1
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
3
|
Fenton RA, Praetorius J. Molecular Physiology of the Medullary Collecting Duct. Compr Physiol 2011; 1:1031-56. [DOI: 10.1002/cphy.c100064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Wall SM, Fischer MP, Glapion DM, De La Calzada M. ANG II reduces net acid secretion in rat outer medullary collecting duct. Am J Physiol Renal Physiol 2003; 285:F930-7. [PMID: 12851254 DOI: 10.1152/ajprenal.00400.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rat outer medullary collecting duct (OMCD), the mechanism(s) and regulation of H+ secretion are not understood fully. The effect of changes in acid-base balance and the renin-angiotensin system on net H+ secretion was explored. Rats received NaCl, NaHCO3, NH4Cl, or nothing in their drinking water for 7 days. Total ammonia and total CO2 (JtCO2) fluxes were measured in OMCD tubules perfused in vitro from rats in each treatment group. JtCO2 was reduced in tubules from rats drinking NH4Cl relative to those drinking NaHCO3. Because NH4Cl intake increases plasma renin and aldosterone, we asked if upregulation of the renin-angiotensin system reduces net H+ secretion. Deoxycorticosterone pivalate administered in vivo did not affect JtCO2. However, ANG II given in vivo at 0.1 ng/min reduced JtCO2 by 35%. To determine if ANG II has a direct effect on acid secretion, JtCO2 was measured with ANG II applied in vitro. ANG II (10-8 M) present in the bath solution reduced JtCO2 by 35%. This ANG II effect was not observed in the presence of the AT1 receptor blocker candesartan. In conclusion, in rat OMCD, JtCO2 is paradoxically reduced with NH4Cl ingestion. Increased circulating ANG II, as occurs during metabolic acidosis, reduces JtCO2.
Collapse
Affiliation(s)
- Susan M Wall
- Renal Division, Emory University School of Medicine, WMRB Rm. 338, 1639 Pierce Dr., N. E., Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
5
|
Kyllönen MS, Parkkila S, Rajaniemi H, Waheed A, Grubb JH, Shah GN, Sly WS, Kaunisto K. Localization of carbonic anhydrase XII to the basolateral membrane of H+-secreting cells of mouse and rat kidney. J Histochem Cytochem 2003; 51:1217-24. [PMID: 12923247 DOI: 10.1177/002215540305100912] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Membrane-associated carbonic anhydrase (CA) has a crucial role in renal HCO(3)(-) absorption. CA activity has been localized to both luminal and basolateral membranes of the tubule epithelial cells. CA XII is a transmembrane isoenzyme that has been demonstrated in the basolateral plasma membrane of human renal, intestinal, and reproductive epithelia. The present study was designed to demonstrate the distribution of CA XII expression in the rodent kidney. A new polyclonal antibody to recombinant mouse CA XII was used in both Western blotting and immunohistochemistry. Western blotting analysis revealed a 40-45-kD polypeptide in CA XII-expressing CHO cells and isolated membranes of mouse and rat kidney. Immunofluorescence staining localized CA XII in the basolateral plasma membranes of S1 and S2 proximal tubule segments. Abundant basolateral staining of CA XII was seen in a subpopulation of cells in both cortical and medullary collecting ducts. Double immunofluorescence staining identified these cells as H(+)-secreting type A intercalated cells. The localization of CA XII in the peritubular space of proximal tubules suggests that it may play a role in renal HCO(3)(-) absorption, whereas the function of CA XII in the type A intercalated cells needs further investigation.
Collapse
Affiliation(s)
- Matti S Kyllönen
- Departments of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yip KP, Tsuruoka S, Schwartz GJ, Kurtz I. Apical H(+)/base transporters mediating bicarbonate absorption and pH(i) regulation in the OMCD. Am J Physiol Renal Physiol 2002; 283:F1098-104. [PMID: 12372786 DOI: 10.1152/ajprenal.0241.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The outer medullary collecting duct (OMCD) plays an important role in mediating transepithelial HCO transport [J(HCO(3)(-))] and urinary acidification. HCO absorption by type A intercalated cells in the OMCD inner stripe (OMCD(is)) segment is thought to by mediated by an apical vacuolar H(+)-ATPase and H(+)-K(+)-ATPase coupled to a basolateral Cl(-)-HCO exchanger (AE1). Besides these Na(+)-independent transporters, previous studies have shown that OMCD(is) type A intercalated cells have an apical electroneutral EIPA-sensitive, DIDS-insensitive Na(+)-HCO cotransporter (NBC3); a basolateral Na(+)/H(+) antiporter; and a basolateral Na(+)-K(+)-ATPase. In this study, we reexamined the Na(+) dependence of transepithelial Na(+) transport in the OMCD(is) and determined the role of apical NBC3 in intracellular (pH(i)) regulation in OMCD(is) type A intercalated cells. Control tubules absorbed HCO at a rate of approximately 13 pmol. min(-1). mm(-1). Lowering luminal Na(+) from 140 to 40 mM decreased [J(HCO(3)(-))] by approximately 15% without a change in transepithelial potential (V(te)). Furthermore, 50 microM EIPA (lumen) also decreased [J(HCO(3)(-))] by approximately 13% without a change in V(te). The effect of lowering luminal Na(+) and adding EIPA were not additive. These results demonstrate that [J(HCO(3)(-))] in the OMCD(is) is in part Na(+) dependent. In separate experiments, the pH(i) recovery rate after an NH prepulse was monitored in single type A intercalated cells with confocal fluorescence microscopy. The pH(i) recovery rate was approximately 0.21 pH/min in Na(+)-containing solutions and decreased to approximately 0.16 pH/min with EIPA (50 microM, lumen). In tubules perfused/bathed without Na(+), luminal Na(+) addition resulted in a pH(i) recovery rate of approximately 0.36 pH/min, whereas the Na(+)-independent recovery rate was approximately 0.16 pH/min. EIPA (50 microM, lumen) decreased the Na(+)-dependent pH(i) recovery rate to approximately 0.07 pH/min. The Na(+)-independent recovery rate was decreased to approximately 0.06 pH/min by bafilomycin (10 nM, lumen) and to approximately 0.10 pH/min using Schering 28080 (10 microM, lumen). These findings indicate that NBC3 contributes to pH(i) regulation in OMCD(is) type A intercalated cells and plays only a minor role in mediating [J(HCO(3)(-))] in the OMCD(is).
Collapse
Affiliation(s)
- Kay-Pong Yip
- Department of Physiology and Biophysics, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
7
|
Wall SM, Fischer MP. Contribution of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) to transepithelial transport of H(+), NH(4)(+), K(+), and Na(+) in rat outer medullary collecting duct. J Am Soc Nephrol 2002; 13:827-835. [PMID: 11912241 DOI: 10.1681/asn.v134827] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In rat kidney, the "secretory" isoform of the Na-K-Cl cotransporter, NKCC1 (BSC-2), localizes to the basolateral membrane of the alpha intercalated cell, the acid secreting cell of the outer medullary collecting duct (OMCD). This laboratory has reported that NKCC1 mediates Cl(-) uptake across the basolateral membrane in series with Cl(-) secretion across the apical membrane in rat OMCD. NKCC1 transports NH(4)(+), K(+), and Na(+) as well as Cl(-); therefore, a role for the cotransporter in the process of HCl, NH(4)Cl, KCl, and NaCl secretion has been suggested. Thus, it was determined if bumetanide, an inhibitor of NKCC1, alters transepithelial cation transport in rat OMCD. OMCD tubules from deoxycorticosterone pivalate (DOCP)-treated rats were perfused in vitro. Hydration of CO(2), rather than NH(4)(+), provides the principle source of H(+) for net acid secretion. In HCO(3)(-)/CO(2)-buffered solutions, no effect of bumetanide on net K(+) flux was detected. Under some conditions, bumetanide addition resulted in a small reduction in secretion of net H(+) equivalents. Transepithelial Na(+) flux, J(Na), was -1.5 +/- 1.7 pmol/mm per min, values not different from zero. However, with the application of bumetanide to the bath, J(Na) was +5.2 +/- 1.3 pmol/mm per min (P < 0.05), which indicates net Na(+) absorption. In conclusion, inhibition of NKCC1 in rat OMCD changes transepithelial movement of Na(+) and Cl(-). The role of NKCC1 in the secretion of net H(+) equivalents is small.
Collapse
Affiliation(s)
- Susan M Wall
- Division of Renal Diseases and Hypertension, University of Texas, Medical School at Houston, Houston, Texas
| | - Michael P Fischer
- Division of Renal Diseases and Hypertension, University of Texas, Medical School at Houston, Houston, Texas
| |
Collapse
|
8
|
Abstract
A mathematical model of the outer medullary collecting duct (OMCD) has been developed, consisting of alpha-intercalated cells and a paracellular pathway, and which includes Na(+), K(+), Cl(-), HCO(3)(-), CO(2), H(2)CO(3), phosphate, ammonia, and urea. Proton secretion across the luminal cell membrane is mediated by both H(+)-ATPase and H-K-ATPase, with fluxes through the H-K-ATPase given by a previously developed kinetic model (Weinstein AM. Am J Physiol Renal Physiol 274: F856-F867, 1998). The flux across each ATPase is substantial, and variation in abundance of either pump can be used to control OMCD proton secretion. In comparison with the H(+)-ATPase, flux through the H-K-ATPase is relatively insensitive to changes in lumen pH, so as luminal acidification proceeds, proton secretion shifts toward this pathway. Peritubular HCO(3)(-) exit is via a conductive pathway and via the Cl(-)/HCO(3)(-) exchanger, AE1. To represent AE1, a kinetic model has been developed based on transport studies obtained at 38 degrees C in red blood cells. (Gasbjerg PK, Knauf PA, and Brahm J. J Gen Physiol 108: 565-575, 1996; Knauf PA, Gasbjerg PK, and Brahm J. J Gen Physiol 108: 577-589, 1996). Model calculations indicate that if all of the chloride entry via AE1 recycles across a peritubular chloride channel and if this channel is anything other than highly selective for chloride, then it should conduct a substantial fraction of the bicarbonate exit. Since both luminal membrane proton pumps are sensitive to small changes in cytosolic pH, variation in density of either AE1 or peritubular anion conductance can modulate OMCD proton secretory rate. With respect to the OMCD in situ, available buffer is predicted to be abundant, including delivered HCO(3)(-) and HPO(4)(2-), as well as peritubular NH(3). Thus, buffer availability is unlikely to exert a regulatory role in total proton secretion by this tubule segment.
Collapse
Affiliation(s)
- A M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA.
| |
Collapse
|
9
|
Weiner ID, Frank AE, Wingo CS. Apical proton secretion by the inner stripe of the outer medullary collecting duct. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F606-13. [PMID: 10198421 DOI: 10.1152/ajprenal.1999.276.4.f606] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inner stripe of outer medullary collecting duct (OMCDis) is unique among collecting duct segments because both intercalated cells and principal cells secrete protons and reabsorb luminal bicarbonate. The current study characterized the mechanisms of OMCDis proton secretion. We used in vitro microperfusion, and we separately studied the principal cell and intercalated cell using differential uptake of the fluorescent, pH-sensitive dye, 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Both the principal cell and intercalated cell secreted protons, as identified as Na+/H+ exchange-independent intracellular pH (pHi) recovery from an intracellular acid load. Two proton transport activities were identified in the principal cell; one was luminal potassium dependent and Sch-28080 sensitive and the other was luminal potassium independent and luminal bafilomycin A1 sensitive. Thus the OMCDis principal cell expresses both apical H+-K+-ATPase and H+-ATPase activity. Intercalated cell Na+/H+ exchange-independent pHi recovery was approximately twice that of the principal cell and was mediated by pharmacologically similar mechanisms. We conclude 1) the OMCDis principal cell may contribute to both luminal potassium reabsorption and urinary acidification, roles fundamentally different from those of the principal cell in the cortical collecting duct; and 2) the OMCDis intercalated cell proton transporters are functionally similar to those in the principal cell, raising the possibility that an H+-K+-ATPase similar to the one present in the principal cell may contribute to intercalated cell proton secretion.
Collapse
Affiliation(s)
- I D Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville 32610, USA.
| | | | | |
Collapse
|
10
|
Milton AE, Weiner ID. Regulation of B-type intercalated cell apical anion exchange activity by CO2/HCO3-. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F1086-94. [PMID: 9841500 DOI: 10.1152/ajprenal.1998.274.6.f1086] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cortical collecting duct (CCD) B cell possesses an apical anion exchanger dissimilar to AE1, AE2, and AE3. The purpose of these studies was to characterize this transporter more fully by examining its regulation by CO2 and HCO3. We measured intracellular pH (pHi) in single intercalated cells of in vitro microperfused CCD using the fluorescent, pH-sensitive dye, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). In the absence of extracellular CO2/HCO3, luminal Cl removal caused reversible intracellular alkalinization, identifying this transporter as a Cl/base exchanger able to transport bases other than HCO3. Adding extracellular CO2/HCO3 decreased B cell pHi while simultaneously increasing Cl/base exchange activity. Since intracellular acidification inhibits AE1, AE2, and AE3, we examined mechanisms other than pHi by which the stimulation occurred. These studies showed that B cell apical anion exchange activity was CO2 stimulated and carbonic anhydrase dependent. Moreover, the stimulation was independent of luminal bicarbonate, luminal pH or pHi, and changes in buffer capacity. We conclude that the B cell possesses an apical Cl/base exchanger whose activity is regulated by CO2-stimulated, carbonic anhydrase-dependent cytoplasmic HCO3 formation.
Collapse
Affiliation(s)
- A E Milton
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida 32609, USA
| | | |
Collapse
|
11
|
Wax MB, Saito I, Tenkova T, Krupin T, Becker B, Nelson N, Brown D, Gluck SL. Vacuolar H+-ATPase in ocular ciliary epithelium. Proc Natl Acad Sci U S A 1997; 94:6752-7. [PMID: 9192637 PMCID: PMC21230 DOI: 10.1073/pnas.94.13.6752] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanisms controlling the production of aqueous humor and the regulation of intraocular pressure are poorly understood. Here, we provide evidence that a vacuolar H+-ATPase (V-ATPase) in the ocular ciliary epithelium is a key component of this process. In intracellular pH (pHi) measurements of isolated ciliary epithelium performed with 2',7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF), the selective V-ATPase inhibitor bafilomycin A1 slowed the recovery of pHi in response to acute intracellular acidification, demonstrating the presence of V-ATPase in the plasma membrane. In isolated rabbit ciliary body preparations examined under voltage-clamped conditions, bafilomycin A1 produced a concentration-dependent decrease in short-circuit current, and topical application of bafilomycin A1 reduced intraocular pressure in rabbits, indicating an essential role of the V-ATPase in ciliary epithelial ion transport. Immunocytochemistry utilizing antibodies specific for the B1 isoform of the V-ATPase 56-kDa subunit revealed localization of V-ATPase in both the plasma membrane and cytoplasm of the native ciliary epithelium in both rabbit and rat eye. The regional and subcellular distribution of V-ATPase in specific regions of the ciliary process was altered profoundly by isoproterenol and phorbol esters, suggesting that change in the intracellular distribution of the enzyme is a mechanism by which drugs, hormones, and neurotransmitters modify aqueous humor production.
Collapse
Affiliation(s)
- M B Wax
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Noël J, Pouysségur J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+/H+ exchanger isoforms. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C283-96. [PMID: 7864067 DOI: 10.1152/ajpcell.1995.268.2.c283] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since the cloning of the first member of the Na+/H+ exchanger (NHE) family, termed NHE1, four NHE isoforms have been cloned (NHE2, NHE3, NHE4, and the trout beta-NHE) and expressed in exchanger-deficient cell lines. All these isoforms exhibit significant identity to NHE1 and possess a similar hydropathy profile with two highly conserved transmembrane segments presumably involved in ion transport. These isoforms are allosterically activated by intracellular H+, regulate intracellular pH in a Na(+)-dependent manner, and are inhibited by amiloride and 5-amino derivatives with distinct Ki values. NHE1 is the amiloride-sensitive, growth factor-activatable, and ubiquitously expressed NHE known to regulate intracellular pH and cellular volume. NHE2, NHE3, and NHE4 are, however, restricted in their tissue distribution, suggesting roles in specialized functions of these epithelial tissues. In this review we present and discuss the most recent advances in the molecular and biochemical features, hormonal and growth factor activation, specific expression, and membrane sorting of the members of this NHE family.
Collapse
Affiliation(s)
- J Noël
- Centre de Biochimie Centre, Université de Nice, Faculté des Sciences, France
| | | |
Collapse
|
13
|
Properties of Kidney Plasma Membrane Vacuolar H+-ATPases: Proton Pumps Responsible for Bicarbonate Transport, Urinary Acidification, and Acid-Base Homeostasis. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/978-3-662-22265-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Abstract
In Amphiuma red blood cells, the Na/H exchanger has been shown to play a central role in the regulation of cell volume following cell shrinkage (Cala, P. M. 1980. Journal of General Physiology. 76:683-708.) The present study was designed to evaluate the existence of pH regulatory Na/H exchange in the Amphiuma red blood cell. The data illustrate that when the intracellular pHi was decreased below the normal value of 7.00, Na/H exchange was activated in proportion to the degree of acidification. Once activated, net Na/H exchange flux persisted until normal intracellular pH (6.9-7.0) was restored, with a half time of approximately 5 min. These observations established a pHi set point of 7.00 for the pH-activated Na/H exchange of Amphiuma red blood cell. This is in contrast to the behavior of osmotically shrunken Amphiuma red blood cells in which no pHi set point could be demonstrated. That is, when activated by cell shrinkage the Na/H exchange mediated net Na flux persisted until normal volume was restored regardless of pHi. In contrast, when activated by cell acidification, the Na/H exchanger functioned until pHi was restored to normal and cell volume appeared to have no effect on pH-activated Na/H exchange. Studies evaluating the kinetic and inferentially, the molecular equivalence of the volume and pHi-induced Amphiuma erythrocyte Na/H exchanger(s), indicated that the apparent Na affinity of the pH activated cells is four times greater than that of shrunken cells. The apparent Vmax is also higher (two times) in the pH activated cells, suggesting the involvement of two distinct populations of the transporter in pH and volume regulation. However, when analyzed in terms of a bisubstrate model, the same data are consistent with the conclusion that both pH and volume regulatory functions are mediated by the same transport protein. Taken together, these data support the conclusion that volume and pH are regulated by the same effector (Na/H exchanger) under the control of as yet unidentified, distinct and cross inhibitory volume and pH sensing mechanisms.
Collapse
Affiliation(s)
- P M Cala
- Department of Human Physiology, University of California, School of Medicine, Davis 95616
| | | |
Collapse
|
15
|
Alpern RJ, Rector FC. Renal Acidification: Cellular Mechanisms of Tubular Transport and Regulation. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Bidet M, Tauc M, Gastineau M, Poujeol P. Effect of calcitonin on the regulation of intracellular pH in primary cultures of rabbit early distal tubule. Pflugers Arch 1992; 421:523-9. [PMID: 1331972 DOI: 10.1007/bf00375047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To examine the intracellular pH (pHi) regulation in primary cultures of rabbit distal convoluted tubules (DCTb) we used the pH-sensitive dye 2,7-bis-carboxyethyl-5(6)-carboxyfluorescein (BCECF/AM) and a video-microscopy technique. DCTb segments were microdissected from rabbit kidney cortex and cultured in a hormonally defined medium. The culture epithelia were grown on semi-transparent permeable supports. Before pHi measurement, DCTb primary cultures were maintained for 48-96 h in growth-factor-free medium to obtain quiescent cells. We had previously shown that two mechanisms are involved in the regulation of intracellular pH: a basolateral Na+/H+ exchanger and an apical Cl-/HCO3- exchanger. The pHi of DCTb cells was significantly decreased by the addition of 60 nM human calcitonin (from 7.30 +/- 0.04 to 7.08 +/- 0.04). This response to calcitonin was dose-dependent and mimicked by both forskolin and permeant cyclic AMP derivatives. An initial acidification (of 0.25 pH unit in 7-8 min) was observed after the addition of basolateral amiloride (1 mM). The persistence of the effect induced by human calcitonin in these conditions, suggests that the Na+/H+ exchanger is not involved in the response. However, the acidification response was blocked in both the absence of chloride at the apical side and by the apical addition of 0.1 mM 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). These experiments suggest that the target for the human calcitonin effect on pHi is the Cl-/HCO3- exchanger. This study confirms the importance of this transporter in pHi regulation within the physiological pHi range and the influence of calcitonin in the regulation of DCTb cell function.
Collapse
Affiliation(s)
- M Bidet
- Département de Biologie Cellulaire et Moléculaire, Centre d'Etudes de Saclay, Gif sur Yvette, France
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- A Ilundáin
- Department of Fisiología y Biología Animal, Facultad de Farmacia, Sevilla, Spain
| |
Collapse
|
18
|
Kuwahara M, Sasaki S, Marumo F. Mineralocorticoids and acidosis regulate H+/HCO3- transport of intercalated cells. J Clin Invest 1992; 89:1388-94. [PMID: 1314849 PMCID: PMC443007 DOI: 10.1172/jci115727] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effects of acidosis and mineralocorticoids on cellular H+/HCO3- transport mechanisms were examined in intercalated cells of the outer stripe of outer medullary collecting duct (OMCDo) from rabbit. Intracellular pH (pHi) of intercalated cells was monitored by fluorescence ratio imaging using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). pHi recovered from an acid load at 2.8 +/- 0.5 x 10(-3) pHU/s in the absence of ambient Na+. This pHi recovery rate was similar in chronic acidosis induced by NH4Cl loading, but it was enhanced (+111%) by treatment with deoxycorticosterone acetate (DOCA). In a DOCA-treated group, luminal 10 microM SCH28080 and 0.1 mM omeprazole, H(+)-K(+)-ATPase inhibitors, did not change the pHi recovery rate, while luminal 0.5 mM N-ethylmaleimide blocked the rate by 68%. DOCA, but not acidosis, increased (approximately 40%) initial pHi response to bath HCO3- or Cl- reduction in Na(+)-free condition. After an acid load in the absence of Na+ and HCO3-, pHi response to basolateral Na+ addition was stimulated (+66%) by acidosis, but not by DOCA. Our results suggest that (a) mineralocorticoids stimulate H+/HCO3- transport mechanisms involved in transepithelial H+ secretion, i.e., a luminal NEM-sensitive H+ pump and basolateral Na(+)-independent Cl(-)-HCO3- exchange; and (b) acidosis enhances the activity of basolateral Na(+)-H+ exchange that may be responsible for pHi regulation.
Collapse
Affiliation(s)
- M Kuwahara
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
19
|
Calonge ML, Molina MT, Ilundáin A. Cl-/base exchange and cellular pH regulation in enterocytes isolated from chick small intestine. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:45-50. [PMID: 1730020 DOI: 10.1016/0005-2736(92)90055-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intracellular pH (pHi) and Cl-/base exchange activity have been examined in isolated chicken enterocytes, both in the presence and absence of 25 mM HCO3-/5% CO2. Intracellular pH was measured with BCECF, a pH-sensitive carboxyfluorescein derivative. Under resting conditions pHi was 7.17 in Hepes and 7.12 in HCO3(-)-buffered solutions. Cells became more alkaline upon withdrawal of Cl-. Cells depleted of Cl- acidified upon reinstatement of Cl-. These changes were faster in the presence of HCO3- than in its absence. After an alkaline load (removal of HCO3- from the medium) pHi decreases towards base line in the presence of Cl-, but not in its absence. The Cl(-)-dependent pHi changes were prevented by H2DIDS and were unaffected by Na+. The Cl(-)-induced recovery from an alkaline load exhibited simple saturation kinetics, with an apparent Km of 12.5 mM Cl- and maximum velocity of approximately 0.20 pH units min-1. The Cl-/base exchange is functional under resting conditions, as shown by cell alkalinization on exposure to 0.5 mM H2DIDS, both in the presence and in the absence of HCO3-. It is concluded that Cl-/base exchange participates in setting the resting intracellular pH in isolated chicken enterocytes and helps recover from alkaline loads. The exchange operates both in the presence and in the absence of bicarbonate.
Collapse
Affiliation(s)
- M L Calonge
- Departamento de Fisiología y Biología Animal, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
20
|
Bastani B, Purcell H, Hemken P, Trigg D, Gluck S. Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest 1991; 88:126-36. [PMID: 1829094 PMCID: PMC296012 DOI: 10.1172/jci115268] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Renal hydrogen ion excretion increases with chronic acid loads and decreases with alkali loads. We examined the mechanism of adaptation by analyzing vacuolar proton-translocating adenosine triphosphatase (H+ ATPase) 31-kD subunit protein and mRNA levels, and immunocytochemical distribution in kidneys from rats subjected to acid or alkali loads for 1, 3, 5, 7, and 14 d. Acid- and alkali-loaded rats exhibited adaptive responses in acid excretion, but showed no significant changes in H+ ATPase protein or mRNA levels in either cortex or medulla. In contrast, there were profound adaptive changes in the immunocytochemical distribution of H+ ATPase in collecting duct intercalated cells. In the medulla, H+ ATPase staining in acid-loaded rats shifted from cytoplasmic vesicles to plasma membrane, whereas in alkali-loaded rats, cytoplasmic vesicle staining was enhanced, and staining of plasma membrane disappeared. In the cortical collecting tubule, acid loading increased the number of intercalated cells showing enhanced apical H+ ATPase staining and decreased the number of cells with basolateral or poorly polarized apical staining. The results indicate that both medulla and cortex participate in the adaptive response to acid and alkali loading by changing the steady-state distribution of H+ ATPase, employing mechanisms that do not necessitate postulating interconversion of intercalated cells with opposing polarities.
Collapse
Affiliation(s)
- B Bastani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | |
Collapse
|
21
|
Hering-Smith KS, Cragoe EJ, Weiner D, Hamm LL. Inner medullary collecting duct Na(+)-H+ exchanger. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C1300-7. [PMID: 1647666 DOI: 10.1152/ajpcell.1991.260.6.c1300] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells from the inner medullary collecting duct (IMCD) exhibit Na(+)-H+ exchange. The present studies were performed to address certain important characteristics of this process in cultured IMCD cells. First, Na(+)-H+ exchange was found to be present both at 37 degrees C and at 25 degrees C, in contrast to Na(+)-independent H+ extrusion, which was only observed in some cultures and only at 37 degrees C. Second, with the use of image analysis techniques, virtually all cells in IMCD cultures were demonstrated to possess Na(+)-H+ exchange, whether or not the cells exhibited Na(+)-independent intracellular pH recovery from acid loads. Also, Na(+)-H+ exchange was found to be expressed on the basolateral aspect of these cells, but not on the apical membrane. These properties of IMCD Na(+)-H+ exchange are consistent with a function to regulate intracellular pH rather than mediate transepithelial acid-base transport. Na(+)-H+ exchange in IMCD cells was also compared with that in cultured renal proximal tubule cells. Despite physiologically distinct roles in vivo, Na(+)-H+ exchange in these two cell types in culture was found to be similar with respect to the Km for Na+ and the Ki for 5-(N-ethyl-N-isopropyl)amiloride. These data are consistent with functionally similar (if not identical) processes mediating Na(+)-H+ exchange in these two cell types, but with opposite polarity.
Collapse
Affiliation(s)
- K S Hering-Smith
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
22
|
|
23
|
Hayashi M, Yamaji Y, Iyori M, Kitajima W, Saruta T. Effect of isoproterenol on intracellular pH of the intercalated cells in the rabbit cortical collecting ducts. J Clin Invest 1991; 87:1153-7. [PMID: 1849143 PMCID: PMC295122 DOI: 10.1172/jci115112] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To examine the mechanisms which regulate the functions of the intercalated cells (ICs) in the cortical collecting duct (CCD), the effect of isoproterenol on intracellular pH (pHi) of ICs was studied with the in vitro microperfused rabbit CCD, using the single cell pHi determination technique with fluorescent dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein. The pHi of beta-IC was significantly decreased with the addition of basolateral 10(-6) M isoproterenol (7.21 +/- 0.04 to 7.05 +/- 0.04), whereas alpha-IC did not show any change. This response of beta-IC to isoproterenol was dose-dependent and completely inhibited by the beta-blockers, atenolol or propranolol. The addition of forskolin or 8-Br-cAMP mimicked the effects of isoproterenol, suggesting that the activation of adenylate cyclase induced the decrease in pHi. The rate of pHi changes after the Cl- removal from the perfusate, which is considered to reflect the activity of luminal anion exchanger, was significantly higher with isoproterenol (0.032 +/- 0.009 pH unit/s) than that in the control (0.023 +/- 0.009 pH unit/s). The present studies provide direct evidence for the regulation of beta-IC function by beta-adrenergic receptor; and the luminal Cl-/HCO3- exchanger was considered to be stimulated by beta-agonist, directly.
Collapse
Affiliation(s)
- M Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
24
|
Mechanism of Distal Acidification: Relevance to Distal RTA. Nephrology (Carlton) 1991. [DOI: 10.1007/978-3-662-35158-1_119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Cell pH Regulation in Collecting Tubules. Nephrology (Carlton) 1991. [DOI: 10.1007/978-3-662-35158-1_147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|