1
|
Mall MA, Davies JC, Donaldson SH, Jain R, Chalmers JD, Shteinberg M. Neutrophil serine proteases in cystic fibrosis: role in disease pathogenesis and rationale as a therapeutic target. Eur Respir Rev 2024; 33:240001. [PMID: 39293854 PMCID: PMC11409056 DOI: 10.1183/16000617.0001-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
Chronic airway inflammation is a central feature in the pathogenesis of bronchiectasis (BE), which can be caused by cystic fibrosis (CFBE; hereafter referred to as CF lung disease) and non-CF-related conditions (NCFBE). Inflammation in both CF lung disease and NCFBE is predominantly driven by neutrophils, which release proinflammatory cytokines and granule proteins, including neutrophil serine proteases (NSPs). NSPs include neutrophil elastase, proteinase 3 and cathepsin G. An imbalance between NSPs and their antiproteases has been observed in people with CF lung disease and people with NCFBE. While the role of the protease/antiprotease imbalance is well established in both CF lung disease and NCFBE, effective therapies targeting NSPs are lacking. In recent years, the introduction of CF transmembrane conductance regulator (CFTR) modulator therapy has immensely improved outcomes in many people with CF (pwCF). Despite this, evidence suggests that airway inflammation persists, even in pwCF treated with CFTR modulator therapy. In this review, we summarise current data on neutrophilic inflammation in CF lung disease to assess whether neutrophilic inflammation and high, uncontrolled NSP levels play similar roles in CF lung disease and in NCFBE. We discuss similarities between the neutrophilic inflammatory profiles of people with CF lung disease and NCFBE, potentially supporting a similar therapeutic approach. Additionally, we present evidence suggesting that neutrophilic inflammation persists in pwCF treated with CFTR modulator therapy, at levels similar to those in people with NCFBE. Collectively, these findings highlight the ongoing need for new treatment strategies targeting neutrophilic inflammation in CF lung disease.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Scott H Donaldson
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Michal Shteinberg
- Lady Davis Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J. A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 2024; 11:1371064. [PMID: 39006103 PMCID: PMC11239554 DOI: 10.3389/fnut.2024.1371064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Respiratory Immunology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| |
Collapse
|
3
|
Maeng J, Lee K. Inhibitors of dimerized translationally controlled tumor protein, a histamine releasing factor, may serve as anti-allergic drug candidates. Biochimie 2023; 211:141-152. [PMID: 36963558 DOI: 10.1016/j.biochi.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
It has been established that translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF), exhibits cytokine-like activities associated with initiation of allergic responses only after forming dimers (dTCTP). Agents that inhibit dTCTP by preventing its dimerization or otherwise block its function, also block development of allergic reactions, thereby serving as potential drugs to treat allergic diseases. Several lines of evidence have proven that peptides and antibodies that specifically inhibit the interactions between dTCTP and either its putative receptor or immunoglobulins exhibit significant in vivo efficacy as potential anti-inflammatory agents in murine models of allergic inflammatory diseases. This review highlights the development of several inhibitors targeting dTCTP and discusses how they affect the pathophysiologic processes of allergic and inflammatory diseases in several animal models and offers new perspectives on anti-allergic drug discovery.
Collapse
Affiliation(s)
- Jeehye Maeng
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Sengupta S, Abhinav N, Singh S, Dutta J, Mabalirajan U, Kaliyamurthy K, Mukherjee PK, Jaisankar P, Bandyopadhyay A. Standardised Sonneratia apetala Buch.-Ham. fruit extract inhibits human neutrophil elastase and attenuates elastase-induced lung injury in mice. Front Pharmacol 2022; 13:1011216. [PMID: 36569308 PMCID: PMC9768866 DOI: 10.3389/fphar.2022.1011216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) along with asthma is a major and increasing global health problem. Smoking contributes to about 80%-90% of total COPD cases in the world. COPD leads to the narrowing of small airways and destruction of lung tissue leading to emphysema primarily caused by neutrophil elastase. Neutrophil elastase plays an important role in disease progression in COPD patients and has emerged as an important target for drug discovery. Sonneratia apetala Buch.-Ham. is a mangrove plant belonging to family Sonneratiaceae. It is widely found in the Sundarban regions of India. While the fruits of this plant have antibacterial, antifungal, antioxidant and astringent activities, fruit and leaf extracts have been shown to reduce the symptoms of asthma and cough. The aim of this study is to find whether hydro alcoholic fruit extracts of S. apetala inhibit neutrophil elastase and thus prevent the progression of neutrophil elastase-driven lung emphysema. The hydroalcoholic extract, ethanol: water (90:10), of the S. apetala Buch.-Ham. fresh fruits (SAM) were used for neutrophil elastase enzyme kinetic assay and IC50 of the extract was determined. The novel HPLC method has been developed and the extract was standardized with gallic acid and ellagic acid as standards. The extract was further subjected to LC-MS2 profiling to identify key phytochemicals. The standardized SAM extract contains 53 μg/mg of gallic acid and 95 μg/mg of ellagic acid, based on the HPLC calibration curve. SAM also reversed the elastase-induced morphological change of human epithelial cells and prevented the release of ICAM-1 in vitro and an MTT assay was conducted to assess the viability. Further, 10 mg/kg SAM had reduced alveolar collapse induced by neutrophil elastase in the mice model. Thus, in this study, we reported for the first time that S. apetala fruit extract has the potential to inhibit human neutrophil elastase in vitro and in vivo.
Collapse
Affiliation(s)
- Sayantan Sengupta
- Cardiovascular Disease and Respiratory Disorders Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Karthigeyan Kaliyamurthy
- Central National Herbarium, Botanical Survey of India, A.J.C.B. Indian Botanic Garden, Howrah, India
| | | | - Parasuraman Jaisankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India,*Correspondence: Parasuraman Jaisankar, ; Arun Bandyopadhyay,
| | - Arun Bandyopadhyay
- Cardiovascular Disease and Respiratory Disorders Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Parasuraman Jaisankar, ; Arun Bandyopadhyay,
| |
Collapse
|
5
|
Cheng Y, Li G, Smedley CJ, Giel MC, Kitamura S, Woehl JL, Bianco G, Forli S, Homer JA, Cappiello JR, Wolan DW, Moses JE, Sharpless KB. Diversity oriented clicking delivers β-substituted alkenyl sulfonyl fluorides as covalent human neutrophil elastase inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2208540119. [PMID: 36070343 PMCID: PMC9478681 DOI: 10.1073/pnas.2208540119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented β-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.
Collapse
Affiliation(s)
- Yunfei Cheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Gencheng Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, Melbourne, VIC 3086, Australia
| | - Seiya Kitamura
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jordan L. Woehl
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - John R. Cappiello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
6
|
Singh M, Jayant K, Singh D, Bhutani S, Poddar NK, Chaudhary AA, Khan SUD, Adnan M, Siddiqui AJ, Hassan MI, Khan FI, Lai D, Khan S. Withania somnifera (L.) Dunal (Ashwagandha) for the possible therapeutics and clinical management of SARS-CoV-2 infection: Plant-based drug discovery and targeted therapy. Front Cell Infect Microbiol 2022; 12:933824. [PMID: 36046742 PMCID: PMC9421373 DOI: 10.3389/fcimb.2022.933824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has killed huge populations throughout the world and acts as a high-risk factor for elderly and young immune-suppressed patients. There is a critical need to build up secure, reliable, and efficient drugs against to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Bioactive compounds of Ashwagandha [Withania somnifera (L.) Dunal] may implicate as herbal medicine for the management and treatment of patients infected by SARS-CoV-2 infection. The aim of the current work is to update the knowledge of SARS-CoV-2 infection and information about the implication of various compounds of medicinal plant Withania somnifera with minimum side effects on the patients' organs. The herbal medicine Withania somnifera has an excellent antiviral activity that could be implicated in the management and treatment of flu and flu-like diseases connected with SARS-CoV-2. The analysis was performed by systematically re-evaluating the published articles related to the infection of SARS-CoV-2 and the herbal medicine Withania somnifera. In the current review, we have provided the important information and data of various bioactive compounds of Withania somnifera such as Withanoside V, Withanone, Somniferine, and some other compounds, which can possibly help in the management and treatment of SARS-CoV-2 infection. Withania somnifera has proved its potential for maintaining immune homeostasis of the body, inflammation regulation, pro-inflammatory cytokines suppression, protection of multiple organs, anti-viral, anti-stress, and anti-hypertensive properties. Withanoside V has the potential to inhibit the main proteases (Mpro) of SARS-CoV-2. At present, synthetic adjuvant vaccines are used against COVID-19. Available information showed the antiviral activity in Withanoside V of Withania somnifera, which may explore as herbal medicine against to SARS-CoV-2 infection after standardization of parameters of drug development and formulation in near future.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Kuldeep Jayant
- Department of Agricultural and Food Engineering, IIT Kharagpur, West Bengal, Kharagpur, India
| | - Dipti Singh
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Shivani Bhutani
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation 7 Peterlee Place, Hebersham, NSW, Australia
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Sengupta S, Reddy JR, Rajesh N, Jaiswal A, Mabalirajan U, Palakodety RK, Mukherjee P, Bandyopadhyay A. Novel benzoxazinone derivative as potent human neutrophil elastase inhibitor: Potential implications in lung injury. Eur J Pharmacol 2022; 931:175187. [PMID: 35952844 DOI: 10.1016/j.ejphar.2022.175187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Neutrophil elastase, a powerful physiological defence tool, may serve as drug target for diverse diseases due to its bystander effect on host cells like chronic obstructive pulmonary disease (COPD). Here, we synthesised seven novel benzoxazinone derivatives and identified that these synthetic compounds are human neutrophil elastase inhibitor that was demonstrated by enzyme substrate kinetic assay. One such compound, PD05, emerged as the most potent inhibitor with lower IC50 as compared to control drug sivelestat. While this inhibition is competitive based on substrate dilution assay, PD05 showed a high binding affinity for human neutrophil elastase (Kd = 1.63 nM) with faster association and dissociation rate compared to notable elastase inhibitors like ONO 6818 and AZD9668, and its interaction with human neutrophil elastase was fully reversible.Preclinical pharmacokinetic studies were performed in vitro where protein binding was found to be 72% with a high recovery rate, aqueous solubility of 194.7 μM, low permeability along with a favourable hERG. Experiments with cell line revealed that the molecule successfully prevented elastase induced rounding and retracted cell morphology and cell cytotoxicity. In mouse model PD05 is able to reduce the alveolar collapse induced by neutrophil elastase. In summary, we demonstrate the in situ, in vitro and in vivo anti-elastase potential of the newly synthesised benzoxazinone derivative PD05 and thus this could be promising candidate for further investigation as a drug for the treatment of COPD.
Collapse
Affiliation(s)
- Sayantan Sengupta
- Cardiovascular Disease & Respiratory Disorders Laboratory, Department of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jala Ranjith Reddy
- Division of Organic and Biomolecular Medicine, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Nomula Rajesh
- Division of Organic and Biomolecular Medicine, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Department of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Department of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Radha Krishna Palakodety
- Division of Organic and Biomolecular Medicine, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Pulok Mukherjee
- Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
| | - Arun Bandyopadhyay
- Cardiovascular Disease & Respiratory Disorders Laboratory, Department of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
8
|
Glasgow AMA, Greene CM. Epithelial damage in the cystic fibrosis lung: the role of host and microbial factors. Expert Rev Respir Med 2022; 16:737-748. [PMID: 35833354 DOI: 10.1080/17476348.2022.2100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The airway epithelium is a key system within the lung. It acts as a physical barrier to inhaled factors, and can actively remove unwanted microbes and particles from the lung via the mucociliary escalator. On a physiological level, it senses the presence of pathogens and initiates innate immune responses to combat their effects. Hydration of the airways is also controlled by the epithelium. Within the cystic fibrosis (CF) lung, these properties are suboptimal and contribute to the pulmonary manifestations of CF. AREAS COVERED In this review, we discuss how various host and microbial factors can contribute to airway epithelium dysfunction in the CF lung focusing on mechanisms relating to the mucociliary escalator and protease expression and function. We also explore how alterations in microRNA expression can impact the behavior of the airway epithelium. EXPERT OPINION Notwithstanding the unprecedented benefits that CFTR modulator drugs now provide to the health of CF sufferers, it will be important to delve more deeply into additional mechanisms underpinning CF lung disease such as those illustrated here in an attempt to counteract these aberrant processes and further enhance quality of life for people with CF.
Collapse
Affiliation(s)
- Arlene M A Glasgow
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland (RCSI), Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland (RCSI), Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Izquierdo M, Rawal H, Armstrong M, Marion CR. Alpha-1 Asthma Overlap Syndrome: a Clinical Overview. Curr Allergy Asthma Rep 2022; 22:101-111. [PMID: 35596100 DOI: 10.1007/s11882-022-01036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Alpha-1 antitrypsin deficiency (AATD) is one of the most common genetic diseases that is associated with severe complications and yet remains underdiagnosed. The pulmonary symptoms of both AATD and asthma include cough, excessive sputum production, dyspnea, and wheezing. These symptoms overlap significantly leading to difficulty distinguishing between these two conditions and suspicion that there may be an overlap syndrome. We aim to discuss the pathophysiology, clinical manifestations, and treatment of both alpha-1 antitrypsin and asthma and how they may overlap. RECENT FINDINGS Recent literature suggests that there is an association between asthma and AATD. This association has been hypothesized to be secondary to an imbalance of elastase and anti-elastase leading to a pro-inflammatory state in patients with AATD. This review serves to overview the pathophysiology, clinical manifestations, and treatment of alpha-1 antitrypsin, asthma, and the increasingly recognized intersection of the two, AATD-asthma overlap syndrome.
Collapse
Affiliation(s)
- Manuel Izquierdo
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Himanshu Rawal
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Michael Armstrong
- Department of Internal Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Chad R Marion
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA. .,Department On Internal Medicine, Section On Pulmonary, Critical Care and Sleep Medicine, W. G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, NC, USA.
| |
Collapse
|
10
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
11
|
Stirpe E, Bardaro F. Alpha1-antitrypsin deficiency and asthma. Monaldi Arch Chest Dis 2022; 92. [PMID: 35225443 DOI: 10.4081/monaldi.2022.2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
α1-antitrypsin deficiency (AATD) is a genetically inherited autosomal-codominant disease with a variable clinical spectrum of lung-related diseases. Pulmonary involvement of α1-antitrypsin deficiency may also include emphysema with variable functional and radiological abnormalities, asthma, and bronchiectasis. Asthma and AATD are mutually exclusive disease entities, but the commonality of neutrophil inflammation across the diseases might suggest common underlying mechanisms of effect. The diseases share many clinical and functional features: patients with AATD commonly first present with asthma-like symptoms; functional alterations may be common to both, such as bronchial hyperresponsiveness or fixed obstruction after bronchial remodeling. It has been recognized that allergy and asthma often coexist with AATD, but the relationship between allergy, asthma and AATD is not clear. Distinguishing AATD from asthma based on presentation and clinical evaluation is not possible. The clinician must assess each of the elements in the context of the whole patient, any patient with difficult-to-manage asthma should be screened for AATD. From the clinician’s point of view, improving diagnosis in this population is fundamental to optimize clinical management. Genetic studies will probably be needed in the future to unequivocally establish the causal link between AATD and asthma.
Collapse
|
12
|
Williamson M, Casey M, Gabillard-Lefort C, Alharbi A, Teo YQJ, McElvaney NG, Reeves EP. Current evidence on the effect of highly effective CFTR modulation on interleukin-8 in cystic fibrosis. Expert Rev Respir Med 2021; 16:43-56. [PMID: 34726115 DOI: 10.1080/17476348.2021.2001333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetically inherited disease, with mortality and morbidity associated with respiratory disease. The inflammatory response in CF is characterized by excessive neutrophil influx to the airways, mainly due to the increased local production and retention of interleukin-8 (IL-8), a potent neutrophil chemoattractant. AREAS COVERED We discuss how the chemokine IL-8 dominates the inflammatory profile of the airways in CF lung disease. Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies are designed to correct the malfunctioning protein resulting from specific CFTR mutations. This review covers current evidence on the impact of CFTR impairment on levels of IL-8 and outlines the influence of effective CFTR modulation on inflammation in CF with a focus on cytokine production. Review of the literature was carried out using the PUBMED database, Google Scholar, and The Cochrane Library databases, using several appropriate generic terms. EXPERT OPINION Therapeutic interventions specifically targeting the defective CFTR protein have improved the outlook for CF. Accumulating studies on the effect of highly effective CFTR modulation on inflammation indicate an impact on IL-8 levels. Further studies are required to increase our knowledge of early onset innate inflammatory dysregulation and on anti-inflammatory mechanisms of CFTR modulators.
Collapse
Affiliation(s)
- Michael Williamson
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Michelle Casey
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Claudie Gabillard-Lefort
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Aram Alharbi
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Yu Qing Jolene Teo
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
13
|
The Burkholderia cenocepacia Type VI Secretion System Effector TecA Is a Virulence Factor in Mouse Models of Lung Infection. mBio 2021; 12:e0209821. [PMID: 34579569 PMCID: PMC8546862 DOI: 10.1128/mbio.02098-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Burkholderia cenocepacia is a member of the Burkholderia cepacia complex (Bcc), a group of bacteria with members responsible for causing lung infections in cystic fibrosis (CF) patients. The most severe outcome of Bcc infection in CF patients is cepacia syndrome, a disease characterized by necrotizing pneumonia with bacteremia and sepsis. B. cenocepacia is strongly associated with cepacia syndrome, making it one of the most virulent members of the Bcc. Mechanisms underlying the pathogenesis of B. cenocepacia in lung infections and cepacia syndrome remain to be uncovered. B. cenocepacia is primarily an intracellular pathogen and encodes the type VI secretion system (T6SS) effector TecA, which is translocated into host phagocytes. TecA is a deamidase that inactivates multiple Rho GTPases, including RhoA. Inactivation of RhoA by TecA triggers assembly of the pyrin inflammasome, leading to secretion of proinflammatory cytokines, such as interleukin-1β, from macrophages. Previous work with the B. cenocepacia clinical isolate J2315 showed that TecA increases immunopathology during acute lung infection in C57BL/6 mice and suggested that this effector acts as a virulence factor by triggering assembly of the pyrin inflammasome. Here, we extend these results using a second B. cenocepacia clinical isolate, AU1054, to demonstrate that TecA exacerbates weight loss and lethality during lung infection in C57BL/6 mice and mice engineered to have a CF genotype. Unexpectedly, pyrin was dispensable for TecA virulence activity in both mouse infection models. Our findings establish that TecA is a B. cenocepacia virulence factor that exacerbates lung inflammation, weight loss, and lethality in mouse infection models.
Collapse
|
14
|
Delemarre T, Bochner BS, Simon HU, Bachert C. Rethinking neutrophils and eosinophils in chronic rhinosinusitis. J Allergy Clin Immunol 2021; 148:327-335. [PMID: 33895002 PMCID: PMC8355033 DOI: 10.1016/j.jaci.2021.03.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/21/2023]
Abstract
Chronic rhinosinusitis (CRS) often is characterized by an eosinophilic inflammatory pattern, nowadays referred to as type 2 inflammation, although the mucosal inflammation is dominated by neutrophils in about a third of the patients. Neutrophils are typically predominant in 50% of patients with CRS without nasal polyps, but also are found to play a role in patients with severe type 2 CRS with nasal polyp disease. This review aims at summarizing the current understanding of the eosinophilic and neutrophilic inflammation in CRS pathophysiology, and provides a discussion of their reciprocal interactions and the clinical impact of the mixed presentation in patients with severe type 2 CRS with nasal polyps. A solid understanding of these interactions is of utmost importance when treating uncontrolled severe CRS with nasal polyps with biologicals that are preferentially directed toward type 2 inflammation. We here focus on recent findings on both eosinophilic and neutrophilic granulocytes, their subgroups and the activation status, and their interactions in CRS.
Collapse
Affiliation(s)
- Tim Delemarre
- Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; the Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Claus Bachert
- Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China.
| |
Collapse
|
15
|
Voynow JA, Shinbashi M. Neutrophil Elastase and Chronic Lung Disease. Biomolecules 2021; 11:biom11081065. [PMID: 34439732 PMCID: PMC8394930 DOI: 10.3390/biom11081065] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Neutrophil elastase (NE) is a major inflammatory protease released by neutrophils and is present in the airways of patients with cystic fibrosis (CF), chronic obstructive pulmonary disease, non-CF bronchiectasis, and bronchopulmonary dysplasia. Although NE facilitates leukocyte transmigration to the site of infection and is required for clearance of Gram-negative bacteria, it also activates inflammation when released into the airway milieu in chronic inflammatory airway diseases. NE exposure induces airway remodeling with increased mucin expression and secretion and impaired ciliary motility. NE interrupts epithelial repair by promoting cellular apoptosis and senescence and it activates inflammation directly by increasing cytokine expression and release, and indirectly by triggering extracellular trap release and exosome release, which magnify protease activity and inflammation in the airway. NE inhibits innate immune function by digesting opsonins and opsonin receptors, degrading innate immune proteins such as lactoferrin, and inhibiting macrophage phagocytosis. Importantly, NE-directed therapies have not yet been effective in preventing the pathologic sequelae of NE exposure, but new therapies are being developed that offer both direct antiprotease activity and multifunctional anti-inflammatory properties.
Collapse
Affiliation(s)
- Judith A. Voynow
- Division of Pediatric Pulmonology, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Meagan Shinbashi
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
16
|
Thomassen JC, Trojan T, Walz M, Vohlen C, Fink G, Rietschel E, Alejandre Alcazar MA, van Koningsbruggen-Rietschel S. Reduced neutrophil elastase inhibitor elafin and elevated transforming growth factor-β 1 are linked to inflammatory response in sputum of cystic fibrosis patients with Pseudomonas aeruginosa. ERJ Open Res 2021; 7:00636-2020. [PMID: 34291109 PMCID: PMC8287132 DOI: 10.1183/23120541.00636-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/19/2021] [Indexed: 11/05/2022] Open
Abstract
Research question Pulmonary disease progression in patients with cystic fibrosis (CF) is characterised by inflammation and fibrosis and aggravated by Pseudomonas aeruginosa (Pa). We investigated the impact of Pa specifically on: 1) protease/antiprotease balance; 2) inflammation; and 3) the link of both parameters to clinical parameters of CF patients. Methods Transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-8, neutrophil elastase (NE) and elastase inhibitor elafin were measured (ELISA assays), and gene expression of the NF-κB pathway was assessed (reverse transcriptase PCR) in the sputum of 60 CF patients with a minimum age of 5 years. Spirometry was assessed according to American Thoracic Society guidelines. Results Our results demonstrated the following: 1) NE was markedly increased in Pa-positive sputum, whereas elafin was significantly decreased; 2) increased IL-1β/IL-8 levels were associated with both Pa infection and reduced forced expiratory volume in 1 s, and sputum TGF-β1 was elevated in Pa-infected CF patients and linked to an impaired lung function; and 3) gene expression of NF-κB signalling components was increased in sputum of Pa-infected patients, and these findings were positively correlated with IL-8. Conclusion Our study links Pa infection to an imbalance of NE and NE inhibitor elafin and increased inflammatory mediators. Moreover, our data demonstrate an association between high TGF-β1 sputum levels and a progress in chronic lung inflammation and pulmonary fibrosis in CF. Controlling the excessive airway inflammation by inhibition of NE and TGF-β1 might be promising therapeutic strategies in future CF therapy and a possible complement to cystic fibrosis transmembrane conductance regulator (CFTR) modulators.
Collapse
Affiliation(s)
- Jan C Thomassen
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Tobias Trojan
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Maxine Walz
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christina Vohlen
- Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gregor Fink
- Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ernst Rietschel
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | |
Collapse
|
17
|
Aitken ML, Somayaji R, Hinds TR, Pier M, Droguett K, Rios M, Skerrett SJ, Villalon M. Glycated Albumin Triggers an Inflammatory Response in the Human Airway Epithelium and Causes an Increase in Ciliary Beat Frequency. Front Physiol 2021; 12:653177. [PMID: 33967824 PMCID: PMC8102681 DOI: 10.3389/fphys.2021.653177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/17/2021] [Indexed: 01/30/2023] Open
Abstract
The role of inflammation in airway epithelial cells and its regulation are important in several respiratory diseases. When disease is present, the barrier between the pulmonary circulation and the airway epithelium is damaged, allowing serum proteins to enter the airways. We identified that human glycated albumin (GA) is a molecule in human serum that triggers an inflammatory response in human airway epithelial cultures. We observed that single-donor human serum induced IL-8 secretion from primary human airway epithelial cells and from a cystic fibrosis airway cell line (CF1-16) in a dose-dependent manner. IL-8 secretion from airway epithelial cells was time dependent and rapidly increased in the first 4 h of incubation. Stimulation with GA promoted epithelial cells to secrete IL-8, and this increase was blocked by the anti-GA antibody. The IL-8 secretion induced by serum GA was 10–50-fold more potent than TNFα or LPS stimulation. GA also has a functional effect on airway epithelial cells in vitro, increasing ciliary beat frequency. Our results demonstrate that the serum molecule GA is pro-inflammatory and triggers host defense responses including increases in IL-8 secretion and ciliary beat frequency in the human airway epithelium. Although the binding site of GA has not yet been described, it is possible that GA could bind to the receptor for advanced glycated end products (RAGE), known to be expressed in the airway epithelium; however, further experiments are needed to identify the mechanism involved. We highlight a possible role for GA in airway inflammation.
Collapse
Affiliation(s)
- Moira L Aitken
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ranjani Somayaji
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Thomas R Hinds
- Department of Pharmacy, School of Medicine, University of Washington, Seattle, WA, United States
| | - Maricela Pier
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Karla Droguett
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Rios
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shawn J Skerrett
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Villalon
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Künzi L, Easter M, Hirsch MJ, Krick S. Cystic Fibrosis Lung Disease in the Aging Population. Front Pharmacol 2021; 12:601438. [PMID: 33935699 PMCID: PMC8082404 DOI: 10.3389/fphar.2021.601438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/15/2021] [Indexed: 01/02/2023] Open
Abstract
The demographics of the population with cystic fibrosis (CF) is continuously changing, with nowadays adults outnumbering children and a median predicted survival of over 40 years. This leads to the challenge of treating an aging CF population, while previous research has largely focused on pediatric and adolescent patients. Chronic inflammation is not only a hallmark of CF lung disease, but also of the aging process. However, very little is known about the effects of an accelerated aging pathology in CF lungs. Several chronic lung disease pathologies show signs of chronic inflammation with accelerated aging, also termed “inflammaging”; the most notable being chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In these disease entities, accelerated aging has been implicated in the pathogenesis via interference with tissue repair mechanisms, alterations of the immune system leading to impaired defense against pulmonary infections and induction of a chronic pro-inflammatory state. In addition, CF lungs have been shown to exhibit increased expression of senescence markers. Sustained airway inflammation also leads to the degradation and increased turnover of cystic fibrosis transmembrane regulator (CFTR). This further reduces CFTR function and may prevent the novel CFTR modulator therapies from developing their full efficacy. Therefore, novel therapies targeting aging processes in CF lungs could be promising. This review summarizes the current research on CF in an aging population focusing on accelerated aging in the context of chronic airway inflammation and therapy implications.
Collapse
Affiliation(s)
- Lisa Künzi
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zürich, Zürich, Switzerland
| | - Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Gregory Fleming Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
19
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
20
|
Nugteren S, Samsom JN. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. Cytokine Growth Factor Rev 2021; 59:22-35. [PMID: 33602652 DOI: 10.1016/j.cytogfr.2021.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
The immune system is continuously challenged with large quantities of exogenous antigens at the barriers between the external environment and internal human tissues. Antimicrobial activity is essential at these sites, though the immune responses must be tightly regulated to prevent tissue destruction by inflammation. Secretory Leukocyte Protease Inhibitor (SLPI) is an evolutionarily conserved, pleiotropic protein expressed at mucosal surfaces, mainly by epithelial cells. SLPI inhibits proteases, exerts antimicrobial activity and inhibits nuclear factor-kappa B (NF-κB)-mediated inflammatory gene transcription. SLPI maintains homeostasis at barrier tissues by preventing tissue destruction and regulating the threshold of inflammatory immune responses, while protecting the host from infection. However, excessive expression of SLPI in cancer cells may have detrimental consequences, as recent studies demonstrate that overexpression of SLPI increases the metastatic potential of epithelial tumors. Here, we review the varied functions of SLPI in the respiratory tract, skin, gastrointestinal tract and genitourinary tract, and then discuss the mechanisms by which SLPI may contribute to cancer.
Collapse
Affiliation(s)
- Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
21
|
Comparison of Immune Response between SARS, MERS, and COVID-19 Infection, Perspective on Vaccine Design and Development. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8870425. [PMID: 33564683 PMCID: PMC7841448 DOI: 10.1155/2021/8870425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus Disease 2019 (COVID-19) infections are the three epidemiological diseases caused by the Coronaviridae family. Perceiving the immune responses in these infections and the escape of viruses could help us design drugs and vaccines for confronting these infections. This review investigates the innate and adaptive immune responses reported in the infections of the three coronaviruses SARS, MERS, and COVID-19. Moreover, the present study can trigger researchers to design and develop new vaccines and drugs based on immune system responses. In conclusion, due to the need for an effective and efficient immune stimulation against coronavirus, a combination of several strategies seems necessary for developing the vaccine.
Collapse
|
22
|
Sandri A, Lleo MM, Signoretto C, Boaretti M, Boschi F. Protease inhibitors elicit anti-inflammatory effects in CF mice with Pseudomonas aeruginosa acute lung infection. Clin Exp Immunol 2020; 203:87-95. [PMID: 32946591 DOI: 10.1111/cei.13518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 01/30/2023] Open
Abstract
Pseudomonas aeruginosa is the major respiratory pathogen in patients with cystic fibrosis (CF). P. aeruginosa-secreted proteases, in addition to host proteases, degrade lung tissue and interfere with immune processes. In this study, we aimed at evaluating the possible anti-inflammatory effects of protease inhibitors Marimastat and Ilomastat in the treatment of P. aeruginosa infection. Lung infection with the P. aeruginosa PAO1 strain was established in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knock-out C57BL/6 mice expressing a luciferase gene under control of bovine interleukin (IL)-8 promoter. After intratracheal instillation with 150 µM Marimastat and Ilomastat, lung inflammation was monitored by in-vivo bioluminescence imaging and bacterial load in the lungs was assessed. In vitro, the effects of protease inhibitors on PAO1 growth and viability were evaluated. Acute lung infection was established in both wild-type and CFTR knock-out mice. After 24 h, the infection induced IL-8-dependent bioluminescence emission, indicating lung inflammation. In infected mice with ongoing inflammation, intratracheal treatment with 150 µM Marimastat and Ilomastat reduced the bioluminescence signal in comparison to untreated, infected animals. Bacterial load in the lungs was not affected by the treatment, and in vitro the same dose of Marimastat and Ilomastat did not affect PAO1 growth and viability, confirming that these molecules have no additional anti-bacterial activity. Our results show that inhibition of protease activity elicits anti-inflammatory effects in cystic fibrosis (CF) mice with acute P. aeruginosa lung infection. Thus, Marimastat and Ilomastat represent candidate molecules for the treatment of CF patients, encouraging further studies on protease inhibitors and their application in inflammatory diseases.
Collapse
Affiliation(s)
- A Sandri
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - C Signoretto
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - M Boaretti
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - F Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Seth S, Batra J, Srinivasan S. COVID-19: Targeting Proteases in Viral Invasion and Host Immune Response. Front Mol Biosci 2020; 7:215. [PMID: 33195400 PMCID: PMC7581869 DOI: 10.3389/fmolb.2020.00215] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
An acute respiratory disorder (COVID-19) that accelerated across the globe has been found to be caused by a novel strain of coronaviruses (SARS-CoV-2). The absence of a specific antiviral drug or vaccination has promoted the development of immediate therapeutic responses against SARS-CoV-2. As increased levels of plasma chemokines and, cytokines and an uncontrolled influx of inflammatory cells were observed in lethal cases, it was concluded that the severity of the infection corresponded with the imbalanced host immunity against the virus. Tracing back the knowledge acquired from SERS and MERS infections, clinical evidence suggested similar host immune reactions and host ACE2 receptor-derived invasion by SARS-CoV-2. Further studies revealed the integral role of proteases (TMPRSS2, cathepsins, plasmin, etc.) in viral entry and the immune system. This review aims to provide a brief review on the latest research progress in identifying the potential role of proteases in SARS-CoV-2 viral spread and infection and combines it with already known information on the role of different proteases in providing an immune response. It further proposes a multidisciplinary clinical approach to target proteases specifically, through a combinatorial administration of protease inhibitors. This predictive review may help in providing a perspective to gain deeper insights of the proteolytic web involved in SARS-CoV-2 viral invasion and host immune response.
Collapse
Affiliation(s)
- Sanchit Seth
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Sun J, LaRock DL, Skowronski EA, Kimmey JM, Olson J, Jiang Z, O'Donoghue AJ, Nizet V, LaRock CN. The Pseudomonas aeruginosa protease LasB directly activates IL-1β. EBioMedicine 2020; 60:102984. [PMID: 32979835 PMCID: PMC7511813 DOI: 10.1016/j.ebiom.2020.102984] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary damage by Pseudomonas aeruginosa during cystic fibrosis lung infection and ventilator-associated pneumonia is mediated both by pathogen virulence factors and host inflammation. Impaired immune function due to tissue damage and inflammation, coupled with pathogen multidrug resistance, complicates the management of these deep-seated infections. Pathological inflammation during infection is driven by interleukin-1β (IL-1β), but the molecular processes involved are not fully understood. METHODS We examined IL-1β activation in a pulmonary model infection of Pseudomonas aeruginosa and in vitro using genetics, specific inhibitors, recombinant proteins, and targeted reporters of protease activity and IL-1β bioactivity. FINDINGS Caspase-family inflammasome proteases canonically regulate maturation of this proinflammatory cytokine, but we report that plasticity in IL-1β proteolytic activation allows for its direct maturation by the pseudomonal protease LasB. LasB promotes IL-1β activation, neutrophilic inflammation, and destruction of lung architecture characteristic of severe P. aeruginosa pulmonary infection. INTERPRETATION Preservation of lung function and effective immune clearance may be enhanced by selectively controlling inflammation. Discovery of this IL-1β regulatory mechanism provides a distinct target for anti-inflammatory therapeutics, such as matrix metalloprotease inhibitors that inhibit LasB and limit inflammation and pathology during P. aeruginosa pulmonary infections. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Josh Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States
| | - Elaine A Skowronski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | | | - Joshua Olson
- Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States; Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States; Division of Infectious Diseases, Emory School of Medicine, Atlanta GA, United States; Antimicrobial Resistance Center, Emory University, Atlanta GA, United States.
| |
Collapse
|
25
|
Neutrophil elastase promotes macrophage cell adhesion and cytokine production through the integrin-Src kinases pathway. Sci Rep 2020; 10:15874. [PMID: 32981934 PMCID: PMC7522083 DOI: 10.1038/s41598-020-72667-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023] Open
Abstract
There are a number of respiratory diseases characterized by the presence of excess neutrophil elastase (NE) activity in tissues, including cystic fibrosis and chronic obstructive pulmonary disease (COPD). NE is considered a primary contributor to disease development, but the precise mechanism has yet to be fully determined. We hypothesized that NE alters the function of macrophages (Mɸ) which play a critical role in many physiological processes in healthy lungs. We demonstrate that monocyte-derived Mɸ exposed to NE releases active matrix metalloproteinases (MMPs), increase expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-8, and reduce capacity to phagocytose bacteria. Changes in Mɸ function following NE treatment were accompanied by increased adhesion and cytoskeleton re-arrangement, indicating the possibility of integrin involvement. To support this observation, we demonstrate that NE induces phosphorylation of kinases from the Src kinase family, a hallmark of integrin signaling activation. Moreover, pretreatment of Mɸ with a specific Src kinase inhibitor, PP2 completely prevents NE-induced pro-inflammatory cytokine production. Taken together these findings indicate that NE participates in lung destruction not only through direct proteolytic degradation of matrix proteins, but also through activation of Mɸ inflammatory and proteolytic functions.
Collapse
|
26
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Liu LZ, Wang M, Xin Q, Wang B, Chen GG, Li MY. The permissive role of TCTP in PM 2.5/NNK-induced epithelial-mesenchymal transition in lung cells. J Transl Med 2020; 18:66. [PMID: 32046740 PMCID: PMC7011287 DOI: 10.1186/s12967-020-02256-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/01/2020] [Indexed: 12/28/2022] Open
Abstract
Background Translationally controlled tumor protein (TCTP) is linked to lung cancer. However, upon lung cancer carcinogens stimulation, there were no reports on the relationship between TCTP and lung cell carcinogenic epithelial–mesenchymal transition (EMT). This study was designed to investigate the molecular mechanism of regulation of TCTP expression and its role in lung carcinogens-induced EMT. Methods To study the role of TCTP in lung carcinogens [particulate matter 2.5 (PM2.5) or 4-methylnitrosamino-l-3-pyridyl-butanone (NNK)]-induced EMT, PM2.5/NNK-treated lung epithelial and non-small cell lung cancer (NSCLC) cells were tested. Cell derived xenografts, human lung cancer samples and online survival analysis were used to confirm the results. MassArray assay, Real-time PCR and Reporter assays were performed to elucidate the mechanism of regulation of TCTP expression. All statistical analyses were performed using GraphPad Prism version 6.0 or SPSS version 20.0. Results Translationally controlled tumor protein and vimentin expression were up-regulated in PM2.5/NNK-treated lung cells and orthotopic implantation tumors. TCTP expression was positively correlated with vimentin in human NSCLC samples. Patients with high expression of TCTP displayed reduced overall and disease-free survival. TCTP overexpression could increase vimentin expression and promote cell metastasis. Furthermore, PM2.5/NNK stimulation brought a synergistic effect on EMT in TCTP-transfected cells. TCTP knockdown blocked PM2.5/NNK carcinogenic effect. Mechanically, PM2.5/NNK-induced TCTP expression was regulated by one microRNA, namely miR-125a-3p, but not by methylation on TCTP gene promoter. The level of TCTP was regulated by its specific microRNA during the process of PM2.5/NNK stimulation, which in turn enhanced vimentin expression and played a permissive role in carcinogenic EMT. Conclusions Our results provided new insights into the mechanisms of TCTP regulatory expression in lung carcinogens-induced EMT. TCTP and miR-125a-3p might act as potential prognostic biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China.
| | - Menghuan Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qihang Xin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Bowen Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
28
|
Matusovsky OS, Kachmar L, Ijpma G, Panariti A, Benedetti A, Martin JG, Lauzon AM. Contractile Properties of Intrapulmonary Airway Smooth Muscle in Cystic Fibrosis. Am J Respir Cell Mol Biol 2019; 60:434-444. [PMID: 30359078 DOI: 10.1165/rcmb.2018-0005oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal-recessive disease caused by mutations in the CF transmembrane conductance regulator gene. Many patients with CF have asthma-like symptoms and airway hyperresponsiveness, which are potentially associated with altered airway smooth muscle (ASM) contractility. Our goal in this study was to assess the contractility of the CF intrapulmonary ASM. ASM strips were dissected from human control and CF intrapulmonary airways, and assessed for methacholine-induced shortening velocity, maximal force, and stress. We also assessed isoproterenol responses in maximally methacholine-contracted ASM. ASM strips were then incubated for 16 hours with IL-13 and measurements were repeated. Myosin light chain kinase (MLCK) expression was assessed by Western blotting. Airways were immunostained for morphometry. ASM mass was increased in CF airways, which likely contributes to airway hyperresponsiveness. Although ASM contractile properties were not intrinsically different between patients with CF and control subjects, CF ASM responded differently in the presence of the inflammatory mediator IL-13, showing impairment in β-adrenergic-induced relaxation. Indeed, the percentage of relaxation measured at maximal isoproterenol concentrations in the CF ASM was significantly lower after incubation with IL-13 (46.0% ± 6.7% relaxation) than without IL-13 (74.0% ± 7.7% relaxation, P = 0.018). It was also significantly lower than that observed in control ASM incubated with IL-13 (68.8% ± 4.9% relaxation, P = 0.048) and without IL-13 (82.4% ± 9.9%, P = 0.0035). CF ASM incubated with IL-13 also expressed greater levels of MLCK. Thus, our data suggest that the combination of an increase in ASM mass, increased MLCK expression, and inflammation-induced β-adrenergic hyporesponsiveness may contribute to airway dysfunction in CF.
Collapse
Affiliation(s)
- Oleg S Matusovsky
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Linda Kachmar
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Gijs Ijpma
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Alice Panariti
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Andrea Benedetti
- 2 Department of Medicine, and.,3 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada; and.,4 Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, Montréal, Québec, Canada
| | - James G Martin
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center.,2 Department of Medicine, and
| | - Anne-Marie Lauzon
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center.,2 Department of Medicine, and
| |
Collapse
|
29
|
SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc Natl Acad Sci U S A 2019; 116:18808-18814. [PMID: 31484779 DOI: 10.1073/pnas.1909972116] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Collapse
|
30
|
Balbi B, Sangiorgi C, Gnemmi I, Ferrarotti I, Vallese D, Paracchini E, Delle Donne L, Corda L, Baderna P, Corsico A, Carone M, Brun P, Cappello F, Ricciardolo FL, Ruggeri P, Mumby S, Adcock IM, Caramori G, Di Stefano A. Bacterial load and inflammatory response in sputum of alpha-1 antitrypsin deficiency patients with COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:1879-1893. [PMID: 31686800 PMCID: PMC6709647 DOI: 10.2147/copd.s207203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Background Airway inflammation may drive the progression of chronic obstructive pulmonary disease (COPD) associated with alpha-1 antitrypsin deficiency (AATD), but the relationship between airway microbiota and inflammation has not been investigated. Methods We studied 21 non-treated AATD (AATD-noT) patients, 20 AATD-COPD patients under augmentation therapy (AATD-AT), 20 cigarette smoke-associated COPD patients, 20 control healthy smokers (CS) and 21 non-smokers (CON) with normal lung function. We quantified sputum inflammatory cells and inflammatory markers (IL-27, CCL3, CCL5, CXCL8, LTB4, MPO) by ELISA, total bacterial load (16S) and pathogenic bacteria by qRT-PCR. Results AATD-AT patients were younger but had similar spirometric and DLCO values compared to cigarette smoke-associated COPD, despite a lower burden of smoking history. Compared to cigarette smoke-associated COPD, AATD-noT and AATD-AT patients had lower sputum neutrophil levels (p=0.0446, p=0.0135), total bacterial load (16S) (p=0.0081, p=0.0223), M. catarrhalis (p=0.0115, p=0.0127) and S. pneumoniae (p=0.0013, p=0.0001). Sputum IL-27 was significantly elevated in CS and cigarette smoke-associated COPD. AATD-AT, but not AATD-noT patients, had IL-27 sputum levels (pg/ml) significantly lower than COPD (p=0.0297) and these positively correlated with FEV1% predicted values (r=0.578, p=0.0307). Conclusions Compared to cigarette smoke-associated COPD, AATD-AT (COPD) patients have a distinct airway inflammatory and microbiological profile. The decreased sputum bacterial load and IL-27 levels in AATD-AT patients suggests that augmentation therapy play a role in these changes.
Collapse
Affiliation(s)
- Bruno Balbi
- Istituti Clinici Scientifici Maugeri, IRCCS, Division of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Veruno, Italy
| | - Claudia Sangiorgi
- Istituti Clinici Scientifici Maugeri, IRCCS, Division of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Veruno, Italy
| | - Isabella Gnemmi
- Istituti Clinici Scientifici Maugeri, IRCCS, Division of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Veruno, Italy
| | - Ilaria Ferrarotti
- Department of Internal Medicine and Medical Therapy, University of Pavia , Pavia, Italy
| | - Davide Vallese
- Istituti Clinici Scientifici Maugeri, IRCCS, Division of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Veruno, Italy
| | - Elena Paracchini
- Istituti Clinici Scientifici Maugeri, IRCCS, Division of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Veruno, Italy
| | - Lorena Delle Donne
- Istituti Clinici Scientifici Maugeri, IRCCS, Division of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Veruno, Italy
| | - Luciano Corda
- Medicina Respiratoria, Seconda Medicina Interna, Spedali Civili , Brescia, Italy
| | - Paolo Baderna
- Division of Pneumology, Aosta Hospital , Aosta, Italy
| | - Angelo Corsico
- Department of Internal Medicine and Medical Therapy, University of Pavia , Pavia, Italy
| | - Mauro Carone
- Istituti Clinici Scientifici Maugeri, IRCCS, Division of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Veruno, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova , Padova, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Anatomia Umana, Università di Palermo, Palermo, Italy.,Euro-mediterranean Institute of Science and Technology (IEMEST) , Palermo, Italy
| | - Fabio Lm Ricciardolo
- Department of Clinical and Biological Sciences, A.O.U., San Luigi Gonzaga, Orbassano, University of Turin , Turin, Italy
| | - Paolo Ruggeri
- UOC Di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College London , UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London , UK
| | - Gaetano Caramori
- UOC Di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, Division of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Veruno, Italy
| |
Collapse
|
31
|
Li MY, Liu LZ, Li W, Ng CSH, Liu Y, Kong AWY, Zhao Z, Wang S, Qi H, Jia H, Yang S, Du J, Long X, Ho RLK, Chak ECW, Wan IYP, Mok TSK, Underwood MJ, Gali NK, Ning Z, Chen GG. Ambient fine particulate matter inhibits 15-lipoxygenases to promote lung carcinogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:359. [PMID: 31420013 PMCID: PMC6697918 DOI: 10.1186/s13046-019-1380-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
Background Epidemiological observations have demonstrated that ambient fine particulate matter with dp < 2.5 μm (PM2.5) as the major factor responsible for the increasing incidence of lung cancer in never-smokers. However, there are very limited experimental data to support the association of PM2.5 with lung carcinogenesis and to compare PM2.5 with smoking carcinogens. Methods To study whether PM2.5 can contribute to lung tumorigenesis in a way similar to smoking carcinogen 4-methylnitrosamino-l-3-pyridyl-butanone (NNK) via 15-lipoxygenases (15-LOXs) reduction, normal lung epithelial cells and cancer cells were treated with NNK or PM2.5 and then epigenetically and post-translationally examined the cellular and molecular profiles of the cells. The data were verified in lung cancer samples and a mouse lung tumor model. Results We found that similar to smoking carcinogen NNK, PM2.5 significantly enhanced cell proliferation, migration and invasion, but reduced the levels of 15-lipoxygenases-1 (15-LOX1) and 15-lipoxygenases-2 (15-LOX2), both of which were also obviously decreased in lung cancer tissues. 15-LOX1/15-LOX2 overexpression inhibited the oncogenic cell functions induced by PM2.5/NNK. The tumor formation and growth were significantly higher/faster in mice implanted with PM2.5- or NNK-treated NCI-H23 cells, accompanied with a reduction of 15-LOX1/15-LOX2. Moreover, 15-LOX1 expression was epigenetically regulated at methylation level by PM2.5/NNK, while both 15-LOX1 and 15-LOX2 could be significantly inhibited by a set of PM2.5/NNK-mediated microRNAs. Conclusion Collectively, PM2.5 can function as the smoking carcinogen NNK to induce lung tumorigenesis by inhibiting 15-LOX1/15-LOX2. Electronic supplementary material The online version of this article (10.1186/s13046-019-1380-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Li-Zhong Liu
- Faculty of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Wende Li
- Guangdong Key Laboratory of Laboratory Animal, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Calvin S H Ng
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Yi Liu
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong.,Guangdong Medical College, Zhangjiang, Guangdong, China
| | - Angel W Y Kong
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Zhili Zhao
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Haolong Qi
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Hao Jia
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen, Shenzhen, China
| | - Jing Du
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiang Long
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Rocky L K Ho
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Ernest C W Chak
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Innes Y P Wan
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Tony S K Mok
- Department of Clinical Oncology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Malcolm J Underwood
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Nirmal Kumar Gali
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhi Ning
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - George G Chen
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
32
|
Adams RA, Potter S, Bérubé K, Higgins TP, Jones TP, Evans SA. Prolonged systemic inflammation and damage to the vascular endothelium following intratracheal instillation of air pollution nanoparticles in rats. Clin Hemorheol Microcirc 2019; 72:1-10. [DOI: 10.3233/ch-180377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Rachel A. Adams
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Stephen Potter
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Kelly Bérubé
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Timothy P. Jones
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
| | - Shelley-Ann Evans
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
33
|
Hockenberry MJ, Pan W, Scheurer ME, Hooke MC, Taylor O, Koerner K, Montgomery D, Whitman S, Mitby P, Moore I. Influence of Inflammatory and Oxidative Stress Pathways on Longitudinal Symptom Experiences in Children With Leukemia. Biol Res Nurs 2019; 21:458-465. [PMID: 31315444 DOI: 10.1177/1099800419863160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE The purpose of this study was to explore the influence of oxidative stress (F2-isoprostanes) and inflammatory (interleukin [IL]-8) biomarkers on symptom trajectories during the first 18 months of childhood leukemia treatment. METHOD A repeated-measures design was used to evaluate symptoms experienced by 218 children during treatment. A symptom cluster (fatigue, pain, and nausea) was explored over four time periods: initiation of post-induction therapy, 4 and 8 months into post-induction therapy, and the beginning of maintenance therapy (12 months postinduction). F2-isoprostanes and IL-8 were evaluated in cerebrospinal fluid (CSF) samples collected at baseline (diagnosis) and then at the four time periods. The longitudinal relationships of these biomarkers with the symptom cluster were examined using the longitudinal parallel process. RESULTS Pain and fatigue levels were highest during the post-induction phases of treatment and decreased slightly during maintenance therapy, while nausea scores were relatively stable. Even in the later phases of treatment, children continued to experience symptoms. CSF levels of the biomarkers increased during the post-induction phases of treatment. Early increases in the biomarkers were associated with more severe symptoms during the same period; patients who had increased biomarkers over time also experienced more severe symptoms over time. CONCLUSIONS Findings reveal that children experienced symptoms throughout the course of leukemia treatment and support hypothesized longitudinal relationships of oxidative stress and inflammatory biomarkers with symptom severity. Activation of the biomarker pathways during treatment may explain underlying mechanisms of symptom experiences and identify which children are at risk for severe symptoms.
Collapse
Affiliation(s)
| | - Wei Pan
- 1 School of Nursing, Duke University, Durham, NC, USA
| | - Michael E Scheurer
- 2 Baylor College of Medicine, Houston, TX, USA.,3 Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Mary C Hooke
- 4 School of Nursing, University of Minnesota, Minneapolis, MN, USA
| | - Olga Taylor
- 2 Baylor College of Medicine, Houston, TX, USA.,3 Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Kari Koerner
- 5 College of Nursing, University of Arizona, Tucson, AZ, USA
| | | | - Susan Whitman
- 5 College of Nursing, University of Arizona, Tucson, AZ, USA
| | | | - Ida Moore
- 5 College of Nursing, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
34
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
35
|
Liou TG, Adler FR, Argel N, Asfour F, Brown PS, Chatfield BA, Daines CL, Durham D, Francis JA, Glover B, Heynekamp T, Hoidal JR, Jensen JL, Keogh R, Kopecky CM, Lechtzin N, Li Y, Lysinger J, Molina O, Nakamura C, Packer KA, Poch KR, Quittner AL, Radford P, Redway AJ, Sagel SD, Sprandel S, Taylor-Cousar JL, Vroom JB, Yoshikawa R, Clancy JP, Elborn JS, Olivier KN, Cox DR. Prospective multicenter randomized patient recruitment and sample collection to enable future measurements of sputum biomarkers of inflammation in an observational study of cystic fibrosis. BMC Med Res Methodol 2019; 19:88. [PMID: 31027503 PMCID: PMC6485181 DOI: 10.1186/s12874-019-0705-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Biomarkers of inflammation predictive of cystic fibrosis (CF) disease outcomes would increase the power of clinical trials and contribute to better personalization of clinical assessments. A representative patient cohort would improve searching for believable, generalizable, reproducible and accurate biomarkers. METHODS We recruited patients from Mountain West CF Consortium (MWCFC) care centers for prospective observational study of sputum biomarkers of inflammation. After informed consent, centers enrolled randomly selected patients with CF who were clinically stable sputum producers, 12 years of age and older, without previous organ transplantation. RESULTS From December 8, 2014 through January 16, 2016, we enrolled 114 patients (53 male) with CF with continuing data collection. Baseline characteristics included mean age 27 years (SD = 12), 80% predicted forced expiratory volume in 1 s (SD = 23%), 1.0 prior year pulmonary exacerbations (SD = 1.2), home elevation 328 m (SD = 112) above sea level. Compared with other patients in the US CF Foundation Patient Registry (CFFPR) in 2014, MWCFC patients had similar distribution of sex, age, lung function, weight and rates of exacerbations, diabetes, pancreatic insufficiency, CF-related arthropathy and airway infections including methicillin-sensitive or -resistant Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, fungal and non-tuberculous Mycobacteria infections. They received CF-specific treatments at similar frequencies. CONCLUSIONS Randomly-selected, sputum-producing patients within the MWCFC represent sputum-producing patients in the CFFPR. They have similar characteristics, lung function and frequencies of pulmonary exacerbations, microbial infections and use of CF-specific treatments. These findings will plausibly make future interpretations of quantitative measurements of inflammatory biomarkers generalizable to sputum-producing patients in the CFFPR.
Collapse
Affiliation(s)
- Theodore G. Liou
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132 USA
- Intermountain Pediatric Cystic Fibrosis Center, Division of Pediatric Pulmonology, Department of Pediatrics, University of Utah, 81 North Mario Capecchi Drive, Salt Lake City, UT 84113 USA
| | - Frederick R. Adler
- Departments of Mathematics, University of Utah, 155 South 1400 east, JWB 233, Salt Lake City, UT 84112 USA
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112 USA
| | - Natalia Argel
- Cystic Fibrosis Center, Phoenix Children’s Hospital, 1919 East Thomas Road, Phoenix, AZ 85016 USA
| | - Fadi Asfour
- Intermountain Pediatric Cystic Fibrosis Center, Division of Pediatric Pulmonology, Department of Pediatrics, University of Utah, 81 North Mario Capecchi Drive, Salt Lake City, UT 84113 USA
| | - Perry S. Brown
- St. Luke’s Cystic Fibrosis Center of Idaho, 610 W. Hays Street, Boise, ID 83702 USA
| | - Barbara A. Chatfield
- Intermountain Pediatric Cystic Fibrosis Center, Division of Pediatric Pulmonology, Department of Pediatrics, University of Utah, 81 North Mario Capecchi Drive, Salt Lake City, UT 84113 USA
| | - Cori L. Daines
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, AZ 85724 USA
| | - Dixie Durham
- St. Luke’s Cystic Fibrosis Center of Idaho, 610 W. Hays Street, Boise, ID 83702 USA
| | - Jessica A. Francis
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132 USA
| | - Barbara Glover
- Cystic Fibrosis Center, 3006 S. Maryland Pkwy, Suite #315, Las Vegas, NV 89109 USA
| | - Theresa Heynekamp
- Adult Cystic Fibrosis Program, Division of Pulmonary, Critical Care and Sleep Medicine, DoIM MSC10-5550, 1 University of New Mexico, Albuquerque, NM 87131 USA
| | - John R. Hoidal
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132 USA
| | - Judy L. Jensen
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132 USA
| | - Ruth Keogh
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Room G36, Keppel Street, London, WC1E 7HT UK
| | - Carol M. Kopecky
- Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, 13123 East 16th Avenue, Aurora, CO 80045 USA
| | - Noah Lechtzin
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD 21287 USA
| | - Yanping Li
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132 USA
| | - Jerimiah Lysinger
- Montana Cystic Fibrosis Center, Billings Clinic, 2800 10th Avenue N, Billings, MT 59101 USA
| | - Osmara Molina
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, AZ 85724 USA
| | - Craig Nakamura
- Cystic Fibrosis Center, 3006 S. Maryland Pkwy, Suite #315, Las Vegas, NV 89109 USA
| | - Kristyn A. Packer
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132 USA
| | - Katie R. Poch
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - Alexandra L. Quittner
- Former: Department of Psychology, University of Miami, Miami, FL USA
- Present Address: Miami Children’s Research Institute, Nicklaus Children’s Hospital, 3100 SW 62nd Ave, Miami, FL 33155 USA
| | - Peggy Radford
- Cystic Fibrosis Center, Phoenix Children’s Hospital, 1919 East Thomas Road, Phoenix, AZ 85016 USA
| | - Abby J. Redway
- Adult Cystic Fibrosis Program, Division of Pulmonary, Critical Care and Sleep Medicine, DoIM MSC10-5550, 1 University of New Mexico, Albuquerque, NM 87131 USA
| | - Scott D. Sagel
- Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, 13123 East 16th Avenue, Aurora, CO 80045 USA
| | - Shawna Sprandel
- Montana Cystic Fibrosis Center, Billings Clinic, 2800 10th Avenue N, Billings, MT 59101 USA
| | - Jennifer L. Taylor-Cousar
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
- Division of Pulmonology, Department of Pediatrics, National Jewish Health, 1400 Jackson St, Denver, CO 80206 USA
| | - Jane B. Vroom
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132 USA
- Intermountain Pediatric Cystic Fibrosis Center, Division of Pediatric Pulmonology, Department of Pediatrics, University of Utah, 81 North Mario Capecchi Drive, Salt Lake City, UT 84113 USA
| | - Ryan Yoshikawa
- Cystic Fibrosis Center, 3006 S. Maryland Pkwy, Suite #315, Las Vegas, NV 89109 USA
| | - John P. Clancy
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3026 USA
| | - J. Stuart Elborn
- Faculty of Medicine, Health and Life Sciences, Queen’s University Belfast, 90 Lisburn Road, Belfast, BT9 6AG UK
| | - Kenneth N. Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive MSC1454, Building 10-CRC, Room 1408A, Bethesda, MD 20892 USA
| | | |
Collapse
|
36
|
Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res 2019; 8. [PMID: 31069060 PMCID: PMC6489989 DOI: 10.12688/f1000research.18411.1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Airway neutrophilia is a common feature of many chronic inflammatory lung diseases and is associated with disease progression, often regardless of the initiating cause. Neutrophils and their products are thought to be key mediators of the inflammatory changes in the airways of patients with chronic obstructive pulmonary disease (COPD) and have been shown to cause many of the pathological features associated with disease, including emphysema and mucus hypersecretion. Patients with COPD also have high rates of bacterial colonisation and recurrent infective exacerbations, suggesting that neutrophil host defence mechanisms are impaired, a concept supported by studies showing alterations to neutrophil migration, degranulation and reactive oxygen species production in cells isolated from patients with COPD. Although the role of neutrophils is best described in COPD, many of the pathological features of this disease are not unique to COPD and also feature in other chronic inflammatory airway diseases, including asthma, cystic fibrosis, alpha-1 anti-trypsin deficiency, and bronchiectasis. There is increasing evidence for immune cell dysfunction contributing to inflammation in many of these diseases, focusing interest on the neutrophil as a key driver of pulmonary inflammation and a potential therapeutic target than spans diseases. This review discusses the evidence for neutrophilic involvement in COPD and also considers their roles in alpha-1 anti-trypsin deficiency, bronchiectasis, asthma, and cystic fibrosis. We provide an in-depth assessment of the role of the neutrophil in each of these conditions, exploring recent advances in understanding, and finally discussing the possibility of common mechanisms across diseases.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - William J McIver
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Georgia M Walton
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| |
Collapse
|
37
|
Vencken S, Foged C, Ramsey JM, Sweeney L, Cryan SA, MacLoughlin RJ, Greene CM. Nebulised lipid-polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open Res 2019; 5:00161-2018. [PMID: 30972350 PMCID: PMC6452044 DOI: 10.1183/23120541.00161-2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Modulation of microRNAs (miRNAs), endogenous regulators of gene expression, is a promising strategy for tackling inflammatory lung diseases. In this proof-of-concept study, we tested delivery of miR-17 to bronchial epithelial cells (BECs) using nebulised lipid-polymer hybrid nanoparticles (LPNs). The primary aim was to reduce the induced secretion of miR-17's target, i.e. the pro-inflammatory chemokine interleukin (IL)-8. Synthetic miR-17 mimics were loaded into LPNs composed of poly(dl-lactic-co-glycolic acid) (PLGA) and the cationic lipid 1,2-dioleoyloxy-3-(trimethylammonium)propane (DOTAP) using a double emulsion solvent evaporation method and nebulised using the Aerogen Solo nebuliser. The physicochemical, aerosol, inflammatory and cytotoxic properties of LPNs were characterised. The effect of LPNs on lipopolysaccharide (LPS)-induced IL-8 production from human NuLi-1 BECs was tested by ELISA. The z-average, polydispersity index and ζ-potential of the LPNs and the aerodynamic properties of nebulised suspensions were in a range optimal for deposition in the bronchi and bronchioles post-inhalation. Cytotoxic and pro-inflammatory effects were minimal for LPNs loaded with a model cargo. Nebulisation did not affect the physicochemical or functional properties of the LPNs. Nebulised miR-17-loaded LPNs downregulated LPS-induced IL-8 secretion by >40% in BECs. This study suggests that DOTAP-modified PLGA LPNs are efficient and well-tolerated carriers for delivery of miRNA mimics to BECs.
Collapse
Affiliation(s)
- Sebastian Vencken
- Lung Biology Group, Dept of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Camilla Foged
- Dept of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanne M Ramsey
- Drug Delivery and Advanced Materials Team and Tissue Engineering Research Group, School of Pharmacy and Dept of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Sally-Ann Cryan
- Drug Delivery and Advanced Materials Team and Tissue Engineering Research Group, School of Pharmacy and Dept of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CURAM), Royal College of Surgeons in Ireland, Dublin and NUI Galway, Galway, Ireland
| | | | - Catherine M Greene
- Lung Biology Group, Dept of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
38
|
Enns CB, Harding JCS, Loewen ME. Decreased electrogenic anionic secretory response in the porcine colon following in vivo challenge with Brachyspira spp. supports an altered mucin environment. Am J Physiol Gastrointest Liver Physiol 2019; 316:G495-G508. [PMID: 30629469 DOI: 10.1152/ajpgi.00348.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brachyspira spp. cause diarrheal disease in multiple animal species by colonization of the colon, resulting in colitis, mucus induction, and disrupted ion transport. Unique to spirochete pathogenesis is the immense production of mucus, resulting in a niche mucin environment likely favoring spirochete colonization. Mucin rheological properties are heavily influenced by anionic secretion, and loss of secretory function has been implicated in diseases such as cystic fibrosis. Here, the effects on the agonist-induced electrogenic anionic secretory response by infectious colonic spirochete bacteria Brachyspira hyodysenteriae and Brachyspira hampsonii were assessed in the proximal, apex, and distal sections of colon in Ussing chambers. Activation of secretion via isoproterenol, carbachol, and forskolin/3-isobutyl-1-methylxanthine demonstrated a significantly decreased change in short-circuit current ( Isc) in Brachyspira-infected pigs in all sections. Tissue resistances did not account for this difference, rather, it was attributed to a decrease in anionic secretion as indicated by a decrease in bumetanide inhibitable Isc. Quantitative RT-PCR and Western blot analyses determined that the major anionic channels of the epithelium were downregulated in diarrheic pigs paired with altered mucin gene expression. The investigated cytokines were not responsible for the downregulation of anion channel gene transcripts. Although IL-1α was upregulated in all segments, it did not alter cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in Caco-2 monolayers. However, a whole cell Brachyspira hampsonii lysate significantly reduced CFTR mRNA expression in Caco-2 monolayers. Together, these findings indicate that these two Brachyspira spp. may directly cause a decreased anionic secretory response in the porcine colon, supporting an altered mucin environment likely favoring spirochete colonization. NEW & NOTEWORTHY This research demonstrates for the first time that the niche mucin environment produced by two infectious spirochete spp. is supported by a decrease in the electrogenic anionic secretory response throughout the porcine colon. Our findings suggest that the host's cytokine response is not likely responsible for the decrease in anionic secretory function. Rather, it appears that Brachyspira spp. directly impede ion channel transcription and translation, potentially altering colonic mucin rheological properties, which may favor spirochete colonization.
Collapse
Affiliation(s)
- Cole B Enns
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
39
|
Safety and efficacy of the human neutrophil elastase inhibitor BAY 85-8501 for the treatment of non-cystic fibrosis bronchiectasis: A randomized controlled trial. Pulm Pharmacol Ther 2019; 56:86-93. [PMID: 30917927 DOI: 10.1016/j.pupt.2019.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND There are only limited treatment options for patients with non-cystic fibrosis bronchiectasis (non-CF BE). Human neutrophil elastase (HNE) is a mediator of tissue destruction in non-CF BE. BAY 85-8501, a selective and reversible HNE inhibitor, could represent a new treatment option for this disease. METHODS This was a phase 2a, randomized, placebo-controlled, double-blind, parallel-group study. The primary objective was to assess the safety and tolerability of 1 mg BAY 85-8501 once daily (OD) for 28 days compared with placebo in patients with non-CF BE. Secondary objectives were to investigate the effects of 4 weeks of treatment with BAY 85-8501 on health-related quality of life, pulmonary function, and inflammatory and tissue damage biomarkers in sputum, blood and/or urine, and to evaluate the pharmacokinetics of BAY 85-8501. RESULTS Overall, 94 patients (mean age, 66 years; 53% male) were randomized (n = 47 per group), and 82 completed the study (BAY 85-8501, n = 37; placebo, n = 45). Treatment-emergent adverse events (TEAEs) occurred in 31 patients (66%) taking BAY 85-8501 and in 36 patients (77%) taking placebo, and were mostly mild or moderate. The serious TEAEs (BAY 85-8501, n = 3; placebo, n = 1) were not considered to be study-drug related. There were no changes in pulmonary function parameters from baseline to end of treatment, and health-related quality of life did not improve in any group. HNE activity in blood after zymosan challenge decreased significantly with BAY 85-8501 treatment (P = 0.0250 versus placebo). There were no significant differences in other biomarkers between treatment groups, with the exception of a small increase in interleukin-8 levels in sputum in the BAY 85-8501 group. Trough plasma concentrations of BAY 85-8501 plateaued after 2 weeks. CONCLUSIONS 1 mg BAY 85-8501 OD had a favourable safety and tolerability profile when administered for 28 days to patients with non-CF BE. Further studies with a longer treatment duration are needed to evaluate the potential clinical efficacy in this study population.
Collapse
|
40
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
41
|
McElvaney OJ, Gunaratnam C, McElvaney OF, Bagwe I, Reeves EP, McElvaney NG. Emerging pharmacotherapies in cystic fibrosis. Expert Rev Respir Med 2018; 12:843-855. [DOI: 10.1080/17476348.2018.1512409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Cedric Gunaratnam
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Oisin Fiachra McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Isha Bagwe
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
42
|
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 2018; 22:687-701. [PMID: 30028216 DOI: 10.1080/14728222.2018.1501361] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.
Collapse
Affiliation(s)
- Patrick J Moore
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA
| | - Robert Tarran
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
43
|
Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema. Proc Natl Acad Sci U S A 2018; 115:2788-2793. [PMID: 29453277 PMCID: PMC5856518 DOI: 10.1073/pnas.1713689115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease affects 10% of the worldwide population, and the leading genetic cause is a genetic disease, α-1 antitrypsin (AAT) deficiency. Humans have only one gene that codes for the AAT protein, but mice have up to six, which made it impossible for decades to create a mouse model of the disease. Here we succeeded in creating this mouse model using CRISPR technology to target all of the mouse genes at once. Importantly, this mouse model spontaneously develops lung disease and recapitulates many aspects of the human disease. We anticipate that this model will be highly relevant not only to the preclinical development of therapeutics for AAT deficiency, but also to emphysema and smoking research. Chronic obstructive pulmonary disease affects 10% of the worldwide population, and the leading genetic cause is α-1 antitrypsin (AAT) deficiency. Due to the complexity of the murine locus, which includes up to six Serpina1 paralogs, no genetic animal model of the disease has been successfully generated until now. Here we create a quintuple Serpina1a–e knockout using CRISPR/Cas9-mediated genome editing. The phenotype recapitulates the human disease phenotype, i.e., absence of hepatic and circulating AAT translates functionally to a reduced capacity to inhibit neutrophil elastase. With age, Serpina1 null mice develop emphysema spontaneously, which can be induced in younger mice by a lipopolysaccharide challenge. This mouse models not only AAT deficiency but also emphysema and is a relevant genetic model and not one based on developmental impairment of alveolarization or elastase administration. We anticipate that this unique model will be highly relevant not only to the preclinical development of therapeutics for AAT deficiency, but also to emphysema and smoking research.
Collapse
|
44
|
Neutrophil Fates in Bronchiectasis and Alpha-1 Antitrypsin Deficiency. Ann Am Thorac Soc 2018; 13 Suppl 2:S123-9. [PMID: 27115946 DOI: 10.1513/annalsats.201512-805kv] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The neutrophil is a powerful cellular defender of the vulnerable interface between the environment and pulmonary tissues. This cell's potent weapons are carefully calibrated in the healthy state to maximize effectiveness in fighting pathogens while minimizing tissue damage and allowing for repair of what damage does occur. The three related chronic airway disorders of cystic fibrosis, non-cystic fibrosis bronchiectasis, and alpha-1 antitrypsin deficiency all demonstrate significant derangements of this homeostatic system that result in their respective pathologies. An important shared feature among them is the inefficient resolution of chronic inflammation that serves as a central means for neutrophil-driven lung damage resulting in disease progression. Examining the commonalities and divergences between these diseases in the light of their immunopathology is informative and may help guide us toward future therapeutics designed to modulate the neutrophil's interplay with the pulmonary environment.
Collapse
|
45
|
Jaswal S, Saini V, Kaur J, Gupta S, Kaur H, Garg K. Association of Adiponectin with Lung Function Impairment and Disease Severity in Chronic Obstructive Pulmonary Disease. Int J Appl Basic Med Res 2018; 8:14-18. [PMID: 29552529 PMCID: PMC5846212 DOI: 10.4103/ijabmr.ijabmr_65_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Context: Chronic obstructive pulmonary disease (COPD) is not only restricted to the pulmonary inflammation and airway obstruction but is also associated with comorbidities, which affect the therapeutic intervention and the quality of life and survival. Markers that can predict the systemic inflammation and a decline in the pulmonary function are of scientific interest. Adiponectin (APN) appears to be one such biomarker and can be used as a potential indicator of severity and response to treatment in patients of COPD. Aims: The study aims to find out the role of APN as a marker of inflammation in the pathogenesis of COPD and explore its relationship with the severity of the disease. Settings and Design: This was a cross-sectional study. Subjects and Methods: The study group consisted of 60 patients of COPD, which included 30 males admitted with acute exacerbation of COPD (AECOPD) and 30 males with stable COPD. The study group was compared with 30 healthy, age-matched males. APN was estimated by commercially available ELISA kits. Pulmonary function tests were performed on all cases and controls using standardized protocols on SPIROLAB III. Statistical Analysis Used: Statistical analysis was performed using Student's t-test and Pearson's correlation coefficient. Results: The levels of APN were found to be significantly higher in patients with COPD as compared to the controls and the levels increased with the severity of the disease were 16.10 ± 4.97 ng/ml and 11.43 ± 4.22 ng/ml, respectively, in AECOPD and COPD. A significant positive correlation was found between the levels of APN and interleukin (IL)-8 in patients of COPD, while the levels correlated negatively with percentage of forced expiratory volume in 1 s (FEV1%). Conclusions: The results reveal that APN is associated with the inflammatory process of COPD as suggested by its significant inverse relationship with FEV1% and positive correlation with a marker of inflammation such as IL-8. It can thus be used as a biomarker for disease severity and progression in patients of COPD, therefore aiding in risk stratification and therapeutic intervention.
Collapse
Affiliation(s)
- Shivani Jaswal
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Seema Gupta
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Harjeet Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Kranti Garg
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
46
|
Karandashova S, Kummarapurugu AB, Zheng S, Chalfant CE, Voynow JA. Neutrophil elastase increases airway ceramide levels via upregulation of serine palmitoyltransferase. Am J Physiol Lung Cell Mol Physiol 2017; 314:L206-L214. [PMID: 29025713 DOI: 10.1152/ajplung.00322.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Altered sphingolipid metabolism is associated with increased inflammation; however, the impact of inflammatory mediators, including neutrophil elastase (NE), on airway sphingolipid homeostasis remains unknown. Using a well-characterized mouse model of NE oropharyngeal aspiration, we investigated a potential link between NE-induced airway inflammation and increased synthesis of various classes of sphingolipids, including ceramide species. Sphingolipids in bronchoalveolar lavage fluids (BAL) were identified and quantified using reverse-phase high-performance liquid chromatography/electrospray ionization tandem mass spectrometry analysis. BAL total and differential cell counts, CXCL1/keratinocyte chemoattractant (KC) protein levels, and high-mobility group box 1 (HMGB1) protein levels were determined. NE exposure increased BAL long-chain ceramides, total cell and neutrophil counts, and upregulated KC and HMGB1. The mRNA and protein levels of serine palmitoyltransferase (SPT) long-chain subunits 1 and 2, the multimeric enzyme responsible for the first, rate-limiting step of de novo ceramide generation, were determined by qRT-PCR and Western analyses, respectively. NE increased lung SPT long-chain subunit 2 (SPTLC2) protein levels but not SPTLC1 and had no effect on mRNA for either subunit. To assess whether de novo ceramide synthesis was required for NE-induced inflammation, myriocin, a SPT inhibitor, or a vehicle control was administered intraperitoneally 2 h before NE administration. Myriocin decreased BAL d18:1/22:0 and d18:1/24:1 ceramide, KC, and HMGB1 induced by NE exposure. These results support a feed-forward cycle of NE-generated ceramide and ceramide-driven cytokine signaling that may be a potential target for intervention in lung disease typified by chronic neutrophilic inflammation.
Collapse
Affiliation(s)
- Sophia Karandashova
- Center for Clinical and Translational Research, Virginia Commonwealth University , Richmond, Virginia
| | - Apparao B Kummarapurugu
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| | - Shuo Zheng
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| | - Charles E Chalfant
- Dept. of Biochemistry and Molecular Biology, Institute of Molecular Medicine, Johnson Center for Critical Care and Pulmonary Research, and Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia.,Research Service, Hunter Holmes McGuire Veterans Administration Medical Center , Richmond, Virginia
| | - Judith A Voynow
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
47
|
Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8459402. [PMID: 29118897 PMCID: PMC5651112 DOI: 10.1155/2017/8459402] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases, superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide, nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues within different signaling cascades. Thioredoxin family proteins are key regulators of the redox state of proteins. They regulate the formation and removal of oxidative modifications by specific thiol reduction and oxidation. All of these redox enzymes affect inflammatory processes and the innate and adaptive immune response. Interestingly, this regulation involves different mechanisms in different biological compartments and specialized cell types. The localization and activity of distinct proteins including, for instance, the transcription factor NFκB and the immune mediator HMGB1 are redox-regulated. The transmembrane protein ADAM17 releases proinflammatory mediators, such as TNFα, and is itself regulated by a thiol switch. Moreover, extracellular redox enzymes were shown to modulate the activity and migration behavior of various types of immune cells by acting as cytokines and/or chemokines. Within this review article, we will address the concept of redox signaling and the functions of both redox enzymes and redox active molecules in innate and adaptive immune responses.
Collapse
|
48
|
Ojiaku CA, Yoo EJ, Panettieri RA. Transforming Growth Factor β1 Function in Airway Remodeling and Hyperresponsiveness. The Missing Link? Am J Respir Cell Mol Biol 2017; 56:432-442. [PMID: 27854509 DOI: 10.1165/rcmb.2016-0307tr] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of asthma includes a complex interplay among airway inflammation, hyperresponsiveness, and remodeling. Current evidence suggests that airway structural cells, including bronchial smooth muscle cells, myofibroblasts, fibroblasts, and epithelial cells, mediate all three aspects of asthma pathogenesis. Although studies show a connection between airway remodeling and changes in bronchomotor tone, the relationship between the two remains unclear. Transforming growth factor β1 (TGF-β1), a growth factor elevated in the airway of patients with asthma, plays a role in airway remodeling and in the shortening of various airway structural cells. However, the role of TGF-β1 in mediating airway hyperresponsiveness remains unclear. In this review, we summarize the literature addressing the role of TGF-β1 in airway remodeling and shortening. Through our review, we aim to further elucidate the role of TGF-β1 in asthma pathogenesis and the link between airway remodeling and airway hyperresponsiveness in asthma and to define TGF-β1 as a potential therapeutic target for reducing asthma morbidity and mortality.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Edwin J Yoo
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Reynold A Panettieri
- 2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
49
|
Abstract
Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis.
Collapse
|
50
|
Mikumo H, Yanagihara T, Hamada N, Harada E, Ogata-Suetsugu S, Ikeda-Harada C, Arimura-Omori M, Suzuki K, Yokoyama T, Nakanishi Y. Neutrophil elastase inhibitor sivelestat ameliorates gefitinib-naphthalene-induced acute pneumonitis in mice. Biochem Biophys Res Commun 2017; 486:205-209. [DOI: 10.1016/j.bbrc.2017.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 10/20/2022]
|