1
|
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A, Sharma S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38324301 PMCID: PMC10854419 DOI: 10.1167/iovs.65.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.
Collapse
Affiliation(s)
- Richard Kontoh-Twumasi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Stepan Budkin
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Yang R, Wu X, Gounni AS, Xie J. Mucus hypersecretion in chronic obstructive pulmonary disease: From molecular mechanisms to treatment. J Transl Int Med 2023; 11:312-315. [PMID: 38130649 PMCID: PMC10732574 DOI: 10.2478/jtim-2023-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan NO. 1 Hospital, Wuhan Hospital of traditional Chinese and Western Medicine, Wuhan430022, Hubei Province, China
| | - Abdelilah Soussi Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, ManitobaR3E 0W3, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| |
Collapse
|
3
|
Rojas DA, Ponce CA, Bustos A, Cortés V, Olivares D, Vargas SL. Pneumocystis Exacerbates Inflammation and Mucus Hypersecretion in a Murine, Elastase-Induced-COPD Model. J Fungi (Basel) 2023; 9:jof9040452. [PMID: 37108906 PMCID: PMC10142929 DOI: 10.3390/jof9040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation and mucus hypersecretion are frequent pathology features of chronic respiratory diseases such as asthma and COPD. Selected bacteria, viruses and fungi may synergize as co-factors in aggravating disease by activating pathways that are able to induce airway pathology. Pneumocystis infection induces inflammation and mucus hypersecretion in immune competent and compromised humans and animals. This fungus is a frequent colonizer in patients with COPD. Therefore, it becomes essential to identify whether it has a role in aggravating COPD severity. This work used an elastase-induced COPD model to evaluate the role of Pneumocystis in the exacerbation of pathology, including COPD-like lung lesions, inflammation and mucus hypersecretion. Animals infected with Pneumocystis developed increased histology features of COPD, inflammatory cuffs around airways and lung vasculature plus mucus hypersecretion. Pneumocystis induced a synergic increment in levels of inflammation markers (Cxcl2, IL6, IL8 and IL10) and mucins (Muc5ac/Muc5b). Levels of STAT6-dependent transcription factors Gata3, FoxA3 and Spdef were also synergically increased in Pneumocystis infected animals and elastase-induced COPD, while the levels of the mucous cell-hyperplasia transcription factor FoxA2 were decreased compared to the other groups. Results document that Pneumocystis is a co-factor for disease severity in this elastase-induced-COPD model and highlight the relevance of STAT6 pathway in Pneumocystis pathogenesis.
Collapse
Affiliation(s)
- Diego A Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Adriel Bustos
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Vicente Cortés
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Daniela Olivares
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Sergio L Vargas
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| |
Collapse
|
4
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Mechanisms of Virus-Induced Airway Immunity Dysfunction in the Pathogenesis of COPD Disease, Progression, and Exacerbation. Front Immunol 2020; 11:1205. [PMID: 32655557 PMCID: PMC7325903 DOI: 10.3389/fimmu.2020.01205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the integrated form of chronic obstructive bronchitis and pulmonary emphysema, characterized by persistent small airway inflammation and progressive irreversible airflow limitation. COPD is characterized by acute pulmonary exacerbations and associated accelerated lung function decline, hospitalization, readmission and an increased risk of mortality, leading to huge social-economic burdens. Recent evidence suggests ~50% of COPD acute exacerbations are connected with a range of respiratory viral infections. Nevertheless, respiratory viral infections have been linked to the severity and frequency of exacerbations and virus-induced secondary bacterial infections often result in a synergistic decline of lung function and longer hospitalization. Here, we review current advances in understanding the cellular and molecular mechanisms underlying the pathogenesis of COPD and the increased susceptibility to virus-induced exacerbations and associated immune dysfunction in patients with COPD. The multiple immune regulators and inflammatory signaling pathways known to be involved in host-virus responses are discussed. As respiratory viruses primarily target airway epithelial cells, virus-induced inflammatory responses in airway epithelium are of particular focus. Targeting virus-induced inflammatory pathways in airway epithelial cells such as Toll like receptors (TLRs), interferons, inflammasomes, or direct blockade of virus entry and replication may represent attractive future therapeutic targets with improved efficacy. Elucidation of the cellular and molecular mechanisms of virus infections in COPD pathogenesis will undoubtedly facilitate the development of these potential novel therapies that may attenuate the relentless progression of this heterogeneous and complex disease and reduce morbidity and mortality.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Dermot Linden
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Joseph C Kidney
- Department of Respiratory Medicine Mater Hospital Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Kao SS, Ramezanpour M, Bassiouni A, Wormald P, Psaltis AJ, Vreugde S. The effect of neutrophil serine proteases on human nasal epithelial cell barrier function. Int Forum Allergy Rhinol 2019; 9:1220-1226. [DOI: 10.1002/alr.22401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Stephen Shih‐Teng Kao
- Department of Surgery–Otorhinolaryngology, Head and Neck SurgeryThe Queen Elizabeth Hospital, and the University of Adelaide Adelaide SA Australia
| | - Mahnaz Ramezanpour
- Department of Surgery–Otorhinolaryngology, Head and Neck SurgeryThe Queen Elizabeth Hospital, and the University of Adelaide Adelaide SA Australia
| | - Ahmed Bassiouni
- Department of Surgery–Otorhinolaryngology, Head and Neck SurgeryThe Queen Elizabeth Hospital, and the University of Adelaide Adelaide SA Australia
| | - Peter‐John Wormald
- Department of Surgery–Otorhinolaryngology, Head and Neck SurgeryThe Queen Elizabeth Hospital, and the University of Adelaide Adelaide SA Australia
| | - Alkis James Psaltis
- Department of Surgery–Otorhinolaryngology, Head and Neck SurgeryThe Queen Elizabeth Hospital, and the University of Adelaide Adelaide SA Australia
| | - Sarah Vreugde
- Department of Surgery–Otorhinolaryngology, Head and Neck SurgeryThe Queen Elizabeth Hospital, and the University of Adelaide Adelaide SA Australia
| |
Collapse
|
6
|
da Silva HAM, de Queiroz INL, Francisco JS, Pomin VH, Pavão MSG, de Brito-Gitirana L. Chondroitin sulfate isolated from the secretion of the venom-producing parotoid gland of Brazilian bufonid. Int J Biol Macromol 2019; 124:548-556. [DOI: 10.1016/j.ijbiomac.2018.11.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022]
|
7
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
8
|
Proteases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. J Clin Med 2018; 7:jcm7090244. [PMID: 30154365 PMCID: PMC6162857 DOI: 10.3390/jcm7090244] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/21/2022] Open
Abstract
In the context of respiratory disease, chronic obstructive pulmonary disease (COPD) is the leading cause of mortality worldwide. Despite much development in the area of drug development, currently there are no effective medicines available for the treatment of this disease. An imbalance in the protease: Antiprotease ratio in the COPD lung remains an important aspect of COPD pathophysiology and several studies have shown the efficacy of antiprotease therapy in both in vitro and in vivo COPD models. However more in-depth studies will be required to validate the efficacy of lead drug molecules targeting these proteases. This review discusses the current status of protease-directed drugs used for treating COPD and explores the future prospects of utilizing the potential of antiprotease-based therapeutics as a treatment for this disease.
Collapse
|
9
|
Liang X, Wang J, Guan R, Zhao L, Li D, Long Z, Yang Q, Xu J, Wang Z, Xie J, Lu W. Limax extract ameliorates cigarette smoke-induced chronic obstructive pulmonary disease in mice. Int Immunopharmacol 2018; 54:210-220. [DOI: 10.1016/j.intimp.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/06/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023]
|
10
|
Malykhin FТ, Kostornaya IV. [Morphological changes in the respiratory organs in chronic obstructive pulmonary disease]. Arkh Patol 2016; 78:42-50. [PMID: 27077144 DOI: 10.17116/patol201678142-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The basis for airway remoldeling in patients with chronic obstructive pulmonary disease (COPD) is tissue changes contributing to thickening of the walls of the airway and its obstruction. As the disease becomes severer, there are increases in mucosal metaplasia, submucosal hypertrophy, peribronchial fibrosis, and airway smooth muscle mass. Drug therapy for COPD does not virtually lead to regression of airway obstruction, except when eosinophilia is present.
Collapse
Affiliation(s)
- F Т Malykhin
- Stavropol State Medical University Ministry of Health of Russia, Stavropol, Russia
| | - I V Kostornaya
- Stavropol State Medical University Ministry of Health of Russia, Stavropol, Russia
| |
Collapse
|
11
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
12
|
Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol 2015; 50 Suppl 40:S39-56. [PMID: 26335954 DOI: 10.1002/ppul.23242] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022]
Abstract
The host inflammatory response in cystic fibrosis (CF) lung disease has long been recognized as a central pathological feature and an important therapeutic target. Indeed, many believe that bronchiectasis results largely from the oxidative and proteolytic damage comprised within an exuberant airway inflammatory response that is dominated by neutrophils. In this review, we address the longstanding argument of whether or not the inflammatory response is directly attributable to impairment of the cystic fibrosis transmembrane conductance regulator or only secondary to airway obstruction and chronic bacterial infection and challenge the importance of this distinction in the context of therapy. We also review the centrality of neutrophils in CF lung pathophysiology and highlight more recent data that suggest the importance of other cell types and signaling beyond NF-κB activation. We discuss how protease and redox imbalance are critical factors in CF airway inflammation and end by reviewing some of the more promising therapeutic approaches now under development.
Collapse
Affiliation(s)
- David P Nichols
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,National Jewish Health, Denver, Colorado
| | - James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
13
|
Porpodis K, Domvri K, Zarogoulidis P, Petridis D, Tsirgogianni K, Papaioannou A, Hatzizisi O, Kioumis I, Liaka A, Kikidaki V, Lampaki S, Organtzis J, Zarogoulidis K. Roflumilast, a phosphodiesterase-4 inhibitor, induces phagocytic activity in Greek COPD patients. Int J Chron Obstruct Pulmon Dis 2015; 10:1123-8. [PMID: 26109853 PMCID: PMC4474389 DOI: 10.2147/copd.s83205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background A new approach to the treatment of COPD includes controlling inflammation because of its important role in exacerbation of the disease. Recently, roflumilast has been added as a therapeutic option for COPD. Roflumilast is an oral phosphodiesterase-4 inhibitor that targets inflammatory cells involved in triggering exacerbations of COPD. The objective of the current study was to evaluate roflumilast for its contribution to phagocytic activity in COPD patients. Methods Twenty-one patients diagnosed with COPD received roflumilast once daily for 6 months in combination with fluticasone (an inhaled corticosteroid), salmeterol (a long-acting β2-agonist), and tiotropium (a long-acting muscarinic antagonist) or combinations of these agents. The main inclusion criterion was stable disease for at least the previous 30 days. Neutrophils and spirometric changes, ie, forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC), were measured in the COPD patients at indicated time points. The first sample was taken before receiving roflumilast, the second 3 months later, and the third after 6 months. Examination of defective phagocytosis was done by flow cytometry using a FagoFlowEx® kit. The statistical analysis was performed using Statistica software. Results Our results indicate that phagocytic activity was increased after 3 and 6 months of treatment when compared with baseline (P<0.001). Similarly, FVC and FEV1 were also increased during the 6-month period, but only FVC differed significantly from baseline (P<0.001). Conclusion Although the number of patients in this study was limited, our results indicate that roflumilast induces phagocytic activity, which improves lung function.
Collapse
Affiliation(s)
- Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Petridis
- Department of Food Technology, School of Food Technology and Nutrition, Alexander Technological Educational Institute, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Tsirgogianni
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Papaioannou
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Hatzizisi
- Pulmonary Department, Immunology and Histocompatibility Laboratory, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kioumis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandra Liaka
- Pulmonary Department, Immunology and Histocompatibility Laboratory, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Violeta Kikidaki
- Pulmonary Department, Immunology and Histocompatibility Laboratory, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Lampaki
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Organtzis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Wang L, Zhang B, Li Z, Li J, Liu Q, Sun W. Budesonide mitigates pathological changes in animal model Of COPD through reducing neutrophil elastase expression. Int J Clin Exp Med 2015; 8:5227-5235. [PMID: 26131096 PMCID: PMC4483969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVES This study was conducted to investigate a molecular mechanism by which budesonide inhalation may mitigate pathological responses of cigarette smoke-induced COPD. METHODS Rats were exposed to air (control) and cigarette smoke (smoking) in the presence and absence of budesonide. Cell count in bronchoalveolar lavage fluid (BALF), lung function test, mean liner intercept in lung tissue, mean alveolar number, right ventricular hypertrophy index (RVHI) and morphological changes in lungs were assessed, respectively. Alpha-1 antitrypsin (A1AT) and neutrophil elastase (NE) mRNA expression in lung tissues and their protein productions in BALF were examined as well. RESULTS Smoking rats showed significant changes in the above assessments as compared to those of the control rats (all P < 0.01 or 0.05). Budesonide applied for the smoking rat significantly decreased differential cell counts in BALF and ameliorated lung function and RVHI (P < 0.01 or 0.05) with mitigated peribronchiolar inflammation and pulmonary bullae formation in the smoke-exposed lungs. Treatment with budesonide resulted in obvious decreases in NE mRNA and protein expression levels (both P < 0.05). CONCLUSION Budesonide inhalation serves to improve lung function and right ventricular dysfunction through attenuating pulmonary inflammatory response and NE expression level in the diseased lungs.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Respiratory Medicine, First Hospital of Hebei Medical UniversityChina
| | - Bin Zhang
- Department of Emergency, First Hospital of Hebei Medical UniversityChina
| | - Zhu Li
- Department of Respiratory Medicine, First Hospital of Hebei Medical UniversityChina
| | - Junhong Li
- Department of Respiratory Medicine, First Hospital of Hebei Medical UniversityChina
| | - Qing Liu
- Department of Respiratory Medicine, Geriatrics Hospitals in Hebei ProvinceChina
| | - Wuzhuang Sun
- Department of Respiratory Medicine, First Hospital of Hebei Medical UniversityChina
| |
Collapse
|
15
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
16
|
Segal LN, Weiden MD, Horowitz HW. Acute Exacerbations of Chronic Obstructive Pulmonary Disease. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7152150 DOI: 10.1016/b978-1-4557-4801-3.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Chun P. Role of sirtuins in chronic obstructive pulmonary disease. Arch Pharm Res 2014; 38:1-10. [PMID: 25304127 DOI: 10.1007/s12272-014-0494-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/05/2014] [Indexed: 01/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is associated with chronic inflammatory response to noxious particles or gases. The airflow limitation may be explained by hypersecretion of mucus, thickening and fibrosis of small airways and alveolar wall destruction in emphysema. Sirtuins, a group of class III deacetylases, have gained considerable attention for their positive effects on aging-related disease, such as cancer, cardiovascular disease, neurodegenerative diseases, osteoporosis and COPD. Among the seven mammalian sirtuins, SIRT1-SIRT7, SIRT1 and SIRT6 are considered to have protective effects against COPD. In the lungs, SIRT1 inhibits autophagy, cellular senescence, fibrosis, and inflammation by deacetylation of target proteins using NAD(+) as co-substrate and is therefore linked to the redox state. In addition to SIRT1, SIRT6 have also been shown to improve or slow down COPD. SIRT6 is associated with redox state and inhibits cellular senescence and fibrosis. Therefore, activation of SIRT1 and SIRT6 might be an attractive approach for novel therapeutic targets for COPD. The present review describes the protective effects of SIRT1 and SIRT6 against COPD and their target proteins involved in the pathophysiology of COPD.
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 621-749, Korea,
| |
Collapse
|
18
|
Nowrin K, Sohal SS, Peterson G, Patel R, Walters EH. Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev Respir Med 2014; 8:547-59. [PMID: 25113142 DOI: 10.1586/17476348.2014.948853] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex condition, frequently with a mix of airway and lung parenchymal damage. However, the earliest changes are in the small airways, where most of the airflow limitation occurs. The pathology of small airway damage seems to be wall fibrosis and obliteration, but the whole airway is involved in a 'field effect'. Our novel observations on active epithelial-mesenchymal transition (EMT) in the airways of smokers, particularly in those with COPD, are changing the understanding of this airway pathology and the aetiology of COPD. EMT involves a cascade of regulatory changes that destabilise the epithelium with a motile and mesenchymal epithelial cell phenotype emerging. One important manifestation of EMT activity involves up-regulation of specific key transcription factors (TFs), such as Smads, Twist, and β-catenin. Such TFs can be used as EMT biomarkers, in recognisable patterns reflecting the potential major drivers of the process; for example, TGFβ, Wnt, and integrin-linked kinase systems. Thus, understanding the relative changes in TF activity during EMT may provide rich information on the mechanisms driving this whole process, and how they may change over time and with therapy. We have sought to review the current literature on EMT and the relative expression of specific TF activity, to define the networks likely to be involved in a similar process in the airways of patients with smoking-related COPD.
Collapse
Affiliation(s)
- Kaosia Nowrin
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Australia
| | | | | | | | | |
Collapse
|
19
|
Meijer M, Rijkers GT, van Overveld FJ. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2014; 9:1055-68. [PMID: 24168412 DOI: 10.1586/1744666x.2013.851347] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a decreased airflow due to airway narrowing that, once it occurs, is not fully reversible. The disease usually is progressive and associated with an enhanced inflammatory response in the lungs after exposure to noxious particles or gases. After removal of the noxious particles, the inflammation can continue in a self-sustaining manner. It has been established that improper activation of neutrophils lies at the core of the pathology. This paper provides an overview of the mechanisms by which neutrophils can induce the pulmonary damage of COPD. As the pathogenesis of COPD is slowly being unraveled, new points of intervention are discovered, some of which with promising results.
Collapse
Affiliation(s)
- Mariska Meijer
- Department of Science, University College Roosevelt, Lange Noordstraat 1, 4113 CB Middelburg, The Netherlands
| | | | | |
Collapse
|
20
|
Angelis N, Porpodis K, Zarogoulidis P, Spyratos D, Kioumis I, Papaiwannou A, Pitsiou G, Tsakiridis K, Mpakas A, Arikas S, Tsiouda T, Katsikogiannis N, Kougioumtzi I, Machairiotis N, Argyriou M, Kessisis G, Zarogoulidis K. Airway inflammation in chronic obstructive pulmonary disease. J Thorac Dis 2014; 6 Suppl 1:S167-72. [PMID: 24672691 DOI: 10.3978/j.issn.2072-1439.2014.03.07] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 11/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory airway disease whose incidence and mortality increases every year. It is associated with an abnormal inflammatory response of the lung to toxic particles or gases (usually cigarette smoke). A central role in the pathophysiology has been shown to play a chronic inflammation of the airways that is expressed primarily by hypersecretion of mucus, stenosis of the smaller airways and the establishment of pulmonary emphysema. There is an increasing trend for assessing the inflammatory pattern of inflammatory airway diseases through mediators measured by noninvasive techniques. Markers in biological fluids and exhaled air have been the subject of intense evaluation over the past few years, with some of them reaching their introduction into clinical practice, while others remain as research tools. Of particular interest for the scientific community is the discovery of clinically exploitable biomarkers associated with specific phenotypes of the disease. Studying the effects of therapeutic interventions in these biomarkers may lead to targeted therapy based on phenotype and this is perhaps the future of therapeutics in COPD.
Collapse
Affiliation(s)
- Nikolaos Angelis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Konstantinos Porpodis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Paul Zarogoulidis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Dionysios Spyratos
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Ioannis Kioumis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Antonis Papaiwannou
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Georgia Pitsiou
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Kosmas Tsakiridis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Andreas Mpakas
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Stamatis Arikas
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Theodora Tsiouda
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Nikolaos Katsikogiannis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Ioanna Kougioumtzi
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Nikolaos Machairiotis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Michael Argyriou
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - George Kessisis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| | - Konstantinos Zarogoulidis
- 1 Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; 2 Cardiology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece ; 3 Internal Medicine Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece ; 4 Surgery Department (NHS), University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece ; 5 2nd Cardiac Surgery Department, "Evangelismos" General Hospital, Athens, Greece ; 6 Oncology Department, "Saint Luke" Private Clinic, Thessaloniki, Panorama, Greece
| |
Collapse
|
21
|
Martin C, Frija-Masson J, Burgel PR. Targeting Mucus Hypersecretion: New Therapeutic Opportunities for COPD? Drugs 2014; 74:1073-89. [DOI: 10.1007/s40265-014-0235-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Kanaya K, Kondo K, Suzukawa K, Sakamoto T, Kikuta S, Okada K, Yamasoba T. Innate immune responses and neuroepithelial degeneration and regeneration in the mouse olfactory mucosa induced by intranasal administration of Poly(I:C). Cell Tissue Res 2014; 357:279-99. [PMID: 24744264 PMCID: PMC4077259 DOI: 10.1007/s00441-014-1848-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 02/11/2014] [Indexed: 01/12/2023]
Abstract
The pathogenesis of postviral olfactory disorder (PVOD) has not been fully elucidated. We investigated morphological changes and innate immune responses in the mouse olfactory mucosa induced by intranasal administration of polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA. Mice received three administrations of saline with or without Poly(I:C), once every 24 h. The olfactory mucosa was harvested at various intervals after the first administration (8 h, 3, 9 and 24 days). In the Poly(I:C) group, the number of apoptotic cells in the olfactory neuroepithelium had increased at 8 h. At 9 days, the olfactory neuroepithelium had severely degenerated and behavioral tests demonstrated that the mice showed signs of olfactory deterioration. At 24 days, the structure of the neuroepithelium had regenerated almost completely. Regarding the innate immune responses, many neutrophils had infiltrated the olfactory neuroepithelium at 8 h and had exuded into the nasal cavity by 3 days. Macrophages had also infiltrated the olfactory neuroepithelium at 8 h although to a lesser extent, but they still remained in the neuroepithelium at 24 days. Poly(I:C)-induced neuroepithelial damage was significantly inhibited by a neutrophil elastase inhibitor and was suppressed in neutropenic model mice. These findings suggest that the secondary damage caused by the neutrophil-mediated innate immune response plays an important role in the pathogenesis of PVOD.
Collapse
Affiliation(s)
- Kaori Kanaya
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Sohn EH, Khanna A, Tucker BA, Abràmoff MD, Stone EM, Mullins RF. Structural and biochemical analyses of choroidal thickness in human donor eyes. Invest Ophthalmol Vis Sci 2014; 55:1352-60. [PMID: 24519422 DOI: 10.1167/iovs.13-13754] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The choroid plays a vital role in the health of the outer retina. While measurements of choroid using optical coherence tomography show altered thickness in aging and macular disease, detailed histopathologic and proteomic analyses are lacking. In this study we sought to evaluate biochemical differences in human donor eyes between very thin and thick choroids. METHODS One hundred forty-one eyes from 104 donors (mean age ± standard deviation, 81.5 ± 12.2) were studied. Macular sections were collected, and the distance between Bruch's membrane and the inner surface of the sclera was measured in control, early/dry age-related macular degeneration (AMD), neovascular AMD, and geographic atrophy eyes. Proteins from the RPE-choroid of eyes with thick and thin choroids were analyzed using two-dimensional electrophoresis and/or mass spectrometry. Two proteins with altered abundance were confirmed using Western blot analysis. RESULTS Donor eyes showed a normal distribution of thicknesses. Eyes with geographic atrophy had significantly thinner choroids than age-matched controls or early AMD eyes. Proteomic analysis showed higher levels of the serine protease SERPINA3 in thick choroids and increased levels of tissue inhibitor of metalloproteinases-3 (TIMP3) in thin choroids. CONCLUSIONS Consistent with clinical imaging observations, geographic atrophy was associated with choroidal thinning. Biochemical data suggest an alteration in the balance between proteases and protease inhibitors in eyes that lie at the extremes of choroidal thickness. An improved understanding of the basic mechanisms associated with choroidal thinning may guide the development of new therapies for AMD.
Collapse
Affiliation(s)
- Elliott H Sohn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cystic fibrosis (CF) is the most frequent inherited disease in Caucasian populations and is due to a defect in the expression or activity of a chloride channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Mutations in this gene affect organs with exocrine functions and the main cause of morbidity and mortality for CF patients is the lung pathology in which the defect in CFTR decreases chloride secretion, lowering the airway surface liquid height and increasing mucus viscosity. The compromised ASL dynamics leads to a favorable environment for bacterial proliferation and sustained inflammation resulting in epithelial lung tissue injury, fibrosis and remodeling. In CF, there exist a difference in lung pathology between men and women that is termed the "CF gender gap". Recent studies have shown the prominent role of the most potent form of estrogen, 17β-estradiol in exacerbating lung function in CF females and here, we review the role of this hormone in the CF gender dichotomy.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
25
|
Sohal SS, Ward C, Danial W, Wood-Baker R, Walters EH. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 7:275-88. [PMID: 23734649 DOI: 10.1586/ers.13.26] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The authors have reviewed the current literature on airway inflammation and remodeling in smoking-related chronic obstructive pulmonary disease (COPD). Detailed data on airway remodeling in COPD are especially sparse and how these changes lead to decline in lung function is not well understood. Small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix is epithelial-mesenchymal transition. When associated with angiogenesis (so-called epithelial-mesenchymal transition type 3) it may well also be the link with the development of cancer, which is closely associated with COPD, predominantly in large airways. The authors have focused on our recent publications in these areas. Further investigations teasing out these mechanisms will help improve our understanding of key airway disease processes in COPD, which may have major therapeutic implications.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania 7000, Australia
| | | | | | | | | |
Collapse
|
26
|
Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir Med 2013; 107:524-33. [PMID: 23433769 DOI: 10.1016/j.rmed.2012.12.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
UNLABELLED Neutrophil elastase (NE) activity is increased in bronchiectasis and may play a role in this condition. We wished to determine the effect of AZD9668, a selective oral inhibitor of NE. Efficacy and safety of AZD9668 60 mg twice daily over 4 weeks were evaluated in a randomised, double-blind, placebo-controlled, parallel-group, Phase II, signal-searching study in patients with bronchiectasis. Outcome measures included: waking and post-waking sputum neutrophil counts; lung function tests; 24-h sputum weight; BronkoTest(®) diary card data; St George's Respiratory Questionnaire for COPD patients (SGRQ-C); sputum NE activity; inflammatory biomarker levels; desmosine levels; adverse events, safety haematology and biochemistry. AZD9668 levels in plasma and sputum were measured to confirm exposure. Thirty-eight patients were randomised: 16 to placebo and 22 to AZD9668. There was no change in sputum neutrophils with AZD9668. Forced expiratory volume in 1 s improved by 100 mL in the AZD9668 group compared with placebo (p = 0.006). Significant changes (defined a priori as p < 0.1) in favour of AZD9668 were also seen in slow vital capacity, plasma interleukin-8, and post-waking sputum interleukin-6 and Regulated on Activation, Normal T-cell Expressed and Secreted levels. Non-significant changes in favour of AZD9668 were seen in other lung function tests, sputum weight and the SGRQ-C. AZD9668 was well tolerated. In this small signal-searching study, 4 weeks' treatment with AZD9668 improved lung function in patients with bronchiectasis and there were trends for reductions in sputum inflammatory biomarkers. Larger studies of longer duration would be needed to confirm the potential benefits of this agent in bronchiectasis. REGISTRATION NCT00769119.
Collapse
|
27
|
Abstract
Proteases are enzymes that have the capacity to hydrolyze peptide bonds and degrade other proteins. Proteases can promote inflammation by regulating expression and activity of different pro-inflammatory cytokines, chemokines and other immune components in the lung compartment. They are categorized in three major subcategories: serine proteases, metalloproteases and cysteine proteases especially in case of lung diseases. Neutrophil-derived serine proteases (NSPs), metalloproteases and some mast cell-derived proteases are mainly focused here. Their modes of actions are different in different diseases for e.g. NE induces the release of IL-8 from lung epithelial cells through a MyD88/IRAK/TRAF-6-dependent pathway and also through EGFR MAPK pathway. NSPs contribute to immune regulation during inflammation through the cleavage and activation of specific cellular receptors. MMPs can also influence the progression of various inflammatory processes and there are many non-matrix substrates for MMPs, such as chemokines, growth factors and receptors. During lung inflammation interplay between NE and MMP is an important significant phenomenon. They have been evaluated as therapeutic targets in several inflammatory lung diseases. Here we review the role of proteases in various lung inflammatory diseases with emphasis on their mode of action and contribution to immune regulation during inflammation.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba Canada
| |
Collapse
|
28
|
Bingle L, Richards RJ, Fox B, Masek L, Guz A, Tetley TD. Susceptibility of lung epithelium to neutrophil elastase: protection by native inhibitors. Mediators Inflamm 2012; 6:345-54. [PMID: 18472869 PMCID: PMC2365876 DOI: 10.1080/09629359791488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The development of emphysema is thought to be due to an imbalance of proteases (especially neutrophil elastase [NE]) and antiproteases with loosening of the respiratory epithelium as an early event. We investigated the effect of NE on respiratory epithelial cell adherence in vitro , in the presence of varying concentrations and combinations of native inhibitors, α-1-proteinase inhibitor (PI) and secretory leukoprotease inhibitor (SLPI). SLPI was two to 12 times more effective than PI at preventing the effects of NE, especially when enzyme:inhibitor ratios were almost equivalent. Even when the concentration of SLPI was only 10% of the total (as in normal peripheral lung secretions), it gave greater protection than PI alone. This suggests that SLPI plays an important role in controlling neutrophil elastaseinduced inflammation and tissue damage.
Collapse
Affiliation(s)
- L Bingle
- Department of Respiratory Medicine, Imperial College School of Science Technology and Medicine at Charing Cross Hospital, Fulham Palace Road, London, UK
| | | | | | | | | | | |
Collapse
|
29
|
Ghanei M, Nezhad LH, Harandi AA, Alaeddini F, Shohrati M, Aslani J. Combination therapy for airflow limitation in COPD. ACTA ACUST UNITED AC 2012; 20:6. [PMID: 23226113 PMCID: PMC3514536 DOI: 10.1186/2008-2231-20-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/17/2012] [Indexed: 12/02/2022]
Abstract
Abstract Background and the purpose of the study Existing evidence confirms that no pharmacologic agent ameliorates the decline in the lung function or changes the prognosis of chronic obstructive pulmonary disease (COPD). We tried a critical combination therapy for management of COPD. Methods Current or past smoker (passive or active) COPD patients with moderate to severe COPD who did not respond to primitive therapy (i.e., oral prednisolone (50 mg in the morning) for 5 days; with Beclomethasone Fort (3 puff q12h, totally 1500 micrograms/day), Salmeterol (2 puffs q12h, 50 micrograms/puff) and ipratropium bromide (4 puffs q8h) for two months, enrolled to study. Furthermore they were received N-Acetylcysteine (1200 mg/daily), Azithromycin (tablet 250 mg/every other day) and Theophylline (100 mg BD). Results The study group consisted of 44 men and 4 women, with a mean age and standard deviation of 63.6 ± 12.7 years (range 22–86 years). Thirteen of 48 patients (27.0%) was responder based on 15% increasing in FEV 1 (27.7 ± 7.9) after 6.7 ± 6.1 months (57.9 ± 12.9 year old). There were statistically significant differences in age and smoking between responders and non-responders (P value was 0.05 and 0.04 respectively). There was no difference in emphysema and air trapping between two groups (p = 0.13). Conclusion Interestingly considerable proportion of patients with COPD can be reversible using combination drug therapy and patients will greatly benefit from different and synergic action of the drugs. The treatment was more effective in younger patients who smoke less.
Collapse
Affiliation(s)
- Mostafa Ghanei
- Research Center of Chemical Injuries, Baqiyatallah Medical Sciences University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
30
|
Corthals A, Koller A, Martin DW, Rieger R, Chen EI, Bernaski M, Recagno G, Dávalos LM. Detecting the immune system response of a 500 year-old Inca mummy. PLoS One 2012; 7:e41244. [PMID: 22848450 PMCID: PMC3405130 DOI: 10.1371/journal.pone.0041244] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Disease detection in historical samples currently relies on DNA extraction and amplification, or immunoassays. These techniques only establish pathogen presence rather than active disease. We report the first use of shotgun proteomics to detect the protein expression profile of buccal swabs and cloth samples from two 500-year-old Andean mummies. The profile of one of the mummies is consistent with immune system response to severe pulmonary bacterial infection at the time of death. Presence of a probably pathogenic Mycobacterium sp. in one buccal swab was confirmed by DNA amplification, sequencing, and phylogenetic analyses. Our study provides positive evidence of active pathogenic infection in an ancient sample for the first time. The protocol introduced here is less susceptible to contamination than DNA-based or immunoassay-based studies. In scarce forensic samples, shotgun proteomics narrows the range of pathogens to detect using DNA assays, reducing cost. This analytical technique can be broadly applied for detecting infection in ancient samples to answer questions on the historical ecology of specific pathogens, as well as in medico-legal cases when active pathogenic infection is suspected.
Collapse
Affiliation(s)
- Angelique Corthals
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
COPD is a worldwide public health problem that reduces the quality of life. The exact pathways by which CS and other environmental toxins produce COPD are not known. Currently, the leading candidates are (1) the protease-antiprotease hypothesis, (2) the Dutch hypothesis, (3) the British hypothesis, and the (4) autoimmunity hypothesis. Given the heterogeneity of the disease (and phenotypes), it is probably unrealistic that one pathway will fully explain COPD pathophysiology.
Collapse
Affiliation(s)
- Anthony Tam
- Department of Medicine, The UBC James Hogg Research Centre, Providence Heart and Lung Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
32
|
Tanga A, Saidi A, Jourdan ML, Dallet-Choisy S, Zani ML, Moreau T. Protection of lung epithelial cells from protease-mediated injury by trappin-2 A62L, an engineered inhibitor of neutrophil serine proteases. Biochem Pharmacol 2012; 83:1663-73. [DOI: 10.1016/j.bcp.2012.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/31/2022]
|
33
|
Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production. Am J Ther 2012; 19:e25-47. [PMID: 20841992 DOI: 10.1097/mjt.0b013e3181dcf589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inducible nitric oxide synthase (iNOS) plays an important role in mediating inflammation. In our studies, we found that iNOS-derived NO was significantly increased in the serum samples of 150 patients infected with influenza A virus in comparison with samples of 140 healthy individuals. In human lung epithelial cells, infection with influenza A virus or stimulation with poly(I:C) + interferon-gamma resulted in increased mRNA and protein levels of both interleukin-32 and iNOS, with subsequent release of NO. Activated macrophages are also a source of nitric oxide (NO), which is largely produced by iNOS in response to proinflammatory cytokines. In this review article, the presented findings have many important implications for understanding the Influenza A (H1N1) viral pathogenesis, prevention, and treatment. The direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O₂⁻˙) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of NO with O₂⁻˙ resulting in formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. The toxicity and reactivity of oxygen radicals, generated in excessive amounts mediate the overreaction of the host's immune response against the organs or tissues in which viruses are replicating, and this may explain the mechanism of tissue injuries observed in influenza virus infection of various types. The authors revealed the protection that carnosine and its bioavailable nonhydrolized forms provide against peroxynitrite damage and other types of viral injuries in which immunologic interactions are usually involved. Carnosine (beta-alanyl-L-histidine) shows the pharmacologic intracellular correction of NO release which might be one of the important factors of natural immunity in controlling the initial stages of influenza A virus infection (inhibition of virus replication) and virus-induced regulation of cytokine gene expression. The protective effects of orally applied nonhydrolized formulated species of carnosine include at least direct interaction with nitric oxide, inhibition of cytotoxic NO-induced proinflammatory condition, and attenuation of the effects of cytokines and chemokines that can exert profound effects on inflammatory cells. These data are consistent with the hypothesis that natural products, such as chicken soup and chicken breast extracts rich in carnosine and its derivative anserine (beta-alanyl-1-methyl-L-histidine) could contribute to the pathogenesis and prevention of influenza virus infections and cold but have a limitation due to susceptibility to enzymatic hydrolysis of dipeptides with serum carnosinase and urine excretion after oral ingestion of a commercial chicken extract. The developed and patented by the authors formulations of nonhydrolized in digestive tract and blood natural carnosine peptide and isopeptide (gamma-glutamyl-carnosine) products have a promise in the Influenza A (H1N1) virus infection disease control and prevention.
Collapse
|
34
|
Mast cell proteases as protective and inflammatory mediators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:212-34. [PMID: 21713659 DOI: 10.1007/978-1-4419-9533-9_12] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor F(c)εRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them, notably tryptases and chymases, are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the "rubor" component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptideslike endothelin and neurotensin during septic peritonitis and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence nonmast cell proteases, such as by activating matrix metalloproteinase cascades, which are important in responses to infection and resolution of tissue injury. Overall, mast cell proteases have a variety of roles, inflammatory and anti-inflammatory, protective and deleterious, in keeping with the increasingly well-appreciated contributions of mast cells in allergy, tissue homeostasis and innate immunity.
Collapse
|
35
|
Korkmaz B, Jégot G, Lau LC, Thorpe M, Pitois E, Juliano L, Walls AF, Hellman L, Gauthier F. Discriminating between the activities of human cathepsin G and chymase using fluorogenic substrates. FEBS J 2011; 278:2635-46. [PMID: 21599834 DOI: 10.1111/j.1742-4658.2011.08189.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cathepsin G (CG) (EC 3.4.21.20) and chymase (EC 3.4.21.39) are two closely-related chymotrypsin-like proteases that are released from cytoplasmic granules of activated mast cells and/or neutrophils. We investigated the potential for their substrate-binding subsites to discriminate between their substrate specificities, aiming to better understand their respective role during the progression of inflammatory diseases. In addition to their preference for large aromatic residues at P1, both preferentially accommodate small hydrophilic residues at the S1' subsite. Despite significant structural differences in the S2' subsite, both prefer an acidic residue at that position. The Ala226/Glu substitution at the bottom of the CG S1 pocket, which allows CG but not chymase to accommodate a Lys residue at P1, is the main structural difference, allowing discrimination between the activities of these two proteases. However, a Lys at P1 is accommodated much less efficiently than a Phe, and the corresponding substrate is cleaved by β2-tryptase (EC 3.4.21.59). We optimized a P1 Lys-containing substrate to enhance sensitivity towards CG and prevent cleavage by chymase and β2-tryptase. The resulting substrate (ABZ-GIEPKSDPMPEQ-EDDnp) [where ABZ is O-aminobenzoic acid and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine] was cleaved by CG but not by chymase and tryptase, with a specificity constant of 190 mM(-1)·s(-1). This allows the quantification of active CG in cells or tissue extracts where it may be present together with chymase and tryptase, as we have shown using a HMC-1 cell homogenate and a sputum sample from a patient with severe asthma.
Collapse
Affiliation(s)
- Brice Korkmaz
- Unité INSERM U-618 Protéases et Vectorisation pulmonaires, Université François Rabelais de Tours, Tours, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2011; 62:726-59. [PMID: 21079042 DOI: 10.1124/pr.110.002733] [Citation(s) in RCA: 604] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-618 Protéases et Vectorisation Pulmonaires, Université François Rabelais, Faculté de médecine, 10 Boulevard Tonnellé, Tours, France.
| | | | | | | |
Collapse
|
37
|
Demkow U, van Overveld FJ. Role of elastases in the pathogenesis of chronic obstructive pulmonary disease: implications for treatment. Eur J Med Res 2011; 15 Suppl 2:27-35. [PMID: 21147616 PMCID: PMC4360323 DOI: 10.1186/2047-783x-15-s2-27] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neutrophil elastase, metalloproteinases, and their inhibitors play an important role in the development of chronic obstructive pulmonary disease (COPD), resulting in extensive tissue damage and malfunctioning of the airways. Nearly fifty years after the protease-antiprotease imbalance hypothesis has been suggested for the cause of emphysema, it is still appealing, but it does not explain the considerable variation in the clinical expressions of emphysema. However, there are many recent research findings to support the imbalance hypothesis as will be shown in this review. Although limited, there might be openings for the treatment of the disease.
Collapse
Affiliation(s)
- Urszula Demkow
- Dept. Lab. Diagn. and Clin. Immunol., Warsaw Medical University, Warsaw, Poland.
| | | |
Collapse
|
38
|
Sivaprasad U, Askew DJ, Ericksen MB, Gibson AM, Stier MT, Brandt EB, Bass SA, Daines MO, Chakir J, Stringer KF, Wert SE, Whitsett JA, Le Cras TD, Wills-Karp M, Silverman GA, Khurana Hershey GK. A nonredundant role for mouse Serpinb3a in the induction of mucus production in asthma. J Allergy Clin Immunol 2010; 127:254-61, 261.e1-6. [PMID: 21126757 DOI: 10.1016/j.jaci.2010.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/21/2010] [Accepted: 10/11/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Asthma is a major public health burden worldwide. Studies from our group and others have demonstrated that SERPINB3 and SERPINB4 are induced in patients with asthma; however, their mechanistic role in asthma has yet to be determined. OBJECTIVE To evaluate the role of Serpin3a, the murine homolog of SERPINB3 and SERPINB4, in asthma. METHODS We studied wild-type Balb/c and Serpinb3a-null mice in house dust mite or IL-13-induced asthma models and evaluated airway hyperresponsiveness, inflammation, and goblet cell hyperplasia. RESULTS Airway hyperresponsiveness and goblet cell hyperplasia were markedly attenuated in the Serpinb3a-null mice compared with the wild-type mice after allergen challenge, with minimal effects on inflammation. Expression of sterile alpha motif pointed domain containing v-ets avian erythroblastosis virus E26 oncogene homolog transcription factor (SPDEF), a transcription factor that mediates goblet cell hyperplasia, was decreased in the absence of Serpinb3a. IL-13-treated Serpinb3a-null mice showed attenuated airway hyperresponsiveness, inflammation, and mucus production. CONCLUSION Excessive mucus production and mucus plugging are key pathologic features of asthma, yet the mechanisms responsible for mucus production are not well understood. Our data reveal a novel nonredundant role for Serpinb3a in mediating mucus production through regulation of SPDEF expression. This pathway may be used to target mucus hypersecretion effectively.
Collapse
Affiliation(s)
- Umasundari Sivaprasad
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lung protease/anti-protease network and modulation of mucus production and surfactant activity. Biochimie 2010; 92:1608-17. [DOI: 10.1016/j.biochi.2010.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/14/2010] [Indexed: 12/27/2022]
|
40
|
Raymond WW, Trivedi NN, Makarova A, Ray M, Craik CS, Caughey GH. How immune peptidases change specificity: cathepsin G gained tryptic function but lost efficiency during primate evolution. THE JOURNAL OF IMMUNOLOGY 2010; 185:5360-8. [PMID: 20889553 DOI: 10.4049/jimmunol.1002292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cathepsin G is a major secreted serine peptidase of neutrophils and mast cells. Studies in Ctsg-null mice suggest that cathepsin G supports antimicrobial defenses but can injure host tissues. The human enzyme has an unusual "Janus-faced" ability to cleave peptides at basic (tryptic) as well as aromatic (chymotryptic) sites. Tryptic activity has been attributed to acidic Glu(226) in the primary specificity pocket and underlies proposed important functions, such as activation of prourokinase. However, most mammals, including mice, substitute Ala(226) for Glu(226), suggesting that human tryptic activity may be anomalous. To test this hypothesis, human cathepsin G was compared with mouse wild-type and humanized active site mutants, revealing that mouse primary specificity is markedly narrower than that of human cathepsin G, with much greater Tyr activity and selectivity and near absence of tryptic activity. It also differs from human in resisting tryptic peptidase inhibitors (e.g., aprotinin), while favoring angiotensin destruction at Tyr(4) over activation at Phe(8). Ala(226)Glu mutants of mouse cathepsin G acquire tryptic activity and human ability to activate prourokinase. Phylogenetic analysis reveals that the Ala(226)Glu missense mutation appearing in primates 31-43 million years ago represented an apparently unprecedented way to create tryptic activity in a serine peptidase. We propose that tryptic activity is not an attribute of ancestral mammalian cathepsin G, which was primarily chymotryptic, and that primate-selective broadening of specificity opposed the general trend of increased specialization by immune peptidases and allowed acquisition of new functions.
Collapse
Affiliation(s)
- Wilfred W Raymond
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
41
|
Mui TS, Man SP, Sin DD. Developments in drugs for the treatment of chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2010; 4:365-77. [PMID: 20476926 DOI: 10.1586/1744666x.4.3.365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) affects more than 600 million adults worldwide and accounts for 3 million deaths annually. Approximately 50% of the cases are directly attributable to cigarette smoking; the rest are accounted for by different risk factors, including childhood infections, genetic defects, environmental pollution and biomass exposure. The mainstay of current drug treatment is bronchodilation. Anti-inflammatory drugs are reserved for patients with moderate-to-severe disease. In this article, we will review the current paradigm of COPD pathogenesis and discuss some promising molecular targets that may be modified in the future to improve health outcomes of patients with COPD.
Collapse
Affiliation(s)
- Tammy Sy Mui
- The Providence Heart and Lung Center, The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, St Paul's Hospital & the Department of Medicine (Respiratory Division), The University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
42
|
Quinn DJ, Weldon S, Taggart CC. Antiproteases as therapeutics to target inflammation in cystic fibrosis. Open Respir Med J 2010; 4:20-31. [PMID: 20448835 PMCID: PMC2864511 DOI: 10.2174/1874306401004020020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.
Collapse
Affiliation(s)
| | | | - Clifford C Taggart
- Centre for Infection and Immunity, Whitla Medical Building, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| |
Collapse
|
43
|
Kacem R, Meraihi Z. The effect of essential oil extracted from Nigella sativa (L.) seeds on human neutrophil functions. Nat Prod Res 2009; 23:1168-75. [PMID: 19731134 DOI: 10.1080/14786410802228611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study was aimed to investigate the effect of essential oil on human neutrophil (HN) functions. The neutrophils were isolated on percoll gradients, counted, and tested for viability using the trypan blue exclusion method. The chemotactic response was based on a multiple blind well assay system. The control movement and chemotactic response of neutrophils to 0.1 microM fMLP were reduced at a dose-dependent manner. The essential oil significantly inhibited neutrophil chemotaxis from 0.05 to 0.5 mg mL(-1). The inhibitory concentrations (IC(50)) showing 50% inhibition to induced neutrophil chemotaxis, and control movement were 0.08 and 0.07 mg mL(-1), respectively. The human neutrophil elastase secretion was inhibited by essential oil at a concentration dependent manner from 0.5 to 2.5 mg mL(-1). The components of essential oil are potent inhibitors for polymorpho nuclear leukocytes functions. The observed inhibition of neutrophil functions occurred via intracellular pathway. Active serine protease could be essential for neutrophil responding process and/or signal transduction pathways.
Collapse
Affiliation(s)
- Rachid Kacem
- Department of Biological Sciences, Faculty of Sciences, Ferhat Abbas University, Setif, Algeria.
| | | |
Collapse
|
44
|
Trivedi NN, Caughey GH. Mast cell peptidases: chameleons of innate immunity and host defense. Am J Respir Cell Mol Biol 2009; 42:257-67. [PMID: 19933375 DOI: 10.1165/rcmb.2009-0324rt] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mast cells make and secrete an abundance of peptidases, which are stored in such large amounts in granules that they comprise a high fraction of all cellular protein. Perhaps no other immune cell is so generously endowed with peptidases. For many years after the main peptidases were first described, they were best known as markers of degranulation, for they are released locally in response to mast cell stimulation and can be distributed systemically and detected in blood. The principal peptidases are tryptases, chymases, carboxypeptidase A3, and dipeptidylpeptidase I (cathepsin C). Numerous studies suggest that these enzymes are important and even critical for host defense and homeostasis. Endogenous and allergen or pathogen-associated targets have been identified. Belying the narrow notion of peptidases as proinflammatory, several of the peptidases limit inflammation and toxicity of endogenous peptides and venoms. The peptidases are interdependent, so that absence or inactivity of one enzyme can alter levels and activity of others. Mammalian mast cell peptidases--chymases and tryptases especially--vary remarkably in number, expression, biophysical properties, and specificity, perhaps because they hyper-evolved under pressure from the very pathogens they help to repel. Tryptase and chymase involvement in some pathologies stimulated development of therapeutic inhibitors for use in asthma, lung fibrosis, pulmonary hypertension, ulcerative colitis, and cardiovascular diseases. While animal studies support the potential for mast cell peptidase inhibitors to mitigate certain diseases, other studies, as in mice lacking selected peptidases, predict roles in defense against bacteria and parasites and that systemic inactivation may impair host defense.
Collapse
Affiliation(s)
- Neil N Trivedi
- Section of Pulmonary and Critical Care Medicine, Medicine Service, Veterans Affairs Medical Center, Mailstop 111-D, 4150 Clement Street, San Francisco, CA 94121, USA
| | | |
Collapse
|
45
|
|
46
|
Döring G, Gulbins E. Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cell Microbiol 2008; 11:208-16. [PMID: 19068098 DOI: 10.1111/j.1462-5822.2008.01271.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Innate immunity is essential for prevention of infection in vertebrates and plants and dysfunction of single components of innate immunity may provoke severe disease. Here we describe how mutations in the cystic fibrosis transmembrane conductance regulator gene dysregulate a variety of components of the innate immune system in individuals suffering from the hereditary disease cystic fibrosis. In the airways of these individuals, functions of the mucociliary clearance system, cationic antimicrobial (poly)peptides and neutrophils and macrophages are impaired and inflammatory signal transduction pathways exaggerated. Consequently, chronic airway colonization with opportunistic bacterial pathogens develops and leads to life-threatening lung disease.
Collapse
Affiliation(s)
- Gerd Döring
- Institute of Medical Microbiology and Hygiene, Wilhelmstrasse 31, 72074 Tübingen, Germany.
| | | |
Collapse
|
47
|
Owen CA. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2008; 3:253-68. [PMID: 18686734 PMCID: PMC2629972 DOI: 10.2147/copd.s2089] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Since the early 1960s, a compelling body of evidence has accumulated to show that proteinases play critical roles in airspace enlargement in chronic obstructive pulmonary disease (COPD). However, until recently the causative enzymes and their exact roles in pathologic processes in COPD have not been clear. Recent studies of gene-targeted mice in murine models of COPD have confirmed roles for proteinases not only in airspace enlargement, but also in airway pathologies in COPD. These studies have also shed light on the specific proteinases involved in COPD pathogenesis, and the mechanisms by which these proteinases injure the lung. They have also identified important interactions between different classes of proteinases, and between proteinases and other molecules that amplify lung inflammation and injury. This review will discuss the biology of proteinases and the mechanisms by which they contribute to the pathogenesis of COPD. In addition, I will discuss the potential of proteinase inhibitors and anti-inflammatory drugs as new treatment strategies for COPD patients.
Collapse
Affiliation(s)
- Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Kodama T, Ashitani JI, Matsumoto N, Kangawa K, Nakazato M. Ghrelin treatment suppresses neutrophil-dominant inflammation in airways of patients with chronic respiratory infection. Pulm Pharmacol Ther 2008; 21:774-9. [PMID: 18571961 DOI: 10.1016/j.pupt.2008.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/02/2008] [Accepted: 05/12/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND Persistent neutrophil influx into the airways is a characteristic of chronic respiratory infection and contributes to the deterioration of pulmonary function. Ghrelin is a novel growth hormone (GH)-releasing peptide with potential anti-inflammatory activities. The present study investigated whether or not ghrelin can reduce neutrophil-dominant inflammation in airways of patients with chronic respiratory infection. POPULATIONS AND METHODS Synthesized ghrelin was administered intravenously for 3 weeks to 7 cachectic patients with chronic respiratory infection to confirm ghrelin's effects on airway inflammation and nutrition state. Neutrophils, neutrophil products and inflammatory cytokines in sputum were used as markers of airway inflammation. Changes in serum protein levels were also evaluated along with plasma catecholamine levels. Exercise tolerance was assessed by measuring 6-min walking distance before and after 3 weeks of ghrelin treatment. RESULTS Three-week ghrelin administration decreased neutrophil density and inflammatory cytokine levels in sputum, reduced plasma norepinephrine level, and increased body weight, serum protein level, and 6-min walking distance. CONCLUSIONS Ghrelin administration suppressed airway inflammation by decreasing neutrophil accumulation in lungs and increased body weight. These findings may contribute to the development of supportive therapies for patients with refractory chronic respiratory infection.
Collapse
Affiliation(s)
- Tsuyoshi Kodama
- Third Department of Internal Medicine, Miyazaki University School of Medicine, Kihara 5200, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|
49
|
Yao H, Edirisinghe I, Yang SR, Rajendrasozhan S, Kode A, Caito S, Adenuga D, Rahman I. Genetic ablation of NADPH oxidase enhances susceptibility to cigarette smoke-induced lung inflammation and emphysema in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1222-37. [PMID: 18403597 PMCID: PMC2329832 DOI: 10.2353/ajpath.2008.070765] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2008] [Indexed: 11/20/2022]
Abstract
Cigarette smoke (CS) induces recruitment of inflammatory cells in the lungs leading to the generation of reactive oxygen species (ROS), which are involved in lung inflammation and injury. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a multimeric system that is responsible for ROS production in mammalian cells. We hypothesized that NADPH oxidase-derived ROS play an important role in lung inflammation and injury and that targeted ablation of components of NADPH oxidase (p47(phox) and gp91(phox)) would protect lungs against the detrimental effects of CS. To test this hypothesis, we exposed p47(phox-/-) and gp91(phox-/-) mice to CS and examined inflammatory response and injury in the lung. Surprisingly, although CS-induced ROS production was decreased in the lungs of p47(phox-/-) and gp91(phox-/-) mice compared with wild-type mice, the inflammatory response was significantly increased and was accompanied by development of distal airspace enlargement and alveolar destruction. This pathological abnormality was associated with enhanced activation of the TLR4-nuclear factor-kappaB pathway in response to CS exposure in p47(phox-/-) and gp91(phox-/-) mice. This phenomenon was confirmed by in vitro studies in which treatment of peritoneal macrophages with a nuclear factor-kappaB inhibitor reversed the CS-induced release of proinflammatory mediators. Thus, these data suggest that genetic ablation of components of NADPH oxidase enhances susceptibility to the proinflammatory effects of CS leading to airspace enlargement and alveolar damage.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Box 850, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) encompasses a number of injurious processes, including an abnormal inflammatory response in the lungs to inhaled particles and gases. Other processes, such as failure to resolve inflammation, abnormal cell repair, apoptosis, abnormal cellular maintenance programs, extracellular matrix destruction (protease/antiprotease imbalance), and oxidative stress (oxidant/antioxidant imbalance) also have a role. The inflammatory responses to the inhalation of active and passive tobacco smoke and urban and rural air pollution are modified by genetic and epigenetic factors. The subsequent chronic inflammatory responses lead to mucus hypersecretion, airway remodeling, and alveolar destruction. This article provides an update on the cellular and molecular mechanisms of these processes in the pathogenesis of COPD.
Collapse
Affiliation(s)
- William Macnee
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Avenue, Edinburgh EH16 4TJ, Scotland, UK.
| |
Collapse
|