1
|
Stejskal L, Thistlethwaite A, Ramirez-Bencomo F, Rashmi S, Harrison O, Feavers IM, Maiden MCJ, Jerse A, Barnes G, Chirro O, Chemweno J, Nduati E, Cehovin A, Tang C, Sanders EJ, Derrick JP. Profiling IgG and IgA antibody responses during vaccination and infection in a high-risk gonorrhoea population. Nat Commun 2024; 15:6712. [PMID: 39112489 PMCID: PMC11306574 DOI: 10.1038/s41467-024-51053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Development of a vaccine against gonorrhoea is a global priority, driven by the rise in antibiotic resistance. Although Neisseria gonorrhoeae (Ng) infection does not induce substantial protective immunity, highly exposed individuals may develop immunity against re-infection with the same strain. Retrospective epidemiological studies have shown that vaccines containing Neisseria meningitidis (Nm) outer membrane vesicles (OMVs) provide a degree of cross-protection against Ng infection. We conducted a clinical trial (NCT04297436) of 4CMenB (Bexsero, GSK), a licensed Nm vaccine containing OMVs and recombinant antigens, comprising a single arm, open label study of two doses with 50 adults in coastal Kenya who have high exposure to Ng. Data from a Ng antigen microarray established that serum IgG and IgA reactivities against the gonococcal homologs of the recombinant antigens in the vaccine peaked at 10 but had declined by 24 weeks. For most reactive OMV-derived antigens, the reverse was the case. A cohort of similar individuals with laboratory-confirmed gonococcal infection were compared before, during, and after infection: their reactivities were weaker and differed from the vaccinated cohort. We conclude that the cross-protection of the 4CMenB vaccine against gonorrhoea could be explained by cross-reaction against a diverse selection of antigens derived from the OMV component.
Collapse
Affiliation(s)
- Lenka Stejskal
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PL, UK
| | - Angela Thistlethwaite
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PL, UK
| | - Fidel Ramirez-Bencomo
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PL, UK
| | - Smruti Rashmi
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PL, UK
| | - Odile Harrison
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Ian M Feavers
- Department of Biology, 11a Mansfield Road, University of Oxford, Oxford, OX1 3SZ, UK
| | - Martin C J Maiden
- Department of Biology, 11a Mansfield Road, University of Oxford, Oxford, OX1 3SZ, UK
| | - Ann Jerse
- Department of Microbiology and Immunology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Grace Barnes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Oscar Chirro
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Eunice Nduati
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Ana Cehovin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Christoph Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | | | - Jeremy P Derrick
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
2
|
Waltmann A, Duncan JA, Pier GB, Cywes-Bentley C, Cohen MS, Hobbs MM. Experimental Urethral Infection with Neisseria gonorrhoeae. Curr Top Microbiol Immunol 2024; 445:109-125. [PMID: 35246736 PMCID: PMC9441470 DOI: 10.1007/82_2021_250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gonorrhea rates and antibiotic resistance are both increasing. Neisseria gonorrhoeae (Ng) is an exclusively human pathogen and is exquisitely adapted to its natural host. Ng can subvert immune responses and undergoes frequent antigenic variation, resulting in limited immunity and protection from reinfection. Previous gonococcal vaccine efforts have been largely unsuccessful, and the last vaccine to be tested in humans was more than 35 years ago. Advancing technologies and the threat of untreatable gonorrhea have fueled renewed pursuit of a vaccine as a long-term sustainable solution for gonorrhea control. Despite the development of a female mouse model of genital gonococcal infection two decades ago, correlates of immunity or protection remain largely unknown, making the gonococcus a challenging vaccine target. The controlled human urethral infection model of gonorrhea (Ng CHIM) has been used to study gonococcal pathogenesis and the basis of anti-gonococcal immunity. Over 200 participants have been inoculated without serious adverse events. The Ng CHIM replicates the early natural course of urethral infection. We are now at an inflexion point to pivot the use of the model for vaccine testing to address the urgency of improved gonorrhea control. Herein we discuss the need for gonorrhea vaccines, and the advantages and limitations of the Ng CHIM in accelerating the development of gonorrhea vaccines.
Collapse
Affiliation(s)
- Andreea Waltmann
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Joseph A Duncan
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Gerald B Pier
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | | - Myron S Cohen
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Marcia M Hobbs
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
3
|
Blaylock JM, Ewers EC, Bianchi EJ, King DB, Casimier RO, Erazo H, Grieco S, Lay J, Peel SA, Modjarrad K, Beckett CG, Okulicz JF, Scott PT, Hakre S. Risk of sexually transmitted infections among U.S. military service members in the setting of HIV pre-exposure prophylaxis use. PLoS One 2023; 18:e0296054. [PMID: 38153953 PMCID: PMC10754448 DOI: 10.1371/journal.pone.0296054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/06/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND The evidence for an increased incidence of sexually transmitted infections (STIs) among patients utilizing HIV pre-exposure prophylaxis (PrEP) has been inconsistent. We assessed the risk of incident STI while on PrEP compared to periods off PrEP among military service members starting PrEP. METHODS Incidence rates of chlamydia, gonorrhea, syphilis, hepatitis C virus, and HIV were determined among military service members without HIV prescribed daily oral tenofovir disoproxil fumarate and emtricitabine for HIV PrEP from February 1, 2014 through June 10, 2016. Hazard ratios for incident STIs were calculated using an Anderson-Gill recurrent event proportional hazard regression model. RESULTS Among 755 male service members, 477 (63%) were diagnosed with incident STIs (overall incidence 21.4 per 100 person-years). Male service members had a significantly lower risk of any STIs (adjusted hazard ratio (aHR) 0.21, 95% CI 0.11-0.40) while using PrEP compared to periods off PrEP after adjustment for socio-demographic characteristics, reasons for initiating PrEP, surveillance period prior to PrEP initiation, and the effect of PrEP on site and type of infection in multivariate analysis. However, when stratifying for anatomical site and type of infection, the risk of extragenital gonorrhea infection (pharyngeal NG: aHR 1.84, 95% CI 0.82-4.13, p = 0.30; rectal NG: aHR 1.23, 95% CI 0.60-2.51, p = 1.00) and extragenital CT infection (pharyngeal CT: aHR 2.30, 95% CI 0.46-11.46, p = 0.81; rectal CT: aHR 1.36, 95% CI 0.81-2.31, p = 0.66) was greater on PrEP compared to off PrEP although these values did not reach statistical significance. CONCLUSIONS The data suggest entry into PrEP care reduced the overall risk of STIs following adjustment for anatomical site of STI and treatment. Service members engaged in PrEP services also receive more STI prevention counseling, which might contribute to decreases in STI risk while on PrEP.
Collapse
Affiliation(s)
- Jason M. Blaylock
- Infectious Diseases Service, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Evan C. Ewers
- Infectious Diseases Service, Fort Belvoir Community Hospital, Fort Belvoir, Virginia, United States of America
| | - Elizabeth J. Bianchi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - David B. King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Rosemary O. Casimier
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Hector Erazo
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Stephen Grieco
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Level One Personnel, Columbia, Maryland, United States of America
| | - Jenny Lay
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Preventive Medicine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheila A. Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Charmagne G. Beckett
- Navy Bloodborne Infection Management Center, Bethesda, Maryland, United States of America
| | - Jason F. Okulicz
- Infectious Diseases Service, San Antonio Military Medical Center, Fort Sam Houston, Texas, United States of America
| | - Paul T. Scott
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Shilpa Hakre
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
4
|
Roe SK, Felter B, Zheng B, Ram S, Wetzler LM, Garges E, Zhu T, Genco CA, Massari P. In Vitro Pre-Clinical Evaluation of a Gonococcal Trivalent Candidate Vaccine Identified by Transcriptomics. Vaccines (Basel) 2023; 11:1846. [PMID: 38140249 PMCID: PMC10747275 DOI: 10.3390/vaccines11121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, poses a significant global public health threat. Infection in women can be asymptomatic and may result in severe reproductive complications. Escalating antibiotic resistance underscores the need for an effective vaccine. Approaches being explored include subunit vaccines and outer membrane vesicles (OMVs), but an ideal candidate remains elusive. Meningococcal OMV-based vaccines have been associated with reduced rates of gonorrhea in retrospective epidemiologic studies, and with accelerated gonococcal clearance in mouse vaginal colonization models. Cross-protection is attributed to shared antigens and possibly cross-reactive, bactericidal antibodies. Using a Candidate Antigen Selection Strategy (CASS) based on the gonococcal transcriptome during human mucosal infection, we identified new potential vaccine targets that, when used to immunize mice, induced the production of antibodies with bactericidal activity against N. gonorrhoeae strains. The current study determined antigen recognition by human sera from N. gonorrhoeae-infected subjects, evaluated their potential as a multi-antigen (combination) vaccine in mice and examined the impact of different adjuvants (Alum or Alum+MPLA) on functional antibody responses to N. gonorrhoeae. Our results indicated that a stronger Th1 immune response component induced by Alum+MPLA led to antibodies with improved bactericidal activity. In conclusion, a combination of CASS-derived antigens may be promising for developing effective gonococcal vaccines.
Collapse
Affiliation(s)
- Shea K. Roe
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Brian Felter
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA (S.R.)
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA (S.R.)
| | - Lee M. Wetzler
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Eric Garges
- Department of Preventive Medicine and Biostatistics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Tianmou Zhu
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Caroline A. Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| |
Collapse
|
5
|
Martinez FG, Zielke RA, Fougeroux CE, Li L, Sander AF, Sikora AE. Development of a Tag/Catcher-mediated capsid virus-like particle vaccine presenting the conserved Neisseria gonorrhoeae SliC antigen that blocks human lysozyme. Infect Immun 2023; 91:e0024523. [PMID: 37916806 PMCID: PMC10715030 DOI: 10.1128/iai.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Virus-like particles (VLPs) are promising nanotools for the development of subunit vaccines due to high immunogenicity and safety. Herein, we explored the versatile and effective Tag/Catcher-AP205 capsid VLP (cVLP) vaccine platform to address the urgent need for the development of an effective and safe vaccine against gonorrhea. The benefits of this clinically validated cVLP platform include its ability to facilitate unidirectional, high-density display of complex/full-length antigens through an effective split-protein Tag/Catcher conjugation system. To assess this modular approach for making cVLP vaccines, we used a conserved surface lipoprotein, SliC, that contributes to the Neisseria gonorrhoeae defense against human lysozyme, as a model antigen. This protein was genetically fused at the N- or C-terminus to the small peptide Tag enabling their conjugation to AP205 cVLP, displaying the complementary Catcher. We determined that SliC with the N-terminal SpyTag, N-SliC, retained lysozyme-blocking activity and could be displayed at high density on cVLPs without causing aggregation. In mice, the N-SliC-VLP vaccines, adjuvanted with AddaVax or CpG, induced significantly higher antibody titers compared to controls. In contrast, similar vaccine formulations containing monomeric SliC were non-immunogenic. Accordingly, sera from N-SliC-VLP-immunized mice also had significantly higher human complement-dependent serum bactericidal activity. Furthermore, the N-SliC-VLP vaccines administered subcutaneously with an intranasal boost elicited systemic and vaginal IgG and IgA, whereas subcutaneous delivery alone failed to induce vaginal IgA. The N-SliC-VLP with CpG (10 µg/dose) induced the most significant increase in total serum IgG and IgG3 titers, vaginal IgG and IgA, and bactericidal antibodies.
Collapse
Affiliation(s)
- Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | | | - Lixin Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Adam F. Sander
- AdaptVac Aps, Hørsholm, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
6
|
Belcher T, Rollier CS, Dold C, Ross JDC, MacLennan CA. Immune responses to Neisseria gonorrhoeae and implications for vaccine development. Front Immunol 2023; 14:1248613. [PMID: 37662926 PMCID: PMC10470030 DOI: 10.3389/fimmu.2023.1248613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Neisseria gonorrheoae is the causative agent of gonorrhea, a sexually transmitted infection responsible for a major burden of disease with a high global prevalence. Protective immunity to infection is often not observed in humans, possible due to high variability of key antigens, induction of blocking antibodies, or a large number of infections being relatively superficial and not inducing a strong immune response. N. gonorrhoeae is a strictly human pathogen, however, studies using mouse models provide useful insights into the immune response to gonorrhea. In mice, N. gonorrhoea appears to avoid a protective Th1 response by inducing a less protective Th17 response. In mouse models, candidate vaccines which provoke a Th1 response can accelerate the clearance of gonococcus from the mouse female genital tract. Human studies indicate that natural infection often induces a limited immune response, with modest antibody responses, which may correlate with the clinical severity of gonococcal disease. Studies of cytokine responses to gonococcal infection in humans provide conflicting evidence as to whether infection induces an IL-17 response. However, there is evidence for limited induction of protective immunity from a study of female sex workers in Kenya. A controlled human infection model (CHIM) has been used to examine the immune response to gonococcal infection in male volunteers, but has not to date demonstrated protection against re-infection. Correlates of protection for gonorrhea are lacking, which has hampered the progress towards developing a successful vaccine. However, the finding that the Neisseria meningitidis serogroup B vaccines, elicit cross-protection against gonorrhea has invigorated the gonococcal vaccine field. More studies of infection in humans, either natural infection or CHIM studies, are needed to understand better gonococcal protective immunity.
Collapse
Affiliation(s)
- Thomas Belcher
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Christina Dold
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jonathan D. C. Ross
- Sexual Health and HIV, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Bruxvoort KJ, Lewnard JA, Chen LH, Tseng HF, Chang J, Veltman J, Marrazzo J, Qian L. Prevention of Neisseria gonorrhoeae With Meningococcal B Vaccine: A Matched Cohort Study in Southern California. Clin Infect Dis 2023; 76:e1341-e1349. [PMID: 35642527 DOI: 10.1093/cid/ciac436] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Neisseria gonorrhoeae is acquiring increasing resistance to available oral antibiotics, and current screening and treatment approaches have not decreased gonorrhea incidence. Although a gonorrhea-specific vaccine does not exist, N. gonorrhoeae shares much of its genome with Neisseria meningitidis, notably critical antigenic determinants including outer membrane vesicles (OMV). Prior observational studies have suggested that OMV-based meningococcal serogroup B vaccines confer protection against gonorrhea. METHODS We conducted a matched cohort study from 2016 to 2020 to examine the association of OMV-containing recombinant meningococcal serogroup B vaccine (4CMenB) with gonorrhea infection among teens and young adults at Kaiser Permanente Southern California. Recipients of 4CMenB were matched in a ratio of 1:4 to recipients of non-OMV-containing polysaccharide-conjugate vaccine targeting serotypes A, C, W, and Y (MenACWY) who had not received 4CMenB and were followed for incident gonorrhea. We used Cox proportional hazards regression to compare gonorrhea rates among recipients of 4CMenB vs MenACWY, adjusting for potential confounders. We conducted the same analysis with chlamydia as a negative control outcome. RESULTS The study included 6641 recipients of 4CMenB matched to 26 471 recipients of MenACWY. During follow-up, gonorrhea incidence rates per 1000 person-years (95% confidence intervals [CIs]) were 2.0 (1.3-2.8) for recipients of 4CMenB and 5.2 (4.6-5.8) for recipients of MenACWY. In adjusted analyses, gonorrhea rates were 46% lower among recipients of 4CMenB vs MenACWY (hazard ratio [HR], 0.54; 95% CI, .34-.86), but chlamydia rates were similar between vaccine groups (HR, 0.98; 95% CI, .82-1.17). CONCLUSIONS These results suggest cross-protection of 4CMenB against gonorrhea, supporting the potential for vaccination strategies to prevent gonorrhea.
Collapse
Affiliation(s)
- Katia J Bruxvoort
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California-Berkeley, Berkeley, California, USA.,Division of Infectious Diseases & Vaccinology, School of Public Health, University of California-Berkeley, Berkeley, California, USA.,Center for Computational Biology, College of Engineering, University of California-Berkeley, Berkeley, California, USA
| | - Lie H Chen
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Hung Fu Tseng
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA.,Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
| | - Jennifer Chang
- Department of Infectious Diseases, Los Angeles Medical Center, Southern California Permanente Medical Group, Los Angeles, California, USA
| | - Jennifer Veltman
- Division of Infectious Diseases, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Jeanne Marrazzo
- Division of Infectious Diseases, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Lei Qian
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| |
Collapse
|
8
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
9
|
Hillier SL, Bernstein KT, Aral S. A Review of the Challenges and Complexities in the Diagnosis, Etiology, Epidemiology, and Pathogenesis of Pelvic Inflammatory Disease. J Infect Dis 2021; 224:S23-S28. [PMID: 34396398 PMCID: PMC8365114 DOI: 10.1093/infdis/jiab116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pelvic inflammatory disease (PID) is a syndrome that causes substantial morbidity, including chronic pelvic pain, to women globally. While limited data are available from low- and middle-income countries, national databases from the United States and Europe suggest that PID incidence may be decreasing but the rate of decrease may differ by the etiologic cause. Recent studies of women with PID have reported that fewer than half of women receiving a diagnosis of PID have gonococcal or chlamydial infection, while Mycoplasma genitalium, respiratory pathogens, and the constellation of bacteria associated with bacterial vaginosis may account for a substantial fraction of PID cases. The clinical diagnosis of PID is nonspecific, creating an urgent need to develop noninvasive tests to diagnose PID. Advances in serologic testing for Chlamydia trachomatis and Neisseria gonorrhoeae could advance epidemiologic studies, while the development of vaccines against these sexually transmitted pathogens could affect incident PID and associated morbidity.
Collapse
Affiliation(s)
- Sharon L Hillier
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh and the Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Kyle T Bernstein
- Centers for Disease Control and Prevention, Division of STD Prevention, Atlanta, Georgia, USA
| | - Sevgi Aral
- Centers for Disease Control and Prevention, Division of STD Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Russell MW. Immune Responses to Neisseria gonorrhoeae: Challenges and Opportunities With Respect to Pelvic Inflammatory Disease. J Infect Dis 2021; 224:S96-S102. [PMID: 34396399 DOI: 10.1093/infdis/jiaa766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pelvic inflammatory disease and infertility frequently develop after female genital tract infection with Neisseria gonorrhoeae, but determining their etiology from among various possibilities presents difficulties. Exploitation of serology to identify the causative agent is complicated by numerous factors, and no immunological test currently exists to determine unequivocally whether an individual currently is, or has been, infected with N. gonorrhoeae. The extensive antigenic variability of N. gonorrhoeae and its expression of antigens shared with other Neisseria species commonly carried in humans render problematic an assay that is specific for all gonococcal strains. However, novel conserved gonococcal antigens identified for potential vaccines may find additional application in diagnostic assays. N. gonorrhoeae also interferes with the adaptive immune response, and antibody responses to uncomplicated infection are usually weak. Elucidating the mechanisms whereby N. gonorrhoeae manipulates the human immune system may lead to improved understanding of the pathogenesis of pelvic inflammatory disease and infertility.
Collapse
Affiliation(s)
- Michael W Russell
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
11
|
Northrup GR, Qian L, Bruxvoort K, Marx FM, Whittles LK, Lewnard JA. Inference of Naturally Acquired Immunity Using a Self-matched Negative-Control Design. Epidemiology 2021; 32:168-178. [PMID: 33337670 PMCID: PMC7850593 DOI: 10.1097/ede.0000000000001305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
Host adaptive immune responses may protect against infection or disease when a pathogen is repeatedly encountered. The hazard ratio of infection or disease, given previous infection, is typically sought to estimate the strength of protective immunity. However, variation in individual exposure or susceptibility to infection may introduce frailty bias, whereby a tendency for infections to recur among individuals with greater risk confounds the causal association between previous infection and susceptibility. We introduce a self-matched "case-only" inference method to control for unmeasured individual heterogeneity, making use of negative-control endpoints not attributable to the pathogen of interest. To control for confounding, this method compares event times for endpoints due to the pathogen of interest and negative-control endpoints during counterfactual risk periods, defined according to individuals' infection history. We derive a standard Mantel-Haenszel (matched) odds ratio conveying the effect of prior infection on time to recurrence. We compare performance of this approach to several proportional hazards modeling frameworks and estimate statistical power of the proposed strategy under various conditions. In an example application, we use the proposed method to reestimate naturally acquired protection against rotavirus gastroenteritis using data from previously published cohort studies. This self-matched negative-control design may present a flexible alternative to existing approaches for analyzing naturally acquired immunity, as well as other exposures affecting the distribution of recurrent event times.
Collapse
Affiliation(s)
- Graham R. Northrup
- From the Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, CA
| | - Lei Qian
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Katia Bruxvoort
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Florian M. Marx
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Desmond Tutu Tuberculosis Centre, Stellenbosch University, Cape Town, South Africa
- DST-NRF South African Centre of Excellence and Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa
| | - Lilith K. Whittles
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Modelling Methodology, School of Public Health, Imperial College London, London, United Kingdom
| | - Joseph A. Lewnard
- From the Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, CA
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
12
|
Risk of Gonococcal Infection During Vaginal Exposure is Associated With High Vaginal pH and Active Menstruation. Sex Transm Dis 2020; 46:86-90. [PMID: 30308531 DOI: 10.1097/olq.0000000000000926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND An understanding of the biological reasons why 25% to 35% of women resist infection during vaginal intercourse with a man infected with Neisseria gonorrhoeae could lead to novel control measures. We sought modifiable biological bases for infection resistance by comparing women in the same core-mixing group who did or did not become infected after sexual exposure. METHODS We enrolled 61 female contacts of index men with gonorrhea seen at Baltimore City Health Department clinics from January 2008 through May 2012. Exposure and sexual practices and histories, co-infections, physical signs on exam, patient symptom report, and menstrual history were collected. RESULTS Thirty-eight (62.3%) of the exposed women developed cervical infections. Multiple logistic regression found that a vaginal pH of 4.5 or higher at presentation to clinic was significantly associated with gonococcal infection (adjusted odds ratio, 5.5; P = 0.037) in women who presented within one menstrual cycle, 35 days. In this group of women, there was a significant association between acquiring an N. gonorrhoeae cervical infection and sexual exposure during menstruation (adjusted odds ratio 12.5; P = 0.05). CONCLUSIONS Modification of vaginal pH could be explored as novel strategy for reducing the risk of N. gonorrhoeae infections in women.
Collapse
|
13
|
Vincent LR, Jerse AE. Biological feasibility and importance of a gonorrhea vaccine for global public health. Vaccine 2019; 37:7419-7426. [PMID: 29680200 PMCID: PMC6892272 DOI: 10.1016/j.vaccine.2018.02.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
There is a growing public health interest in controlling sexually transmitted infections (STIs) through vaccination due to increasing recognition of the global disease burden of STIs and the role of STIs in women's reproductive health, adverse pregnancy outcomes, and the health and well-being of neonates. Neisseria gonorrhoeae has historically challenged vaccine development through the expression of phase and antigenically variable surface molecules and its capacity to cause repeated infections without inducing protective immunity. An estimated 78 million new N. gonorrhoeae infections occur annually and the greatest disease burden is carried by low- and middle-income countries (LMIC). Current control measures are clearly inadequate and threatened by the rapid emergence of antibiotic resistance. The gonococcus now holds the status of "super-bug" as there is currently no single reliable monotherapy for empirical treatment of gonorrhea. The problem of antibiotic resistance has elevated treatment costs and necessitated the establishment of large surveillance programs to track the spread of resistant strains. Here we review the need for a gonorrhea vaccine with respect to global disease burden and related socioeconomic and treatment costs, with an emphasis on the impact of gonorrhea on women and newborns. We also highlight the challenge of estimating the impact of a gonorrhea vaccine due to the need for more data on the burden of gonococcal pelvic inflammatory disease and related sequelae and of gonorrhea-associated adverse pregnancy outcomes and the problem of empirical diagnosis and treatment of STIs in LMIC. There is also a lack of clinical and basic science research in the area of gonococcal/chlamydia coinfection, which occurs in a high percentage of individuals with gonorrhea and should be considered when testing the efficacy of gonorrhea vaccines. Finally, we review recent research that suggests a gonorrhea vaccine is feasible and discuss challenges and research gaps in gonorrhea vaccine development.
Collapse
Affiliation(s)
- Leah R Vincent
- National Institute of Allergy and Infectious Diseases, 5601 Fishers Lane, Rockville, MD 20852, United States.
| | - Ann E Jerse
- Department of Microbiology and Immunology F. Edward Herbert School of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20854, United States.
| |
Collapse
|
14
|
Clow F, O’Hanlon CJ, Christodoulides M, Radcliff FJ. Feasibility of Using a Luminescence-Based Method to Determine Serum Bactericidal Activity against Neisseria gonorrhoeae. Vaccines (Basel) 2019; 7:vaccines7040191. [PMID: 31766474 PMCID: PMC6963289 DOI: 10.3390/vaccines7040191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 01/15/2023] Open
Abstract
Development of a vaccine to limit the impact of antibiotic resistant Neisseria gonorrhoeae is now a global priority. Serum bactericidal antibody (SBA) is a possible indicator of protective immunity to N. gonorrhoeae, but conventional assays measure colony forming units (CFU), which is time-consuming. A luminescent assay that quantifies ATP as a surrogate measure of bacterial viability was tested on N. gonorrhoeae strains FA1090, MS11 and P9-17 and compared to CFU-based readouts. There was a linear relationship between CFU and ATP levels for all three strains (r > 0.9). Normal human serum (NHS) is a common source of complement for SBA assays, but needs to be screened for non-specific bactericidal activity. NHS from 10 individuals were used for serum sensitivity assays-sensitivity values were significantly reduced with the ATP method for FA1090 (5/10, p < 0.05) and MS11 (10/10, p < 0.05), whereas P9-17 data were comparable for all donors. Our results suggest that measuring ATP underestimates serum sensitivity of N. gonorrhoeae and that the CFU method is a better approach. However, mouse anti-P9-17 outer membrane vesicles (OMV) SBA titres to P9-17 were comparable with both methods (r = 0.97), suggesting this assay can be used to rapidly screen sera for bactericidal antibodies to gonococci.
Collapse
Affiliation(s)
- Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (F.C.); (C.J.O.)
| | - Conor J O’Hanlon
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (F.C.); (C.J.O.)
| | - Myron Christodoulides
- Faculty of Medicine, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton, Southampton SO166YD, UK;
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (F.C.); (C.J.O.)
- Correspondence: ; Tel.: +64-9923-6272
| |
Collapse
|
15
|
Zhu T, McClure R, Harrison OB, Genco C, Massari P. Integrated Bioinformatic Analyses and Immune Characterization of New Neisseria gonorrhoeae Vaccine Antigens Expressed during Natural Mucosal Infection. Vaccines (Basel) 2019; 7:E153. [PMID: 31627489 PMCID: PMC6963464 DOI: 10.3390/vaccines7040153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
There is an increasingly severe trend of antibiotic-resistant Neisseria gonorrhoeae strains worldwide and new therapeutic strategies are needed against this sexually-transmitted pathogen. Despite the urgency, progress towards a gonococcal vaccine has been slowed by a scarcity of suitable antigens, lack of correlates of protection in humans and limited animal models of infection. N. gonorrhoeae gene expression levels in the natural human host does not reflect expression in vitro, further complicating in vitro-basedvaccine analysis platforms. We designed a novel candidate antigen selection strategy (CASS), based on a reverse vaccinology-like approach coupled with bioinformatics. We utilized the CASS to mine gonococcal proteins expressed during human mucosal infection, reported in our previous studies, and focused on a large pool of hypothetical proteins as an untapped source of potential new antigens. Via two discovery and analysis phases (DAP), we identified 36 targets predicted to be immunogenic, membrane-associated proteins conserved in N. gonorrhoeae and suitable for recombinant expression. Six initial candidates were produced and used to immunize mice. Characterization of the immune responses indicated cross-reactive antibodies and serum bactericidal activity against different N. gonorrhoeae strains. These results support the CASS as a tool for the discovery of new vaccine candidates.
Collapse
Affiliation(s)
- Tianmou Zhu
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Odile B Harrison
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK.
| | - Caroline Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
16
|
Kenyon C. Toward a Set of Criteria to Decide Which STIs to Screen for in PrEP Cohorts. Front Public Health 2019; 7:154. [PMID: 31249825 PMCID: PMC6582697 DOI: 10.3389/fpubh.2019.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/02/2022] Open
Abstract
Contemporary HIV preexposure prophylaxis (PrEP) cohorts are characterized by high rates of partner change and as a result have high and fairly stable prevalences of N. gonorrhoeae and C. trachomatis. The available evidence suggests that intensive 3-monthly screening in this setting does not have a large effect on the prevalence of these infections but results in high antimicrobial exposures. Gonorrhea/chlamydia screening may thus be doing more harm than good. Compelling arguments can, however, be made to screen for HIV, hepatitis C, and syphilis in PrEP cohorts. In this perspective piece, we explore the logical basis for deciding which STIs to screen for in PrEP cohorts. We propose that a Delphi consensus methodology is used to derive, assess, and apply a broadly accepted set of criteria to evaluate which STIs to screen for in these cohorts. Finally, to illustrate the utility of the process, we derive and apply our own list of criteria as to which STIs to screen for. This process leads to a controversial conclusion, namely that stopping gonorrhea/chlamydia screening in a controlled and phased manner may offer net health benefits to PrEP cohorts.
Collapse
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Petousis-Harris H, Radcliff FJ. Exploitation of Neisseria meningitidis Group B OMV Vaccines Against N. gonorrhoeae to Inform the Development and Deployment of Effective Gonorrhea Vaccines. Front Immunol 2019; 10:683. [PMID: 31024540 PMCID: PMC6465565 DOI: 10.3389/fimmu.2019.00683] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/13/2019] [Indexed: 01/13/2023] Open
Abstract
Have potential clues to an effective gonorrhea vaccine been lurking in international disease surveillance data for decades? While no clinically effective vaccines against gonorrhea have been developed we present direct and indirect evidence that a vaccine is not only possible, but may already exist. Experience from Cuba, New Zealand, and Canada suggest that vaccines containing Group B Neisseria meningitides outer membrane vesicles (OMV) developed to control type-specific meningococcal disease may also prevent a significant proportion of gonorrhea. The mechanisms for this phenomenon have not yet been elucidated but we present some strategies for unraveling potential cross protective antigens and effector immune responses by exploiting stored sera from clinical trials and individuals primed with a meningococcal group B OMV vaccine (MeNZB). Elucidating these will contribute to the ongoing development of high efficacy vaccine options for gonorrhea. While the vaccine used in New Zealand, where the strongest empirical evidence has been gathered, is no longer available, the OMV has been included in the multi component recombinant meningococcal vaccine 4CMenB (Bexsero) which is now licensed and used in numerous countries. Several lines of evidence suggest it has the potential to affect gonorrhea prevalence. A vaccine to control gonorrhea does not need to be perfect and modeling supports that even a moderately efficacious vaccine could make a significant impact in disease prevalence. How might we use an off the shelf vaccine to reduce the burden of gonorrhea? What are some of the potential societal barriers in a world where vaccine hesitancy is growing? We summarize the evidence and consider some of the remaining questions.
Collapse
Affiliation(s)
- Helen Petousis-Harris
- Department of General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Kenyon C. Screening is not associated with reduced incidence of gonorrhoea or chlamydia in men who have sex with men (MSM); an ecological study of 23 European countries. F1000Res 2019; 8:160. [PMID: 31543953 PMCID: PMC6733379 DOI: 10.12688/f1000research.17955.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Increasing rates of antimicrobial resistance has motivated a reassessment of if intensive screening for gonorrhoea and chlamydia is associated with a reduction in the prevalence of these infections in men who have sex with men (MSM). Methods: Spearman’s correlation was used to evaluate the country-level correlation between the intensity of self-reported sexual transmitted infection (STI) screening in MSM (both anal and urethral screening, taken from a large internet survey of MSM) and the incidence (taken from ECDC surveillance figures) and prevalence (taken from a literature review of studies estimating prevalence in MSM attending STI clinics) of gonorrhoea and chlamydia. Results: The intensity of both anal and genital screening was found to be positively associated with country level gonorrhoea incidence rates (rho 0.74; p=0.0004; rho=0.73; p=0.0004, respectively) and Ct incidence rates (rho 0.71; p=0.001; rho=0.78; p=0.0001, respectively). No associations were found between anal or genital screening intensity and Ng prevalence in clinic populations (Table 2). Conclusions: We found no evidence of a negative association between screening intensity and the prevalence of gonorrhoea or chlamydia in MSM. Randomized controlled trials are urgently required to evaluate if the high antimicrobial exposure resulting from intensive screening programmes is justified.
Collapse
Affiliation(s)
- Chris Kenyon
- University of Cape Town, Cape Town, South Africa, 7925, South Africa.,Institute of Tropical Medicine, Antwerp, Antwerp, 2000, Belgium
| |
Collapse
|
19
|
Kenyon C. Screening is not associated with reduced incidence of gonorrhoea or chlamydia in men who have sex with men (MSM); an ecological study of 23 European countries. F1000Res 2019; 8:160. [PMID: 31543953 PMCID: PMC6733379 DOI: 10.12688/f1000research.17955.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 07/31/2023] Open
Abstract
Background: Increasing rates of antimicrobial resistance has motivated a reassessment of if intensive screening for gonorrhoea and chlamydia is associated with a reduction in the prevalence of these infections in men who have sex with men (MSM). Methods: Spearman's correlation was used to evaluate the country-level correlation between the intensity of self-reported sexual transmitted infection (STI) screening in MSM (both anal and urethral screening, taken from a large internet survey of MSM) and the incidence (taken from ECDC surveillance figures) and prevalence (taken from a literature review of studies estimating prevalence in MSM attending STI clinics) of gonorrhoea and chlamydia. Results: The intensity of both anal and genital screening was found to be positively associated with country level gonorrhoea incidence rates (rho 0.74; p=0.0004; rho=0.73; p=0.0004, respectively) and Ct incidence rates (rho 0.71; p=0.001; rho=0.78; p=0.0001, respectively). No associations were found between anal or genital screening intensity and Ng prevalence in clinic populations (Table 2). Conclusions: We found no evidence of a negative association between screening intensity and the prevalence of gonorrhoea or chlamydia in MSM. Randomized controlled trials are urgently required to evaluate if the high antimicrobial exposure resulting from intensive screening programmes is justified.
Collapse
Affiliation(s)
- Chris Kenyon
- University of Cape Town, Cape Town, South Africa, 7925, South Africa
- Institute of Tropical Medicine, Antwerp, Antwerp, 2000, Belgium
| |
Collapse
|
20
|
Abstract
Neisseria gonorrhoeae infection is a major public health problem worldwide. The increasing incidence of gonorrhea coupled with global spread of multidrug-resistant isolates of gonococci has ushered in an era of potentially untreatable infection. Gonococcal disease elicits limited immunity, and individuals are susceptible to repeated infections. In this chapter, we describe gonococcal disease and epidemiology and the structure and function of major surface components involved in pathogenesis. We also discuss the mechanisms that gonococci use to evade host immune responses and the immune responses following immunization with selected bacterial components that may overcome evasion. Understanding the biology of the gonococcus may aid in preventing the spread of gonorrhea and also facilitate the development of gonococcal vaccines and treatments.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
21
|
Baarda BI, Martinez FG, Sikora AE. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines. Front Immunol 2018; 9:2793. [PMID: 30564232 PMCID: PMC6288298 DOI: 10.3389/fimmu.2018.02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the serious health consequences combined with the prevalence and the dire possibility of untreatable gonorrhea. Reverse vaccinology, which includes genome and proteome mining, has proven successful in the discovery of vaccine candidates against many pathogenic bacteria. Here, we describe proteomic applications including comprehensive, quantitative proteomic platforms and immunoproteomics coupled with broad-ranging bioinformatics that have been applied for antigen mining to develop gonorrhea vaccine(s). We further focus on outlining the vaccine candidate decision tree, describe the structure-function of novel proteome-derived antigens as well as ways to gain insights into their roles in the cell envelope, and underscore new lessons learned about the fascinating biology of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
22
|
Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: Drug Resistance, Mouse Models, and Vaccine Development. Annu Rev Microbiol 2018; 71:665-686. [PMID: 28886683 DOI: 10.1146/annurev-micro-090816-093530] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonorrhea, an obligate human infection, is on the rise worldwide and gonococcal strains resistant to many antibiotics are emerging. Appropriate antimicrobial treatment and prevention, including effective vaccines, are urgently needed. To guide investigation, an experimental model of genital tract infection has been developed in female mice to study mechanisms by which Neisseria gonorrhoeae evades host-derived antimicrobial factors and to identify protective and immunosuppressive pathways. Refinements of the animal model have also improved its use as a surrogate host of human infection and accelerated the testing of novel therapeutic and prophylactic compounds against gonococcal infection. Reviewed herein are the (a) history of antibiotic usage and resistance against gonorrhea and the consequences of resistance mechanisms that may increase gonococcal fitness and therefore the potential for spread, (b) use of gonococcal infection in the animal model system to study mechanisms of pathogenesis and host defenses, and
Collapse
Affiliation(s)
- Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322.,Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia 30033;
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland 20814-4799;
| |
Collapse
|
23
|
Current levels of gonorrhoea screening in MSM in Belgium may have little effect on prevalence: a modelling study. Epidemiol Infect 2018; 146:333-338. [PMID: 29386078 DOI: 10.1017/s0950268818000092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is considerable uncertainty as to the effectiveness of Neisseria gonorrhoeae (NG) screening in men who have sex with men. It is important to ensure that screening has benefits that outweigh the risks of increased antibiotics resistance. We develop a mathematical model to estimate the effectiveness of screening on prevalence. Separable Temporal Exponential family Random Graph Models are used to model the sexual relationships network, both with main and casual partners. Next, the transmission of Gonorrhoea is simulated on this network. The models are implemented using the R package 'statnet', which we adapted among other things to incorporate infection status at the pharynx, urethra and rectum separately and to distinguish between anal sex, oral sex and rimming. The different screening programmes compared are no screening, 3.5% of the population screened, 32% screened and 50% screened. The model simulates day-by-day evolution for 10 years of a population of 10 000. If half of the population would be screened, the prevalence in the pharynx decreases from 11.9% to 10.2%. We conclude that the limited impact of screening on NG prevalence may not outweigh the increased risk of antibiotic resistance.
Collapse
|
24
|
Hazel A, Holland Jones J. Remoteness influences access to sexual partners and drives patterns of viral sexually transmitted infection prevalence among nomadic pastoralists. PLoS One 2018; 13:e0191168. [PMID: 29385170 PMCID: PMC5791958 DOI: 10.1371/journal.pone.0191168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Sexually transmitted infections (STIs) comprise a significant portion of the infectious-disease burden among rural people in the Global South. Particular characteristics of ruralness-low-density settlements and poor infrastructure-make healthcare provision difficult, and remoteness, typically a characteristic of ruralness, often compounds the difficultly. Remoteness may also accelerate STI transmission, particularly that of viral STIs, through formation of small, highly connected sexual networks through which pathogens can spread rapidly, especially when partner concurrency is broadly accepted. Herein, we explored the effect of remoteness on herpes simplex virus type-2 (HSV-2) epidemiology among semi-nomadic pastoralists in northwestern (Kaokoveld) Namibia, where, in 2009 we collected HSV-2-specific antibody status, demographic, sexual network, and travel data from 446 subjects (women = 213, men = 233) in a cross-sectional study design. HSV-2 prevalence was high overall in Kaokoveld (>35%), but was heterogeneously distributed across locally defined residential regions: some regions had significantly higher HSV-2 prevalence (39-48%) than others (21-33%). Using log-linear models, we asked the following questions: 1) Are sexual contacts among people in high HSV-2-prevalence regions more likely to be homophilous (i.e., from the same region) than those among people from low-prevalence regions? 2) Are high-prevalence regions more "functionally" remote, in that people from those regions are more likely to travel within their own region than outside, compared to people from other regions? We found that high-prevalence regions were more sexually homophilous than low-prevalence regions and that those regions also had higher rates of within-region travel than the other regions. These findings indicate that remoteness can create contact structures for accelerated STI transmission among people who are already disproportionately vulnerable to consequences of untreated STIs.
Collapse
Affiliation(s)
- Ashley Hazel
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - James Holland Jones
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- Division of Biological Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Summary and Recommendations from the National Institute of Allergy and Infectious Diseases (NIAID) Workshop "Gonorrhea Vaccines: the Way Forward". CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:656-63. [PMID: 27335384 DOI: 10.1128/cvi.00230-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
UNLABELLED There is an urgent need for the development of an antigonococcal vaccine due to the increasing drug resistance found in this pathogen. The U.S. Centers for Disease Control (CDC) have identified multidrug-resistant gonococci (GC) as among 3 "urgent" hazard-level threats to the U.S. POPULATION In light of this, on 29 to 30 June 2015, the National Institute for Allergy and Infectious Diseases (NIAID) sponsored a workshop entitled "Gonorrhea Vaccines: the Way Forward." The goal of the workshop was to gather leaders in the field to discuss several key questions on the current status of gonorrhea vaccine research and the path forward to a licensed gonorrhea vaccine. Representatives from academia, industry, U.S. Government agencies, and a state health department were in attendance. This review summarizes each of the 4 scientific sessions and a series of 4 breakout sessions that occurred during the one and a half days of the workshop. Topics raised as high priority for future development included (i) reinvigoration of basic research to understand gonococcal infection and immunity to allow intervention in processes essential for infection; (ii) clinical infection studies to establish parallels and distinctions between in vitro and animal infection models versus natural human genital and pharyngeal infection and to inform in silico modeling of vaccine impact; and (iii) development of an integrated pipeline for preclinical and early clinical evaluation and direct comparisons of potential vaccine antigens and adjuvants and routes of delivery.
Collapse
|
26
|
Hazel A, Marino S, Simon C. An anthropologically based model of the impact of asymptomatic cases on the spread of Neisseria gonorrhoeae. J R Soc Interface 2016; 12:rsif.2015.0067. [PMID: 25808340 DOI: 10.1098/rsif.2015.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neisseria gonorrhoeae (GC) remains a serious burden in many high-sexual-activity, undertreated populations. Using empirical data from a 2009 study of GC burden among pastoralists in Kaokoveld, Namibia, we expand the standard gonorrhoea transmission model by using locally derived sexual contact data to explore transmission dynamics in a population with high rates of partner exchange and low treatment-seeking behaviour. We use the model to generate ball-park estimates for transmission probabilities and other parameter values for low-level (i.e. less than approx. 1200 copies/20 µl PCR reaction) asymptomatic infections, which account for 74% of all GC infections found in Kaokoveld in 2009, and to describe the impact of asymptomatic, low-level infections on overall prevalence patterns. Our results suggest that GC transmission probabilities are higher than previously estimated, that untreated infections take longer to clear than previously estimated and that a high prevalence of low-level infections is partially due to larger numbers of untreated, asymptomatic infections. These results provide new insights into the natural history of GC and the challenge of syndromic management programmes for the eradication of endemic gonorrhoea.
Collapse
Affiliation(s)
- Ashley Hazel
- School of Natural Resources and Environment, University of Michigan, Dana Building, 440 Church Street, Ann Arbor, MI 48109, USA Department of Anthropology, Stanford University, 450 Serra Mall, Building 50, Stanford, CA 94305, USA
| | - Simeone Marino
- School of Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-0620, USA
| | - Carl Simon
- Department of Mathematics, Ford School of Public Policy, Center for the Study of Complex Systems, University of Michigan, Weill Hall, 735 South State Street no. 4203, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
|
28
|
Russell MW, Whittum-Hudson J, Fidel PL, Hook EW, Mestecky J. Immunity to Sexually Transmitted Infections. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
High prevalence of Neisseria gonorrhoeae in a remote, undertreated population of Namibian pastoralists. Epidemiol Infect 2014; 142:2422-32. [PMID: 25267407 DOI: 10.1017/s0950268813003488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The highly remote pastoralist communities in Kaokoland, Namibia, have long been presumed to have high gonorrhoea prevalence. To estimate gonorrhoea prevalence and correlates of infection, we conducted a cross-sectional study of 446 adults across 28 rural villages. Gonorrhoea status was determined from urethral and vaginal swabs via qPCR assay. All participants answered a closed-ended interview about demographics, sexual behaviour and symptom history. Sixteen per cent of participants had high-level infections (⩾ID(50) dose) and 48% had low-level infections (<ID(50) dose). Women had higher prevalence than men of both high- and low-level infections. High-level infections were regionally and seasonally clustered, occurring in young adults in the Ehama region during the winter. Low-level infections were distributed homogenously across demographic characteristics, season, and region. All low-level infections and most high-level infections (men 78%, women 95%) were asymptomatic and left untreated. The epidemic-like nature of high-level gonorrhoea cases suggests that intervention efforts can be focused on seasons of high social activity.
Collapse
|
30
|
Prodger JL, Hirbod T, Gray R, Kigozi G, Nalugoda F, Galiwango R, Reynolds SJ, Huibner S, Wawer MJ, Serwadda D, Kaul R. HIV Infection in Uncircumcised Men Is Associated With Altered CD8 T-cell Function But Normal CD4 T-cell Numbers in the Foreskin. J Infect Dis 2014; 209:1185-94. [PMID: 24277744 PMCID: PMC3969543 DOI: 10.1093/infdis/jit644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected (HIV+) men are more susceptible to sexually transmitted infections, and may be superinfected by HIV. We hypothesized that HIV induces immune alterations in the foreskin that may impact the subsequent acquisition/clearance of genital coinfections. METHODS Foreskin tissue and blood were obtained from 70 HIV-uninfected and 20 HIV+ men undergoing circumcision. T cells were characterized by flow cytometry, immunohistochemistry, and polymerase chain reaction. RESULTS There was substantial influx of CD8 T-cells into the foreskins of HIV+ men (108.8 vs 23.1 cells/mm(2); P < .001); but foreskin CD4 T-cell density was unchanged (43.0 vs 33.7/mm(2); P = .67), despite substantial blood depletion (409.0 vs 877.8 cells/µL; P < .001). While frequencies of foreskin C-C chemokine receptor type 5(+) (CCR5(+)) T cells, T regulatory cells, and T-helper 17 cells were unaltered in HIV+ men, CD8 T-cell production of tumor necrosis factor α (TNFα) was decreased. HIV-specific CD8 T cells were present in the foreskins of HIV+ men, although their frequency and function was reduced compared to the blood. CONCLUSIONS Foreskin CD4 T-cell density and CCR5 expression were not reduced during HIV infection, perhaps explaining susceptibility to HIV superinfection. Foreskin CD8 T-cell density was increased, but decreased production of TNFα may enhance susceptibility to genital coinfections in HIV+ men.
Collapse
Affiliation(s)
- Jessica L Prodger
- Clinical Science Division, Department of Medicine, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Y, Liu W, Russell MW. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol 2014; 7:165-76. [PMID: 23757303 PMCID: PMC3812424 DOI: 10.1038/mi.2013.36] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/23/2013] [Indexed: 02/04/2023]
Abstract
Infection with Neisseria gonorrhoeae triggers an intense inflammatory response characterized by an influx of neutrophils in the genital tract, yet natural gonococcal infection does not induce a state of protective immunity. Our previous studies in a mouse model of N. gonorrhoeae infection demonstrated that transforming growth factor-β (TGF-β) is involved in the suppression of adaptive immunity by this organism, but complete inhibition of TGF-β activity only partially reverses N. gonorrhoeae-mediated suppression of T helper type 1 (Th1) and Th2 responses. In this study, we show that N. gonorrhoeae strongly induced the production of interleukin (IL)-10 and type 1 regulatory T (Tr1) cells. Blockade of IL-10 and Tr1 cell activity enhanced both Th1/Th2-dependent adaptive immune responses and Th17-governed innate responses to N. gonorrhoeae. Treatment of mice with anti-IL-10 antibody during gonococcal challenge led to faster clearance of infection and induced protection against secondary infection, with the generation of circulating and vaginal anti-gonococcal antibodies. Our results suggest that inhibition of IL-10 and Tr1 cells affords a new approach to the treatment of gonorrhea and facilitates the development of specific protective immunity.
Collapse
Affiliation(s)
- Yingru Liu
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | - Wensheng Liu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, University at Buffalo, Buffalo, NY 14214, USA
| | - Michael W. Russell
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
32
|
Jerse AE, Bash MC, Russell MW. Vaccines against gonorrhea: current status and future challenges. Vaccine 2013; 32:1579-87. [PMID: 24016806 DOI: 10.1016/j.vaccine.2013.08.067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/10/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023]
Abstract
Gonorrhea occurs at high incidence throughout the world and significantly impacts reproductive health and the spread of human immunodeficiency virus. Current control measures are inadequate and seriously threatened by the rapid emergence of antibiotic resistance. Progress on gonorrhea vaccines has been slow; however, recent advances justify significant effort in this area. Conserved vaccine antigens have been identified that elicit bactericidal antibodies and, or play key roles in pathogenesis that could be targeted by a vaccine-induced response. A murine genital tract infection model is available for systematic testing of antigens, immunization routes and adjuvants, and transgenic mice exist to relieve some host restrictions. Furthermore, mechanisms by which Neisseria gonorrhoeae avoids inducing a protective adaptive response are being elucidated using human cells and the mouse model. Induction of a Th1 response in mice clears infection and induces a memory response, which suggests Th1-inducing adjuvants may be key in vaccine-induced protection. Continued research in this area should include human testing and clinical studies to confirm or negate findings from experimental systems and to define protective host factors.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebért School of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | - Margaret C Bash
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1400 Rockville Pike, Bethesda, MD 20814, USA.
| | - Michael W Russell
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-3000, USA.
| |
Collapse
|
33
|
Gulati S, Zheng B, Reed GW, Su X, Cox AD, St. Michael F, Stupak J, Lewis LA, Ram S, Rice PA. Immunization against a saccharide epitope accelerates clearance of experimental gonococcal infection. PLoS Pathog 2013; 9:e1003559. [PMID: 24009500 PMCID: PMC3757034 DOI: 10.1371/journal.ppat.1003559] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
The emergence of ceftriaxone-resistant strains of Neisseria gonorrhoeae may herald an era of untreatable gonorrhea. Vaccines against this infection are urgently needed. The 2C7 epitope is a conserved oligosaccharide (OS) structure, a part of lipooligosaccharide (LOS) on N gonorrhoeae. The epitope is expressed by 94% of gonococci that reside in the human genital tract (in vivo) and by 95% of first passaged isolates. Absence of the 2C7 epitope shortens the time of gonococcal carriage in a mouse model of genital infection. To circumvent the limitations of saccharide immunogens in producing long lived immune responses, previously we developed a peptide mimic (called PEP1) as an immunologic surrogate of the 2C7-OS epitope and reconfigured it into a multi-antigenic peptide, (MAP1). To test vaccine efficacy of MAP1, female BALB/c mice were passively immunized with a complement-dependent bactericidal monoclonal antibody specific for the 2C7 epitope or were actively immunized with MAP1. Mice immunized with MAP1 developed a TH1-biased anti-LOS IgG antibody response that was also bactericidal. Length of carriage was shortened in immune mice; clearance occurred in 4 days in mice passively administered 2C7 antibody vs. 6 days in mice administered control IgG3λ mAb in one experiment (p = 0.03) and 6 vs. 9 days in a replicate experiment (p = 0.008). Mice vaccinated with MAP1 cleared infection in 5 days vs. 9 days in mice immunized with control peptide (p = 0.0001 and p = 0.0002, respectively in two replicate experiments). Bacterial burden was lower over the course of infection in passively immunized vs. control mice in both experiments (p = 0.008 and p = 0.0005); burdens were also lower in MAP1 immunized mice vs. controls (p<0.0001) and were inversely related to vaccine antibodies induced in the vagina (p = 0.043). The OS epitope defined by mAb 2C7 may represent an effective vaccine target against gonorrhea, which is rapidly becoming incurable with currently available antibiotics.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/pharmacology
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/microbiology
- Disease Models, Animal
- Epitopes/immunology
- Epitopes/pharmacology
- Female
- Gonorrhea/genetics
- Gonorrhea/immunology
- Gonorrhea/prevention & control
- Humans
- Immunization, Passive
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Neisseria gonorrhoeae/genetics
- Neisseria gonorrhoeae/immunology
- Peptides/immunology
- Peptides/pharmacology
- Polysaccharides, Bacterial/immunology
- Polysaccharides, Bacterial/pharmacology
- Th1 Cells/immunology
- Th1 Cells/pathology
Collapse
Affiliation(s)
- Sunita Gulati
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bo Zheng
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - George W. Reed
- Department of Medicine, Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Xiaohong Su
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, People's Republic of China
| | - Andrew D. Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Frank St. Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jacek Stupak
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Lisa A. Lewis
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter A. Rice
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
34
|
Yu Q, Chow EMC, McCaw SE, Hu N, Byrd D, Amet T, Hu S, Ostrowski MA, Gray-Owen SD. Association of Neisseria gonorrhoeae Opa(CEA) with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response. PLoS One 2013; 8:e56705. [PMID: 23424672 PMCID: PMC3570455 DOI: 10.1371/journal.pone.0056705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/16/2013] [Indexed: 01/07/2023] Open
Abstract
Infection with Neisseria gonorrhoeae (N. gonorrhoeae) can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa) proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) on CD4⁺ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1)-specific cytotoxic T-lymphocyte (CTL) responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs) are professional antigen presenting cells (APCs) that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific Opa(CEA), but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, Opa(CEA) binding to CEACAM1 reduced the DCs' capacity to stimulate an allogeneic T cell proliferative response. Moreover, Opa(CEA)-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with Opa(CEA)-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain why infection of N. gonorrhoeae fails to trigger an effective specific immune response or develop immune memory, and may affect the potent synergy between gonorrhea and HIV-1 infection.
Collapse
Affiliation(s)
- Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Edith M. C. Chow
- Department of Molecular Genetics, and 3Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E. McCaw
- Department of Molecular Genetics, and 3Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Ningjie Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Daniel Byrd
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Tohti Amet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sishun Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Scott D. Gray-Owen
- Department of Molecular Genetics, and 3Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
So NSY, Ostrowski MA, Gray-Owen SD. Vigorous response of human innate functioning IgM memory B cells upon infection by Neisseria gonorrhoeae. THE JOURNAL OF IMMUNOLOGY 2012; 188:4008-22. [PMID: 22427638 DOI: 10.4049/jimmunol.1100718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neisseria gonorrhoeae, the cause of the sexually transmitted infection gonorrhea, elicits low levels of specific Ig that decline rapidly after the bacteria are cleared. Reinfection with the same serovar can occur, and prior gonococcal infection does not alter the Ig response upon subsequent exposure, suggesting that protective immunity is not induced. The mucosal Ig response apparent during gonorrhea does not correlate with that observed systemically, leading to a suggestion that it is locally generated. In considering whether N. gonorrhoeae directly influences B cells, we observed that gonococcal infection prolonged viability of primary human B cells in vitro and elicited robust activation and vigorous proliferative responses in the absence of T cells. Furthermore, we observed the specific expansion of IgD(+)CD27(+) B cells in response to gonococcal infection. These cells are innate in function, conferring protection against diverse microbes by producing low-affinity, broadly reactive IgM without inducing classical immunologic memory. Although gonococcal infection of B cells produced small amounts of gonococcal-specific IgM, IgM specific for irrelevant Ags were also produced, suggesting a broad, polyspecific Ig response. The gonococci were effectively bound and engulfed by B cells. TLR9-inhibitory CpGs blocked B cell responses, indicating that intracellular bacterial degradation allows for innate immune detection within the phagolysosome. To our knowledge, this is the first report of a bacterial pathogen having specific affinity for the human IgM memory B cells, driving their potent activation and polyclonal Ig response. This unfocused T-independent response explains the localized Ig response that occurs, despite an absence of immunologic memory elicited during gonorrhea.
Collapse
Affiliation(s)
- Nancy S Y So
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
36
|
Gulati S, Agarwal S, Vasudhev S, Rice PA, Ram S. Properdin is critical for antibody-dependent bactericidal activity against Neisseria gonorrhoeae that recruit C4b-binding protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:3416-25. [PMID: 22368277 DOI: 10.4049/jimmunol.1102746] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, is an important cause of morbidity worldwide. A safe and effective vaccine against gonorrhea is needed because of emerging resistance of gonococci to almost every class of antibiotic. A gonococcal lipooligosaccharide epitope defined by the mAb 2C7 is being evaluated as a candidate for development of an Ab-based vaccine. Immune Abs against N. gonorrhoeae need to overcome several subversive mechanisms whereby gonococcus evades complement, including binding to C4b-binding protein (C4BP; classical pathway inhibitor) and factor H (alternative pathway [AP] inhibitor). The role of AP recruitment and, in particular, properdin in assisting killing of gonococci by specific Abs is the subject of this study. We show that only those gonococcal strains that bind C4BP require properdin for killing by 2C7, whereas strains that do not bind C4BP are efficiently killed by 2C7 even when AP function is blocked. C3 deposition on bacteria mirrored killing. Recruitment of the AP by mAb 2C7, as measured by factor B binding, occurred in a properdin-dependent manner. These findings were confirmed using isogenic mutant strains that differed in their ability to bind to C4BP. Immune human serum that contained bactericidal Abs directed against the 2C7 lipooligosaccharide epitope as well as murine antigonococcal antiserum required functional properdin to kill C4BP-binding strains, but not C4BP-nonbinding strains. Collectively, these data point to an important role for properdin in facilitating immune Ab-mediated complement-dependent killing of gonococcal strains that inhibit the classical pathway by recruiting C4BP.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
37
|
African women recently infected with HIV-1 and HSV-2 have increased risk of acquiring Neisseria gonorrhoeae and Chlamydia trachomatis in the Methods for Improving Reproductive Health in Africa trial. Sex Transm Dis 2012; 38:562-70. [PMID: 21278624 DOI: 10.1097/olq.0b013e31820a8c2c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neisseria gonorrhoeae and Chlamydia trachomatis are 2 common causative agents of cervical bacterial sexually transmitted infections (STI). Against the background of the concurrent epidemics of STIs and HIV in sub-Saharan Africa, we examined the effect of HIV-1 and HSV-2 on acquiring N. gonorrhoeae and C. trachomatis in a cohort of southern African women at risk for HIV infection. METHODS We examined incidence of first infection with N. gonorrhoeae and C. trachomatis in the multisite randomized controlled trial Methods for Improving Reproductive Health in Africa. Multivariable Cox proportional hazards models with time-dependent covariates were used. RESULTS The incidence rates of C. trachomatis and N. gonorrhoeae infections were 6.14 per 100 woman-years and 2.42 per 100 women-years, respectively. In multivariable analyses, women who became infected with HIV-1 were more likely to acquire C. trachomatis (adjusted hazard ratio [adj. HR], 1.86; 95% confidence interval [CI], 1.34-2.57) and N. gonorrhoeae (adj. HR, 2.29; 95% CI, 1.47-3.56) compared with HIV-uninfected women. Similarly, HSV-2 infected women were more likely to acquire C. trachomatis (adj. HR, 1.29; 95% CI, 1.05-1.58) and N. gonorrhoeae (adj. HR, 1.57; 95% CI, 1.11-2.21). Women who were of younger age, who did not live with their primary male partner, and who changed sex partners during the study were also more likely to acquire a cervical STI. CONCLUSIONS Women recently infected with HIV-1 and HSV-2 were at increased risk of acquiring N. gonorrhoeae and C. trachomatis. Proactive screening and treatment of these common cervical infections, particularly among those infected with HIV-1 and HSV-2, should be considered for young sexually active women in settings with a high prevalence of HIV/STIs.
Collapse
|
38
|
Zhu W, Chen CJ, Thomas CE, Anderson JE, Jerse AE, Sparling PF. Vaccines for gonorrhea: can we rise to the challenge? Front Microbiol 2011; 2:124. [PMID: 21687431 PMCID: PMC3109613 DOI: 10.3389/fmicb.2011.00124] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022] Open
Abstract
Immune responses to the gonococcus after natural infection ordinarily result in little immunity to reinfection, due to antigenic variation of the gonococcus, and redirection or suppression of immune responses. Brinton and colleagues demonstrated that parenteral immunization of male human volunteers with a purified pilus vaccine gave partial protection against infection by the homologous strain. However, the vaccine failed in a clinical trial. Recent vaccine development efforts have focused on the female mouse model of genital gonococcal infection. Here we discuss the state of the field, including our unpublished data regarding efficacy in the mouse model of either viral replicon particle (VRP) vaccines, or outer membrane vesicle (OMV) vaccines. The OMV vaccines failed, despite excellent serum and mucosal antibody responses. Protection after a regimen consisting of a PorB-VRP prime plus recombinant PorB boost was correlated with apparent Th1, but not with antibody, responses. Protection probably was due to powerful adjuvant effects of the VRP vector. New tools including novel transgenic mice expressing human genes required for gonococcal infection should enable future research. Surrogates for immunity are needed. Increasing antimicrobial resistance trends among gonococci makes development of a vaccine more urgent.
Collapse
Affiliation(s)
- Weiyan Zhu
- Department of Medicine, University of North Carolina Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
39
|
Liu Y, Feinen B, Russell MW. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front Microbiol 2011; 2:52. [PMID: 21833308 PMCID: PMC3153028 DOI: 10.3389/fmicb.2011.00052] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/08/2011] [Indexed: 12/31/2022] Open
Abstract
It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory–immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.
Collapse
Affiliation(s)
- Yingru Liu
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo Buffalo, NY, USA
| | | | | |
Collapse
|
40
|
The role of immunity in the epidemiology of gonorrhoea, chlamydial infection and trichomoniasis: insights from a mathematical model. Epidemiol Infect 2011; 139:1875-83. [PMID: 21299913 DOI: 10.1017/s0950268811000045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Most mathematical models of sexually transmitted infections (STIs) assume that infected individuals become susceptible to re-infection immediately after recovery. This paper assesses whether extending the standard model to allow for temporary immunity after recovery improves the correspondence between observed and modelled levels of STI prevalence in South Africa, for gonorrhoea, chlamydial infection and trichomoniasis. Five different models of immunity and symptom resolution were defined, and each model fitted to South African STI prevalence data. The models were compared in terms of Bayes factors, which show that in the case of gonorrhoea and chlamydial infection, models that allow for immunity provide a significantly better fit to STI prevalence data than models that do not allow for immunity. For all three STIs, estimates of the impact of changes in STI treatment and sexual behaviour are significantly lower in models that allow for immunity. Mathematical models that do not allow for immunity could therefore overestimate the effectiveness of STI interventions.
Collapse
|
41
|
Epidemiological synergy of Trichomonas vaginalis and HIV in Zimbabwean and South African women. Sex Transm Dis 2010; 37:460-6. [PMID: 20562586 DOI: 10.1097/olq.0b013e3181cfcc4b] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Trichomonas vaginalis (T. vaginalis) is the most common nonviral sexually transmitted infection in the world. Despite the coexisting global epidemics of T. vaginalis and HIV, little attention has focused on the emerging evidence that T. vaginalis increases susceptibility to, and potentially transmission of, HIV. METHODS We evaluated T. vaginalis infection in the context of a multisite, randomized controlled trial amongst women in South Africa and Zimbabwe, to determine first, if risk of HIV acquisition was increased among women recently infected with T. vaginalis, and second, if risk of T. vaginalis acquisition was increased among women infected with HIV. RESULTS After controlling for potential confounders, participants infected with T. vaginalis were more likely to test positive for HIV at their following visit, compared to participants uninfected with T. vaginalis (adjusted hazard ratio = 2.05; 95% CI, 1.05-4.02). Similarly, HIV-positive participants were twice as likely to have acquired T. vaginalis infection at the following visit, compared to HIV-negative participants (adjusted hazard ratio = 2.12; 95% CI, 1.35-3.32). CONCLUSIONS We found an increased risk of both HIV acquisition associated with T. vaginalis infection and risk of T. vaginalis acquisition associated with HIV infection. This bidirectional relationship represents a potentially important factor in sustaining the HIV epidemic in populations where T. vaginalis is endemic.
Collapse
|
42
|
Russell MW, Mestecky J. Tolerance and protection against infection in the genital tract. Immunol Invest 2010; 39:500-25. [PMID: 20450289 DOI: 10.3109/08820131003674834] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genital tract is a unique immunological environment that must support the reproductive function and resist infection. Particularly in the female tract, immunoregulatory and immunosuppressive activities that permit the growth of the fetus create an environment that can readily be exploited by microbes that have become well-adapted to this location. Cellular and molecular mediators of immune responses differ from those found at other mucosal surfaces. Mechanisms of immune response induction and delivery, as well as immune effector functions at the genital mucosae need to be considered in the development of vaccines against infections of the genital tract.
Collapse
Affiliation(s)
- Michael W Russell
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York 14214, USA.
| | | |
Collapse
|
43
|
Feinen B, Jerse AE, Gaffen SL, Russell MW. Critical role of Th17 responses in a murine model of Neisseria gonorrhoeae genital infection. Mucosal Immunol 2010; 3:312-21. [PMID: 20107432 PMCID: PMC2857675 DOI: 10.1038/mi.2009.139] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Host immune responses, including the characteristic influx of neutrophils, against Neisseria gonorrhoeae are poorly understood; adaptive immunity is minimal and non-protective. We hypothesize that N. gonorrhoeae selectively elicits Th17-dependent responses, which trigger innate defense mechanisms, including neutrophils and antimicrobial proteins, that it can resist. We found that N. gonorrhoeae induced the production of interleukin-17 (IL-17) in mouse T-cells and Th17-inducing cytokines in mouse and human APCs in vitro. IL-17 was induced in the iliac lymph nodes in vivo in a female mouse model of genital tract gonococcal infection. Antibody blockade of IL-17 or deletion of the major IL-17 receptor (IL-17R) in IL-17RA(KO) mice led to prolonged infection and diminished neutrophil influx. Genital tract tissue from IL-17RA(KO) mice showed reduced production of neutrophil-attractant chemokines in response to culture with N. gonorrhoeae. These results imply a crucial role for IL-17 and Th17 cells in the immune response to N. gonorrhoeae.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- Disease Models, Animal
- Female
- Gonorrhea/genetics
- Gonorrhea/immunology
- Gonorrhea/metabolism
- Gonorrhea/pathology
- Humans
- Immunity, Innate
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neisseria gonorrhoeae/immunology
- Neutrophil Infiltration/drug effects
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Receptors, Interleukin-17/antagonists & inhibitors
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/immunology
- Receptors, Interleukin-17/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
Collapse
Affiliation(s)
- Brandon Feinen
- Department of Microbiology and Immunology, and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Michael W. Russell
- Department of Microbiology and Immunology, and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY
- Department of Oral Biology, University at Buffalo, Buffalo, NY
| |
Collapse
|
44
|
Functional characterization of antibodies against Neisseria gonorrhoeae opacity protein loops. PLoS One 2009; 4:e8108. [PMID: 19956622 PMCID: PMC2779592 DOI: 10.1371/journal.pone.0008108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 10/26/2009] [Indexed: 11/22/2022] Open
Abstract
Background The development of a gonorrhea vaccine is challenged by the lack of correlates of protection. The antigenically variable neisserial opacity (Opa) proteins are expressed during infection and have a semivariable (SV) and highly conserved (4L) loop that could be targeted in a vaccine. Here we compared antibodies to linear (Ablinear) and cyclic (Abcyclic) peptides that correspond to the SV and 4L loops and selected hypervariable (HV2) loops for surface-binding and protective activity in vitro and in vivo. Methods/Findings AbSV cyclic bound a greater number of different Opa variants than AbSV linear, including variants that differed by seven amino acids. Antibodies to the 4L peptide did not bind Opa-expressing bacteria. AbSVcyclic and AbHV2cyclic, but not AbSVlinear or AbHV2 linear agglutinated homologous Opa variants, and AbHV2BDcyclic but not AbHV2BDlinear blocked the association of OpaB variants with human endocervical cells. Only AbHV2BDlinear were bactericidal against the serum resistant parent strain. Consistent with host restrictions in the complement cascade, the bactericidal activity of AbHV2BDlinear was increased 8-fold when rabbit complement was used. None of the antibodies was protective when administered vaginally to mice. Antibody duration in the vagina was short-lived, however, with <50% of the antibodies recovered 3 hrs post-administration. Conclusions We conclude that an SV loop-specific cyclic peptide can be used to induce antibodies that recognize a broad spectrum of antigenically distinct Opa variants and have agglutination abilities. HV2 loop-specific cyclic peptides elicited antibodies with agglutination and adherence blocking abilities. The use of human complement when testing the bactericidal activity of vaccine-induced antibodies against serum resistant gonococci is also important.
Collapse
|
45
|
Song W, Condron S, Mocca BT, Veit SJ, Hill D, Abbas A, Jerse AE. Local and humoral immune responses against primary and repeat Neisseria gonorrhoeae genital tract infections of 17beta-estradiol-treated mice. Vaccine 2008; 26:5741-51. [PMID: 18762223 DOI: 10.1016/j.vaccine.2008.08.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
The 17beta-estradiol-treated mouse model is the only small animal model of gonococcal genital tract infection. Here we show gonococci localized within vaginal and cervical tissue, including the lamina propria, and high numbers of neutrophils and macrophages in genital tissue from infected mice. Infection did not induce a substantial or sustained increase in total or gonococcal-specific antibodies. Mice could be reinfected with the same strain and repeat infection did not boost the antibody response. However, intravaginal immunization of estradiol-treated mice induced gonococcal-specific primary and secondary serum antibody responses. We conclude that similar to human infection, experimental murine infection induces local inflammation but not an acquired immune response or immunological memory.
Collapse
Affiliation(s)
- Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Phenotypic and genotypic analyses of Neisseria gonorrhoeae isolates that express frequently recovered PorB PIA variable region types suggest that certain P1a porin sequences confer a selective advantage for urogenital tract infection. Infect Immun 2008; 76:3700-9. [PMID: 18541655 DOI: 10.1128/iai.00265-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typing of the porB variable region (VR) is an epidemiological tool that classifies gonococcal strains based on sequence differences in regions of the porB gene that encode surface-exposed loops. The frequent isolation of certain porB VR types suggests that some porin sequences confer a selective advantage during infection and/or transmission. Alternatively, certain porin types may be markers of strains that are successful due to factors unrelated to porin. In support of the first hypothesis, here we show urogenital tract isolates representing the most common PIA VR types identified in an urban clinic in Baltimore, MD, over a 10-year period belonged to several different clonal types, as determined by pulsed-field gel electrophoresis (PFGE). Serum resistance, which was confirmed by factor H and C4b-binding protein binding studies, was more often associated with gonococcal the most common VR types. In contrast, three porin-independent phenotypes, namely, lactoferrin utilization, beta-lactamase production, and multiple transferable resistance (Mtr), were segregated with the PFGE cluster and not with the VR type. Data combined with another PIA strain collection showed a strong correlation between serum resistance and the most common VR types. A comparison of VR typing hybridization patterns and nucleotide sequences of 12 porB1a genes suggests that certain porin loop 1, 3, 6, and/or 7 sequences may play a role in the serum resistance phenotype. We conclude that some PorB PIA sequences confer a survival or transmission advantage in the urogenital tract, perhaps via increased resistance to complement-mediated killing. The capacity of some porin types to evade a porin-specific adaptive immune response must also be considered.
Collapse
|
47
|
Williams JR, Foss AM, Vickerman P, Watts C, Ramesh BM, Reza-Paul S, Washington RG, Moses S, Blanchard J, Lowndes CM, Alary M, Boily MC. What is the achievable effectiveness of the India AIDS Initiative intervention among female sex workers under target coverage? Model projections from southern India. Sex Transm Infect 2006; 82:372-80. [PMID: 17012512 PMCID: PMC2563856 DOI: 10.1136/sti.2006.020875] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2006] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The India AIDS Initiative (Avahan) prevention programme funded by the Bill and Melinda Gates Foundation aims to reduce HIV prevalence in high risk groups such as female and male sex workers and their clients, to limit HIV transmission in the general population. OBJECTIVES To assess the potential effectiveness of the Avahan intervention at the level of coverage targeted, in different epidemiological settings in India. METHODS A deterministic compartmental model of the transmission dynamics of HIV and two sexually transmitted infections, and sensitivity analysis techniques, were used, in combination with available behavioural and epidemiological data from Mysore and Bagalkot districts in the Indian state of Karnataka, to evaluate the syndromic sexually transmitted infection (STI) management (STI treatment), periodic presumptive treatment of STI (PPT), and condom components of the Avahan intervention targeted to female sex workers (FSW). RESULTS If all components of the intervention reach target coverage (that is, PPT, STI treatment and condom use), the intervention is expected to prevent 22-35% of all new HIV infections in FSW and in the total population over 5 years in a low transmission setting like Mysore, and to be half as effective in high transmission settings such as Bagalkot. The results were sensitive to small variations in intervention coverage. The condom component alone is expected to prevent around 20% of all new HIV infections over 5 years in Mysore and around 6% for the STI component alone; compared with 7%-14% for the PPT component alone. Multivariate sensitivity analyses suggested that interventions may be more effective in settings with low FSW HIV prevalence and small FSW populations, whereas HIV prevalence was most influenced by sexual behaviour and condom use parameters for FSW. CONCLUSION The Avahan intervention is expected to be effective. However, to be able to demonstrate effectiveness empirically in the different settings, it is important to achieve target coverage or higher, which in the case of PPT could take a number of years to achieve. These preliminary model predictions need to be validated with more detailed mathematical models, as better data on sexual behaviour, condom use, STI and HIV trends over time, and intervention coverage data accumulate over the course of the programme.
Collapse
Affiliation(s)
- J R Williams
- Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Hospital, Norfolk Place, London W2 1PG, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhan L, Wang D, Zhang C, Wen H, Xu X, Pei X. Expression of the Neisseria gonorrhoeae major outer membrane protein PI in Escherichia coli. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-005-9092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Zhu W, Thomas CE, Chen CJ, Van Dam CN, Johnston RE, Davis NL, Sparling PF. Comparison of immune responses to gonococcal PorB delivered as outer membrane vesicles, recombinant protein, or Venezuelan equine encephalitis virus replicon particles. Infect Immun 2005; 73:7558-68. [PMID: 16239559 PMCID: PMC1273881 DOI: 10.1128/iai.73.11.7558-7568.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porin (PorB) is a major outer membrane protein produced by all Neisseria gonorrhoeae strains and has been a focus of intense interest as a vaccine candidate. In this study, the immunogenicity of PorB in mice was investigated after several immunization regimens. Outer membrane vesicles (OMV), recombinant renatured PorB (rrPorB), and PorB-expressing Venezuelan equine encephalitis (VEE) virus replicon particles (PorB VRP) were delivered intranasally (i.n.) or subcutaneously (s.c.) into the dorsal area or the hind footpad in three-dose schedules; the PorB VRP-immunized mice were given a single additional booster dose of rrPorB in Ribi adjuvant. Different delivery systems and administration routes induced different immune responses. Mice immunized s.c. with rrPorB in Ribi had the highest levels of PorB-specific serum immunoglobulin G (IgG) by enzyme-linked immunosorbent assay. Surprisingly, there was an apparent Th1 bias, based on IgG1/IgG2a ratios, after immunization with rrPorB in Ribi in the footpad while the same vaccine given in the dorsal area gave a strongly Th2-biased response. PorB VRP-immunized mice produced a consistent Th1 response with a high gamma interferon response in stimulated splenic lymphocytes and very low IgG1/IgG2a ratios. Immunization by OMV delivered i.n. was the only regimen that resulted in a serum bactericidal response, and it generated an excellent mucosal IgA response. Serum from mice immunized with rrPorB preferentially recognized the surface of whole gonococci expressing a homologous PorB, whereas serum from PorB VRP-immunized mice had relatively low whole-cell binding activity but recognized both heterologous and homologous PorB equally. The data resulting from this direct comparison suggested that important aspects of the immune response can be manipulated by altering the form of the antigen and its delivery. This information coupled with an understanding of protective antigonococcal immune responses will enable the design of the optimal vaccine for N. gonorrhoeae.
Collapse
Affiliation(s)
- Weiyan Zhu
- University of North Carolina at Chapel Hill, Department of Medicine, Division of Infectious Disease Research, 8341 Medical Biomolecular Research Bldg., 103 Mason Farm Road, CB# 7031, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Lena S, Pourbohloul B, Brunham RC. Effect of Immune Response on Transmission Dynamics for Sexually Transmitted Infections. J Infect Dis 2005; 191 Suppl 1:S78-84. [PMID: 15627234 DOI: 10.1086/425289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Transmission dynamics for sexually transmitted infections (STIs) exhibit a large degree of heterogeneity, much of which has been attributed to behavioral variability. However, because STI transmission concentrates among individuals who frequently change sex partners, immune responses also are likely to contribute to the heterogeneity in STI transmission dynamics. We review both theoretical and experimental data on the effects of immunity on STI transmission dynamics. We conclude that research should be directed more intensively toward the characterization of sexual network structures, together with qualitative and quantitative analyses of the immune responses of individuals who are identifiable within the network structure itself. Elucidation of the immunobiological and behavioral factors that shape STI transmission should inform better STI prevention and control programs.
Collapse
Affiliation(s)
- Suvendrini Lena
- University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|