1
|
Murashevych B, Bilenkyi G, Girenko D, Bilenkyi E. N-Chlorotaurine Solutions as Agents for Infusion Detoxification Therapy: Preclinical Studies. Int J Mol Sci 2024; 25:8345. [PMID: 39125912 PMCID: PMC11313245 DOI: 10.3390/ijms25158345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
N-chlorotaurine (NCT) is a broad-spectrum antimicrobial agent with outstanding tolerability, effective for topical and inhalation use. This paper presents the results of studies of single and repeated intravenous infusions of NCT to laboratory animals. The studies were conducted on female Wistar Han rats. The effect of NCT infusions on the general condition, behavioral reactions, main biochemical and hematological parameters, hemocoagulation system, cardiovascular system, and on the condition of the internal organs was studied. It was found that NCT infusions do not reveal deviations in the studied parameters that could indicate a toxic effect. The estimated LD50 is more than 80 mg/kg. In a subchronic experiment, a statistically significant decrease in cholesterol (by up to 11%), glucose (by up to 15%) and excess bases (up to four times) in the blood, and an increase in heart rate (by up to 31%) and frequency of defecations (by up to 35%), as well as pronounced antiplatelet effect, were found. In animals with simulated endotoxicosis, a decrease in the cytolysis and oxidative stress markers was observed. Such effects are caused by both chlorine-active compounds and taurine.The results obtained indicate broad prospects for the use of NCT solutions as an infusion detoxifying agent.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| | - Gennadii Bilenkyi
- Clinical Hospital of Emergency Medical Care of the Dnipro City Council, 65 Volodymyra Antonovycha Str., 49000 Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, 8 Gagarina Ave., 49005 Dnipro, Ukraine;
| | - Emil Bilenkyi
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| |
Collapse
|
2
|
Chen S, Pan J, Gong Z, Wu M, Zhang X, Chen H, Yang D, Qi S, Peng Y, Shen J. Hypochlorous acid derived from microglial myeloperoxidase could mediate high-mobility group box 1 release from neurons to amplify brain damage in cerebral ischemia-reperfusion injury. J Neuroinflammation 2024; 21:70. [PMID: 38515139 PMCID: PMC10958922 DOI: 10.1186/s12974-023-02991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/11/2023] [Indexed: 03/23/2024] Open
Abstract
Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jingrui Pan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhe Gong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dan Yang
- Department of Chemistry, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Suhua Qi
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Katle E, Zandi H, Pedersen D, Sunde PT, Torgersen GR, Ørstavik D. Radiographic outcome of endodontic treatment and retreatment of teeth with apical periodontitis using two different root canal irrigants. A prospective cohort study. Int Endod J 2024; 57:297-304. [PMID: 38205825 DOI: 10.1111/iej.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
AIM The aim of this prospective cohort study was to compare the radiographic outcome of endodontic treatment and retreatment of teeth with apical periodontitis using either 1% sodium hypochlorite (NaOCl) or 2% chlorhexidine digluconate (CHX) for root canal irrigation. MATERIALS AND METHODS In the years from 2013 to 2015 standard irrigation varied by semester between NaOCl and CHX at the Department of Endodontics at the Faculty of Dentistry. During that time, 912 teeth received treatment for apical periodontitis in 744 patients, of whom 532 responded to the request for a 1-year follow-up. Only one tooth per person (the most distally located) were included; 285 teeth treated with NaOCl and 247 with CHX. One hundred cases were then randomly sampled from each irrigation group and analysed for outcome by periapical index (PAI) scoring using criteria for success, uncertain and failure. Clinical and other radiographic parameters were scored or recorded and analysed for associations with radiographic outcome using chi-square, ANOVA and regression analyses. RESULTS Success rates (PAI score 1 or 2 at control) were nearly identical for the two irrigation liquids. The use of irrigating solution also did not significantly influence the outcome in chi-square analyses of subgroups of teeth or regression analyses with other variables included. Ordinal regression analysis established that preoperative lesion size or preoperative PAI score were significantly associated with outcome, and teeth in the mandible had significantly better outcomes than in the maxilla. CONCLUSIONS No significant differences in the radiographic outcome using either 1% NaOCl or 2% CHX as irrigants were found. The outcome was better for teeth with small lesions or lower PAI scores at completion of treatment and for mandibular teeth.
Collapse
Affiliation(s)
- Erik Katle
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Homan Zandi
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Pia Titterud Sunde
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Gerald R Torgersen
- Department of Radiology, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Dag Ørstavik
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Lin W, Chen H, Chen X, Guo C. The Roles of Neutrophil-Derived Myeloperoxidase (MPO) in Diseases: The New Progress. Antioxidants (Basel) 2024; 13:132. [PMID: 38275657 PMCID: PMC10812636 DOI: 10.3390/antiox13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Myeloperoxidase (MPO) is a heme-containing peroxidase, mainly expressed in neutrophils and, to a lesser extent, in monocytes. MPO is known to have a broad bactericidal ability via catalyzing the reaction of Cl- with H2O2 to produce a strong oxidant, hypochlorous acid (HOCl). However, the overproduction of MPO-derived oxidants has drawn attention to its detrimental role, especially in diseases characterized by acute or chronic inflammation. Broadly speaking, MPO and its derived oxidants are involved in the pathological processes of diseases mainly through the oxidation of biomolecules, which promotes inflammation and oxidative stress. Meanwhile, some researchers found that MPO deficiency or using MPO inhibitors could attenuate inflammation and tissue injuries. Taken together, MPO might be a promising target for both prognostic and therapeutic interventions. Therefore, understanding the role of MPO in the progress of various diseases is of great value. This review provides a comprehensive analysis of the diverse roles of MPO in the progression of several diseases, including cardiovascular diseases (CVDs), neurodegenerative diseases, cancers, renal diseases, and lung diseases (including COVID-19). This information serves as a valuable reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Wei Lin
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Huili Chen
- Center of System Pharmacology and Pharmacometrics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
5
|
Panasenko OM, Vladimirov YA, Sergienko VI. Free Radical Lipid Peroxidation Induced by Reactive Halogen Species. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S148-S179. [PMID: 38621749 DOI: 10.1134/s0006297924140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 04/17/2024]
Abstract
The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.
Collapse
Affiliation(s)
- Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.
| | - Yury A Vladimirov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Valery I Sergienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
6
|
Lea TA, Panizza PM, Arthur PG, Bakker AJ, Pinniger GJ. Hypochlorous acid exposure impairs skeletal muscle function and Ca 2+ signalling: implications for Duchenne muscular dystrophy pathology. J Physiol 2023; 601:5257-5275. [PMID: 37864413 DOI: 10.1113/jp285263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease characterised by severe muscle wasting. The mechanisms underlying the DMD pathology likely involve the interaction between inflammation, oxidative stress and impaired Ca2+ signalling. Hypochlorous acid (HOCl) is a highly reactive oxidant produced endogenously via myeloperoxidase; an enzyme secreted by neutrophils that is significantly elevated in dystrophic muscle. Oxidation of Ca2+ -handling proteins by HOCl may impair Ca2+ signalling. This study aimed to determine the effects of HOCl on skeletal muscle function and its potential contribution to the dystrophic pathology. Extensor digitorum longus (EDL), soleus and interosseous muscles were surgically isolated from anaesthetised C57 (wild-type) and mdx (dystrophic) mice for measurement of ex vivo force production and intracellular Ca2+ concentration. In whole EDL muscle, HOCl (200 μM) significantly decreased maximal force and increased resting muscle tension which was only partially reversible by dithiothreitol. The effects of HOCl (200 μM) on maximal force in slow-twitch soleus were lower than found in the fast-twitch EDL muscle. In single interosseous myofibres, HOCl (10 μM) significantly increased resting intracellular Ca2+ concentration and decreased Ca2+ transient amplitude. These effects of HOCl were reduced by the application of tetracaine, Gd3+ or streptomycin, implicating involvement of ryanodine receptors and transient receptor potential channels. These results demonstrate the potent effects of HOCl on skeletal muscle function potentially mediated by HOCl-induced oxidation to Ca2+ signalling proteins. Hence, HOCl may provide a link between chronic inflammation, oxidative stress and impaired Ca2+ handling that is characteristic of DMD and presents a potential therapeutic target for DMD. KEY POINTS: Duchenne muscular dystrophy is a fatal genetic disease with pathological mechanisms which involve the complex interaction of chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations. Hypochlorous acid can be endogenously produced by neutrophils via the enzyme myeloperoxidase. Both neutrophil and myeloperoxidase activity are increased in dystrophic mice. This study found that hypochlorous acid decreased muscle force production and increased cytosolic Ca2+ concentrations in isolated muscles from wild-type and dystrophic mice at relatively low concentrations of hypochlorous acid. These results indicate that hypochlorous acid may be key in the Duchenne muscular dystrophy disease pathology and may provide a unifying link between the chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations observed in Duchenne muscular dystrophy. Hypochlorous acid production may be a potential target for therapeutic treatments of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Thomas A Lea
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter M Panizza
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Bakker
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gavin J Pinniger
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Luo H, Guo H, Zhou Y, Fang R, Zhang W, Mei Z. Neutrophil Extracellular Traps in Cerebral Ischemia/Reperfusion Injury: Friend and Foe. Curr Neuropharmacol 2023; 21:2079-2096. [PMID: 36892020 PMCID: PMC10556361 DOI: 10.2174/1570159x21666230308090351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 03/10/2023] Open
Abstract
Cerebral ischemic injury, one of the leading causes of morbidity and mortality worldwide, triggers various central nervous system (CNS) diseases, including acute ischemic stroke (AIS) and chronic ischemia-induced Alzheimer's disease (AD). Currently, targeted therapies are urgently needed to address neurological disorders caused by cerebral ischemia/reperfusion injury (CI/RI), and the emergence of neutrophil extracellular traps (NETs) may be able to relieve the pressure. Neutrophils are precursors to brain injury following ischemic stroke and exert complicated functions. NETs extracellularly release reticular complexes of neutrophils, i.e., double-stranded DNA (dsDNA), histones, and granulins. Paradoxically, NETs play a dual role, friend and foe, under different conditions, for example, physiological circumstances, infection, neurodegeneration, and ischemia/reperfusion. Increasing evidence indicates that NETs exert anti-inflammatory effects by degrading cytokines and chemokines through protease at a relatively stable and moderate level under physiological conditions, while excessive amounts of NETs release (NETosis) irritated by CI/RI exacerbate the inflammatory response and aggravate thrombosis, disrupt the blood-brain barrier (BBB), and initiates sequential neuron injury and tissue damage. This review provides a comprehensive overview of the machinery of NETs formation and the role of an abnormal cascade of NETs in CI/RI, as well as other ischemia-induced neurological diseases. Herein, we highlight the potential of NETs as a therapeutic target against ischemic stroke that may inspire translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Haoyue Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hanjing Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Rui Fang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
8
|
Ghoshal M, Ryu V, McLandsborough L. Evaluation of the efficacy of antimicrobials against pathogens on food contact surfaces using a rapid microbial log reduction detection method. Int J Food Microbiol 2022; 373:109699. [DOI: 10.1016/j.ijfoodmicro.2022.109699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/01/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022]
|
9
|
Qadir Tantry I, Ali A, Mahmood R. Hypochlorous acid decreases antioxidant power, inhibits plasma membrane redox system and pathways of glucose metabolism in human red blood cells. Toxicol Res (Camb) 2021; 10:264-271. [PMID: 33884176 PMCID: PMC8045585 DOI: 10.1093/toxres/tfaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
Hypochlorous acid (HOCl) is generated at a high concentration by activated neutrophils at sites of inflammation in a myeloperoxidase catalyzed reaction. The increased and sustained production of HOCl at inflammatory sites may lead to tissue injury and this process is believed to play an important role in the progression of several diseases like chronic inflammation, atherosclerosis and some types of cancers. We have examined the effect of HOCl on human red blood cells (RBCs) under in vitro conditions. Treatment of RBC with different concentrations of HOCl (0.05-2.5 mM) at 37°C resulted in decreased activities of major antioxidant enzymes while the antioxidant power of RBC was weakened, as shown by lowered metal-reducing and free radical quenching ability of HOCl treated cells. RBC plasma membrane redox system was also inhibited suggesting membrane damage. The enzymes of glucose metabolism were inhibited indicating deranged energy metabolism. Electron microscopic images showed gross morphological changes in HOCl treated RBC. These results show that HOCl causes major alterations in the cellular antioxidant defense system and inhibition of glycolytic pathways, which increase the susceptibility of RBC to oxidative damage.
Collapse
Affiliation(s)
- Irfan Qadir Tantry
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Asif Ali
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
10
|
Cheshchevik VT, Krylova NG, Сheshchevik NG, Lapshina EA, Semenkova GN, Zavodnik IB. Role of mitochondrial calcium in hypochlorite induced oxidative damage of cells. Biochimie 2021; 184:104-115. [PMID: 33607241 DOI: 10.1016/j.biochi.2021.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
Hypochlorite (HOCl) is one of the most important mediators of inflammatory processes. Recent evidence demonstrates that changes in intracellular calcium pool play a significant role in the damaging effects of hypochlorite and other oxidants. Mitochondria are shown to be one of the intracellular targets of hypochlorite. But little is known about the mitochondrial calcium pool changes in HOCl-induced mitochondrial dysfunction. Using isolated rat liver mitochondria, we showed the oxidative damage of mitochondria (GSH oxidation and mixed protein-glutathione formation without membrane lipid peroxidation) and alterations in the mitochondrial functional parameters (decrease of respiratory activity and efficiency of oxidative phosphorylation, NADH and FADH coenzyme levels, and membrane potential) under hypochlorite action (50-300 μM). Simultaneously, the mitochondrial calcium release and swelling were demonstrated. In the presence of EGTA, the damaging effects of HOCl were less pronounced, reflecting direct involvement of mitochondrial Ca2+ in mechanisms of oxidant-induced injury. Furthermore, exposure of HeLa cells to hypochlorite resulted in a considerable increase in cytoplasmic calcium concentrations and a decrease in mitochondrial ones. Applying specific inhibitors of calcium transfer systems, we demonstrated that mitochondria play a key role in the redistribution of cytoplasmic Ca2+ ions under hypochlorite action and act as mediators of calcium release from the endoplasmic reticulum into the cytoplasm.
Collapse
Affiliation(s)
- Vitali T Cheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus.
| | - Nina G Krylova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Nina G Сheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| | - Galina N Semenkova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| |
Collapse
|
11
|
Wu Y, Song F, Li Y, Li J, Cui Y, Hong Y, Han W, Wu W, Lakhani I, Li G, Wang Y. Acacetin exerts antioxidant potential against atherosclerosis through Nrf2 pathway in apoE -/- Mice. J Cell Mol Med 2021; 25:521-534. [PMID: 33241629 PMCID: PMC7810944 DOI: 10.1111/jcmm.16106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has a considerable influence on endothelial cell dysfunction and atherosclerosis. Acacetin, an anti-inflammatory and antiarrhythmic, is frequently used in the treatment of myocarditis, albeit its role in managing atherosclerosis is currently unclear. Thus, we evaluated the regulatory effects of acacetin in maintaining endothelial cell function and further investigated whether the flavonoid could attenuate atherosclerosis in apolipoprotein E deficiency (apoE-/- ) mice. Different concentrations of acacetin were tested on EA.hy926 cells, either induced or non-induced by human oxidized low-density lipoprotein (oxLDL), to clarify its influence on cell viability, cellular reactive oxidative stress (ROS) level, apoptotic ratios and other regulatory effects. In vivo, apoE-/- mice were fed either a Western diet or a chow diet. Acacetin pro-drug (15 mg/kg) was injected subcutaneously two times a day for 12 weeks. The effects of acacetin on the atherosclerotic process, plasma inflammatory factors and lipid metabolism were also investigated. Acacetin significantly increased EA.hy926 cell viability by reducing the ratios of apoptotic and necrotic cells at 3 μmol/L. Moreover, 3 μmol/L acacetin clearly decreased ROS levels and enhanced reductase protein expression through MsrA and Nrf2 pathway through phosphorylation of Nrf2 and degradation of Keap1. In vivo, acacetin treatment remarkably attenuated atherosclerosis by increasing reductase levels in circulation and aortic roots, decreasing plasma inflammatory factor levels as well as accelerating lipid metabolism in Western diet-fed apoE-/- mice. Our findings demonstrate the anti-oxidative and anti-atherosclerotic effects of acacetin, in turn suggesting its potential therapeutic value in atherosclerotic-related cardiovascular diseases (CVD).
Collapse
Affiliation(s)
- Yao Wu
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Fei Song
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Yunda Li
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Jingzhou Li
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Yukai Cui
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Yixiang Hong
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Weimin Han
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Weiyin Wu
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Ishan Lakhani
- Laboratory of Cardiovascular PhysiologyLi Ka Shing Institute of Health SciencesHong KongChina
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| |
Collapse
|
12
|
Clinical Presentations and Outcomes of Industrial Chlorine Gas Exposure Incidence in Oman. Prehosp Disaster Med 2020; 36:18-24. [PMID: 33183378 DOI: 10.1017/s1049023x20001375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The main objective was to study different clinical presentations and outcomes of patients after acute industrial chlorine gas exposure in Oman with evaluation of overall incident management to help develop a chemical exposure incident protocol. METHODS This was a retrospective observational study of 15 patients exposed to chlorine gas after an accidental chlorine gas leak in a metal melting factory in Oman. RESULTS Six (40%) patients were admitted and nine (60%) patients were discharged from the emergency department (ED) after initial management. The important post-chlorine gas exposure clinical symptoms were eye irritation (66.6%), cough (73.3%), shortness of breath (40.0%), chest discomfort (66.6%), rhinorrhea (66.6%), dizziness (40.0%), vomiting (46.6%), sore throat (13.3%), and stridor (53.3%). Important signs included tachycardia (40.0%), tachypnea (40.0%), wheeze (20.0%), and use of accessory muscles for breathing (20.0%). Signs and symptoms of eye irritation, rhinorrhea, tachycardia, tachypnea, wheeze, and use of accessory muscles for breathing have shown significant correlation with outcome (admission) having P value of <.05. CONCLUSION In the presented acute chlorine gas exposure incidence, 15 exposed persons were brought to the ED, out of which six were admitted and nine were discharged after symptomatic treatment. Signs and symptoms of eye irritation, rhinorrhea, tachycardia, tachypnea, wheeze, and use of accessory muscles of breathing show significant relation with the outcome of admission.
Collapse
|
13
|
Abstract
Background: Patients with large, acute burn injuries are a major challenge for clinicians. The loss of skin barrier protection against micro-organisms combined with the induced immunosuppression after burn injury makes this population especially vulnerable to infection. For burn-injured patients who survive immediate management considerations and burn resuscitation after acute injury, sepsis remains the primary cause of death. The purpose of this article is to describe current strategies and innovations in burn sepsis prevention and management. Methods: This work reviews the current understanding of the systemic inflammatory response to burn injury and burn sepsis as well as current strategies in insolation and infection prevention, newer burn unit design strategies in the context of infection prevention, and novel therapies being considered in topical antimicrobial wound care management. Results: A review of burn sepsis is key to understanding current paradigms and innovation in burn management and prevention. Key management principles begin from the time of injury and persist throughout the patient's hospital course. This includes use of personal protective equipment, burn unit design considerations, and knowledge of critical care principles such as central venous catheter management strategies. Innovations on wound dressing types, forms, and use have been key to better controlling burn wound sepsis and improving wound healing. Products incorporating nanotechnology, novel anions, oxygen, and even light have been key to introducing previously unconsidered methods to fight or prevent infection. Conclusion: Understanding the pathophysiology and source identification of sepsis from burn wounds has been a key contributor in developing innovative prevention and therapeutic strategies in burn management. The emergence of drug-resistant pathogens and the difficulty of systemic antibiotic agents to reach poorly vascularized wounds have further reinforced the need to anticipate management strategies moving forward. A proactive, multidisciplinary approach is necessary to minimize the morbidity and mortality associated with infection control.
Collapse
Affiliation(s)
- Shawn Tejiram
- The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA
| | - Jeffrey W Shupp
- The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA.,Department of Surgery, Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
14
|
Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol 2020; 11:433. [PMID: 32508671 PMCID: PMC7248223 DOI: 10.3389/fphys.2020.00433] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and inflammation are two critical pathological processes of cerebral ischemia-reperfusion injury. Myeloperoxidase (MPO) is a critical inflammatory enzyme and therapeutic target triggering both oxidative stress and neuroinflammation in the pathological process of cerebral ischemia-reperfusion injury. MPO is presented in infiltrated neutrophils, activated microglial cells, neurons, and astrocytes in the ischemic brain. Activation of MPO can catalyze the reaction of chloride and H2O2 to produce HOCl. MPO also mediates oxidative stress by promoting the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), modulating the polarization and inflammation-related signaling pathways in microglia and neutrophils. MPO can be a therapeutic target for attenuating oxidative damage and neuroinflammation in ischemic stroke. Targeting MPO with inhibitors or gene deficiency significantly reduced brain infarction and improved neurological outcomes. This article discusses the important roles of MPO in mediating oxidative stress and neuroinflammation during cerebral ischemia-reperfusion injury and reviews the current understanding of the underlying mechanisms. Furthermore, we summarize the active compounds from medicinal herbs with potential as MPO inhibitors for anti-oxidative stress and anti-inflammation to attenuate cerebral ischemia-reperfusion injury, and as adjunct therapeutic agents for extending the window of thrombolytic treatment. We highlight that targeting MPO could be a promising strategy for alleviating ischemic brain injury, which merits further translational study.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Szabó M, Simon F, Fábián I. The formation of N-chloramines with proteinogenic amino acids. WATER RESEARCH 2019; 165:114994. [PMID: 31445310 DOI: 10.1016/j.watres.2019.114994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, the formation of 17 N-chloramines from proteinogenic amino acids and HOCl was studied by direct kinetic method in the pH = 3-13 range. Thus, the uncertainties associated with the indirect methods used in some of the previous studies were eliminated. Each reaction proceeds according to an overall second order kinetics: v = - k [HOCl][R-NH2] and the rate constants are several times 107 M-1s-1. A very slight correlation was found between the lgk and the pKAA of the amino acids. The results make possible to predict the reactivity order of the amino acids toward HOCl under various conditions. A comparison of the parameters of activation indicates that the presence of a bulky substituent on the side chain close to the α-carbon atom decreases the strength of bonding between the reactants and make the structure more diffuse in the transition state. The chlorination of histidine proceeds via two pH dependent paths presumably leading to the formation of N-chloramine and a side chain chlorinated product. The latter compound may be involved in fast subsequent trans-chlorination reactions. The results presented here resolve earlier discrepancies in the literature and are relevant in chlorination water treatment technologies as well as in the interpretation of in vivo processes involving the formation of N-chloro amino acids in a wide pH range.
Collapse
Affiliation(s)
- Mária Szabó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Simon
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary; MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
16
|
Zhang C, Brown PJB, Hu Z. Higher functionality of bacterial plasmid DNA in water after peracetic acid disinfection compared with chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:419-427. [PMID: 31176227 DOI: 10.1016/j.scitotenv.2019.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/31/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Peracetic acid (PAA) is an emerging disinfectant with a low disinfection by-product formation potential, but how PAA destroys gene function after killing bacteria remains to be studied. Bacterial plasmid DNA is a mobile genetic element that often harbors undesirable genes encoding antibiotic resistance and virulence factors. Even though PAA efficiently kills bacteria, bacterial plasmids and other mobile genetic elements might still be intact and functional after PAA disinfection, posing potential public health and environmental risks. This study evaluated the impact of PAA disinfection on the functionality of plasmid DNA in vivo and compared the results with those from chlorination. We delivered a plasmid DNA harboring two antibiotic resistance genes to Escherichia coli TOP10 to form an antibiotic-resistant bacterium (ARB). The planktonic ARB was treated with PAA and chlorine to find the minimum doses inhibiting the regrowth of the strain. PAA and chlorine stopped the regrowth at 8 ± 1 mg PAA·L-1 and 20 ± 9 mg Cl2·L-1, respectively. The functionality of the plasmid DNA after PAA and chlorine disinfection was then determined at higher doses in vivo. Neither PAA nor chlorine completely destroyed the plasmid DNA. However, chlorine was more efficient than PAA in eliminating the plasmid DNA. PAA at 25 mg PAA·L-1 reduced the transforming activity of the plasmid DNA by less than 0.3 log10 units, whereas chlorine at 25 mg Cl2·L-1 reduced the transforming activity by approximately 1.7 log10 units. Chlorine had a more pronounced impact on the functionality of the plasmid DNA because it oxidizes or destroys bacterial components including plasmid DNA faster than PAA. In addition, environmental scanning electron microscopy shows that chlorination desiccated the cells resulting in the flat cellular structure and possibly more complete loss of plasmid DNA, whereas PAA disinfection had a less impact on cell structure and morphology. This study demonstrates that more plasmid DNA remains functional in water after PAA disinfection than after chlorination. These functional genetic elements could be acquired by other microorganisms via horizontal gene transfer to pose potential public health and environmental risks.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
17
|
Foster K, Richey K, Champagne J, Matthews M. Randomized Comparison of Hypochlorous Acid With 5% Sulfamylon Solution as Topical Therapy Following Skin Grafting. EPLASTY 2019; 19:e16. [PMID: 31217832 PMCID: PMC6554702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: Infections are a serious complication of thermal injury. Excision and grafting have led to a decrease in incidence, but to ensure successful skin grafting, antimicrobial irrigants are frequently utilized to prevent infection. A safe, efficacious, and cost-effective irrigant capable of preventing infections would be a valuable adjunctive therapy. The objectives of this study were to determine whether the test article was noninferior to current therapy in controlling infection and reducing postoperative pain in patients with skin graft. Methods: Patients with burns requiring skin grafting were randomized to hypochlorous acid or 5% Sulfamylon solution as topical dressings postoperatively. Inclusion criteria included thermal injury 20% or more total body surface area requiring excision and autografting, and age 18 years or more. Exclusion criteria included pregnant females, chlorine sensitivity, and electrical/chemical/cold injuries. The following outcomes were assessed: patient demographics, graft viability, infection, pain score, narcotic usage, adverse events, and cost. Results: Treatment groups were demographically equivalent. There were no differences in adverse or serious adverse events between the 2 groups. Graft viability and infection rate were equivalent between the 2 groups. In addition, pain scores and narcotic usage were similar. Hypochlorous acid was significantly less expensive than 5% Sulfamylon solution. Conclusions: Hypochlorous acid demonstrated equivalent efficacy and safety compared with 5% Sulfamylon when used as the postoperative topical dressing for skin grafts. Hypochlorous acid was more cost-effective. This pilot study was limited by its small sample size. However, hypochlorous acid shows promise as a topical wound dressing and further study with larger groups is warranted.
Collapse
Affiliation(s)
- Kevin N. Foster
- The Arizona Burn Center at Maricopa Integrated Health System Phoenix,Correspondence:
| | - K. J. Richey
- The Arizona Burn Center at Maricopa Integrated Health System Phoenix
| | - J. S. Champagne
- The Arizona Burn Center at Maricopa Integrated Health System Phoenix
| | - M. R. Matthews
- The Arizona Burn Center at Maricopa Integrated Health System Phoenix
| |
Collapse
|
18
|
Zhang C, Brown PJB, Miles RJ, White TA, Grant DG, Stalla D, Hu Z. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. WATER RESEARCH 2019; 149:640-649. [PMID: 30594003 DOI: 10.1016/j.watres.2018.10.062] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 05/22/2023]
Abstract
Peracetic acid (PAA) is a promising alternative to chlorine for disinfection; however, bacterial regrowth after PAA disinfection is poorly understood. This study compared the regrowth of bacteria (Gram-negative Pseudomonas aeruginosa PAO1 and Gram-positive Bacillus sp.) after disinfection with PAA or free chlorine. In the absence of organic matter, PAA and free chlorine prevented the regrowth of planktonic cells of P. aeruginosa PAO1 at C·t (= disinfectant concentration × contact time) doses of (28.5 ± 9.8) mg PAA·min·L-1 and (22.5 ± 10.6) mg Cl2·min·L-1, respectively, suggesting that they had comparable efficiencies in preventing the regrowth of planktonic bacteria. For comparison, the minimum C·t doses of PAA and free chlorine to prevent the regrowth of P. aeruginosa PAO1 biofilm cells in the absence of organic matter were (14,000 ± 1,732) mg PAA·min·L-1 and (6,500 ± 2,291) mg Cl2·min·L-1, respectively. PAA was less effective than free chlorine in killing bacteria within biofilms in the absence of organic matter most likely because PAA reacts with biofilm matrix constituents slower than free chlorine. In the presence of organic matter, although the bactericidal efficiencies of both disinfectants significantly decreased, PAA was less affected due to its slower reaction with organic matter and/or slower self-decomposition. For instance, in a dilute Lysogeny broth-Miller, the minimum concentrations of PAA and free chlorine to prevent the regrowth of planktonic P. aeruginosa PAO1 were 20 mg PAA·L-1 and 300 mg Cl2·L-1, respectively. While both disinfectants are strong oxidants disrupting cell membrane, environmental scanning electron microscopy (ESEM) revealed that PAA made holes in the center of the cells, whereas free chlorine desiccated the cells. Overall, this study shows that PAA is a powerful disinfectant to prevent bacterial regrowth even in the presence of organic matter.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States.
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, United States
| | - Randall J Miles
- College of Agriculture, Food and Natural Resources (CAFNR), University of Missouri, Columbia, MO, 65211, United States
| | - Tommi A White
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, United States
| | - DeAna G Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, United States
| | - David Stalla
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, United States
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
19
|
Pravalika K, Sarmah D, Kaur H, Vats K, Saraf J, Wanve M, Kalia K, Borah A, Yavagal DR, Dave KR, Bhattacharya P. Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life Sci 2018; 216:49-58. [PMID: 30414429 DOI: 10.1016/j.lfs.2018.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
AIM Stroke is devastating with a limited choice of intervention. Many pharmacological entities are available but none of them have evolved successfully in counteracting the multifaceted molecular alterations following stroke. Myeloperoxidase (MPO) has been reported to play an important role in neuroinflammation following neurodegenerative diseases. Therefore, using it as a therapeutic target may be a strategy to confer neuroprotection in stroke. Trigonelline (TG), a plant alkaloid has shown neuroprotective effects in the past. Here we explore its neuroprotective effects and its role in glutathione mediated MPO inhibition in ischemic stroke. METHODS An in silico study was performed to confirm effective TG and MPO interaction. An in vitro evaluation of toxicity with biochemical estimations was performed. Further, in vivo studies were undertaken where rats were treated with 25, 50 and 100 mg/kg TG or standard MPO inhibiting drug4‑Aminobenzoic hydrazide (4‑ABH) at 60 min prior, post immediate and an hour post 90 min of middle cerebral artery occlusion (MCAo) followed by 24 h reperfusion. Rats were evaluated for neurodeficit and motor function tests. Brains were further harvested for infarct size evaluation, biochemical analysis, and western blot experiments. KEY FINDINGS TG at 100 mg/kg dose i.p. administered immediately post ischemia confers neuroprotection by reducing cerebral infarct with improvement in motor and neurodeficit scores. Furthermore, elevated nitrite and MDA levels were also found to be reduced in brain regions in the treated group. TG also potentiated intrinsic antioxidant status and markedly inhibited reduced glutathione mediated myeloperoxidase expression in the cortical brain region. SIGNIFICANCE TG confers neuroprotection by reduced glutathione mediated myeloperoxidase inhibition in ischemic stroke.
Collapse
Affiliation(s)
- Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kanchan Vats
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Madhuri Wanve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
20
|
Kim TI, Hwang B, Lee B, Bae J, Kim Y. Selective Monitoring and Imaging of Eosinophil Peroxidase Activity with a J-Aggregating Probe. J Am Chem Soc 2018; 140:11771-11776. [PMID: 30156836 DOI: 10.1021/jacs.8b07073] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The specific detection of eosinophil peroxidase (EPO) activity requires the difficult distinction between hypobromous acid generated by EPO and hypochlorous acid generated by other haloperoxidases. Here we report a fluorogenic probe that is halogenated with high kinetic selectivity (≥1200:1) for HOBr over HOCl. Heavy-atom effects do not quench the dibrominated product because of its self-assembly into emissive J-aggregates that provide a turn-on signal. Applications of this fluorogen to EPO activity assays, dipstick sensors, fluorescence imaging of EPO activity, assays of oxidative stress in cancer cells, and immune response detection in live mice are reported.
Collapse
Affiliation(s)
- Tae-Il Kim
- Department of Chemistry and Research Institute of Basic Sciences , Kyung Hee University , 26 Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Korea
| | - Byunghee Hwang
- Department of Chemistry and Research Institute of Basic Sciences , Kyung Hee University , 26 Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Korea
| | - Boeun Lee
- Department of Life Science , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Korea
| | - Jeehyeon Bae
- School of Pharmacy , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences , Kyung Hee University , 26 Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Korea
| |
Collapse
|
21
|
de Genaro IS, de Almeida FM, Hizume-Kunzler DC, Moriya HT, Silva RA, Cruz JCG, Lopes RB, Righetti RF, de Paula Vieira R, Saiki M, Martins MA, Tibério IDFLC, Arantes-Costa FM, Saraiva-Romanholo BM. Low dose of chlorine exposure exacerbates nasal and pulmonary allergic inflammation in mice. Sci Rep 2018; 8:12636. [PMID: 30135462 PMCID: PMC6105688 DOI: 10.1038/s41598-018-30851-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/31/2018] [Indexed: 01/22/2023] Open
Abstract
Work-exacerbated asthma (WEA) is defined as preexisting asthma that worsens with exposure to irritants [e.g., chlorine (Cl2) derivatives] in the workplace. The maximum allowable concentration in the workplace of Cl2 exposure is 3 mg/ m3 (described in OSHA). We investigated in an experimental asthma model in mice the effects of a single exposure to a sodium hypochlorite dose with this allowed chlorine concentration and a tenfold higher dose. Acute chlorine exposure at 3.3 mg/m3 in the OVA-sensitized group increased eosinophils in the peribronquial infiltrate, cytokine production, nasal mucus production and the number of iNOS positive cells in the distal lung compared to only sensitized mice. The exposure to a higher dose of 33.3 mg/m3 in the OVA-sensitized group resulted in an increase in respiratory system elastance, in the total and differential numbers of inflammatory cells in bronchoalveolar lavage fluid, IL-4, IL-5, and IL-17 in the lungs, eosinophils in peribronquial infiltrate and mucus content in nasal compared to non-exposed and sensitized animals. In this asthma model, chorine exposures at an allowable dose, contributed to the potentiation of Th2 responses. The functional alterations were associated with increased iNOS and ROCK-2 activation in the distal lung.
Collapse
Affiliation(s)
- Isabella Santos de Genaro
- Public Employee of Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil.,Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Deborah Camargo Hizume-Kunzler
- Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,Department of Physical Therapy (LaPEx), State University of Santa Catarina, Florianopolis, Brazil
| | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| | - Ronaldo Aparecido Silva
- Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Renato Fraga Righetti
- Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,Sírio-Libanês Hospital, Sao Paulo, Brazil
| | - Rodolfo de Paula Vieira
- Universidade Brasil, Post-graduation Program in Bioengenering, São Paulo, Brazil and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, Brazil
| | - Mitiko Saiki
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Beatriz Mangueira Saraiva-Romanholo
- Public Employee of Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil. .,Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil. .,University City of Sao Paulo (UNICID), Sao Paulo, Brazil.
| |
Collapse
|
22
|
Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med Sci (Basel) 2018; 6:medsci6020033. [PMID: 29669993 PMCID: PMC6024665 DOI: 10.3390/medsci6020033] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
Myeloperoxidase (MPO) belongs to the family of heme-containing peroxidases, produced mostly from polymorphonuclear neutrophils. The active enzyme (150 kDa) is the product of the MPO gene located on long arm of chromosome 17. The primary gene product undergoes several modifications, such as the removal of introns and signal peptides, and leads to the formation of enzymatically inactive glycosylated apoproMPO which complexes with chaperons, producing inactive proMPO by the insertion of a heme moiety. The active enzyme is a homodimer of heavy and light chain protomers. This enzyme is released into the extracellular fluid after oxidative stress and different inflammatory responses. Myeloperoxidase is the only type of peroxidase that uses H₂O₂ to oxidize several halides and pseudohalides to form different hypohalous acids. So, the antibacterial activities of MPO involve the production of reactive oxygen and reactive nitrogen species. Controlled MPO release at the site of infection is of prime importance for its efficient activities. Any uncontrolled degranulation exaggerates the inflammation and can also lead to tissue damage even in absence of inflammation. Several types of tissue injuries and the pathogenesis of several other major chronic diseases such as rheumatoid arthritis, cardiovascular diseases, liver diseases, diabetes, and cancer have been reported to be linked with MPO-derived oxidants. Thus, the enhanced level of MPO activity is one of the best diagnostic tools of inflammatory and oxidative stress biomarkers among these commonly-occurring diseases.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| |
Collapse
|
23
|
Pravalika K, Sarmah D, Kaur H, Wanve M, Saraf J, Kalia K, Borah A, Yavagal DR, Dave KR, Bhattacharya P. Myeloperoxidase and Neurological Disorder: A Crosstalk. ACS Chem Neurosci 2018; 9:421-430. [PMID: 29351721 DOI: 10.1021/acschemneuro.7b00462] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myeloperoxidase (MPO) is a protein present in azurophilic granules, macrophages, and neutrophils that are released into extracellular fluid (ECF) during inflammation. MPO releases hypochlorous acid (HOCl) and other chlorinated species. It is derived from hydrogen peroxide (H2O2) showing response during inflammatory conditions and plays a role in the immune defense against pathogens. MPO may show unwanted effects by indirectly increasing the formation of reactive nitrogen species (RNS), reactive oxygen species (ROS), and tumor necrosis factor alpha (TNF-α) leading to inflammation and oxidative stress. As neuroinflammation is one of the inevitable biological components among most of neurological disorders, MPO and its receptor may be explored as candidates for future clinical interventions. The purpose of this review is to provide an overview of the pathophysiological characteristics of MPO and further explore the possibilities to target it for clinical use. Targeting MPO is promising and may open an avenue to act as a biomarker for diagnosis with defined risk stratification in patients with various neurological disorders.
Collapse
Affiliation(s)
- Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Madhuri Wanve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011 Assam, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| |
Collapse
|
24
|
Kuznetsova T, Kulahava T, Zholnerevich I, Amaegberi N, Semenkova G, Shadyro O, Arnhold J. Morphometric characteristics of neutrophils stimulated by adhesion and hypochlorite. Mol Immunol 2017; 87:317-324. [PMID: 28544986 DOI: 10.1016/j.molimm.2017.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/03/2017] [Accepted: 05/06/2017] [Indexed: 11/18/2022]
Abstract
The aim of this work was to compare cell form, size and volume as well as the locomotor activity of polymorphonuclear leukocytes (PMNLs) stimulated by adhesion to glass and exposed to hypochlorous acid at non-toxic dose. After 20min of adhesion to a glass surface, volume, cell surface area and projection area of PMNLs were equaled to 143.1±21.4μm3, 288.8±28.8μm2 and 248.3±32.3μm2, respectively. Projection area of PMNLs exposed to NaOCl was noticeably enlarged as compared with control samples. The cell volume of 20min adherent cells exposed to NaOCl was enlarged in comparison with both control cells and 5min adhered exposed to NaOCl cells. NaOCl exposure induced a degranulation of PMNLs as measured by lysozyme release. Granules could be found both above the cell surface and on the substratum near the cell. The S/V ratio for PMNLs increased (from 1.52 to 2.02μm-1) with the increasing of cell activation time. But at NaOCl addition the reverse tendency was observed (from 2.10 to 1.87μm-1). In cells exposed to NaOCl the redistribution and decrease of concentration of F-actin took place. This observation supports the hypothesis that the priming of PMNLs with hypochlorous acid modifies cell motility and morphology and reflects also on other functions.
Collapse
Affiliation(s)
- Tatsiana Kuznetsova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| | - Tatsiana Kulahava
- Department of Biophysics, Faculty of Physics, Belarusian State University, Minsk, Belarus.
| | - Ivan Zholnerevich
- Department of Biophysics, Faculty of Physics, Belarusian State University, Minsk, Belarus.
| | - Nadezda Amaegberi
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Galina Semenkova
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Oleg Shadyro
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Juergen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
25
|
An In Vitro Study of the Antioxidant and Antihemolytic Properties of Buddleja globosa (Matico). J Membr Biol 2017; 250:239-248. [DOI: 10.1007/s00232-017-9955-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
26
|
Abstract
Although substantial improvements have been made in majority of cardiac disorders, heart failure (HF) remains a major health problem, with both increasing incidence and prevalence over the past decades. For that reason, the number of potential biomarkers that could contribute to diagnosis and treatment of HF patients is, almost exponentially, increasing over the recent years. The biomarkers that are, at the moment, more or less ready for use in everyday clinical practice, reflect different pathophysiological processes present in HF. In this review, seven groups of biomarkers associated to myocardial stretch (mid-regional proatrial natriuretic peptide, MR-proANP), myocyte injury (high-sensitive troponins, hs-cTn; heart-type fatty acid-binding protein, H-FABP; glutathione transferase P1, GSTP1), matrix remodeling (galectin-3; soluble isoform of suppression of tumorigenicity 2, sST2), inflammation (growth differentiation factor-15, GDF-15), renal dysfunction (neutrophil gelatinase-associated lipocalin, NGAL; kidney injury molecule-1, KIM-1), neurohumoral activation (adrenomedullin, MR-proADM; copeptin), and oxidative stress (ceruloplasmin; myeloperoxidase, MPO; 8-hydroxy-2'-deoxyguanosine, 8-OHdG; thioredoxin 1, Trx1) in HF will be overviewed. It is important to note that clinical value of individual biomarkers within the single time points in both diagnosis and outcome prediction in HF is limited. Hence, the future of biomarker application in HF lies in the multimarker panel strategy, which would include specific combination of biomarkers that reflect different pathophysiological processes underlying HF.
Collapse
|
27
|
Kwon YM, Kim RI, Kang IS, Kim C. Synthesis of N-Chloroamino Acids and Their Biological Activities in LPS Stimulated RAW 264.7 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 975:675-684. [PMID: 28849491 DOI: 10.1007/978-94-024-1079-2_53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Amino acids (AAs) are essential for protein synthesis, neurotransmission and macro molecule biosynthesis. Ala, Gln, Gly, Lys, Val and taurine (Tau) are the most abundant free AAs in mammals, and some of these react with hypochlorite (HOCl/OCl-) produced by myeloperoxidase in activated phagocytes to form N-chloroamino acids (NCAA). In this study, we reacted 20 AAs and Tau with sodium hypochlorite (NaOCl), then classified the products into five types (I-V) based on the change in their absorbance. Type I AAs (Ala, Arg, Gln, Gly, Ile, Lys, Phe, Ser, Tau, Thr and Val) generated a typical monochloramine peak at 252 nm, while Type II AAs (Asn and Tyr) and Type III AAs (Glu and Leu) produced peaks at 275 nm and 225 nm, respectively. The Type IV AAs (His, Met and Trp) did not show any distinct absorption peak, and Type V AAs (Asp, Cys and Pro) did not appear to react with NaOCl. The ArgCl and TauCl were stable, while GlnCl, GlyCl, IleCl, LysCl, PheCl and ValCl were less stable and AlaCl, SerCl and ThrCl were the least stable. Tau is the most abundant non-proteinogenic free AA in cellular fluid and has many physiological functions in the nervous, cardiovascular, renal and immune systems. Tau reacts with HOCl to form TauCl, which inhibits the production of proinflammatory mediators such as superoxide, nitric oxide (NO) and interleukins, while increasing the antioxidant proteins in macrophages. We determined the effects of Type I NCAA on cell viability, NO and TNF-α production in LPS-activated RAW 264.7 cells. All Type I NCAA showed dose-dependent cytotoxicity and inhibited LPS-induced NO production. However, only GlnCl, GlyCl, IleCl, LysCl, SerCl and TauCl inhibited LPS-induced TNF-α production. In summary, Type I NCAA showed dose-dependent cytotoxicity and inhibited NO production, while their effects on TNF-α varied. Our results suggest that Type I NCAA may serve as biological regulators similar to TauCl during inflammation.
Collapse
Affiliation(s)
- Yeong Min Kwon
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, 22212, South Korea
| | - Rang Ie Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, 22212, South Korea
| | - In Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, 22212, South Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, 22212, South Korea.
- Convergent Research Center for Metabolism and Immunoregulation, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
28
|
Andreev VN, Goldin MM, Evseev AK, Davydov AD, Kurylkin YA. Electrosynthesis and biological properties of persulfate–chloride solutions. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Ray RS, Katyal A. Myeloperoxidase: Bridging the gap in neurodegeneration. Neurosci Biobehav Rev 2016; 68:611-620. [PMID: 27343997 DOI: 10.1016/j.neubiorev.2016.06.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
Neurodegenerative conditions present a group of complex disease pathologies mostly due to unknown aetiology resulting in neuronal death and permanent neurological disability. Any undesirable stress to the brain, disrupts homeostatic balance, through a remarkable convergence of pathophysiological changes and immune dysregulation. The crosstalk between inflammatory and oxidative mechanisms results in the release of neurotoxic mediators apparently spearheaded by myeloperoxidase derived from activated microglia, astrocytes, neurons as well as peripheral inflammatory cells. These isolated entities combinedly have the potential to flare up and contribute significantly to neuropathology and disease progression. Recent, clinicopathological evidence support the association of myeloperoxidase and its cytotoxic product, hypochlorous acid in a plethora of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Multiple sclerosis, Stroke, Epilepsy etc. But the biochemical and mechanistic insights into myeloperoxidase mediated neuroinflammation and neuronal death is still an uncharted territory. The current review outlines the emerging recognition of myeloperoxidase in neurodegeneration, which may offer novel therapeutic and diagnostic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- R S Ray
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi 110 007, India.
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi 110 007, India.
| |
Collapse
|
30
|
Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli. mBio 2015; 6:e01477-15. [PMID: 26530383 PMCID: PMC4631802 DOI: 10.1128/mbio.01477-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. Hypochlorite is used in vast quantities for water disinfection, killing bacteria on surfaces, and washing and whitening. In pools, spas, and other waters, hypochlorite is frequently delivered as chlorinated isocyanuric acids that release hypochlorite and cyanuric acid. Over time, cyanuric acid accumulates and impairs disinfection and must be removed. The microbial enzyme cyanuric acid hydrolase can potentially remove cyanuric acid to restore disinfection and protect swimmers. Whole bacterial cells expressing cyanuric acid hydrolase were encapsulated in an inert silica matrix containing an amine group. The amine group serves to permeabilize the cell membrane and accelerate cyanuric acid degradation, and it also reacts with hypochlorite to protect against inactivation of cyanuric acid hydrolase. Methods for promoting whole-cell biocatalysis are important in biotechnology, and the present work illustrates approaches to enhance rates and protect against an inhibitory substance.
Collapse
|
31
|
Reactive Oxygen Species Donors Increase the Responsiveness of Dorsal Horn Neurons and Induce Mechanical Hyperalgesia in Rats. Neural Plast 2015; 2015:293423. [PMID: 26457204 PMCID: PMC4592728 DOI: 10.1155/2015/293423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/26/2022] Open
Abstract
Our previous studies suggest that reactive oxygen species (ROS) scavengers have analgesic effect on neuropathic pain through spinal mechanisms in the rat. The studies suggest that superoxide in spinal cord is one of important mediators of persistent pain. To test the hypothesis that increase of superoxide-derived intermediates leads to central sensitization and pain, the effects of an intrathecal injection of chemical ROS donors releasing either OH∙, OCl−, or H2O2 were examined on pain behaviors. Following treatment with t-BOOH (OH∙ donor), dorsal horn neuron responses to mechanical stimuli in normal rats and the changes of neuronal excitability were explored on substantia gelatinosa (SG) neurons using whole-cell patch clamping recordings. Intrathecal administration of t-BOOH or NaOCl (OCl− donor), but not H2O2, significantly decreased mechanical thresholds of hind paws. The responses of wide dynamic range neurons to mechanical stimuli increased after a local application of t-BOOH. The t-BOOH increased the frequency and the amplitude of excitatory postsynaptic potentials, depolarized membrane potential in SG neurons, and increased the frequency of action potentials evoked by depolarizing current pulses. These results suggest that elevated ROS, especially OH∙, in the spinal cord sensitized dorsal horn neurons and produced hyperalgesia in normal rats.
Collapse
|
32
|
Wang W, Shen H, Xie JJ, Ling J, Lu H. Neuroprotective effect of ginseng against spinal cord injury induced oxidative stress and inflammatory responses. Int J Clin Exp Med 2015; 8:3514-3521. [PMID: 26064243 PMCID: PMC4443077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
The pathophysiological effects of spinal cord injury (SCI) occur as a result of oxidative stress and inflammatory mechanisms. In the present study we analyzed the protective role of ginseng on spinal injury in wistar rats. To evaluate the redox status, we investigated various parameters including estimation of reactive oxygen species, lipid peroxidation content, protein carbonyl and sulphydryl content, myeloperoxidase activity, antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase). Expression of antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) was determined through immunoblot. Inflammatory study was performed by evaluating the expression of nuclear factor-κB, cycloxygenase-2 by western blot analysis. Further the pro-inflammatory cytokines were determined through ELISA (IL-6, TNF-α, IL-1β). We observed a significant enhancement in oxidative stress and inflammatory markers in rats with SCI injury. Ginseng treatment significantly down regulated the oxidative stress by enhancing the antioxidant status in SCI rats. Significant inhibition of inflammation was observed through down regulation of inflammatory proteins and pro-inflammatory cytokines. Thus our findings show that Ginseng significantly ameliorated spinal cord injury in wistar rats by modulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200092, China
| | - Hao Shen
- Department of Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200092, China
| | - Jing-Jing Xie
- Department of Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Chongming BranchShanghai 202150, China
| | - Jian Ling
- Department of Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Chongming BranchShanghai 202150, China
| | - Hua Lu
- Department of Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Chongming BranchShanghai 202150, China
| |
Collapse
|
33
|
Vikram A, Lipus D, Bibby K. Produced water exposure alters bacterial response to biocides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13001-13009. [PMID: 25279933 DOI: 10.1021/es5036915] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity.
Collapse
Affiliation(s)
- Amit Vikram
- Department of Civil and Environmental Engineering, and §Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | |
Collapse
|
34
|
Lindsay A, Lewis J, Scarrott C, Draper N, Gieseg SP. Changes in acute biochemical markers of inflammatory and structural stress in rugby union. J Sports Sci 2014; 33:882-91. [PMID: 25358055 DOI: 10.1080/02640414.2014.971047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Rugby union is a sport governed by the impacts of high force and high frequency. Analysis of physiological markers following a game can provide an understanding of the physiological response of an individual and the time course changes in response to recovery. Urine and saliva were collected from 11 elite amateur rugby players 24 h before, immediately after, and at 17, 25, 38, 62 and 86 h post-game. Myoglobin, salivary immunoglobulin A and cortisol were analysed by ELISA, whereas neopterin and total neopterin were analysed by high-performance liquid chromatography. There was a significant post-game increase of all four markers. The increases were cortisol 4-fold, myoglobin 2.85-fold, neopterin 1.75-fold and total neopterin 2.3-fold when corrected with specific gravity. All significant changes occurred post-game only, with markers returning to and remaining at baseline within 17 h. The intensity of the game caused significant changes in key physiological markers of stress. They provide an understanding of the stress experienced during a single game of rugby and the time course changes associated with player recovery. Neopterin provides a new marker of detecting an acute inflammatory response in physical exercise, while specific gravity should be considered for urine volume correction post-exercise.
Collapse
Affiliation(s)
- Angus Lindsay
- a School of Biological Sciences , University of Canterbury , Christchurch , New Zealand
| | | | | | | | | |
Collapse
|
35
|
Bakhautdin B, Goksoy Bakhautdin E, Fox PL. Ceruloplasmin has two nearly identical sites that bind myeloperoxidase. Biochem Biophys Res Commun 2014; 453:722-7. [PMID: 25301560 DOI: 10.1016/j.bbrc.2014.09.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022]
Abstract
Ceruloplasmin (Cp) is a copper-containing ferroxidase with potent antioxidant activity. Cp is expressed by hepatocytes and activated macrophages and has been known as physiologic inhibitor of myeloperoxidase (MPO). Enzymatic activity of MPO produces anti-microbial agents and strong prooxidants such as hypochlorous acid and has a potential to damage host tissue at the sites of inflammation and infection. Thus Cp-MPO interaction and inhibition of MPO has previously been suggested as an important control mechanism of excessive MPO activity. Our aim in this study was to identify minimal Cp domain or peptide that interacts with MPO. We first confirmed Cp-MPO interaction by ELISA and surface plasmon resonance (SPR). SPR analysis of the interaction yielded 30nM affinity between Cp and MPO. We then designed and synthesized 87 overlapping peptides spanning the entire amino acid sequence of Cp. Each of the peptides was tested whether it binds to MPO by direct binding ELISA. Two of the 87 peptides, P18 and P76 strongly interacted with MPO. Amino acid sequence analysis of identified peptides revealed high sequence and structural homology between them. Further structural analysis of Cp's crystal structure by PyMOL software unfolded that both peptides represent surface-exposed sites of Cp and face nearly the same direction. To confirm our finding we raised anti-P18 antisera in rabbit and demonstrated that this antisera disrupts Cp-MPO binding and rescues MPO activity. Collectively, our results confirm Cp-MPO interaction and identify two nearly identical sites on Cp that specifically bind MPO. We propose that inhibition of MPO by Cp requires two nearly identical sites on Cp to bind homodimeric MPO simultaneously and at an angle of at least 120degrees, which, in turn, exerts tension on MPO and results in conformational change.
Collapse
Affiliation(s)
- Bakytzhan Bakhautdin
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Basic Medical Sciences, School of Medicine, Fatih University, Istanbul, Turkey.
| | - Esen Goksoy Bakhautdin
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Basic Medical Sciences, School of Medicine, Fatih University, Istanbul, Turkey
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Chronic low dose chlorine exposure aggravates allergic inflammation and airway hyperresponsiveness and activates inflammasome pathway. PLoS One 2014; 9:e106861. [PMID: 25202911 PMCID: PMC4159271 DOI: 10.1371/journal.pone.0106861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022] Open
Abstract
Background Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR). Methods Six week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low dose chlorine exposure of naturally vaporized gas of 5% sodium hypochlorite solution. Airway inflammation and AHR were evaluated by bronchoalveolar lavage (BAL) cell recovery and non-invasive phlethysmography, respectively. Real-time qPCR, Western blot assay, and ELISA were used to evaluate the mRNA and protein expressions of cytokines and other inflammatory mediators. Human A549 and murine epithelial (A549 and MLE12) and macrophage (AMJ2-C11) cells were used to define the responses to low dose chlorine exposure in vitro. Results Chronic low dose chlorine exposure significantly augmented airway inflammation and AHR in OVA-sensitized and challenged mice. The expression of Th2 cytokines IL-4 and IL-5 and proinflammatory cytokine IL-1β and IL-33 were significantly increased in OVA/Cl group compared with OVA group. The chlorine exposure also activates the major molecules associated with inflammasome pathway in the macrophages with increased expression of epithelial alarmins IL-33 and TSLP in vitro. Conclusion Chronic low dose exposure of chlorine aggravates allergic Th2 inflammation and AHR potentially through activation of inflammasome danger signaling pathways.
Collapse
|
37
|
Rayner BS, Love DT, Hawkins CL. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radic Biol Med 2014; 71:240-255. [PMID: 24632382 DOI: 10.1016/j.freeradbiomed.2014.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022]
Abstract
Myeloperoxidase is an important heme enzyme released by activated leukocytes that catalyzes the reaction of hydrogen peroxide with halide and pseudo-halide ions to form various hypohalous acids. Hypohalous acids are chemical oxidants that have potent antibacterial, antiviral, and antifungal properties and, as such, play key roles in the human immune system. However, increasing evidence supports an alternative role for myeloperoxidase-derived oxidants in the development of disease. Excessive production of hypohalous acids, particularly during chronic inflammation, leads to the initiation and accumulation of cellular damage that has been implicated in many human pathologies including atherosclerosis, neurodegenerative disease, lung disease, arthritis, inflammatory cancers, and kidney disease. This has sparked a significant interest in developing a greater understanding of the mechanisms involved in myeloperoxidase-derived oxidant-induced mammalian cell damage. This article reviews recent developments in our understanding of the cellular reactivity of hypochlorous acid, hypobromous acid, and hypothiocyanous acid, the major oxidants produced by myeloperoxidase under physiological conditions.
Collapse
Affiliation(s)
- Benjamin S Rayner
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic T Love
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Clare L Hawkins
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
38
|
Case files of the University of California San Francisco Medical Toxicology Fellowship: acute chlorine gas inhalation and the utility of nebulized sodium bicarbonate. J Med Toxicol 2014; 9:259-65. [PMID: 23719961 DOI: 10.1007/s13181-013-0309-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
39
|
Lloyd MM, Grima MA, Rayner BS, Hadfield KA, Davies MJ, Hawkins CL. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Free Radic Biol Med 2013; 65:1352-1362. [PMID: 24120969 DOI: 10.1016/j.freeradbiomed.2013.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/22/2013] [Accepted: 10/04/2013] [Indexed: 11/16/2022]
Abstract
In the immune response, hypohalous acids are generated by activated leukocytes via the release of myeloperoxidase and the formation of H2O2. Although these oxidants have important bactericidal properties, they have also been implicated in causing tissue damage in inflammatory diseases, including atherosclerosis. Hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) are the major oxidants formed by myeloperoxidase under physiological conditions, with the ratio of these oxidants dependent on diet and smoking status. HOCl is highly reactive and causes marked cellular damage, but few data are available on the effects of HOSCN on mammalian cells. In this study, we have compared the actions of HOCl and HOSCN on human coronary artery endothelial cells (HCAEC). HOCl reacts rapidly with the cells, resulting in extensive cell death by both apoptosis and necrosis, with necrosis dominating at higher oxidant doses. In contrast, HOSCN is consumed more slowly, with cell death occurring only by apoptosis. Exposure of HCAEC to HOCl and HOSCN induces changes in mitochondrial membrane permeability, which, in the case of HOSCN, is associated with mitochondrial release of proapoptotic factors, including cytochrome c, apoptosis-inducing factor, and endonuclease G. With each oxidant, apoptosis appears to be caspase-independent, with the inactivation of caspases 3/7 observed, and pretreatment of the cells with the caspase inhibitor Z-VAD-fmk having no effect on the extent of cell death. Loss of cellular thiols, depletion of glutathione, and the inactivation of thiol-dependent enzymes, including glyceraldehyde-3-phosphate dehydrogenase, were seen with both oxidants, though to a much greater extent with HOCl. The ability of myeloperoxidase-derived oxidants to induce endothelial cell apoptosis may contribute to the formation of unstable lesions in atherosclerosis. The results with HOSCN may be particularly significant for smokers, who have elevated plasma levels of SCN(-), the precursor of this oxidant.
Collapse
Affiliation(s)
- Mitchell M Lloyd
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia
| | - Michael A Grima
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia
| | - Benjamin S Rayner
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Michael J Davies
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Clare L Hawkins
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
40
|
Yang L, Bai Y, Li N, Hu C, Peng J, Cheng G, Zhang G, Shi R. Vascular VPO1 expression is related to the endothelial dysfunction in spontaneously hypertensive rats. Biochem Biophys Res Commun 2013; 439:511-6. [PMID: 24021280 DOI: 10.1016/j.bbrc.2013.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 01/28/2023]
Abstract
Reactive oxygen species (ROS) contributes to endothelial dysfunction that is involved in the pathogeneses of hypertension. Vascular peroxidase 1 (VPO1) can utilize ROS to catalyze peroxidative reactions, possibly enhancing endothelial dysfunction. This study is to identify VPO1's involvement in endothelial dysfunction and hypertension. Sixty-four spontaneously hypertensive rats (SHRs) and 64 age-matched, bodyweight controlled normotensive Wistar-Kyoto rats (WKYs) were randomly grouped and studied at the age of 5, 8, 13 and 20 weeks (16 animals, each). Blood pressure and vasodilator responses to acetylcholine in aortic rings were observed. The expressions of VPO1 and endothelial NO synthase (eNOS) in aortas were assessed by quantitative reverse transcription-PCR and western blotting analysis. Plasma concentrations of hydrogen peroxide (H2O2) and NO, NOX activity, hypochlorous acid (HOCl) production, and 3-nitrotyrosine content in aortic homogenates were also determined in this study. Along with the development of hypertension in SHR rats, VPO1 expression was up-regulated together with a significant increase in NOX activity, HOCl production, 3-nitrotyrosine content, and plasma H2O2 level compared with WKYs at 8, 13 and 20 weeks of age. In contrast, blood NO levels were decreased and aortic relaxation to acetylcholine was deteriorated in SHRs. The over-expression of VPO1 during the development of hypertension, accompanied by the endothelial dysfunction, the decreased NO levels, the elevated NOX and ROS activities, indicates a clear connection between VPO1 gene and hypertension. VPO1 may pathogenetically contribute to hypertension via signal pathways involving NOX-H2O2-VPO1-HOCl or JNK/p38 MAPK although further studies are needed to determine the precise mechanisms.
Collapse
Affiliation(s)
- Lizhen Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fernández MI, García MV, Armesto XL, Canle López M, Arturo Santaballa J. Unravelling the mechanism of intracellular oxidation of thiols by (N-Cl)-Taurine. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. I. Fernández
- Chemical Reactivity and Photoreactivity Group, Department of Physical Chemistry and Chemical Engineering; University of A Coruña; Rúa da Fraga 10 ES-15008 A Coruña Spain
| | - M. V. García
- Chemical Reactivity and Photoreactivity Group, Department of Physical Chemistry and Chemical Engineering; University of A Coruña; Rúa da Fraga 10 ES-15008 A Coruña Spain
| | - X. L. Armesto
- Chemical Reactivity and Photoreactivity Group, Department of Physical Chemistry and Chemical Engineering; University of A Coruña; Rúa da Fraga 10 ES-15008 A Coruña Spain
| | - M. Canle López
- Chemical Reactivity and Photoreactivity Group, Department of Physical Chemistry and Chemical Engineering; University of A Coruña; Rúa da Fraga 10 ES-15008 A Coruña Spain
| | - J. Arturo Santaballa
- Chemical Reactivity and Photoreactivity Group, Department of Physical Chemistry and Chemical Engineering; University of A Coruña; Rúa da Fraga 10 ES-15008 A Coruña Spain
| |
Collapse
|
42
|
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61:473-501. [PMID: 23583330 PMCID: PMC3883979 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyperactivation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia-reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Marschall S Runge
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
43
|
Radovits T, Arif R, Bömicke T, Korkmaz S, Barnucz E, Karck M, Merkely B, Szabó G. Vascular dysfunction induced by hypochlorite is improved by the selective phosphodiesterase-5-inhibitor vardenafil. Eur J Pharmacol 2013; 710:110-9. [PMID: 23623933 DOI: 10.1016/j.ejphar.2013.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species, such as hypochlorite induce oxidative stress, which impairs nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling and leads to vascular dysfunction. It has been proposed, that elevated cGMP-levels may contribute to an effective cytoprotection against oxidative stress. We investigated the effects of vardenafil, a selective inhibitor of the cGMP-degrading phosphodiesterase-5 enzyme on vascular dysfunction induced by hypochlorite. In organ bath experiments for isometric tension, we investigated the endothelium-dependent and endothelium-independent vasorelaxation of isolated rat aortic rings using cumulative concentrations of acetylcholine and sodium nitroprusside (SNP). Vascular dysfunction was induced by exposing rings to hypochlorite (100-400 µM). In the treatment groups, rats were pretreated with vardenafil (30 and 300 µg/kg i.v.). Immunohistochemical analysis was performed for the oxidative stress markers nitrotyrosine, poly(ADP-ribose) and for apoptosis inducing factor (AIF). Exposure to hypochlorite resulted in a marked impairment of acetylcholine-induced endothelium-dependent vasorelaxation of aortic rings. Pretreatment with vardenafil led to improved endothelial function as reflected by the higher maximal vasorelaxation (Rmax) to acetylcholine. Regarding endothelium-independent vasorelaxation, hypochlorite exposure led to a left-shift of SNP concentration-response curves in the vardenafil groups without any alterations of the Rmax. In the hypochlorite groups immunohistochemical analysis showed enhanced poly(ADP-ribose)-formation and nuclear translocation of AIF, which were prevented by vardenafil-pretreatment. Our results support the view that cytoprotective effects of PDE-5-inhibitors on the endothelium may underlie the improved endothelial function, however, a slight sensitisation of vascular smooth muscle to NO was also confirmed. PDE-5-inhibition may represent a potential therapy approach for treating vascular dysfunction induced by oxidative stress.
Collapse
Affiliation(s)
- Tamás Radovits
- Department of Cardiac Surgery, University of Heidelberg, 2. OG. INF 326, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chapman ALP, Mocatta TJ, Shiva S, Seidel A, Chen B, Khalilova I, Paumann-Page ME, Jameson GNL, Winterbourn CC, Kettle AJ. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem 2013; 288:6465-77. [PMID: 23306200 PMCID: PMC3585080 DOI: 10.1074/jbc.m112.418970] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/09/2013] [Indexed: 01/05/2023] Open
Abstract
Myeloperoxidase is a neutrophil enzyme that promotes oxidative stress in numerous inflammatory pathologies. It uses hydrogen peroxide to catalyze the production of strong oxidants including chlorine bleach and free radicals. A physiological defense against the inappropriate action of this enzyme has yet to be identified. We found that myeloperoxidase oxidized 75% of the ascorbate in plasma from ceruloplasmin knock-out mice, but there was no significant loss in plasma from wild type animals. When myeloperoxidase was added to human plasma it became bound to other proteins and was reversibly inhibited. Ceruloplasmin was the predominant protein associated with myeloperoxidase. When the purified proteins were mixed, they became strongly but reversibly associated. Ceruloplasmin was a potent inhibitor of purified myeloperoxidase, inhibiting production of hypochlorous acid by 50% at 25 nm. Ceruloplasmin rapidly reduced Compound I, the Fe(V) redox intermediate of myeloperoxidase, to Compound II, which has Fe(IV) in its heme prosthetic groups. It also prevented the fast reduction of Compound II by tyrosine. In the presence of chloride and hydrogen peroxide, ceruloplasmin converted myeloperoxidase to Compound II and slowed its conversion back to the ferric enzyme. Collectively, our results indicate that ceruloplasmin inhibits myeloperoxidase by reducing Compound I and then trapping the enzyme as inactive Compound II. We propose that ceruloplasmin should provide a protective shield against inadvertent oxidant production by myeloperoxidase during inflammation.
Collapse
Affiliation(s)
- Anna L. P. Chapman
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Tessa J. Mocatta
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Sruti Shiva
- the Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Antonia Seidel
- the Department of Chemistry, University of Otago, PO Box 56 Dunedin, New Zealand, and
| | - Brian Chen
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Irada Khalilova
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Martina E. Paumann-Page
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Guy N. L. Jameson
- the Department of Chemistry, University of Otago, PO Box 56 Dunedin, New Zealand, and
| | - Christine C. Winterbourn
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Anthony J. Kettle
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
45
|
Terrill JR, Radley-Crabb HG, Iwasaki T, Lemckert FA, Arthur PG, Grounds MD. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J 2013; 280:4149-64. [PMID: 23332128 DOI: 10.1111/febs.12142] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/23/2022]
Abstract
The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Stacey MM, Cuddihy SL, Hampton MB, Winterbourn CC. Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid. Arch Biochem Biophys 2012; 527:45-54. [DOI: 10.1016/j.abb.2012.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 12/31/2022]
|
48
|
Stacey MM, Vissers MC, Winterbourn CC. Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines. Antioxid Redox Signal 2012; 17:411-21. [PMID: 22229717 DOI: 10.1089/ars.2011.4348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Reactive oxygen species released from neutrophils during vascular inflammation could contribute to endothelial dysfunction seen in diseases such as atherosclerosis. Activated neutrophils generate hydrogen peroxide (H(2)O(2)) and hypochlorous acid (HOCl), as well as chloramines that are formed when HOCl reacts with amino compounds. These oxidants preferentially target thiol groups and thiol-containing proteins. The peroxiredoxins (Prxs) are thiol proteins that have high reactivity with H(2)O(2) and may also be sensitive to HOCl and chloramines. RESULTS We have investigated human umbilical vein endothelial cells and shown that their cytoplasmic (Prx1 and Prx2) and mitochondrial (Prx3) Prxs are oxidized when they are exposed to H(2)O(2), HOCl, or cell-permeable chloramines. H(2)O(2) converted the Prxs to hyperoxidized, inactive forms, with little accumulation of disulfide-linked dimers. The oxidized Prxs were reduced over hours, presumably due to the action of endothelial sulfiredoxin. In contrast to the hyperoxidation seen with H(2)O(2), HOCl and the chloramine derivatives of glycine and ammonia converted the Prxs to disulfide-linked dimers and dimerization was reversed within 10-30 min of oxidant removal. HOCl treatment caused thioredoxin reductase (TrxR) inhibition with no reversal of dimerization. The cytotoxicity of ammonia chloramine was increased when cells were pretreated with H(2)O(2) to hyperoxidize the Prxs, or when the chloramine was added in the presence of the TrxR inhibitor, auranofin. INNOVATION We describe the novel observation that exposure of nucleated cells to inflammatory oxidants results in the accumulation of Prxs in the dimeric form. CONCLUSIONS Endothelial cell Prxs are sensitive targets for neutrophil-derived oxidants and may protect against their damaging effects.
Collapse
Affiliation(s)
- Melissa M Stacey
- Department of Pathology, University of Otago, Christchurch, Christchurch, New Zealand
| | | | | |
Collapse
|
49
|
Summers FA, Forsman Quigley A, Hawkins CL. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines. Biochem Biophys Res Commun 2012; 425:157-61. [PMID: 22819842 DOI: 10.1016/j.bbrc.2012.07.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 11/29/2022]
Abstract
Hypochlorous acid (HOCl) is a potent oxidant produced by the enzyme myeloperoxidase, which is released by neutrophils under inflammatory conditions. Although important in the immune system, HOCl can also damage host tissue, which contributes to the development of disease. HOCl reacts readily with free amino groups to form N-chloramines, which also cause damage in vivo, owing to the extracellular release of myeloperoxidase and production of HOCl. HOCl and N-chloramines react readily with cellular thiols, which causes dysfunction via enzyme inactivation and modulation of redox signaling processes. In this study, the ability of HOCl and model N-chloramines produced on histamine and ammonia at inflammatory sites, to oxidize specific thiol-containing proteins in human coronary artery endothelial cells was investigated. Using a proteomics approach with the thiol-specific probe, 5-iodoacetamidofluorescein, we show that several proteins including peptidylprolyl isomerase A (cyclophilin A), protein disulfide isomerase, glyceraldehyde-3-phosphate dehydrogenase and galectin-1 are particularly sensitive to oxidation by HOCl and N-chloramines formed at inflammatory sites. This will contribute to cellular dysfunction and may play a role in inflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Fiona A Summers
- Inflammation Group, The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia
| | | | | |
Collapse
|
50
|
Pattison DI, Davies MJ, Hawkins CL. Reactions and reactivity of myeloperoxidase-derived oxidants: Differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic Res 2012; 46:975-95. [DOI: 10.3109/10715762.2012.667566] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|