1
|
Li X, Zhang X, Wen X, Zhang D, Qu C, Miao X, Zhang W, Zhang R, Liu G, Xiao P, Sun JP, Gong W. Structural basis for ligand recognition and activation of the prostanoid receptors. Cell Rep 2024; 43:113893. [PMID: 38446662 DOI: 10.1016/j.celrep.2024.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Prostaglandin F2α (PGF2α) and thromboxane A2 (TXA2) are endogenous arachidonic acid metabolites, modulating diverse physiological processes including inflammation and cardiovascular homeostasis through activating PGF2α receptor (FP) and TXA2 receptor (TP). Ligands targeting FP and TP have demonstrated efficacy in treating conditions like glaucoma and cardiovascular diseases in humans, as well as reproductive-related diseases in animals. Here, we present five cryoelectron microscopy structures illustrating FP and TP in complex with Gq and bound to PGF2α (endogenous ligand), latanoprost acid (a clinical drug), and two other synthetic agonists. Combined with mutational and functional studies, these structures reveal not only structural features for the specific recognition of endogenous ligands and attainment of receptor selectivity of FP and TP but also the common mechanisms of receptor activation and Gq protein coupling. The findings may enrich our knowledge of ligand recognition and signal transduction of the prostanoid receptor family and facilitate rational ligand design toward these two receptors.
Collapse
Affiliation(s)
- Xiu Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Changxiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinyi Miao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenkai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ru Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guibing Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Weimin Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Ashton AW. Preparing to strike: Acute events in signaling by the serpentine receptor for thromboxane A 2. Pharmacol Ther 2023:108478. [PMID: 37321373 DOI: 10.1016/j.pharmthera.2023.108478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPβ) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.
Collapse
Affiliation(s)
- Anthony W Ashton
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Rm 128, 100 E Lancaster Ave, Wynnewood, PA 19096, USA; Division of Perinatal Research, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
3
|
Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59:405-444. [PMID: 35341454 DOI: 10.1080/10408363.2022.2049199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inherited platelet disorders are important conditions that often manifest with bleeding. These disorders have heterogeneous underlying pathologies. Some are syndromic disorders with non-blood phenotypic features, and others are associated with an increased predisposition to developing myelodysplasia and leukemia. Platelet disorders can present with thrombocytopenia, defects in platelet function, or both. As the underlying pathogenesis of inherited thrombocytopenias and platelet function disorders are quite diverse, their evaluation requires a thorough clinical assessment and specialized diagnostic tests, that often challenge diagnostic laboratories. At present, many of the commonly encountered, non-syndromic platelet disorders do not have a defined molecular cause. Nonetheless, significant progress has been made over the past few decades to improve the diagnostic evaluation of inherited platelet disorders, from the assessment of the bleeding history to improved standardization of light transmission aggregometry, which remains a "gold standard" test of platelet function. Some platelet disorder test findings are highly predictive of a bleeding disorder and some show association to symptoms of prolonged bleeding, surgical bleeding, and wound healing problems. Multiple assays can be required to diagnose common and rare platelet disorders, each requiring control of preanalytical, analytical, and post-analytical variables. The laboratory investigations of platelet disorders include evaluations of platelet counts, size, and morphology by light microscopy; assessments for aggregation defects; tests for dense granule deficiency; analyses of granule constituents and their release; platelet protein analysis by immunofluorescent staining or flow cytometry; tests of platelet procoagulant function; evaluations of platelet ultrastructure; high-throughput sequencing and other molecular diagnostic tests. The focus of this article is to review current methods for the diagnostic assessment of platelet function, with a focus on contemporary, best diagnostic laboratory practices, and relationships between clinical and laboratory findings.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
4
|
Biringer RG. A Review of Prostanoid Receptors: Expression, Characterization, Regulation, and Mechanism of Action. J Cell Commun Signal 2021; 15:155-184. [PMID: 32970276 PMCID: PMC7991060 DOI: 10.1007/s12079-020-00585-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain to cell survival. Disruption of normal prostanoid signaling is implicated in numerous disease states. Prostaglandin signaling is facilitated by G-protein-coupled, prostanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of prostanoid receptors with particular emphasis on human isoforms.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
5
|
Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106:337-350. [PMID: 33147934 PMCID: PMC7849565 DOI: 10.3324/haematol.2020.248153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited platelet disorders resulting from platelet function defects and a normal platelet count cause a moderate or severe bleeding diathesis. Since the description of Glanzmann thrombasthenia resulting from defects of ITGA2B and ITGB3, new inherited platelet disorders have been discovered, facilitated by the use of high throughput sequencing and genomic analyses. Defects of RASGRP2 and FERMT3 responsible for severe bleeding syndromes and integrin activation have illustrated the critical role of signaling molecules. Important are mutations of P2RY12 encoding the major ADP receptor causal for an inherited platelet disorder with inheritance characteristics that depend on the variant identified. Interestingly, variants of GP6 encoding the major subunit of the collagen receptor GPVI/FcRγ associate only with mild bleeding. The numbers of genes involved in dense granule defects including Hermansky-Pudlak and Chediak Higashi syndromes continue to progress and are updated. The ANO6 gene encoding a Ca2+-activated ion channel required for phospholipid scrambling is responsible for the rare Scott syndrome and decreased procoagulant activity. A novel EPHB2 defect in a familial bleeding syndrome demonstrates a role for this tyrosine kinase receptor independent of the classical model of its interaction with ephrins. Such advances highlight the large diversity of variants affecting platelet function but not their production, despite the difficulties in establishing a clear phenotype when few families are affected. They have provided insights into essential pathways of platelet function and have been at the origin of new and improved therapies for ischemic disease. Nevertheless, many patients remain without a diagnosis and requiring new strategies that are now discussed.
Collapse
Affiliation(s)
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Remi Favier
- French National Reference Center for Inherited Platelet Disorders, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris
| | | |
Collapse
|
6
|
Winfield I, Barkan K, Routledge S, Robertson NJ, Harris M, Jazayeri A, Simms J, Reynolds CA, Poyner DR, Ladds G. The Role of ICL1 and H8 in Class B1 GPCRs; Implications for Receptor Activation. Front Endocrinol (Lausanne) 2021; 12:792912. [PMID: 35095763 PMCID: PMC8796428 DOI: 10.3389/fendo.2021.792912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The first intracellular loop (ICL1) of G protein-coupled receptors (GPCRs) has received little attention, although there is evidence that, with the 8th helix (H8), it is involved in early conformational changes following receptor activation as well as contacting the G protein β subunit. In class B1 GPCRs, the distal part of ICL1 contains a conserved R12.48KLRCxR2.46b motif that extends into the base of the second transmembrane helix; this is weakly conserved as a [R/H]12.48KL[R/H] motif in class A GPCRs. In the current study, the role of ICL1 and H8 in signaling through cAMP, iCa2+ and ERK1/2 has been examined in two class B1 GPCRs, using mutagenesis and molecular dynamics. Mutations throughout ICL1 can either enhance or disrupt cAMP production by CGRP at the CGRP receptor. Alanine mutagenesis identified subtle differences with regard elevation of iCa2+, with the distal end of the loop being particularly sensitive. ERK1/2 activation displayed little sensitivity to ICL1 mutation. A broadly similar pattern was observed with the glucagon receptor, although there were differences in significance of individual residues. Extending the study revealed that at the CRF1 receptor, an insertion in ICL1 switched signaling bias between iCa2+ and cAMP. Molecular dynamics suggested that changes in ICL1 altered the conformation of ICL2 and the H8/TM7 junction (ICL4). For H8, alanine mutagenesis showed the importance of E3908.49b for all three signal transduction pathways, for the CGRP receptor, but mutations of other residues largely just altered ERK1/2 activation. Thus, ICL1 may modulate GPCR bias via interactions with ICL2, ICL4 and the Gβ subunit.
Collapse
MESH Headings
- Amino Acid Motifs/physiology
- Calcitonin Receptor-Like Protein/metabolism
- Calcitonin Receptor-Like Protein/physiology
- Calcitonin Receptor-Like Protein/ultrastructure
- Calcium Signaling
- Cyclic AMP/metabolism
- HEK293 Cells
- Humans
- MAP Kinase Signaling System
- Molecular Dynamics Simulation
- Protein Domains
- Protein Structure, Tertiary
- Receptor Activity-Modifying Protein 1/metabolism
- Receptor Activity-Modifying Protein 1/physiology
- Receptor Activity-Modifying Protein 1/ultrastructure
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Receptors, Calcitonin Gene-Related Peptide/physiology
- Receptors, Calcitonin Gene-Related Peptide/ultrastructure
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/physiology
- Receptors, Corticotropin-Releasing Hormone/ultrastructure
- Receptors, G-Protein-Coupled
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/physiology
- Receptors, Glucagon/ultrastructure
Collapse
Affiliation(s)
- Ian Winfield
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Kerry Barkan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Routledge
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - John Simms
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | | - David R. Poyner
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- *Correspondence: Graham Ladds, ; David R. Poyner,
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Graham Ladds, ; David R. Poyner,
| |
Collapse
|
7
|
Fernández DI, Kuijpers MJE, Heemskerk JWM. Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets 2020; 32:863-871. [PMID: 33356720 DOI: 10.1080/09537104.2020.1859103] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most agonists stimulate platelet Ca2+ rises via G-protein coupled receptors (GPCRs) or ITAM-linked receptors (ILRs). Well studied are the GPCRs stimulated by the soluble agonists thrombin (PAR1, PAR4), ADP (P2Y1, P2Y12), and thromboxane A2 (TP), signaling via phospholipase (PLC)β isoforms. The platelet ILRs glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2), and FcγRIIa are stimulated by adhesive ligands or antibody complexes and signal via tyrosine protein kinases and PLCγ isoforms. Marked differences exist between the GPCR- and ILR-induced Ca2+ signaling in: (i) dependency of tyrosine phosphorylation; (ii) oscillatory versus continued Ca2+ rises by mobilization from the endoplasmic reticulum; and (iii) smaller or larger role of extracellular Ca2+ entry via STIM1/ORAI1. Co-stimulation of both types of receptors, especially by thrombin (PAR1/4) and collagen (GPVI), leads to a highly enforced Ca2+ rise, involving mitochondrial Ca2+ release, which activates the ion and phospholipid channel, anoctamin-6. This highly Ca2+-dependent process causes swelling, ballooning, and phosphatidylserine expression, establishing a unique platelet population swinging between vital and necrotic (procoagulant 'zombie' platelets). Additionally, the high Ca2+ status of procoagulant platelets induces a set of additional events: (i) Ca2+ dependent cleavage of signaling proteins and receptors via calpain and ADAM isoforms; (ii) microvesiculation; (iii) enhanced coagulation factor binding; and (iv) fibrin-coat formation involving transglutaminases. Given the additive roles of GPCR and ILR in Ca2+ signal generation, high-throughput screening of biomolecules or small molecules based on Ca2+ flux measurements provides a promising way to find new inhibitors interfering with prolonged high Ca2+, phosphatidylserine expression, and hence platelet procoagulant activity.
Collapse
Affiliation(s)
- Delia I Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Braune S, Küpper JH, Jung F. Effect of Prostanoids on Human Platelet Function: An Overview. Int J Mol Sci 2020; 21:ijms21239020. [PMID: 33260972 PMCID: PMC7730041 DOI: 10.3390/ijms21239020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors.
Collapse
|
9
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
10
|
Jung N, Shim YJ. Current Knowledge on Inherited Platelet Function Disorders. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2020. [DOI: 10.15264/cpho.2020.27.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nani Jung
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| |
Collapse
|
11
|
Alessi MC, Sié P, Payrastre B. Strengths and Weaknesses of Light Transmission Aggregometry in Diagnosing Hereditary Platelet Function Disorders. J Clin Med 2020; 9:jcm9030763. [PMID: 32178287 PMCID: PMC7141357 DOI: 10.3390/jcm9030763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Hereditary defects in platelet function are responsible for sometimes severe mucocutaneous hemorrhages. They are a heterogeneous group of abnormalities whose first-line diagnosis typically involves interpreting the results of in vitro light transmission aggregometry (LTA) traces. Interpretation of LTA is challenging. LTA is usually performed in specialized laboratories with expertise in platelet pathophysiology. This review updates knowledge on LTA, describing the various platelet aggregation profiles typical of hereditary platelet disorders to guide the physician in the diagnosis of functional platelet disorders.
Collapse
Affiliation(s)
- Marie-Christine Alessi
- Aix Marseille Univ, Inserm, Inrae, C2VN, 13385 Marseille CEDEX, France
- Correspondence: ; Tel.: +33-4-91-32-45-06
| | - Pierre Sié
- CHU de Toulouse, Laboratoire d’Hématologie, 31059 Toulouse CEDEX, France;
| | - Bernard Payrastre
- Inserm U1048, I2MC et Université Paul Sabatier, 31024 Toulouse CEDEX, France;
| |
Collapse
|
12
|
Shim YJ. Genetic classification and confirmation of inherited platelet disorders: current status in Korea. Clin Exp Pediatr 2020; 63:79-87. [PMID: 31477680 PMCID: PMC7073384 DOI: 10.3345/kjp.2019.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Inherited platelet disorders (IPDs), which manifest as primary hemostasis defects, often underlie abnormal bleeding and a family history of thrombocytopenia, bone marrow failure, hematologic malignancies, undefined mucocutaneous bleeding disorder, or congenital bony defects. Wide heterogeneity in IPD types with regard to the presence or absence of thrombocytopenia, platelet dysfunction, bone marrow failure, and dysmegakaryopoiesis is observed in patients. The individual processes involved in platelet production and hemostasis are genetically controlled; to date, mutations of more than 50 genes involved in various platelet biogenesis steps have been implicated in IPDs. Representative IPDs resulting from defects in specific pathways, such as thrombopoietin/MPL signaling; transcriptional regulation; granule formation, trafficking, and secretion; proplatelet formation; cytoskeleton regulation; and transmembrane glycoprotein signaling are reviewed, and the underlying gene mutations are discussed based on the National Center for Biotechnology Information database and Online Mendelian Inheritance in Man accession number. Further, the status and prevalence of genetically confirmed IPDs in Korea are explored based on searches of the PubMed and KoreaMed databases. IPDs are congenital bleeding disorders that can be dangerous due to unexpected bleeding and require genetic counseling for family members and descendants. Therefore, the pediatrician should be suspicious and aware of IPDs and perform the appropriate tests if the patient has unexpected bleeding. However, all IPDs are extremely rare; thus, the domestic incidences of IPDs are unclear and their diagnosis is difficult. Diagnostic confirmation or differential diagnoses of IPDs are challenging, time-consuming, and expensive, and patients are frequently misdiagnosed. Comprehensive molecular characterization and classification of these disorders should enable accurate and precise diagnosis and facilitate improved patient management.
Collapse
Affiliation(s)
- Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| |
Collapse
|
13
|
|
14
|
Cattaneo M. Inherited Disorders of Platelet Function. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Abstract
Platelet activity is regulated by a number of surface expressed G protein-coupled receptors (GPCRs) including the α isoform of the thromboxane receptor (TPα receptor). With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare GPCR variants including in the TBXA2R gene, which encodes the TPα receptor. The study of patients with naturally occurring variants within TBXA2R associated with bleeding and abnormal TPα receptor function has provided a powerful insight in defining the critical role of TPα in thrombus formation. This review will highlight how the identification of these function-disrupting variants of the platelet TPα has contributed important structure-function information about these GPCRs. Further we discuss the potential implications these findings have for understanding the molecular basis of mild platelet based bleeding disorders.
Collapse
Affiliation(s)
- Stuart James Mundell
- a School of Physiology, Pharmacology and Neuroscience , University of Bristol , Bristol , UK
| | - Andrew Mumford
- b School of Clinical Science and School of Cellular and Molecular Medicine , University of Bristol , Bristol , UK
| |
Collapse
|
17
|
De Iuliis V, Ursi S, Pennelli A, Caruso M, Nunziata A, Marino A, Flati V, Cipollone F, Giamberardino MA, Vitullo G, Toniato E, Conti P, Martinotti S. Differential TBXA2 receptor transcript stability is dependent on the C924T polymorphism. Prostaglandins Other Lipid Mediat 2018; 134:141-147. [DOI: 10.1016/j.prostaglandins.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/26/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
|
18
|
Nisar SP, Lordkipanidzé M, Jones ML, Dawood BB, Murden S, Cunningham MR, Mumford AD, Wilde JT, Watson SP, Lowe GC, Mundell SJ. A novel thromboxane A2 receptor N42S variant results in reduced surface expression and platelet dysfunction. Thromb Haemost 2017; 111:923-32. [DOI: 10.1160/th13-08-0672] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/19/2013] [Indexed: 11/05/2022]
Abstract
SummaryA small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function. We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S–expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S–expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function.
Collapse
|
19
|
Capra V, Mauri M, Guzzi F, Busnelli M, Accomazzo MR, Gaussem P, Nisar SP, Mundell SJ, Parenti M, Rovati GE. Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for reduced platelet function in vivo. Biochem Pharmacol 2016; 124:43-56. [PMID: 27845050 DOI: 10.1016/j.bcp.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Thromboxane A2 is a potent mediator of inflammation and platelet aggregation exerting its effects through the activation of a G protein-coupled receptor (GPCR), termed TP. Although the existence of dimers/oligomers in Class A GPCRs is widely accepted, their functional significance still remains controversial. Recently, we have shown that TPα and TPβ homo-/hetero-dimers interact through an interface of residues in transmembrane domain 1 (TM1) whose disruption impairs dimer formation. Here, biochemical and pharmacological characterization of this dimer deficient mutant (DDM) in living cells indicates a significant impairment in its response to agonists. Interestingly, two single loss-of-function TPα variants, namely W29C and N42S recently identified in two heterozygous patients affected by bleeding disorders, match some of the residues mutated in our DDM. These two naturally occurring variants display a reduced potency to TP agonists and are characterized by impaired dimer formation in transfected HEK-293T cells. These findings provide proofs that lack of homo-dimer formation is a crucial process for reduced TPα function in vivo, and might represent one molecular mechanism through which platelet TPα receptor dysfunction affects the patient(s) carrying these mutations.
Collapse
Key Words
- (Z)-7-[(1R,2R,3R,4S)-3-[[2-(phenylcarbamoyl)hydrazinyl]methyl]-7-oxabicyclo[2.2.1]heptan-2-yl]hept-5-enoic acid
- (Z)-7-[(1S,2S,3R,4R)-3-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxabicyclo[2.2.1]heptan-2-yl]hept-5-enoic acid
- (Z)-7-[(1S,2S,3S,4R)-3-[(E,3R)-3-hydroxy-4-(4-iodophenoxy)but-1-enyl]-7-oxabicyclo[2.2.1]heptan-2-yl]hept-5-enoic acid
- (Z)-7-[(1S,3R,4R,5S)-3-[(E,3R)-3-hydroxyoct-1-enyl]-6,6-dimethyl-4-bicyclo[3.1.1]heptanyl]hept-5-enoic acid
- 3-[(3R)-3-[(4-fluorophenyl)sulfonylamino]-1,2,3,4-tetrahydrocarbazol-9-yl]propanoic acid
- Eicosanoids
- G protein coupled receptors
- I-BOP (PubChem CID: 51015454)
- Pinane Thromboxane A2 (PTA2) (PubChem CID: 25834471)
- Platelets
- Ramatroban (PubChem CID: 123879)
- Receptor dimer
- SQ29,548 (PubChem CID: 6437074)
- Signal transduction
- Thromboxane A(2)
- U46619 (PubChem CID: 5311493)
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy; Department of Health Science, University of Milan, Milano, Italy.
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Francesca Guzzi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Marta Busnelli
- CNR, Institute of Neuroscience, University of Milan, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| | - Maria Rosa Accomazzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy.
| | - Pascale Gaussem
- Inserm UMR-S1140, Faculte' de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, Paris and AP-HP, Hopital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France.
| | - Shaista P Nisar
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK.
| | - Stuart J Mundell
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK.
| | - Marco Parenti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
20
|
Gresele P, Falcinelli E, Bury L. Inherited platelet function disorders. Diagnostic approach and management. Hamostaseologie 2016; 36:265-278. [PMID: 27484722 DOI: 10.5482/hamo-16-02-0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/16/2016] [Indexed: 12/25/2022] Open
Abstract
Inherited platelet function disorders (IPFDs) make up a significant proportion of congenital bleeding diatheses, but they remain poorly understood and often difficult to diagnose. Therefore, a rational diagnostic approach, based on a standardized sequence of laboratory tests, with consecutive steps of increasing level of complexity, plays a crucial role in the diagnosis of most IPFDs. In this review we discuss a diagnostic approach through platelet phenotyping and genotyping and we give an overview of the options for the management of bleeding in these disorders and an account of the few systematic studies on the bleeding risk associated with invasive procedures and its treatment.
Collapse
Affiliation(s)
- Paolo Gresele
- Paolo Gresele, MD, PhD, Division of Internal and Cardiovascular Medicine Department of Medicine, University of Perugia, Via E. dal Pozzo, 06126 Perugia, Italy, Tel. +39/07 55 78 39 89, Fax +39/07 55 71 60 83, E-Mail:
| | | | | |
Collapse
|
21
|
Hao Y, Tatonetti NP. Predicting G protein-coupled receptor downstream signaling by tissue expression. Bioinformatics 2016; 32:3435-3443. [PMID: 27485444 DOI: 10.1093/bioinformatics/btw510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/12/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023] Open
Abstract
MOTIVATION G protein-coupled receptors (GPCRs) are central to how cells respond to their environment and a major class of pharmacological targets. However, comprehensive knowledge of which pathways are activated and deactivated by these essential sensors is largely unknown. To better understand the mechanism of GPCR signaling system, we integrated five independent genome-wide expression datasets, representing 275 human tissues and cell lines, with protein-protein interactions and functional pathway data. RESULTS We found that tissue-specificity plays a crucial part in the function of GPCR signaling system. Only a few GPCRs are expressed in each tissue, which are coupled by different combinations of G-proteins or β-arrestins to trigger specific downstream pathways. Based on this finding, we predicted the downstream pathways of GPCR in human tissues and validated our results with L1000 knockdown data. In total, we identified 154,988 connections between 294 GPCRs and 690 pathways in 240 tissues and cell types. AVAILABILITY AND IMPLEMENTATION The source code and results supporting the conclusions of this article are available at http://tatonettilab.org/resources/GOTE/source_code/ CONTACT: nick.tatonetti@columbia.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yun Hao
- Departments of Biomedical Informatics, Systems Biology, and Medicine, Columbia University, New York, NY, 10032, USA
| | - Nicholas P Tatonetti
- Departments of Biomedical Informatics, Systems Biology, and Medicine, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
22
|
Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127:2814-23. [PMID: 27095789 DOI: 10.1182/blood-2016-03-378588] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Variations in platelet number, volume, and function are largely genetically controlled, and many loci associated with platelet traits have been identified by genome-wide association studies (GWASs).(1) The genome also contains a large number of rare variants, of which a tiny fraction underlies the inherited diseases of humans. Research over the last 3 decades has led to the discovery of 51 genes harboring variants responsible for inherited platelet disorders (IPDs). However, the majority of patients with an IPD still do not receive a molecular diagnosis. Alongside the scientific interest, molecular or genetic diagnosis is important for patients. There is increasing recognition that a number of IPDs are associated with severe pathologies, including an increased risk of malignancy, and a definitive diagnosis can inform prognosis and care. In this review, we give an overview of these disorders grouped according to their effect on platelet biology and their clinical characteristics. We also discuss the challenge of identifying candidate genes and causal variants therein, how IPDs have been historically diagnosed, and how this is changing with the introduction of high-throughput sequencing. Finally, we describe how integration of large genomic, epigenomic, and phenotypic datasets, including whole genome sequencing data, GWASs, epigenomic profiling, protein-protein interaction networks, and standardized clinical phenotype coding, will drive the discovery of novel mechanisms of disease in the near future to improve patient diagnosis and management.
Collapse
|
23
|
Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 2015; 35:4021-35. [DOI: 10.1038/onc.2015.467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
|
24
|
Zhang B, Yang X, Tiberi M. Functional importance of two conserved residues in intracellular loop 1 and transmembrane region 2 of Family A GPCRs: insights from ligand binding and signal transduction responses of D1 and D5 dopaminergic receptor mutants. Cell Signal 2015; 27:2014-25. [PMID: 26186971 DOI: 10.1016/j.cellsig.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022]
Abstract
For many G protein-coupled receptors (GPCRs), the role of the first intracellular loop (IL1) and its connections with adjacent transmembrane (TM) regions have not been investigated. Notably, these regions harbor several polar residues such as Ser and Thr. To begin uncovering how these polar residues may contribute to the structural basis for GPCR functionality, we have designed human D1-class receptor mutants (hD1-ST1 and hD5-ST1) whereby all Ser and Thr of IL1 and IL1/TM2 juncture have been replaced by Ala and Val, respectively. Both ST1 mutants exhibited a loss of dopamine affinity but similar binding properties for inverse agonists compared to their parent receptors. As well, these mutations diminished receptor activation for both subtypes, as indicated by an ablated constitutive activity and a pronounced decrease in dopamine potency. Interestingly, both mutants exhibited enhanced dopamine-mediated maximal stimulation (Emax) of adenylyl cyclase that was at least two-fold higher than wild-type. Point mutations for hD1R revealed that the loss in dopamine affinity and potency was attributed to Thr59, while the enhanced Emax of adenylyl cyclase was directly influenced by Ser65. These two residues are conserved among many Family A GPCRs and have recurring molecular interactions among crystallized structures. As such, their functional roles for IL1 and its transition into TM2 reported herein may also be applicable to other GPCRs. Our work thus potentially highlights a structural role of Thr59 and Ser65 in the formation of critical intramolecular interactions for ligand binding and signal transduction of D1-class dopaminergic receptors.
Collapse
Affiliation(s)
- Boyang Zhang
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Xiaodi Yang
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
25
|
Friedman EA, Ogletree ML, Haddad EV, Boutaud O. Understanding the role of prostaglandin E2 in regulating human platelet activity in health and disease. Thromb Res 2015; 136:493-503. [PMID: 26077962 DOI: 10.1016/j.thromres.2015.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/05/2015] [Accepted: 05/25/2015] [Indexed: 01/14/2023]
Abstract
The platelet thrombus is the major pathologic entity in acute coronary syndromes, and antiplatelet agents are a mainstay of therapy. However, individual patient responsiveness to current antiplatelet drugs is variable, and all drugs carry a risk of bleeding. An understanding of the complex role of Prostaglandin E2 (PGE2) in regulating thrombosis offers opportunities for the development of novel individualized antiplatelet treatment. However, deciphering the platelet regulatory function of PGE2 has long been confounded by non-standardized experimental conditions, extrapolation of murine data to humans, and phenotypic differences in PGE2 response. This review synthesizes past and current knowledge about PGE2 effects on platelet biology, presents a rationale for standardization of experimental protocols, and provides insight into a molecular mechanism by which PGE2-activated pathways could be targeted for new personalized antiplatelet therapy to inhibit pathologic thrombosis without affecting hemostasis.
Collapse
Affiliation(s)
- Eitan A Friedman
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Martin L Ogletree
- PO Box 559, Bala Cynwyd, PA 19004; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Elias V Haddad
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232.
| |
Collapse
|
26
|
Nisar SP, Jones ML, Cunningham MR, Mumford AD, Mundell SJ. Rare platelet GPCR variants: what can we learn? Br J Pharmacol 2014; 172:3242-53. [PMID: 25231155 DOI: 10.1111/bph.12941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Platelet-expressed GPCRs are critical regulators of platelet function. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis associated with coronary atherosclerosis and ischaemic stroke. However, anti-thrombotic drug therapy is associated with high inter-patient variability in therapeutic response and adverse bleeding side effects. In order to optimize the use of existing anti-platelet drugs and to develop new therapies, more detailed knowledge is required relating to the molecular mechanisms that regulate GPCR and therefore platelet function. One approach has been to identify rare, function-disrupting mutations within key platelet proteins in patients with bleeding disorders. In this review, we describe how an integrated functional genomics strategy has contributed important structure-function information about platelet GPCRs with specific emphasis upon purinergic and thromboxane A2 receptors. We also discuss the potential implications these findings have for pharmacotherapy and for understanding the molecular basis of mild bleeding disorders.
Collapse
Affiliation(s)
- S P Nisar
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - M L Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - M R Cunningham
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - A D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - S J Mundell
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | |
Collapse
|
27
|
Tao YX, Conn PM. Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocr Rev 2014; 35:602-47. [PMID: 24661201 PMCID: PMC4105357 DOI: 10.1210/er.2013-1121] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology (Y.-X.T.), College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519; and Departments of Internal Medicine and Cell Biology (P.M.C.), Texas Tech University Health Science Center, Lubbock, Texas 79430-6252
| | | |
Collapse
|
28
|
Capra V, Bäck M, Angiolillo DJ, Cattaneo M, Sakariassen KS. Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J Thromb Haemost 2014; 12:126-37. [PMID: 24298905 DOI: 10.1111/jth.12472] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 12/13/2022]
Abstract
The activation of thromboxane prostanoid (TP) receptor on platelets, monocytes/macrophages, endothelial cells, and vascular smooth muscle cells (SMC) plays important roles in regulating platelet activation and vascular tone and in the pathogenesis of thrombosis and vascular inflammation. Oxidative stress and vascular inflammation increase the formation of TP receptor agonists, which promote initiation and progression of atherogenesis and thrombosis. Furthermore, TP receptor activation promotes angiogenesis and vessel wall constriction. Besides thromboxane A₂ and its endoperoxide precursors, prostaglandin G₂ and H₂, isoprostanes, and 20-hydroxyeicosatetraenoic acid also activate TP receptor as autocrine or paracrine ligands. These additional TP activators play a role in pathological conditions such as diabetes, obesity, and hypertension, and their biosynthesis is not inhibited by aspirin, at variance with that of thromboxane A₂. The understanding of TP receptor function increased our current knowledge of the pathogenesis of atherosclerosis and thrombosis, highlighting the great impact that this receptor has in cardiovascular disorders.
Collapse
Affiliation(s)
- V Capra
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
29
|
Chakraborty R, Bhullar RP, Dakshinamurti S, Hwa J, Chelikani P. Inverse agonism of SQ 29,548 and Ramatroban on Thromboxane A2 receptor. PLoS One 2014; 9:e85937. [PMID: 24465800 PMCID: PMC3900440 DOI: 10.1371/journal.pone.0085937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/03/2013] [Indexed: 12/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) show some level of basal activity even in the absence of an agonist, a phenomenon referred to as constitutive activity. Such constitutive activity in GPCRs is known to have important pathophysiological roles in human disease. The thromboxane A2 receptor (TP) is a GPCR that promotes thrombosis in response to binding of the prostanoid, thromboxane A2. TP dysfunction is widely implicated in pathophysiological conditions such as bleeding disorders, hypertension and cardiovascular disease. Recently, we reported the characterization of a few constitutively active mutants (CAMs) in TP, including a genetic variant A160T. Using these CAMs as reporters, we now test the inverse agonist properties of known antagonists of TP, SQ 29,548, Ramatroban, L-670596 and Diclofenac, in HEK293T cells. Interestingly, SQ 29,548 reduced the basal activity of both, WT-TP and the CAMs while Ramatroban was able to reduce the basal activity of only the CAMs. Diclofenac and L-670596 showed no statistically significant reduction in basal activity of WT-TP or CAMs. To investigate the role of these compounds on human platelet function, we tested their effects on human megakaryocyte based system for platelet activation. Both SQ 29,548 and Ramatroban reduced the platelet hyperactivity of the A160T genetic variant. Taken together, our results suggest that SQ 29,548 and Ramatroban are inverse agonists for TP, whereas, L-670596 and Diclofenac are neutral antagonists. Our findings have important therapeutic applications in the treatment of TP mediated pathophysiological conditions.
Collapse
MESH Headings
- Amino Acid Substitution
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Bridged Bicyclo Compounds, Heterocyclic
- Calcium Signaling/drug effects
- Carbazoles/pharmacology
- Drug Evaluation, Preclinical
- Fatty Acids, Unsaturated
- HEK293 Cells
- Humans
- Hydrazines/pharmacology
- Inositol 1,4,5-Trisphosphate/metabolism
- Mutagenesis, Site-Directed
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group- Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Rajinder P. Bhullar
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shyamala Dakshinamurti
- Departments of Pediatrics, Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group- Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - John Hwa
- Department of Internal Medicine (Cardiology), Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Prashen Chelikani
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Pediatrics, Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group- Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
30
|
Rao AK. Inherited platelet function disorders: overview and disorders of granules, secretion, and signal transduction. Hematol Oncol Clin North Am 2013; 27:585-611. [PMID: 23714313 DOI: 10.1016/j.hoc.2013.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inherited disorders of platelet function are characterized by highly variable mucocutaneous bleeding manifestations. The platelet dysfunction arises by diverse mechanisms, including abnormalities in platelet membrane glycoproteins, granules and their contents, platelet signaling and secretion mechanisms: thromboxane production pathways and in platelet procoagulant activities. Platelet aggregation and secretion studies using platelet-rich plasma currently form the primary basis for the diagnosis of an inherited platelet dysfunction. In most such patients, the molecular and genetic mechanisms are unknown. Management of these patients needs to be individualized; therapeutic options include platelet transfusions, 1-desamino-8d-arginine vasopressin (DDAVP), recombinant factor VIIa, and antifibrinolytic agents.
Collapse
Affiliation(s)
- A Koneti Rao
- Hematology Section, Department of Medicine and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
31
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
32
|
Li R, Fries S, Li X, Grosser T, Diamond SL. Microfluidic assay of platelet deposition on collagen by perfusion of whole blood from healthy individuals taking aspirin. Clin Chem 2013; 59:1195-204. [PMID: 23592503 PMCID: PMC4119612 DOI: 10.1373/clinchem.2012.198101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Microfluidic devices can create hemodynamic conditions for platelet assays. We validated an 8-channel device in a study of interdonor response to acetylsalicylic acid (ASA, aspirin) with whole blood from 28 healthy individuals. METHODS Platelet deposition was assessed before treatment or 24 h after ingestion of 325 mg ASA. Whole blood (plus 100 μmol/L H-d-Phe-Pro-Arg-chloromethylketone to inhibit thrombin) was further treated ex vivo with ASA (0-500 μmol/L) and perfused over fibrillar collagen for 300 s at a venous wall shear rate (200 s(-1)). RESULTS Ex vivo ASA addition to blood drawn before aspirin ingestion caused a reduction in platelet deposition [half-maximal inhibitory concentration (IC50) approximately 10-20 μmol/L], especially between 150 and 300 s of perfusion, when secondary aggregation mediated by thromboxane was expected. Twenty-seven of 28 individuals displayed smaller deposits (45% mean reduction; range 10%-90%; P < 0.001) from blood obtained 24 h after ASA ingestion (no ASA added ex vivo). In replicate tests, an R value to score secondary aggregation [deposition rate from 150 to 300 s normalized by rate from 60 to 150 s] showed R < 1 in only 2 of 28 individuals without ASA ingestion, with R > 1 in only 3 of 28 individuals after 500 μmol/L ASA addition ex vivo. At 24 h after ASA ingestion, 21 of 28 individuals displayed poor secondary aggregation (R < 1) without ex vivo ASA addition, whereas the 7 individuals with residual secondary aggregation (R > 1) displayed insensitivity to ex vivo ASA addition. Platelet deposition was not correlated with platelet count. Ex vivo ASA addition caused similar inhibition at venous and arterial wall shear rates. CONCLUSIONS Microfluidic devices quantified platelet deposition after ingestion or ex vivo addition of aspirin.
Collapse
Affiliation(s)
- Ruizhi Li
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | - Susanne Fries
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xuanwen Li
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Scott L. Diamond
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
33
|
Gleim S, Stitham J, Tang WH, Li H, Douville K, Chelikani P, J.Rade J, Martin KA, Hwa J. Human thromboxane A2 receptor genetic variants: in silico, in vitro and "in platelet" analysis. PLoS One 2013; 8:e67314. [PMID: 23840660 PMCID: PMC3696120 DOI: 10.1371/journal.pone.0067314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
Thromboxane and its receptor have emerged as key players in modulating vascular thrombotic events. Thus, a dysfunctional hTP genetic variant may protect against (hypoactivity) or promote (hyperactivity) vascular events, based upon its activity on platelets. After extensive in silico analysis, six hTP-α variants were selected (C68S, V80E, E94V, A160T, V176E, and V217I) for detailed biochemical studies based on structural proximity to key regions involved in receptor function and in silico predictions. Variant biochemical profiles ranged from severe instability (C68S) to normal (V217I), with most variants demonstrating functional alteration in binding, expression or activation (V80E, E94V, A160T, and V176E). In the absence of patient platelet samples, we developed and validated a novel megakaryocyte based system to evaluate human platelet function in the presence of detected dysfunctional genetic variants. Interestingly, variant V80E exhibited reduced platelet activation whereas A160T demonstrated platelet hyperactivity. This report provides the most comprehensive in silico, in vitro and “in platelet” evaluation of hTP variants to date and highlightscurrent inherent problems in evaluating genetic variants, with possible solutions. The study additionally provides clinical relevance to characterized dysfunctional hTP variants.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Aspirin/pharmacology
- Binding Sites
- Binding, Competitive
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Cell Line
- Cyclooxygenase Inhibitors/pharmacology
- Genetic Association Studies
- Humans
- Models, Molecular
- Molecular Sequence Data
- Phosphoproteins/metabolism
- Platelet Activation/drug effects
- Polymorphism, Single Nucleotide
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proteome/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction
- Thromboxanes/physiology
Collapse
Affiliation(s)
- Scott Gleim
- Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Jeremiah Stitham
- Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Wai Ho Tang
- Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Hong Li
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover New Hampshire, United States of America
| | - Karen Douville
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover New Hampshire, United States of America
| | - Prashen Chelikani
- Department of Oral Biology, University of Manitoba Faculty of Dentistry, Winnipeg, Manitoba, Canada
| | - Jeffrey J.Rade
- Internal Medicine-Section of Cardiology, UMass School of Medicine and Medical Center, Worcester, Massachusetts, United States of America
| | - Kathleen A. Martin
- Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - John Hwa
- Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven Connecticut, United States of America
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
34
|
Nowaczyk MJM, Thompson BA, Zeesman S, Moog U, Sanchez-Lara PA, Magoulas PL, Falk RE, Hoover-Fong JE, Batista DAS, Amudhavalli SM, White SM, Graham GE, Rauen KA. Deletion of MAP2K2/MEK2: a novel mechanism for a RASopathy? Clin Genet 2013; 85:138-46. [PMID: 23379592 DOI: 10.1111/cge.12116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
Abstract
RASopathies are a class of genetic syndromes caused by germline mutations in genes encoding Ras/mitogen-activated protein kinase (Ras/MAPK) pathway components. Cardio-facio-cutaneous (CFC) syndrome is a RASopathy characterized by distinctive craniofacial features, skin and hair abnormalities, and congenital heart defects caused by activating mutations of BRAF, MEK1, MEK2, and KRAS. We define the phenotype of seven patients with de novo deletions of chromosome 19p13.3 including MEK2; they present with a distinct phenotype but have overlapping features with CFC syndrome. Phenotypic features of all seven patients include tall forehead, thick nasal tip, underdeveloped cheekbones, long midface, sinuous upper vermilion border, tall chin, angular jaw, and facial asymmetry. Patients also have developmental delay, hypotonia, heart abnormalities, failure to thrive, obstructive sleep apnea, gastroesophageal reflux and integument abnormalities. Analysis of epidermal growth factor-stimulated fibroblasts revealed that P-MEK1/2 was ∼50% less abundant in cells carrying the MEK2 deletion compared to the control. Significant differences in total MEK2 and Sprouty1 abundance were also observed. Our cohort of seven individuals with MEK2 deletions has overlapping features associated with RASopathies. This is the first report suggesting that, in addition to activating mutations, MEK2 haploinsufficiency can lead to dysregulation of the MAPK pathway.
Collapse
Affiliation(s)
- M J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada; Department of Pediatrics, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mumford AD, Nisar S, Darnige L, Jones ML, Bachelot-Loza C, Gandrille S, Zinzindohoue F, Fischer AM, Mundell SJ, Gaussem P. Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant. J Thromb Haemost 2013; 11:547-54. [PMID: 23279270 DOI: 10.1111/jth.12117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/23/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. OBJECTIVES To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. PATIENTS/METHODS We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. RESULTS Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. CONCLUSION These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Blood Coagulation Disorders/blood
- Blood Coagulation Disorders/genetics
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Bridged Bicyclo Compounds, Heterocyclic
- Calcium/blood
- Enzyme-Linked Immunosorbent Assay
- Fatty Acids, Unsaturated
- Genetic Predisposition to Disease
- Genetic Variation
- HEK293 Cells
- Humans
- Hydrazines/metabolism
- Ligands
- Male
- Microscopy, Fluorescence
- Middle Aged
- Phenotype
- Platelet Aggregation/drug effects
- Platelet Aggregation/genetics
- Radioligand Assay
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/blood
- Receptors, Thromboxane A2, Prostaglandin H2/deficiency
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Transfection
Collapse
Affiliation(s)
- A D Mumford
- Bristol Heart Institute, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Cattaneo M. Congenital Disorders of Platelet Function. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Dawood BB, Lowe GC, Lordkipanidzé M, Bem D, Daly ME, Makris M, Mumford A, Wilde JT, Watson SP. Evaluation of participants with suspected heritable platelet function disorders including recommendation and validation of a streamlined agonist panel. Blood 2012; 120:5041-9. [PMID: 23002116 PMCID: PMC3790949 DOI: 10.1182/blood-2012-07-444281] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/12/2012] [Indexed: 11/20/2022] Open
Abstract
Light transmission aggregometry (LTA) is used worldwide for the investigation of heritable platelet function disorders (PFDs), but interpretation of results is complicated by the feedback effects of ADP and thromboxane A(2) (TxA(2)) and by the overlap with the response of healthy volunteers. Over 5 years, we have performed lumi-aggregometry on 9 platelet agonists in 111 unrelated research participants with suspected PFDs and in 70 healthy volunteers. Abnormal LTA or ATP secretion test results were identified in 58% of participants. In 84% of these, the patterns of response were consistent with defects in Gi receptor signaling, the TxA(2) pathway, and dense granule secretion. Participants with defects in signaling to Gq-coupled receptor agonists and to collagen were also identified. Targeted genotyping identified 3 participants with function-disrupting mutations in the P2Y(12) ADP and TxA(2) receptors. The results of the present study illustrate that detailed phenotypic analysis using LTA and ATP secretion is a powerful tool for the diagnosis of PFDs. Our data also enable subdivision at the level of platelet-signaling pathways and in some cases to individual receptors. We further demonstrate that most PFDs can be reliably diagnosed using a streamlined panel of key platelet agonists and specified concentrations suitable for testing in most clinical diagnostic laboratories.
Collapse
Affiliation(s)
- Ban B Dawood
- Department of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Soper JH, Sugiyama S, Herbst-Robinson K, James MJ, Wang X, Trojanowski JQ, Smith AB, Lee VMY, Ballatore C, Brunden KR. Brain-penetrant tetrahydronaphthalene thromboxane A2-prostanoid (TP) receptor antagonists as prototype therapeutics for Alzheimer's disease. ACS Chem Neurosci 2012; 3:928-40. [PMID: 23173073 DOI: 10.1021/cn3000795] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/27/2012] [Indexed: 11/28/2022] Open
Abstract
A hallmark pathological feature of the Alzheimer's disease (AD) brain is the presence of senile plaques, which comprise amyloid β (Aβ) peptides that are derived from the amyloid precursor protein (APP). The plaque-containing AD brain is thought to be under oxidative stress, as evidenced by increased lipid oxidation products that include isoprostane-F2αIII (iPF2αIII). IPF2αIII can bind to and activate the thromboxane A2-prostanoid (TP) receptor, and TP receptor activation causes increased Aβ production through enhancement of APP mRNA stability. Moreover, TP receptor antagonists have been shown to block iPF2αIII-induced increases of Aβ secretion. Thus, the TP receptor may be a potential drug target for AD therapy. However, here we show that existing TP receptor antagonists have poor blood-brain barrier (BBB) permeability, likely due to the presence of a carboxylic acid moiety that is believed to be important for receptor interaction, but which may hamper passive diffusion across the BBB. We now report selected analogues of a known tetrahydronaphthalene TP receptor antagonist, wherein the carboxylic acid moiety has been replaced by heterocyclic bioisosteres. These heterocyclic analogues retained relatively high affinity for the mouse and human TP receptors, and, unlike the parent carboxylic acid compound, several examples freely diffused across the BBB into the brain upon administration to mice. These results reveal that brain-penetrant tetrahydronaphthalene TP receptor antagonists can be developed by substituting the carboxylic acid moiety with a suitable nonacidic bioisostere. Compounds of this type hold promise as potential lead structures to develop drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- James H. Soper
- Center for Neurodegenerative
Disease Research, Institute on Aging, Perlman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia,
Pennsylvania, 19104-6323
| | - Shimpei Sugiyama
- Department of Chemistry, School
of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323
| | - Katie Herbst-Robinson
- Center for Neurodegenerative
Disease Research, Institute on Aging, Perlman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia,
Pennsylvania, 19104-6323
| | - Michael J. James
- Center for Neurodegenerative
Disease Research, Institute on Aging, Perlman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia,
Pennsylvania, 19104-6323
| | - Xiaozhao Wang
- Department of Chemistry, School
of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323
| | - John Q. Trojanowski
- Center for Neurodegenerative
Disease Research, Institute on Aging, Perlman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia,
Pennsylvania, 19104-6323
| | - Amos B. Smith
- Department of Chemistry, School
of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative
Disease Research, Institute on Aging, Perlman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia,
Pennsylvania, 19104-6323
| | - Carlo Ballatore
- Center for Neurodegenerative
Disease Research, Institute on Aging, Perlman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia,
Pennsylvania, 19104-6323
- Department of Chemistry, School
of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323
| | - Kurt R. Brunden
- Center for Neurodegenerative
Disease Research, Institute on Aging, Perlman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia,
Pennsylvania, 19104-6323
| |
Collapse
|
40
|
New insights into structural determinants for prostanoid thromboxane A2 receptor- and prostacyclin receptor-G protein coupling. Mol Cell Biol 2012; 33:184-93. [PMID: 23109431 DOI: 10.1128/mcb.00725-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) interact with heterotrimeric G proteins and initiate a wide variety of signaling pathways. The molecular nature of GPCR-G protein interactions in the clinically important thromboxane A2 (TxA(2)) receptor (TP) and prostacyclin (PGI(2)) receptor (IP) is poorly understood. The TP activates its cognate G protein (Gαq) in response to the binding of thromboxane, while the IP signals through Gαs in response to the binding of prostacyclin. Here, we utilized a combination of approaches consisting of chimeric receptors, molecular modeling, and site-directed mutagenesis to precisely study the specificity of G protein coupling. Multiple chimeric receptors were constructed by replacing the TP intracellular loops (ICLs) with the ICL regions of the IP. Our results demonstrate that both the sequences and lengths of ICL2 and ICL3 influenced G protein specificity. Importantly, we identified a precise ICL region on the prostanoid receptors TP and IP that can switch G protein specificities. The validities of the chimeric technique and the derived molecular model were confirmed by introducing clinically relevant naturally occurring mutations (R60L in the TP and R212C in the IP). Our findings provide new molecular insights into prostanoid receptor-G protein interactions, which are of general significance for understanding the structural basis of G protein activation by GPCRs in basic health and cardiovascular disease.
Collapse
|
41
|
Mohan S, Ahmad AS, Glushakov AV, Chambers C, Doré S. Putative role of prostaglandin receptor in intracerebral hemorrhage. Front Neurol 2012; 3:145. [PMID: 23097645 PMCID: PMC3477820 DOI: 10.3389/fneur.2012.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
Each year, approximately 795,000 people experience a new or recurrent stroke. Of all strokes, 84% are ischemic, 13% are intracerebral hemorrhage (ICH) strokes, and 3% are subarachnoid hemorrhage strokes. Despite the decreased incidence of ischemic stroke, there has been no change in the incidence of hemorrhagic stroke in the last decade. ICH is a devastating disease 37–38% of patients between the ages of 45 and 64 die within 30 days. In an effort to prevent ischemic and hemorrhagic strokes we and others have been studying the role of prostaglandins and their receptors. Prostaglandins are bioactive lipids derived from the metabolism of arachidonic acid. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. Most prostaglandins are produced from specific enzymes and act upon cells via distinct G-protein coupled receptors. The presence of multiple prostaglandin receptors cross-reactivity and coupling to different signal transduction pathways allow differentiated cells to respond to prostaglandins in a unique manner. Due to the number of prostaglandin receptors, prostaglandin-dependent signaling can function either to promote neuronal survival or injury following acute excitotoxicity, hypoxia, and stress induced by ICH. To better understand the mechanisms of neuronal survival and neurotoxicity mediated by prostaglandin receptors, it is essential to understand downstream signaling. Several groups including ours have discovered unique roles for prostaglandin receptors in rodent models of ischemic stroke, excitotoxicity, and Alzheimer disease, highlighting the emerging role of prostaglandin receptor signaling in hemorrhagic stroke with a focus on cyclic-adenosine monophosphate and calcium (Ca2+) signaling. We review current ICH data and discuss future directions notably on prostaglandin receptors, which may lead to the development of unique therapeutic targets against hemorrhagic stroke and brain injuries alike.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, College of Medicine, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
42
|
|
43
|
A novel antibody targeting the ligand binding domain of the thromboxane A2 receptor exhibits antithrombotic properties in vivo. Biochem Biophys Res Commun 2012; 421:456-61. [DOI: 10.1016/j.bbrc.2012.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/02/2012] [Indexed: 11/19/2022]
|
44
|
Abstract
During thrombotic or hemostatic episodes, platelets bind collagen and release ADP and thromboxane A(2), recruiting additional platelets to a growing deposit that distorts the flow field. Prediction of clotting function under hemodynamic conditions for a patient's platelet phenotype remains a challenge. A platelet signaling phenotype was obtained for 3 healthy donors using pairwise agonist scanning, in which calcium dye-loaded platelets were exposed to pairwise combinations of ADP, U46619, and convulxin to activate the P2Y(1)/P2Y(12), TP, and GPVI receptors, respectively, with and without the prostacyclin receptor agonist iloprost. A neural network model was trained on each donor's pairwise agonist scanning experiment and then embedded into a multiscale Monte Carlo simulation of donor-specific platelet deposition under flow. The simulations were compared directly with microfluidic experiments of whole blood flowing over collagen at 200 and 1000/s wall shear rate. The simulations predicted the ranked order of drug sensitivity for indomethacin, aspirin, MRS-2179 (a P2Y(1) inhibitor), and iloprost. Consistent with measurement and simulation, one donor displayed larger clots and another presented with indomethacin resistance (revealing a novel heterozygote TP-V241G mutation). In silico representations of a subject's platelet phenotype allowed prediction of blood function under flow, essential for identifying patient-specific risks, drug responses, and novel genotypes.
Collapse
|
45
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
46
|
Site-directed mutations and the polymorphic variant Ala160Thr in the human thromboxane receptor uncover a structural role for transmembrane helix 4. PLoS One 2012; 7:e29996. [PMID: 22272267 PMCID: PMC3260207 DOI: 10.1371/journal.pone.0029996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022] Open
Abstract
The human thromboxane A2 receptor (TP), belongs to the prostanoid subfamily of Class A GPCRs and mediates vasoconstriction and promotes thrombosis on binding to thromboxane (TXA2). In Class A GPCRs, transmembrane (TM) helix 4 appears to be a hot spot for non-synonymous single nucleotide polymorphic (nsSNP) variants. Interestingly, A160T is a novel nsSNP variant with unknown structure and function. Additionally, within this helix in TP, Ala160(4.53) is highly conserved as is Gly164(4.57). Here we target Ala160(4.53) and Gly164(4.57) in the TP for detailed structure-function analysis. Amino acid replacements with smaller residues, A160S and G164A mutants, were tolerated, while bulkier beta-branched replacements, A160T and A160V showed a significant decrease in receptor expression (Bmax). The nsSNP variant A160T displayed significant agonist-independent activity (constitutive activity). Guided by molecular modeling, a series of compensatory mutations were made on TM3, in order to accommodate the bulkier replacements on TM4. The A160V/F115A double mutant showed a moderate increase in expression level compared to either A160V or F115A single mutants. Thermal activity assays showed decrease in receptor stability in the order, wild type>A160S>A160V>A160T>G164A, with G164A being the least stable. Our study reveals that Ala160(4.53) and Gly164(4.57) in the TP play critical structural roles in packing of TM3 and TM4 helices. Naturally occurring mutations in conjunction with site-directed replacements can serve as powerful tools in assessing the importance of regional helix-helix interactions.
Collapse
|
47
|
Abstract
Abstract
Inherited platelet disorders (IPDs) comprise a heterogenous group of diseases that include defects in platelet function and disordered megakaryopoiesis. Some IPDs overlap as both defects in function and thrombopoiesis, resulting in both altered aggregation and/or secretion and thrombocytopenia. This review examines the key features of the presentation of IPDs in children and adults and presents a diagnostic algorithm for the evaluation of these patients. In addition, recent advances in our understanding of the pathophysiology of platelet disorders are addressed, with attention given to some of the novel genetic associations. Finally, treatment options and future therapies are briefly discussed.
Collapse
|
48
|
Kamae T, Kiyomizu K, Nakazawa T, Tadokoro S, Kashiwagi H, Honda S, Kanakura Y, Tomiyama Y. Bleeding tendency and impaired platelet function in a patient carrying a heterozygous mutation in the thromboxane A2 receptor. J Thromb Haemost 2011; 9:1040-8. [PMID: 21342433 DOI: 10.1111/j.1538-7836.2011.04245.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Thromboxane A(2) receptor (TXA(2)R) abnormality appears to dominantly disturb platelet function. OBJECTIVES To reveal a molecular genetic defect in a patient with TXA(2)R abnormality and investigate the mechanism for the impaired response to TXA(2). PATIENT The proband (OSP-2, PT) was a 7-year-old Japanese girl, suffering from repeated mucocutaneous bleeding. METHODS AND RESULTS U46619 (2.5 and 10 μm)-induced platelet aggregation was remarkably impaired in the proband and her father. Immunoblots showed that TXA(2)R expression levels in their platelets were approximately 50% of controls, and nucleotide sequence analysis revealed that they were heterozygous for a novel mutation, c.167dupG in the TXA(2)R cDNA. Expression studies using Chinese hamster ovary (CHO) cells indicated that the mutation is responsible for the expression defect in TXA(2)R. We then examined α(IIb)β(3) activation by employing an initial velocity analysis and revealed that U46619 failed to induce a sustained α(IIb)β(3) and Rap1B activation in the proband. In addition, platelet secretion as monitored by P-selectin expression was markedly impaired in response to U46619 but not to ADP. The interaction between secreted ADP and P2Y(12) has been shown to play a critical role in the sustained α(IIb)β(3) activation (Kamae et al. J Thromb Haemost 2006; 4: 1379). As expected, small amounts of exogenous ADP (0.5 μm) partially restored the sustained α(IIb)β(3) activation induced by U46619. CONCLUSION Our present data strongly suggest that the impaired platelet activation in response to U46619 in the heterozygous subject for the TXA(2)R mutation is, at least in part, as a result of the decrease in ADP secretion.
Collapse
Affiliation(s)
- T Kamae
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Smyth EM. Thromboxane and the thromboxane receptor in cardiovascular disease. ACTA ACUST UNITED AC 2010; 5:209-219. [PMID: 20543887 DOI: 10.2217/clp.10.11] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thromboxane A(2) (TXA(2)), the primary product of COX-1-dependent metabolism of arachidonic acid, mediates its biological actions through the TXA(2) receptor, termed the TP. Irreversible inhibition of platelet COX-1-derived TXA(2) with low-dose aspirin affords protection against primary and secondary vascular thrombotic events, underscoring the central role of TXA(2) as a platelet agonist in cardiovascular disease. The limitations associated with aspirin use include significant gastrointestinal toxicity, bleeding complications, potential interindividual response variability and poor efficacy in some disease states. This, together with the broad role of TXA(2) in cardiovascular disease beyond the platelet, has refocused interest towards additional TXA(2)-associated drug targets, in particular TXA(2) synthase and the TP. The superiority of these agents over low-dose aspirin, in terms of clinical efficacy, tolerability and commercial viability, remain open questions that are the focus of ongoing research.
Collapse
Affiliation(s)
- Emer M Smyth
- Institute for Translation Medicine & Therapeutics, University of Pennsylvania, 421 Curie Blvd, 808 BRB 2/3, Philadelphia, PA 19104, USA Tel.: +1 215 573 2323
| |
Collapse
|
50
|
Wei AH, Schoenwaelder SM, Andrews RK, Jackson SP. New insights into the haemostatic function of platelets. Br J Haematol 2009; 147:415-30. [DOI: 10.1111/j.1365-2141.2009.07819.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|