate excretion of 11 days. We identified one similar report in an obese adult; however, this case is the first to our knowledge involving a pediatric patient. With the rising incidence of obesity and associated comorbidities among children and adolescents with leukemia, attention to potential risks for this population is warranted.
Collapse
Affiliation(s)
- Julie M Fischer
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Texas Health Science Center at San Antonio
| | - Oranooj Lertkovit
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Scott C Howard
- University of Tennessee Health Science Center, Memphis, TN
| | - Chatchawin Assanasen
- University of Texas Health Science Center at San Antonio, Joe R. & Teresa Lozano-Long School of Medicine, San Antonio, TX
| | - Archie Bleyer
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| |
Collapse
|
12
|
Vermeer E, Hebing RCF, van de Meeberg MM, Lin M, de Meij TGJ, Struys EA, Jansen G, Nurmohamed MT, Ćalasan MB, de Jonge R. Oral Versus Subcutaneous Methotrexate in Immune-Mediated Inflammatory Disorders: an Update of the Current Literature. Curr Rheumatol Rep 2023; 25:276-284. [PMID: 37768405 PMCID: PMC10754736 DOI: 10.1007/s11926-023-01116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE This review aims to critically evaluate the potential benefit of either oral or subcutaneous administration of methotrexate (MTX) in various immune-mediated inflammatory disorders (IMIDs) through analysis of efficacy, toxicity, pharmacokinetics and pharmacodynamics of both administration routes. RECENT FINDINGS Recent studies comparing the efficacy of oral versus subcutaneous MTX administration in IMIDs have revealed contradicting results. Some reported higher efficacy with subcutaneous administration, while others found no significant difference. Regarding toxicity, some studies have challenged the notion that subcutaneous administration is better tolerated than oral administration, while others have supported this. Pharmacokinetic studies suggest higher plasma bioavailability and increased accumulation of MTX-polyglutamates (MTX-PGs) in red blood cells (RBCs) with subcutaneous administration during the initial treatment phase. However, after several months, similar intracellular drug levels are observed with both administration routes. There is no conclusive evidence supporting the superiority of either oral or subcutaneous MTX administration in terms of efficacy and adverse events in IMIDs. Subcutaneous administration leads to higher plasma bioavailability and initial accumulation of MTX-PGs in RBCs, but the difference seems to disappear over time. Given the variable findings, the choice of administration route may be based on shared decision-making, offering patients the option of either oral or subcutaneous administration of MTX based on individual preferences and tolerability. Further research is needed to better understand the impact of MTX-PGs in various blood cells and TDM on treatment response and adherence to MTX therapy.
Collapse
Affiliation(s)
- Eva Vermeer
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Amsterdam, the Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Renske C F Hebing
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam, the Netherlands
- Reade, Amsterdam Rheumatology and Immunology Centre, Amsterdam, the Netherlands
| | | | - Marry Lin
- Department of Laboratory Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Tim G J de Meij
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Eduard A Struys
- Department of Laboratory Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Michael T Nurmohamed
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam, the Netherlands
- Reade, Amsterdam Rheumatology and Immunology Centre, Amsterdam, the Netherlands
| | - Maja Bulatović Ćalasan
- Department of Laboratory Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Rheumatology and Clinical Immunology, UMC Utrecht, Utrecht, the Netherlands
| | - Robert de Jonge
- Department of Laboratory Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Karpa V, Kalinderi K, Fidani L, Tragiannidis A. Association of microRNA Polymorphisms with Toxicities Induced by Methotrexate in Children with Acute Lymphoblastic Leukemia. Hematol Rep 2023; 15:634-650. [PMID: 37987321 PMCID: PMC10660515 DOI: 10.3390/hematolrep15040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Methotrexate (MTX), a structurally related substance to folic acid, is an important chemotherapeutic agent used for decades in the treatment of pediatric acute lymphoblastic leukemia (ALL) and other types of cancer as non-Hodgkin lymphomas and osteosarcomas. Despite the successful outcomes observed, the primary drawback is the variability in the pharmacokinetics and pharmacodynamics between patients. The main adverse events related to its use are nephrotoxicity, mucositis, and myelosuppression, especially when used in high doses. The potential adverse reactions and toxicities associated with MTX are a cause for concern and may lead to dose reduction or treatment interruption. Genetic variants in MTX transport genes have been linked to toxicity. Pharmacogenetic studies conducted in the past focused on single nucleotide polymorphisms (SNPs) in the coding and 5'-regulatory regions of genes. Recent studies have demonstrated a significant role of microRNAs (miRNAs) in the transport and metabolism of drugs and in the regulation of target genes. In the last few years, the number of annotated miRNAs has continually risen, in addition to the studies of miRNA polymorphisms and MTX toxicity. Therefore, the objective of the present study is to investigate the role of miRNA variants related to MTX adverse effects.
Collapse
Affiliation(s)
- Vasiliki Karpa
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Athanasios Tragiannidis
- Pediatric & Adolescent Hematology-Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, S. Kiriakidi 1, 54636 Thessaloniki, Greece;
| |
Collapse
|
14
|
Shamshina JL, Rogers RD. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev 2023; 123:11894-11953. [PMID: 37797342 DOI: 10.1021/acs.chemrev.3c00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, Texas 79409, United States
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|
15
|
Vione B, Ramacieri G, Zavaroni G, Piano A, La Rocca G, Caracausi M, Vitale L, Piovesan A, Gori C, Pirazzoli GL, Strippoli P, Cocchi G, Corvaglia L, Locatelli C, Pelleri MC, Antonaros F. One-carbon pathway metabolites are altered in the plasma of subjects with Down syndrome: Relation to chromosomal dosage. Front Med (Lausanne) 2022; 9:1006891. [PMID: 36530924 PMCID: PMC9751312 DOI: 10.3389/fmed.2022.1006891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
Introduction Down syndrome (DS) is the most common chromosomal disorder and it is caused by trisomy of chromosome 21 (Hsa21). Subjects with DS show a large heterogeneity of phenotypes and the most constant clinical features present are typical facies and intellectual disability (ID). Several studies demonstrated that trisomy 21 causes an alteration in the metabolic profile, involving among all the one-carbon cycle. Methods We performed enzyme-linked immunosorbent assays (ELISAs) to identify the concentration of 5 different intermediates of the one-carbon cycle in plasma samples obtained from a total of 164 subjects with DS compared to 54 euploid subjects. We investigated: tetrahydrofolate (THF; DS n = 108, control n = 41), 5-methyltetrahydrofolate (5-methyl-THF; DS n = 140, control n = 34), 5-formyltetrahydrofolate (5-formyl-THF; DS n = 80, control n = 21), S-adenosyl-homocysteine (SAH; DS n = 94, control n = 20) and S-adenosyl-methionine (SAM; DS n = 24, control n = 15). Results Results highlight specific alterations of THF with a median concentration ratio DS/control of 2:3, a decrease of a necessary molecule perfectly consistent with a chromosomal dosage effect. Moreover, SAM and SAH show a ratio DS/control of 1.82:1 and 3.6:1, respectively. Discussion The relevance of these results for the biology of intelligence and its impairment in trisomy 21 is discussed, leading to the final proposal of 5-methyl-THF as the best candidate for a clinical trial aimed at restoring the dysregulation of one-carbon cycle in trisomy 21, possibly improving cognitive skills of subjects with DS.
Collapse
Affiliation(s)
- Beatrice Vione
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giacomo Zavaroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Angela Piano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Giorgia La Rocca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Caterina Gori
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | | | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Kolan SS, Li G, Grimolizzi F, Sexton J, Goll G, Kvien TK, Sundlisæter NP, Zucknick M, Lillegraven S, Haavardsholm EA, Skålhegg BS. Identification of SNPs associated with methotrexate treatment outcomes in patients with early rheumatoid arthritis. Front Pharmacol 2022; 13:1075603. [PMID: 36467057 PMCID: PMC9714492 DOI: 10.3389/fphar.2022.1075603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 10/06/2024] Open
Abstract
Methotrexate is one of the cornerstones of rheumatoid arthritis (RA) therapy. Genetic factors or single nucleotide polymorphisms (SNPs) are responsible for 15%-30% of the variation in drug response. Identification of clinically effective SNP biomarkers for predicting methotrexate (MTX) sensitivity has been a challenge. The aim of this study was to explore the association between the disease related outcome of MTX treatment and 23 SNPs in 8 genes of the MTX pathway, as well as one pro-inflammatory related gene in RA patients naïve to MTX. Categorical outcomes such as Disease Activity Score (DAS)-based European Alliance of Associations for Rheumatology (EULAR) non-response at 4 months, The American College of Rheumatology and EULAR (ACR/EULAR) non-remission at 6 months, and failure to sustain MTX monotherapy from 12 to 24 months were assessed, together with continuous outcomes of disease activity, joint pain and fatigue. We found that the SNPs rs1801394 in the MTRR gene, rs408626 in DHFR gene, and rs2259571 in AIF-1 gene were significantly associated with disease activity relevant continuous outcomes. Additionally, SNP rs1801133 in the MTHFR gene was identified to be associated with improved fatigue. Moreover, associations with p values at uncorrected significance level were found in SNPs and different categorical outcomes: 1) rs1476413 in the MTHFR gene and rs3784864 in ABCC1 gene are associated with ACR/EULAR non-remission; 2) rs1801133 in the MTHFR gene is associated with EULAR response; 3) rs246240 in the ABCC1 gene, rs2259571 in the AIF-1 gene, rs2274808 in the SLC19A1 gene and rs1476413 in the MTHFR gene are associated with failure to MTX monotherapy after 12-24 months. The results suggest that SNPs in genes associated with MTX activity may be used to predict MTX relevant-clinical outcomes in patients with RA.
Collapse
Affiliation(s)
- Shrikant S. Kolan
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gaoyang Li
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Franco Grimolizzi
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joe Sexton
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Guro Goll
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Tore K. Kvien
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nina Paulshus Sundlisæter
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Siri Lillegraven
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
- Department of Health Management and Health Economics, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Espen A. Haavardsholm
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Pedersen LH, Østergaard A, Bank V, Nersting J, Tuckuviene R, Wehner PS, Albertsen BK, Degn M, Als-Nielsen BET, Larsen HB, Schmiegelow K, Dalton SO. Socioeconomic position and maintenance therapy in children with acute lymphoblastic leukemia: A national cohort study. Pediatr Blood Cancer 2022; 69:e29508. [PMID: 34931732 DOI: 10.1002/pbc.29508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Socioeconomic differences in survival among children with acute lymphoblastic leukemia (ALL) have been reported in high-income countries and there is an unmet need for strategies to identify vulnerable patient subgroups. Reported differences in survival for children from families with different socioeconomic positions seem to arise when starting maintenance therapy. This could reflect reduced physician's compliance or family adherence to maintenance therapy. METHODS This nationwide cohort study with extensive monitoring of systemic methotrexate (MTX)/6-mercaptopurine (6MP) dosing and metabolite levels, retrospectively investigated 173 Danish children treated according to The Nordic Society for Pediatric Hematology and Oncology ALL2008 protocol from 2008 to 2016. RESULTS Significantly lower prescribed doses of MTX and 6MP were seen in the children in families with short parental education (short vs. medium vs. higher education: mMTX: 13.8, 16.2, and 18.6 mg/m2 /week; p < .01; m6MP: 47.4, 64.9, and 66.1 mg/m2 /day; p = .03) or parents unemployed/not in workforce (unemployed/not in workforce vs. mixed vs. at work: mMTX: 15.0, 19.9, and 17.2 mg/m2 /week; p < .01; m6MP: 54.8, 72.0, and 65.1 mg/m2 /day; p < .01). When assessing family adherence by analyzing MTX and 6MP metabolite levels, including per prescribed dose of MTX and 6MP, we found no significant differences by levels of parental education, affiliation to work market, or income (p > .05 for all comparisons). CONCLUSIONS These results indicate that inferior physician compliance to protocol recommendations on drug dosage rather than families' adherence to therapy may contribute to the association between socioeconomic position and cure rates in childhood ALL, although precise mechanisms remain to be explored.
Collapse
Affiliation(s)
- Line Hjøllund Pedersen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.,Survivorship and Inequality in Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anna Østergaard
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Faculty of Medicine, Utrecht University, Utrecht, Netherlands
| | - Victoria Bank
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Nersting
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Ruta Tuckuviene
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark
| | - Peder Skov Wehner
- Department of Pediatric Hematology and Oncology, Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Birgitte Klug Albertsen
- Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Matilda Degn
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | | | - Hanne Baekgaard Larsen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Oksbjerg Dalton
- Survivorship and Inequality in Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Clinical Oncology & Palliative Care, Zealand University Hospital, Naestved, Denmark
| |
Collapse
|
18
|
Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations. Leukemia 2022; 36:1749-1758. [PMID: 35654820 PMCID: PMC9252897 DOI: 10.1038/s41375-022-01591-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/21/2023]
Abstract
Maintenance therapy (MT) with oral methotrexate (MTX) and 6-mercaptopurine (6-MP) is essential for the cure of acute lymphoblastic leukemia (ALL). MTX and 6-MP interfere with nucleotide synthesis and salvage pathways. The primary cytotoxic mechanism involves the incorporation of thioguanine nucleotides (TGNs) into DNA (as DNA-TG), which may be enhanced by the inhibition of de novo purine synthesis by other MTX/6-MP metabolites. Co-medication during MT is common. Although Pneumocystis jirovecii prophylaxis appears safe, the benefit of glucocorticosteroid/vincristine pulses in improving survival and of allopurinol to moderate 6-MP pharmacokinetics remains uncertain. Numerous genetic polymorphisms influence the pharmacology, efficacy, and toxicity (mainly myelosuppression and hepatotoxicity) of MTX and thiopurines. Thiopurine S-methyltransferase (encoded by TPMT) decreases TGNs but increases methylated 6-MP metabolites (MeMPs); similarly, nudix hydrolase 15 (encoded by NUDT15) also decreases TGNs available for DNA incorporation. Loss-of-function variants in both genes are currently used to guide MT, but do not fully explain the inter-patient variability in thiopurine toxicity. Because of the large inter-individual variations in MTX/6-MP bioavailability and metabolism, dose adjustments are traditionally guided by the degree of myelosuppression, but this does not accurately reflect treatment intensity. DNA-TG is a common downstream metabolite of MTX/6-MP combination chemotherapy, and a higher level of DNA-TG has been associated with a lower relapse hazard, leading to the development of the Thiopurine Enhanced ALL Maintenance (TEAM) strategy-the addition of low-dose (2.5-12.5 mg/m2/day) 6-thioguanine to the 6-MP/MTX backbone-that is currently being tested in a randomized ALLTogether1 trial (EudraCT: 2018-001795-38). Mutations in the thiopurine and MTX metabolism pathways, and in the mismatch repair genes have been identified in early ALL relapses, providing valuable insights to assist the development of strategies to detect imminent relapse, to facilitate relapse salvage therapy, and even to bring about changes in frontline ALL therapy to mitigate this relapse risk.
Collapse
|
19
|
Beusch CM, Sabatier P, Zubarev RA. Ion-Based Proteome-Integrated Solubility Alteration Assays for Systemwide Profiling of Protein-Molecule Interactions. Anal Chem 2022; 94:7066-7074. [PMID: 35506705 PMCID: PMC9118197 DOI: 10.1021/acs.analchem.2c00391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Unbiased drug target
engagement deconvolution and mechanism of
action elucidation are major challenges in drug development. Modification-free
target engagement methods, such as thermal proteome profiling, have
gained increasing popularity in the last several years. However, these
methods have limitations, and, in any case, new orthogonal approaches
are needed. Here, we present a novel isothermal method for comprehensive
characterization of protein solubility alterations using the effect
on protein solubility of cations and anions in the Hofmeister series.
We combine the ion-based protein precipitation approach with Proteome-Integrated
Solubility Alteration (PISA) analysis and use this I-PISA assay to
delineate the targets of several anticancer drugs both in cell lysates
and intact cells. Finally, we demonstrate that I-PISA can detect solubility
changes in minute amounts of sample, opening chemical proteomics applications
to small and rare biological material.
Collapse
Affiliation(s)
- Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Roman A Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119146, Russia.,The National Medical Research Centre for Endocrinology, Moscow 115478, Russia
| |
Collapse
|
20
|
Salamoun YM, Polireddy K, Cho YK, Medcalf MR, Funk RS. Methotrexate Disposition, Anti-Folate Activity, and Metabolomic Profiling to Identify Molecular Markers of Disease Activity and Drug Response in the Collagen-Induced Arthritis Mouse Model. Metabolites 2021; 12:metabo12010024. [PMID: 35050146 PMCID: PMC8780148 DOI: 10.3390/metabo12010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Methotrexate (MTX) is widely used in the treatment of autoimmune arthritis but is limited by its unpredictable and variable response profile. Currently, no biomarkers exist to predict or monitor early therapeutic responses to MTX. Using a collagen-induced arthritis (CIA) mouse model, this study aimed to identify biochemical pathways and biomarkers associated with MTX efficacy in autoimmune arthritis. Following arthritis disease induction, DBA/1J mice were treated with subcutaneous MTX (20 mg/kg/week) and disease activity was assessed based on disease activity scores (DAS) and paw volume (PV) measurements. Red blood cell (RBC) and plasma samples were collected at the end of the study and were assessed for folate and MTX content. Plasma samples were analyzed by semitargeted global metabolomic profiling and analyzed by univariate and multivariate analysis. Treatment with MTX was associated with significant reductions in disease activity based on both DAS (p = 0.0006) and PV (p = 0.0006). MTX therapy resulted in significant reductions in 5-methyltetrahydrofolate (5mTHF) levels in plasma (p = 0.02) and RBCs (p = 0.001). Reductions in both RBC and plasma 5mTHF were associated with lower DAS (p = 0.0007, p = 0.01, respectively) and PV (p = 0.001, p = 0.005, respectively). Increases in RBC MTX were associated with lower DAS (p = 0.003) but not PV (p = 0.23). Metabolomic analysis identified N-methylisoleucine (NMI) and quinolone as metabolites significantly altered in disease mice, which were corrected towards healthy control levels in mice treated with MTX. Reductions in plasma NMI were associated with lower DAS (p = 0.0002) and PV (p = 9.5 × 10-6). Increases in plasma quinolone were associated with lower DAS (p = 0.02) and PV (p = 0.01). Receiver-operating characteristic curve analysis identified plasma NMI (AUC = 1.00, p = 2.4 × 10-8), RBC 5mTHF (AUC = 0.99, p = 2.4 × 10-5), and plasma quinolone (AUC = 0.89, p = 0.01) as top discriminating metabolites of MTX treatment. Our data support a relationship between MTX efficacy and its effect on circulating folates and identified 5mTHF, NMI, and quinolone as potential therapeutic biomarkers of disease activity and MTX response in the CIA mouse model of autoimmune arthritis.
Collapse
Affiliation(s)
- Yezan M. Salamoun
- Department of Pharmacy Practice, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.P.); (Y.K.C.); (M.R.M.)
- Correspondence: (Y.M.S.); (R.S.F.); Tel.: +1-913-945-6904 (Y.M.S. & R.S.F.)
| | - Kishore Polireddy
- Department of Pharmacy Practice, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.P.); (Y.K.C.); (M.R.M.)
| | - Yu Kyoung Cho
- Department of Pharmacy Practice, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.P.); (Y.K.C.); (M.R.M.)
| | - Matthew R. Medcalf
- Department of Pharmacy Practice, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.P.); (Y.K.C.); (M.R.M.)
| | - Ryan S. Funk
- Department of Pharmacy Practice, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.P.); (Y.K.C.); (M.R.M.)
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: (Y.M.S.); (R.S.F.); Tel.: +1-913-945-6904 (Y.M.S. & R.S.F.)
| |
Collapse
|
21
|
Van Lint JA, Bakker T, Ten Klooster PM, van Puijenbroek EP, Vonkeman HE, Jessurun NT. Neuropsychiatric adverse drug reactions associated with low dose methotrexate in rheumatoid arthritis patients. Expert Opin Drug Saf 2021; 21:417-423. [PMID: 34739327 DOI: 10.1080/14740338.2022.2003328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Neuropsychiatric adverse drug reactions (NPADRs) are not commonly associated with low dose methotrexate (LDMTX) in patients with rheumatoid arthritis (RA). RESEARCH DESIGN AND METHODS In this case series assessment, we described the nature and frequency of NPADRs with LDMTX in the Dutch DREAM-RA registry, including causality of NPADRs, the impact on further LDMTX treatment and the impact on patient reported Health Related Quality of Life (HRQoL). RESULTS A total of 71 NPADRs (frequency 6.8%) associated with LDMTX were captured in the DREAM-RA registry. NPADRs were registered for 62 (5.9%) out of 1048 patients with 10.9 NPADRs per 1000 patient years. Headache, dizziness and depression were most frequently reported. The causality was considered probable for 67 NPADRs (94.4%) and definite for 1 NPADR (1.4%). NPADRs led to LDMTX withdrawal in 34 cases (47.9%) and was not restarted in 16 cases (47.1%). Median mental HRQoL was significantly decreased around the occurrence of the NPADR and remained significantly lower after the event. Median physical HRQoL was not significantly affected. CONCLUSIONS Knowledge on the nature, frequency and impact of the demonstrated NPADRs during LDMTX therapy will enhance attention toward these potential ADRs allowing better risk assessment and communication to patients.
Collapse
Affiliation(s)
- Jette A Van Lint
- Netherlands Pharmacovigilance Centre Lareb, 'S-Hertogenbosch, The Netherlands
| | - Tom Bakker
- Netherlands Pharmacovigilance Centre Lareb, 'S-Hertogenbosch, The Netherlands
| | - Peter M Ten Klooster
- Transparency in Healthcare B.V, Hengelo, The Netherlands.,Department of Psychology, Health & Technology, University of Twente, Enschede, The Netherlands
| | - Eugene P van Puijenbroek
- Netherlands Pharmacovigilance Centre Lareb, 'S-Hertogenbosch, The Netherlands.,Pharmacotherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Harald E Vonkeman
- Department of Psychology, Health & Technology, University of Twente, Enschede, The Netherlands.,Department of Rheumatology and Clinical Immunology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Naomi T Jessurun
- Netherlands Pharmacovigilance Centre Lareb, 'S-Hertogenbosch, The Netherlands
| |
Collapse
|
22
|
Rajšić I, Lazarević S, Đanić M, Al-Salami H, Mooranian A, Vukmirović S, Mikov M, Goločorbin-Kon S. Plasma Distribution of Methotrexate and Its Polyglutamates in Pediatric Acute Lymphoblastic Leukemia: Preliminary Insights. Eur J Drug Metab Pharmacokinet 2021; 47:127-134. [PMID: 34637107 DOI: 10.1007/s13318-021-00726-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE High-dose methotrexate (HD-MTX) is the mainstream therapy of current acute lymphoblastic leukemia (ALL) regimens, but frequent intra- and interindividual differences in the clinical response to HD-MTX lead to chemotherapeutic interruption or discontinuation. The exact mechanism of transport across the cell membrane and the disposition of active methotrexate metabolites-methotrexate polyglutamates (MTXPGs)-are not well described in the literature. The aim of this study was to gain more insight into the plasma distribution of methotrexate and MTXPGs in pediatric patients with ALL and to clarify the obscure pathways of MTXPGs. METHODS We prospectively measured the concentrations of MTXPG1-7 in plasma samples from three male pediatric patients treated with HD-MTX and leucovorin rescue according to the IC-BFM 2009 protocol using liquid chromatography-mass spectrometry (LC-MS). Blood samples were obtained at 24, 36, 42, and 48 h after the start of HD-MTX treatment. RESULTS Noticeable plasma concentrations of MTXPGs with a 2.2-fold interpatient variability were detected. The highest interindividual variability in total plasma MTXPG concentration was observed at 36 h, and ranged from 13.78 to 30.82 μmol/L. Among all patients, the predominant polyglutamate types in relation to the total plasma MTXPG concentration at each time point were MTXPG3 (16.71-30.02%) and MTXPG5 (26.23-38.60%), while MTXPG7 was the least abundant MTXPG (3.22-5.02%). CONCLUSION The presence of MTXPGs in plasma of patients with ALL could be related to the action of ABC efflux transporters on blood cells and hepatocytes resulting from the administration of high doses of methotrexate. This study may not draw definitive conclusions, but it does reduce uncertainty about the dynamics of methotrexate and its active metabolites, which may be of vital importance for achieving a clinical response.
Collapse
Affiliation(s)
- Ivana Rajšić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Hearing Therapeutics, Nedlands, Perth, WA, 6102, Australia
| | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Hearing Therapeutics, Nedlands, Perth, WA, 6102, Australia
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Svetlana Goločorbin-Kon
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| |
Collapse
|
23
|
Stegmann KM, Dickmanns A, Gerber S, Nikolova V, Klemke L, Manzini V, Schlösser D, Bierwirth C, Freund J, Sitte M, Lugert R, Salinas G, Meister TL, Pfaender S, Görlich D, Wollnik B, Groß U, Dobbelstein M. The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models. Virus Res 2021; 302:198469. [PMID: 34090962 PMCID: PMC8180352 DOI: 10.1016/j.virusres.2021.198469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
The search for successful therapies of infections with the coronavirus SARS-CoV-2 is ongoing. We tested inhibition of host cell nucleotide synthesis as a promising strategy to decrease the replication of SARS-CoV-2-RNA, thus diminishing the formation of virus progeny. Methotrexate (MTX) is an established drug for cancer therapy and to induce immunosuppression. The drug inhibits dihydrofolate reductase and other enzymes required for the synthesis of nucleotides. Strikingly, the replication of SARS-CoV-2 was inhibited by MTX in therapeutic concentrations around 1 µM, leading to more than 1000-fold reductions in virus progeny in Vero C1008 (Vero E6) and ~100-fold reductions in Calu-3 cells. Virus replication was more sensitive to equivalent concentrations of MTX than of the established antiviral agent remdesivir. MTX strongly diminished the synthesis of viral structural proteins and the amount of released virus RNA. Virus replication and protein synthesis were rescued by folinic acid (leucovorin) and also by inosine, indicating that purine depletion is the principal mechanism that allows MTX to reduce virus RNA synthesis. The combination of MTX with remdesivir led to synergistic impairment of virus replication, even at 100 nM MTX. The use of MTX in treating SARS-CoV-2 infections still awaits further evaluation regarding toxicity and efficacy in infected organisms, rather than cultured cells. Within the frame of these caveats, however, our results raise the perspective of a two-fold benefit from repurposing MTX for treating COVID-19. Firstly, its previously known ability to reduce aberrant inflammatory responses might dampen respiratory distress. In addition, its direct antiviral activity described here would limit the dissemination of the virus.
Collapse
Affiliation(s)
- Kim M Stegmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Sabrina Gerber
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Vella Nikolova
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Luisa Klemke
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Denise Schlösser
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Cathrin Bierwirth
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Julia Freund
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Raimond Lugert
- Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.
| |
Collapse
|
24
|
Di Martino L, Tosello V, Peroni E, Piovan E. Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. Int J Mol Sci 2021; 22:ijms22168738. [PMID: 34445444 PMCID: PMC8395761 DOI: 10.3390/ijms22168738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemias, classified as acute myeloid leukemia and acute lymphoblastic leukemia, represent the most prevalent hematologic tumors in adolescent and young adults. In recent years, new challenges have emerged in order to improve the clinical effectiveness of therapies already in use and reduce their side effects. In particular, in this scenario, metabolic reprogramming plays a key role in tumorigenesis and prognosis, and it contributes to the treatment outcome of acute leukemia. This review summarizes the latest findings regarding the most relevant metabolic pathways contributing to the continuous growth, redox homeostasis, and drug resistance of leukemia cells. We describe the main metabolic deregulations in acute leukemia and evidence vulnerabilities that could be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ludovica Di Martino
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
| | - Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Edoardo Peroni
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
- Correspondence: ; Tel.: +39-049-8215895
| |
Collapse
|
25
|
Kilinc L, Uz YH. Protective effects of curcumin against methotrexate-induced testicular damage in rats by suppression of the p38-MAPK and nuclear factor-kappa B pathways. Clin Exp Reprod Med 2021; 48:211-220. [PMID: 34352168 PMCID: PMC8421662 DOI: 10.5653/cerm.2020.04105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Objective The present study aimed to investigate the possibility that curcumin (CMN) protects against methotrexate (MTX)-induced testicular damage by affecting the phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Methods Eighteen male Wistar albino rats were randomly divided into three groups. The control group was given an intragastric administration of dimethyl sulfoxide (DMSO) daily for 14 days, the MTX group was given a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day, and the MTX+CMN group was given intragastric CMN (100 mg/kg/day, dissolved in DMSO) for 14 days and a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day. At the end of the experiment, all animals were sacrificed and the testicular tissues were removed for morphometry, histology, and immunohistochemistry. Body and testicular weights were measured. Results Body weights, seminiferous tubule diameter, and germinal epithelium height significantly decreased in the MTX group compared to the control group. Whereas, the number of histologically damaged seminiferous tubules and interstitial space width significantly increased in the MTX group. In addition, the number of p-p38 MAPK immunopositive cells and the immunoreactivity of NF-κB also increased in the MTX group compared to the control group. CMN improved loss of body weight, morphometric values, and histological damage due to MTX. CMN also reduced the number of p-p38 MAPK immunopositive cells and the NF-κB immunoreactivity. Conclusion CMN may reduce MTX-induced testicular damage by suppressing the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Leyla Kilinc
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yesim Hulya Uz
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
26
|
Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia 2021; 35:1539-1551. [PMID: 33707653 PMCID: PMC8179844 DOI: 10.1038/s41375-021-01189-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Folate-mediated one carbon (1C) metabolism supports a series of processes that are essential for the cell. Through a number of interlinked reactions happening in the cytosol and mitochondria of the cell, folate metabolism contributes to de novo purine and thymidylate synthesis, to the methionine cycle and redox defence. Targeting the folate metabolism gave rise to modern chemotherapy, through the introduction of antifolates to treat paediatric leukaemia. Since then, antifolates, such as methotrexate and pralatrexate have been used to treat a series of blood cancers in clinic. However, traditional antifolates have many deleterious side effects in normal proliferating tissue, highlighting the urgent need for novel strategies to more selectively target 1C metabolism. Notably, mitochondrial 1C enzymes have been shown to be significantly upregulated in various cancers, making them attractive targets for the development of new chemotherapeutic agents. In this article, we present a detailed overview of folate-mediated 1C metabolism, its importance on cellular level and discuss how targeting folate metabolism has been exploited in blood cancers. Additionally, we explore possible therapeutic strategies that could overcome the limitations of traditional antifolates.
Collapse
Affiliation(s)
- Martha M Zarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Alexei Vazquez
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
27
|
No association between relapse hazard and thiopurine methyltransferase geno- or phenotypes in non-high risk acute lymphoblastic leukemia: a NOPHO ALL2008 sub-study. Cancer Chemother Pharmacol 2021; 88:271-279. [PMID: 33928426 DOI: 10.1007/s00280-021-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE 6-mercaptopurine(6MP)/methotrexate maintenance therapy is essential to reduce relapse of childhood acute lymphoblastic leukemia (ALL). Common germline variants in TPMT cause low activity of thiopurine methyltransferase (TPMT) and higher 6MP metabolite (TGN) levels. Higher levels of TGNs incorporated into DNA (DNA-TG) and low TPMT activity have previously been associated with a lower relapse risk. We explored if TPMT geno- or phenotype was associated with DNA-TG levels and relapse rate in NOPHO ALL2008. METHODS TPMT genotype, repeated phenotyping, and DNA-TG measurements were collected in 918 children with non-high risk ALL (NOPHO ALL2008 maintenance therapy study). Maintenance therapy started with 6MP at 50 and 75 mg/m2 for TPMT heterozygous and wildtype patients and was adjusted to a target WBC of 1.5 - 3.0 × 109/L. RESULTS Of 918 patients, 78 (8.5%) were TPMT heterozygous and 903 had at least one TPMT measurement (total 3063). Mean TPMT activities were higher with wildtype than heterozygous TPMT (N = 752, 16.6 versus 9.6 U/mL ery., p < 0.001). The 5-year cumulative incidence of relapse was 6.4% and 6.0% for TPMT heterozygous and wildtype patients, and there was no association between genotype and relapse rate (N = 918, hazard ratio = 1.01, 95% confidence interval [CI] 0.40 - 2.54, p = 0.98). Although TPMT heterozygous patients had higher DNA-TG (N = 548, median 760.9 [interquartile range (IQR) 568.7 - 890.3] versus 492.7 [IQR 382.1 - 634.6] fmol/µg, p < 0.001), TPMT activity was not associated with relapse rate (N = 813; hazard ratio = 0.98 per one U/mL ery. increase in TPMT activity, 95% CI 0.91 - 1.06, p = 0.67). CONCLUSION TPMT geno- and phenotype were not associated with relapse in non-high risk NOPHO ALL2008.
Collapse
|
28
|
The positive effect of pregnancy in rheumatoid arthritis and the use of medications for the management of rheumatoid arthritis during pregnancy. Inflammopharmacology 2021; 29:987-1000. [PMID: 33844107 DOI: 10.1007/s10787-021-00808-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 01/30/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune systemic inflammatory disorder that is mostly characterised by progressive symmetrical joint destruction, particularly in the wrist and fingers, while it may also affect additional joints and several organs, such as the skin, heart, blood vessels, and lungs. It is identified by raised anti-rheumatoid factor and anti-cyclic citrullinated peptide antibodies. The chemical mediators involved in the activity of RA are IL-1β, TNF-α, and IL-6. Pregnancy exerts a positive effect on RA that helps to modulate the disease condition. Different hypotheses are recommended to explain the ameliorating effect of pregnancy in RA. RA cannot be completely cured. The treatment goal is the attrition of pain and inflammation and the further progression of the disease. Long-term management of RA is carried out using disease-modifying antirheumatic drugs (DMARDs). Therapy of acute flares can be done with Non-steroidal anti-inflammatory drugs (NSAIDs) accompanied by ad interim usage of glucocorticoids. Biologic response modifiers are also available; they act by abolishing the activity of T- cells. However, it is necessary to select the correct treatment regimen when it comes to the management of RA in pregnancy.
Collapse
|
29
|
Greenmyer JR, Burd L, Kobrinsky NL. Urine Methotrexate Concentration at 46-48 Hours Post-Treatment Reflects Methotrexate-Induced Acute Kidney Injury. J Pediatr Pharmacol Ther 2021; 26:300-305. [PMID: 33833633 DOI: 10.5863/1551-6776-26.3.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
Early identification of methotrexate-induced acute kidney injury (AKI) and delayed elimination of methotrexate are critical to limiting toxicity of the drug. The current monitoring strategy consists of serial serum methotrexate concentrations at 24, 36, 42, and 48 hours. Appropriate serum concentration monitoring and intervention does not always prevent AKI. Therefore, ongoing study of biomarkers and improved methods of screening for methotrexate-induced AKI is critical to reduce toxicity. This case series reports urine methotrexate values of 4 patients undergoing treatment with high-dose methotrexate. Urine methotrexate concentration was measured 46 to 48 hours after methotrexate infusion. Urine methotrexate concentration was compared with the duration of drug clearance from the serum. Only 1 patient (case 3) developed AKI. Serum concentration of methotrexate were < 0.3 μmol/L at 42, 48, and 48 hours in patients 1, 2, and 4, respectively, and at 168 hours in patient 3 (p < 0.01). Urine methotrexate concentrations were 2.77, 6.45, and 7.8 (μmol/L), in patients 1, 2, and 4, respectively, and 113.69 (μmol/L) in patient 3 (p < 0.001). This case series provides preliminary data that urine methotrexate concentration at hours 46 to 48 may reflect AKI. Future studies should investigate the ability of serial urine methotrexate concentrations to predict delayed drug clearance and the development of AKI.
Collapse
|
30
|
Kim DH, Yoo YS, Yoo HJ, Choi YJ, Kim SA, Sheen DH, Lee SK, Lim MK, Cho K. Analysis of hair and plasma samples for methotrexate (MTX) and metabolite using high-performance liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS) detection. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4648. [PMID: 32954603 DOI: 10.1002/jms.4648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Methotrexate (MTX), a folate antagonist, is the anchor drug used to treat several diseases. Therapeutic effects are attributed to intracellular levels of various methotrexate conjugates that are present in the cell as polyglutamates (MTX-Glu). The present study was conducted to develop a new liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS)-based assay to separately quantitate the MTX-Glu in hair cells, red blood cells, and serum using internal standards. Sample preparation consisted of extraction with an organic solution followed by solid-phase extraction. The presented methodology was applied for the analysis of methotrexate and its polyglutamates in hair cells, red blood cells, and serum obtained from clinical patients. The developed LC-ESI-MS/MS method for the quantitative measurement of MTX-Glu was both sensitive and precise within the clinically relevant range. This method is possibly be superior with respect to sensitivity, selectivity, and speed than all previously described approaches and can be easily applied in routine clinical tests owing to the combination of a simple pretreatment process with robust LC-MS/MS.
Collapse
Affiliation(s)
- Duck Hyun Kim
- Center of Research Equipment, Korea Basic Science Institute, 162, Yeonggudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Yeong Suk Yoo
- Product Analysis Team, Boryung Phamaceutical, 107, Neungan-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Hee Jin Yoo
- Center of Research Equipment, Korea Basic Science Institute, 162, Yeonggudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Yoon Ji Choi
- Center of Research Equipment, Korea Basic Science Institute, 162, Yeonggudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Dong-Hyuk Sheen
- Department of Medicine Division of Rheumatology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Sang Kwang Lee
- Eulji Medi-Bio Research Insititute, Eulji University, Daejeon, Republic of Korea
| | - Mi Kyoung Lim
- Department of Medicine Division of Rheumatology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Kun Cho
- Center of Research Equipment, Korea Basic Science Institute, 162, Yeonggudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| |
Collapse
|
31
|
Zhang Y, Guo R, Kim SH, Shah H, Zhang S, Liang JH, Fang Y, Gentili M, Leary CNO, Elledge SJ, Hung DT, Mootha VK, Gewurz BE. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun 2021; 12:1676. [PMID: 33723254 PMCID: PMC7960988 DOI: 10.1038/s41467-021-21903-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
The recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.
Collapse
Affiliation(s)
- Yuchen Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Rui Guo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sharon H Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hardik Shah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shuting Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jin Hua Liang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Colin N O' Leary
- Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Howard Hughes Medical Institute, Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Steven J Elledge
- Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Howard Hughes Medical Institute, Program in Virology, Harvard Medical School, Boston, MA, USA
| | | | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Benjamin E Gewurz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Wu J, Zhang S, Li J, Zhong X, Feng G, Hu L, He F, Cen H, Chen Y, He Y, Zeng H, Chen X, Mo X. Simultaneous determination of erythrocyte methotrexate polyglutamates by a novel and simple HPLC-MS/MS method with stable isotope-labeled internal standards. J Sep Sci 2021; 44:1852-1865. [PMID: 33646615 DOI: 10.1002/jssc.202001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/09/2022]
Abstract
Low-dose methotrexate is the first-line therapy for juvenile idiopathic arthritis. In vivo, methotrexate is converted into a series of methotrexate polyglutamates whose intracellular levels contribute significantly to its efficacy and toxicity. In this study, a novel high-performance liquid chromatography-tandem mass spectrometry method was developed and validated to simultaneously determine erythrocyte methotrexate polyglutamates using stable isotope-labeled internal standards. Erythrocyte samples were precipitated by perchloric acid and then determined on an XBridge BEH C18 column with an XP vanguard precolumn in 12 min. The mobile phase consisted of 10 nM ammonium acetate (pH 10) and methanol under gradient elution. The detection was carried out in multiple reaction monitoring mode via an electrospray ionization source in positive ionization mode. The calibration curve for each metabolite was linear from 2.0 to 500.0 nmol/L (r2 > 0.99). The intraday and interday accuracies were between 93.0 and 107.0%, and the corresponding precisions were between 0.8 and 5.2%. The relative recovery ranged from 82.7 to 105.1%, and the relative matrix effect varied from 96.5 to 104.4%. The erythrocyte metabolites were stable for 30 days at -80°C. This simple and accurate method is applicable to routine monitoring of the concentration of erythrocyte methotrexate polyglutamates in patients to achieve individualized treatment.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Song Zhang
- Pediatric Allergy Immunology & Rheumatology Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Jiali Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoli Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Guiping Feng
- Pediatric Allergy Immunology & Rheumatology Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Liangqing Hu
- Pediatric Allergy Immunology & Rheumatology Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Fan He
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Hanjing Cen
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yilu Chen
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yanling He
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Huasong Zeng
- Pediatric Allergy Immunology & Rheumatology Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaolan Mo
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
33
|
Hyperpigmentation, severe alopecia, and six days of instability in a case of severe methotrexate hypersensitivity reaction. ACTA ACUST UNITED AC 2021; 29:205-209. [PMID: 33409982 PMCID: PMC7787233 DOI: 10.1007/s40199-020-00379-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Introduction Ectopic pregnancy (EP) is an emergency condition in the gynecologic field. Methotrexate (MTX) is a drug of choice for the medical treatment of EP. Severe adverse events are rare among patients treated with MTX for this condition. Reason for report We describe a woman with severe multi-organ involvement experiencing about six days of instability after treatment with just a single-dose MTX for EP. This life-threatening condition is not common with a single dose of MTX. Case summary A 30-year-old healthy woman was treated medically with MTX for an EP. Three days later the patient was admitted to the emergency department of our hospital with generalized pustular rashes, alopecia, hyperpigmentation, nausea and vomiting, oral ulcers, and raised Creatinine level. Four days later due to pancytopenia, fever, and loss of consciousness, she was transferred to the intensive care unit and was intubated. Outcome After 38 days of hospitalization, treatment was successful with leucovorin and supportive care and the patient’s symptoms and clinical manifestations were regressed.
Collapse
|
34
|
Halik PK, Koźmiński P, Gniazdowska E. Perspectives of Methotrexate-Based Radioagents for Application in Nuclear Medicine. Mol Pharm 2020; 18:33-43. [PMID: 33251808 PMCID: PMC7788572 DOI: 10.1021/acs.molpharmaceut.0c00740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methotrexate is a gold standard among
disease modifying antirheumatic
drugs and is also extensively used clinically in combination with
oncological therapies. Thus, it is not surprising that nuclear medicine
found an interest in methotrexate in the search for diagnostic and
therapeutic solutions. Numerous folate-related radiopharmaceuticals
have been proposed for nuclear medicine purposes; however, methotrexate
radioagents represent only a minority. This imbalance results from
the fact that methotrexate has significantly weaker affinity for folate
receptors than folic acid. Nevertheless, radiolabeled methotrexate
agents utilized as a tool for early detection and imaging of inflammation
in rheumatoid arthritis patients gave promising results. Similarly,
the use of multimodal MTX-release nanosystems may find potential applications
in radiosynovectomy and theranostic approaches in folate receptor
positive cancers.
Collapse
Affiliation(s)
- Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Przemysław Koźmiński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
35
|
Yan VC, Butterfield HE, Poral AH, Yan MJ, Yang KL, Pham CD, Muller FL. Why Great Mitotic Inhibitors Make Poor Cancer Drugs. Trends Cancer 2020; 6:924-941. [PMID: 32536592 PMCID: PMC7606322 DOI: 10.1016/j.trecan.2020.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Chemotherapy is central to oncology, perceived to operate only on prolific cancerous tissue. Yet, many non-neoplastic tissues are more prolific compared with typical tumors. Chemotherapies achieve sufficient therapeutic windows to exert antineoplastic activity because they are prodrugs that are bioactivated in cancer-specific environments. The advent of precision medicine has obscured this concept, favoring the development of high-potency kinase inhibitors. Inhibitors of essential mitotic kinases exemplify this paradigm shift, but intolerable on-target toxicities in more prolific normal tissues have led to repeated failures in the clinic. Proliferation rates alone cannot be used to achieve cancer specificity. Here, we discuss integrating the cancer specificity of prodrugs from classical chemotherapeutics and the potency of mitotic kinase inhibitors to generate a class of high-precision cancer therapeutics.
Collapse
Affiliation(s)
- Victoria C Yan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | | | - Anton H Poral
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Matthew J Yan
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Kristine L Yang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Florian L Muller
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
36
|
Effects of MTHFR genetic polymorphism on inflammatory protein osteopontin in RA patients: A gender based study in North Indian population. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Taylor ZL, Mizuno T, Punt NC, Baskaran B, Navarro Sainz A, Shuman W, Felicelli N, Vinks AA, Heldrup J, Ramsey LB. MTXPK.org: A Clinical Decision Support Tool Evaluating High-Dose Methotrexate Pharmacokinetics to Inform Post-Infusion Care and Use of Glucarpidase. Clin Pharmacol Ther 2020; 108:635-643. [PMID: 32558929 PMCID: PMC7484917 DOI: 10.1002/cpt.1957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
Methotrexate (MTX), an antifolate, is administered at high doses to treat malignancies in children and adults. However, there is considerable interpatient variability in clearance of high‐dose (HD) MTX. Patients with delayed clearance are at an increased risk for severe nephrotoxicity and life‐threatening systemic MTX exposure. Glucarpidase is a rescue agent for severe MTX toxicity that reduces plasma MTX levels via hydrolysis of MTX into inactive metabolites, but is only indicated when MTX concentrations are > 2 SDs above the mean excretion curve specific for the given dose together with a significant creatinine increase (> 50%). Appropriate administration of glucarpidase is challenging due to the ambiguity in the labeled indication. A recent consensus guideline was published with an algorithm to provide clarity in when to administer glucarpidase, yet clinical interpretation of laboratory results that do not directly correspond to the algorithm prove to be a limitation of its use. The goal of our study was to develop a clinical decision support tool to optimize the administration of glucarpidase for patients receiving HD MTX. Here, we describe the development of a novel 3‐compartment MTX population pharmacokinetic (PK) model using 31,672 MTX plasma concentrations from 772 pediatric patients receiving HD MTX for the treatment of acute lymphoblastic leukemia and its integration into the online clinical decision support tool, MTXPK.org. This web‐based tool has the functionality to utilize individualized demographics, serum creatinine, and real‐time drug concentrations to predict the elimination profile and facilitate model‐informed administration of glucarpidase.
Collapse
Affiliation(s)
- Zachary L Taylor
- Department of Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Balaji Baskaran
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Adriana Navarro Sainz
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - William Shuman
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicholas Felicelli
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexander A Vinks
- Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jesper Heldrup
- Childhood Cancer and Research Unit, University Children's Hospital, Lund, Sweden
| | - Laura B Ramsey
- Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
38
|
Vendel E, Rottschäfer V, de Lange ECM. The 3D Brain Unit Network Model to Study Spatial Brain Drug Exposure under Healthy and Pathological Conditions. Pharm Res 2020; 37:137. [PMID: 32648115 PMCID: PMC7347686 DOI: 10.1007/s11095-020-2760-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE We have developed a 3D brain unit network model to understand the spatial-temporal distribution of a drug within the brain under different (normal and disease) conditions. Our main aim is to study the impact of disease-induced changes in drug transport processes on spatial drug distribution within the brain extracellular fluid (ECF). METHODS The 3D brain unit network consists of multiple connected single 3D brain units in which the brain capillaries surround the brain ECF. The model includes the distribution of unbound drug within blood plasma, coupled with the distribution of drug within brain ECF and incorporates brain capillaryblood flow, passive paracellular and transcellular BBB transport, active BBB transport, brain ECF diffusion, brain ECF bulk flow, and specific and nonspecific brain tissue binding. All of these processes may change under disease conditions. RESULTS We show that the simulated disease-induced changes in brain tissue characteristics significantly affect drug concentrations within the brain ECF. CONCLUSIONS We demonstrate that the 3D brain unit network model is an excellent tool to gain understanding in the interdependencies of the factors governing spatial-temporal drug concentrations within the brain ECF. Additionally, the model helps in predicting the spatial-temporal brain ECF concentrations of existing drugs, under both normal and disease conditions.
Collapse
Affiliation(s)
- Esmée Vendel
- Mathematical Institute, Niels Bohrweg 1, 2333CA, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Niels Bohrweg 1, 2333CA, Leiden, The Netherlands.
| | - Elizabeth C M de Lange
- Leiden Academic Center for Drug Research, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
39
|
Ciekot J, Psurski M, Jurec K, Boratyński J. Hydroxyethylcellulose as a methotrexate carrier in anticancer therapy. Invest New Drugs 2020; 39:15-23. [PMID: 32643014 PMCID: PMC7851029 DOI: 10.1007/s10637-020-00972-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022]
Abstract
Clinical and experimental cancer therapy is multifaceted; one such facet is the use of drug carriers. Drug carriers are various nano- and macromolecules, e.g., oligosaccharides, proteins, and liposomes. The present study aimed to verify the suitability of cellulose as a carrier for methotrexate (MTX). Hydroxyethylcellulose, with a molecular weight of 90 kDa and soluble in water, was used. Methotrexate was linked to cellulose by methyl ester bonds. A conjugate containing on average 9.5 molecules of MTX per molecule of cellulose was developed. Gel filtration HPLC analysis showed that the conjugate contained approximately 2% free drug. Dynamic light scattering analysis showed an increase in the polydispersity of the conjugate. The degradation of the conjugate in phosphate buffer and plasma followed first-order kinetics. The conjugate showed the lowest stability (half-life 154 h) in plasma. The conjugate showed 10-fold lower cytotoxicity to the 4 T1 mammary tumour cell line than the free drug. In the in vivo experiment to treat orthotopically implanted mammary tumours, the conjugate and the free drug, both applied intravenously, showed maximum inhibition of tumour growth of 48.4% and 11.2%, respectively. In conclusion, cellulose, which is a non-biodegradable chain glucose polymer, can be successfully used as a drug carrier, which opens up new research perspectives.
Collapse
Affiliation(s)
- Jarosław Ciekot
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wroclaw, Poland.
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wroclaw, Poland
| | - Katarzyna Jurec
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wroclaw, Poland
| | - Janusz Boratyński
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wroclaw, Poland
| |
Collapse
|
40
|
Acute lymphoblastic leukemia and down syndrome: 6-mercaptopurine and methotrexate metabolites during maintenance therapy. Leukemia 2020; 35:863-866. [PMID: 32623444 DOI: 10.1038/s41375-020-0946-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 11/08/2022]
|
41
|
Altered Folate Homeostasis in Children with Down Syndrome: A Potential Basis for Enhanced Methotrexate Toxicity. J Pediatr 2020; 221:235-239. [PMID: 32111377 PMCID: PMC7247922 DOI: 10.1016/j.jpeds.2020.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 11/21/2022]
Abstract
Methotrexate is used to treat autoimmune and oncologic diseases in children with Down syndrome. However, increased methotrexate-related toxicity is reported in this population. We evaluated differences in the concentrations and distribution of erythrocyte folates in children with Down syndrome as a potential basis for this enhanced toxicity.
Collapse
|
42
|
Maksimovic V, Pavlovic-Popovic Z, Vukmirovic S, Cvejic J, Mooranian A, Al-Salami H, Mikov M, Golocorbin-Kon S. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol Biol Rep 2020; 47:4699-4708. [PMID: 32415503 DOI: 10.1007/s11033-020-05481-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/30/2020] [Indexed: 12/21/2022]
Abstract
Since its discovery in 1945, methotrexate has become a standard therapy for number of diseases, including oncological, inflammatory and pulmonary ones. Major physiological interactions of methotrexate include folate pathway, adenosine, prostaglandins, leukotrienes and cytokines. Methotrexate is used in treatment of pulmonary sarcoidosis as a second line therapy and is drug of choice in patients who are not candidates for corticosteroid therapy, with recommended starting weekly dose of 5-15 mg. Number of studies dealt with methotrexate use in rheumatoid arthritis and oncological patients. Authors are conducting research on oral methotrexate use and pharmacokinetics in chronic sarcoidosis patients and have performed literature research to better understand molecular mechanisms of methotrexate action as well as high level pharmacokinetic considerations. Polyglutamation of methotrexate affects its pharmacokinetic and pharmacodynamic properties and prolongs its effect. Bile excretion plays significant role due to extensive enterohepatic recirculation, although majority of methotrexate is excreted through urine. Better understanding of its pharmacokinetic properties in sarcoidosis patients warrant optimizing therapy when corticosteroids are contraindicated in these patients.
Collapse
Affiliation(s)
- V Maksimovic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Z Pavlovic-Popovic
- Institute of Pulmonary Diseases, Sremska Kamenica, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - S Vukmirovic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - J Cvejic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - A Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - H Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - M Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - S Golocorbin-Kon
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
43
|
Koźmiński P, Halik PK, Chesori R, Gniazdowska E. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers. Int J Mol Sci 2020; 21:ijms21103483. [PMID: 32423175 PMCID: PMC7279024 DOI: 10.3390/ijms21103483] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Methotrexate, a structural analogue of folic acid, is one of the most effective and extensively used drugs for treating many kinds of cancer or severe and resistant forms of autoimmune diseases. In this paper, we take an overview of the present state of knowledge with regards to complex mechanisms of methotrexate action and its applications as immunosuppressive drug or chemotherapeutic agent in oncological combination therapy. In addition, the issue of the potential benefits of methotrexate in the development of neurological disorders in Alzheimer’s disease or myasthenia gravis will be discussed.
Collapse
|
44
|
Papadopoli DJ, Ma EH, Roy D, Russo M, Bridon G, Avizonis D, Jones RG, St-Pierre J. Methotrexate elicits pro-respiratory and anti-growth effects by promoting AMPK signaling. Sci Rep 2020; 10:7838. [PMID: 32398698 PMCID: PMC7217946 DOI: 10.1038/s41598-020-64460-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
One-carbon metabolism fuels the high demand of cancer cells for nucleotides and other building blocks needed for increased proliferation. Although inhibitors of this pathway are widely used to treat many cancers, their global impact on anabolic and catabolic processes remains unclear. Using a combination of real-time bioenergetics assays and metabolomics approaches, we investigated the global effects of methotrexate on cellular metabolism. We show that methotrexate treatment increases the intracellular concentration of the metabolite AICAR, resulting in AMPK activation. Methotrexate-induced AMPK activation leads to decreased one-carbon metabolism gene expression and cellular proliferation as well as increased global bioenergetic capacity. The anti-proliferative and pro-respiratory effects of methotrexate are AMPK-dependent, as cells with reduced AMPK activity are less affected by methotrexate treatment. Conversely, the combination of methotrexate with the AMPK activator, phenformin, potentiates its anti-proliferative activity in cancer cells. These data highlight a reciprocal effect of methotrexate on anabolic and catabolic processes and implicate AMPK activation as a metabolic determinant of methotrexate response.
Collapse
Affiliation(s)
- David J Papadopoli
- Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Eric H Ma
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
- Center for Cancer and Cell Biology, Program in Metabolic and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Dominic Roy
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Mariana Russo
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Gaëlle Bridon
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Daina Avizonis
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Russell G Jones
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
- Center for Cancer and Cell Biology, Program in Metabolic and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Julie St-Pierre
- Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada.
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
45
|
Rostang A, Desjardins I, Espana B, Panzuti P, Berny P, Prouillac C, Pin D. Pharmacokinetics of low-dose methotrexate in horses. J Vet Pharmacol Ther 2020; 43:461-469. [PMID: 32216109 DOI: 10.1111/jvp.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate both the pharmacokinetic behavior and tolerance of methotrexate (MTX) in horses to design a specific dosing regimen as a new immunomodulatory drug for long-term treatment. To determine the primary plasma pharmacokinetic variables after single intravenous, subcutaneous or oral administration, six horses were administered 0.3 mg/kg MTX in a crossover design study. After a 10-week washout, MTX was administered subcutaneously to three of the six previously treated horses at a dose of 0.3 mg/kg once per week for 3 months. In both studies, MTX and metabolite concentrations were measured using LC-MS/MS. The absolute bioavailability of MTX was 73% following subcutaneous administration but less than 1% following oral administration. The plasma clearance was 1.54 ml min-1 kg-1 (extraction ratio = 2%). After 24 hr, plasma concentrations were below the LOQ. No adverse effects were noted except for a moderate reversible elevation in liver enzymes (GLDH). With regards to the main metabolites of MTX, very low concentrations of 7-hydroxy-MTX were found, whereas polyglutamated forms (mainly short chains) were found in red blood cells. A subcutaneous dose of 0.2 mg kg-1 week-1 may be safe and relevant in horses, although this has yet to be clinically confirmed.
Collapse
Affiliation(s)
- Antoine Rostang
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Isabelle Desjardins
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Bernadette Espana
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Pauline Panzuti
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Philippe Berny
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Caroline Prouillac
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Didier Pin
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| |
Collapse
|
46
|
Pasnoor M, Heim AJ, Herbelin L, Statland J, Dimachkie MM, Becker M, Barohn RJ. Methotrexate Polyglutamation in a Myasthenia Gravis Clinical Trial. Kans J Med 2020; 13:10-13. [PMID: 32256969 PMCID: PMC7106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Methotrexate (MTX) is an immunosuppressive and anti-inflammatory drug used to treat rheumatoid arthritis (RA) and other autoimmune conditions. MTX is transported into cells, where glutamate moieties are added and is retained as methotrexate polyglutamates (MTXPGs). In the RA literature, it has been reported that the degree of polyglutamation correlates with the anti-inflammatory effect of MTX in RA. There are no prior studies evaluating the relationship between MTXPGs and myasthenia gravis (MG) outcome measures. The objective of this study was to assess the correlation between methotrexate (MTX) polyglutamates (MTXPGs) with Myasthenia Gravis (MG) outcome measures. METHODS An analysis was done of blood drawn from patients enrolled in the 12-month randomized, placebo-controlled study of MTX in MG study. Red blood cell MTXPGs were measured via ultra-performance liquid chromatography and tandem mass spectrometry. MTXPG was correlated to MG outcome measures using Spearman Correlation Coefficient. A two-group t-test was used to determine the difference in MTXPG based on clinical outcome responder definitions. RESULTS Twenty-one polyglutamate samples were analyzed of subjects on MTX while eight samples were analyzed from subjects on placebo. Pentaglutamate had the strongest correlation with the MG-ADL (0.99), while tetraglutamate had the strongest correlation with the QMG (0.54). Triglutamate had the strongest correlation with MGC (0.76). CONCLUSION There were variable correlations between MTXPG1-5 and MG outcomes (rho range: 0.08 to 0.99). There are strong correlations between MTXPG and the MG-ADL, QMG, and MGC. Long chain methotrexate polyglutamates correlate better with MG outcomes.
Collapse
Affiliation(s)
- Mamatha Pasnoor
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS
| | - Andrew J. Heim
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS
| | - Laura Herbelin
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS
| | - Jeffrey Statland
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS
| | - Mazen M. Dimachkie
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS
| | - Mara Becker
- Duke University School of Medicine, Division of Rheumatology, Durham, NC
| | - Richard J. Barohn
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS
| | | |
Collapse
|
47
|
Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 2020; 16:145-154. [PMID: 32066940 DOI: 10.1038/s41584-020-0373-9] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 11/08/2022]
Abstract
Despite the introduction of numerous biologic agents for the treatment of rheumatoid arthritis (RA) and other forms of inflammatory arthritis, low-dose methotrexate therapy remains the gold standard in RA therapy. Methotrexate is generally the first-line drug for the treatment of RA, psoriatic arthritis and other forms of inflammatory arthritis, and it enhances the effect of most biologic agents in RA. Understanding the mechanism of action of methotrexate could be instructive in the appropriate use of the drug and in the design of new regimens for the treatment of RA. Although methotrexate is one of the first examples of intelligent drug design, multiple mechanisms potentially contribute to the anti-inflammatory actions of methotrexate, including the inhibition of purine and pyrimidine synthesis, transmethylation reactions, translocation of nuclear factor-κB (NF-κB) to the nucleus, signalling via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway and nitric oxide production, as well as the promotion of adenosine release and expression of certain long non-coding RNAs.
Collapse
|
48
|
Braga A, de Souza Hartung Araújo C, Mora PAR, Paulino E, de Melo AC, Velarde GC, Dos Santos Esteves APV, Junior JA, Filho JR, Elias KM, Horowitz NS, Berkowitz RS. Comparison of treatment for low-risk GTN with standard 8-day MTX/FA regimen versus modified MTX/FA regimen without chemotherapy on the weekend. Gynecol Oncol 2020; 156:598-605. [PMID: 31928806 DOI: 10.1016/j.ygyno.2019.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/21/2019] [Accepted: 12/29/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To compare the outcomes of patients with low-risk gestational trophoblastic neoplasia (GTN) treated with standard 8-day methotrexate/folinic acid (MTX/FA) versus modified regimen. METHODS Retrospective cohort study of patients with low-risk GTN followed at Rio de Janeiro Federal University, from January/1990-December/2017 with standard 8-day MTX/FA or modified regimen (MTX administered on the 8th day rather than 7th) to avoid treatment on the weekend. RESULTS From 937 patients with low-risk GTN, 538 were treated with standard MTX/FA and 98 patients received modified regimen. Both groups were comparable in age (p = .749), antecedent pregnancy (p = .221), time to initiate chemotherapy (p = .926), hCG pretreatment level (p = .112) and WHO/FIGO prognostic risk score (p = .723). Patients treated with modified MTX/FA had twice of cases of metastatic lung disease compared with the standard regimen (22.5% vs 10.6%; p = .002). The rate of remission (p = .999), number of cycles to remission in the first-line (p = .966), chemoresistance (p = .500), time to switch to second-line therapy (p = .176), need for multiagent chemotherapy (p = .084), relapse (p = .122) or death (p = .475) was the same for both MTX/FA regimen. However, although patients receiving modified MTX/FA required a higher total number of remission cycles (6 vs 5 cycles; p = .004) and longer time to remission (19 vs 16 weeks; p < .001) when compared with the standard regimen, these variables showed no significant differences after multivariate logistic regression adjusted for lung metastasis. CONCLUSION The modified 8-day MTX/FA regimen didn't compromise oncologic outcomes for women with low-risk GTN. This regimen appears to be an acceptable alternative to standard 8-day MTX/FA when treatment on weekend isn't an option.
Collapse
Affiliation(s)
- Antonio Braga
- Rio de Janeiro Trophoblastic Disease Center (Maternity School of Rio de Janeiro Federal University, Antonio Pedro University Hospital of Fluminense Federal University), Rio de Janeiro, RJ, Brazil; Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro Federal University, Brazil; Postgraduate Program in Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil.
| | - Clymene de Souza Hartung Araújo
- Rio de Janeiro Trophoblastic Disease Center (Maternity School of Rio de Janeiro Federal University, Antonio Pedro University Hospital of Fluminense Federal University), Rio de Janeiro, RJ, Brazil; Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro Federal University, Brazil
| | - Paulo Alexandre Ribeiro Mora
- Rio de Janeiro Trophoblastic Disease Center (Maternity School of Rio de Janeiro Federal University, Antonio Pedro University Hospital of Fluminense Federal University), Rio de Janeiro, RJ, Brazil; Postgraduate Program in Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil; Brazilian National Cancer Institute, Hospital do Câncer 2, Rio de Janeiro, RJ, Brazil
| | - Eduardo Paulino
- Brazilian National Cancer Institute, Hospital do Câncer 2, Rio de Janeiro, RJ, Brazil
| | | | - Guillermo Coca Velarde
- Postgraduate Program in Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| | - Ana Paula Vieira Dos Santos Esteves
- Rio de Janeiro Trophoblastic Disease Center (Maternity School of Rio de Janeiro Federal University, Antonio Pedro University Hospital of Fluminense Federal University), Rio de Janeiro, RJ, Brazil; Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro Federal University, Brazil
| | - Joffre Amim Junior
- Rio de Janeiro Trophoblastic Disease Center (Maternity School of Rio de Janeiro Federal University, Antonio Pedro University Hospital of Fluminense Federal University), Rio de Janeiro, RJ, Brazil; Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro Federal University, Brazil
| | - Jorge Rezende Filho
- Rio de Janeiro Trophoblastic Disease Center (Maternity School of Rio de Janeiro Federal University, Antonio Pedro University Hospital of Fluminense Federal University), Rio de Janeiro, RJ, Brazil; Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro Federal University, Brazil
| | - Kevin M Elias
- New England Trophoblastic Disease Center, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Neil S Horowitz
- New England Trophoblastic Disease Center, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ross S Berkowitz
- New England Trophoblastic Disease Center, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Karami F, Ranjbar S, Ghasemi Y, Negahdaripour M. Analytical methodologies for determination of methotrexate and its metabolites in pharmaceutical, biological and environmental samples. J Pharm Anal 2019; 9:373-391. [PMID: 31890337 PMCID: PMC6931080 DOI: 10.1016/j.jpha.2019.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/05/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Methotrexate (MTX) is a folate antagonist drug used for several diseases, such as cancers, various malignancies, rheumatoid arthritis (RA) and inflammatory bowel disease. Due to its structural features, including the presence of two carboxylic acid groups and its low native fluorescence, there are some challenges to develop analytical methods for its determination. MTX is metabolized to 7-hydroxymethotrexate (7-OH-MTX), 2,4-diamino-N10-methylpteroic acid (DAMPA), and the active MTX polyglutamates (MTXPGs) in the liver, intestine, and red blood cells (RBCs), respectively. Additionally, the drug has a narrow therapeutic range; hence, its therapeutic drug monitoring (TDM) is necessary to regulate the pharmacokinetics of the drug and to decrease the risk of toxicity. Due to environmental toxicity of MTX; its sensitive, fast and low cost determination in workplace environments is of great interest. A large number of methodologies including high performance liquid chromatography equipped with UV-visible, fluorescence, or electrochemical detection, liquid chromatography-mass spectroscopy, capillary electrophoresis, UV-visible spectrophotometry, and electrochemical methods have been developed for the quantitation of MTX and its metabolites in pharmaceutical, biological, and environmental samples. This paper will attempt to review several published methodologies and the instrumental conditions, which have been applied to measure MTX and its metabolites within the last decade.
Collapse
Affiliation(s)
- Forough Karami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Chemistry Department, Yasouj University, Yasouj, Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
50
|
Jekic B, Maksimovic N, Damnjanovic T. Methotrexate pharmacogenetics in the treatment of rheumatoid arthritis. Pharmacogenomics 2019; 20:1235-1245. [DOI: 10.2217/pgs-2019-0121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For many decades, methotrexate (MXT) has remained the drug of choice in the treatment of rheumatoid arthritis (RA). Unfortunately, a considerable number of patients do not achieve an appropriate therapeutic response. Pharmacogenetics studies do not give usable results regarding differences in MTX response among RA patients. The mechanism of MTX action in RA is not completely understood. We present and discuss data regarding the molecular basis of folate and adenosine pathways, the most obvious MTX targets, to explain possible causes of therapy failure. The molecular basis of the disease could also have an impact on therapy outcomes and in this review we explore this. Finally, we make a short review of available pharmacogenetics study results.
Collapse
Affiliation(s)
- Biljana Jekic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| | - Nela Maksimovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| | - Tatjana Damnjanovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| |
Collapse
|