1
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
2
|
Abstract
Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
3
|
Bissler JJ, Batchelor D, Kingswood JC. Progress in Tuberous Sclerosis Complex Renal Disease. Crit Rev Oncog 2023; 27:35-49. [PMID: 36734871 DOI: 10.1615/critrevoncog.2022042857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects both fetal development and postnatal tissue growth, resulting in altered brain structures and a tumor predisposition syndrome. Although every organ system is affected by the disease, kidney involvement is a leading cause of death in adults with TSC. Over the past decade, significant progress has been made in understanding the renal disease. This review focuses on the cystic and solid renal lesions in TSC, including their pathobiology and treatment.
Collapse
Affiliation(s)
- John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105; Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105; Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Dinah Batchelor
- Johns Hopkins All Children's Hospital, St. Petersburg, FL 33702
| | - J Christopher Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St. Georges University of London, London, United Kingdom
| |
Collapse
|
4
|
Krappitz M, Bhardwaj R, Dong K, Staudner T, Yilmaz DE, Pioppini C, Westergerling P, Ruemmele D, Hollmann T, Nguyen TA, Cai Y, Gallagher AR, Somlo S, Fedeles S. XBP1 Activation Reduces Severity of Polycystic Kidney Disease due to a Nontruncating Polycystin-1 Mutation in Mice. J Am Soc Nephrol 2023; 34:110-121. [PMID: 36270750 PMCID: PMC10101557 DOI: 10.1681/asn.2021091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in Pkd1 and Pkd2. They encode the polytopic integral membrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively, which are expressed on primary cilia. Formation of kidney cysts in ADPKD starts when a somatic second hit mechanism inactivates the wild-type Pkd allele. Approximately one quarter of families with ADPDK due to Pkd1 have germline nonsynonymous amino acid substitution (missense) mutations. A subset of these mutations is hypomorphic, retaining some residual PC1 function. Previous studies have shown that the highly conserved Ire1 α -XBP1 pathway of the unfolded protein response can modulate levels of functional PC1 in the presence of mutations in genes required for post-translational maturation of integral membrane proteins. We examine how activity of the endoplasmic reticulum chaperone-inducing transcription factor XBP1 affects ADPKD in a murine model with missense Pkd1 . METHODS We engineered a Pkd1 REJ domain missense murine model, Pkd1 R2216W , on the basis of the orthologous human hypomorphic allele Pkd1 R2220W , and examined the effects of transgenic activation of XBP1 on ADPKD progression. RESULTS Expression of active XBP1 in cultured cells bearing PC1 R2216W mutations increased levels and ciliary trafficking of PC1 R2216W . Mice homozygous for Pkd1 R2216W or heterozygous for Pkd1 R2216Win trans with a conditional Pkd1 fl allele exhibit severe ADPKD following inactivation in neonates or adults. Transgenic expression of spliced XBP1 in tubule segments destined to form cysts reduced cell proliferation and improved Pkd progression, according to structural and functional parameters. CONCLUSIONS Modulating ER chaperone function through XBP1 activity improved Pkd in a murine model of PC1, suggesting therapeutic targeting of hypomorphic mutations.
Collapse
Affiliation(s)
- Matteus Krappitz
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Rishi Bhardwaj
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Ke Dong
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Tobias Staudner
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Duygu Elif Yilmaz
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carlotta Pioppini
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Parisa Westergerling
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - David Ruemmele
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Till Hollmann
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Thuy Anh Nguyen
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Yiqiang Cai
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Sorin Fedeles
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Kumar P, Zadjali F, Yao Y, Köttgen M, Hofherr A, Gross KW, Mehta D, Bissler JJ. Single Gene Mutations in Pkd1 or Tsc2 Alter Extracellular Vesicle Production and Trafficking. BIOLOGY 2022; 11:biology11050709. [PMID: 35625437 PMCID: PMC9139108 DOI: 10.3390/biology11050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Extracellular vesicles shed from primary cilia may be involved in renal cystogenesis. The disruption of the Pkd1 gene in our cell culture system increased the production of EVs in a similar way that occurs when the Tsc2 gene is disrupted. Disruption of the primary cilia depresses EV production, and this may be the reason that the combined Kif3A/Pkd1 mutant mouse has a less severe phenotype than the Pkd1 mutant alone. We initiated studies aimed at understanding the renal trafficking of renally-derived EVs and found that single gene disruptions can alter the EV kinetics based on dye tracking studies. These results raise the possibility that EV features, such as cargo, dose, tissue half-life, and targeting, may be involved in the disease process, and these features may also be fertile targets for diagnostic, prognostic, and therapeutic investigation. Abstract Patients with autosomal dominant polycystic kidney disease (ADPKD) and tuberous sclerosis complex (TSC) are born with normal or near-normal kidneys that later develop cysts and prematurely lose function. Both renal cystic diseases appear to be mediated, at least in part, by disease-promoting extracellular vesicles (EVs) that induce genetically intact cells to participate in the renal disease process. We used centrifugation and size exclusion chromatography to isolate the EVs for study. We characterized the EVs using tunable resistive pulse sensing, dynamic light scattering, transmission electron microscopy, and Western blot analysis. We performed EV trafficking studies using a dye approach in both tissue culture and in vivo studies. We have previously reported that loss of the Tsc2 gene significantly increased EV production and here demonstrate that the loss of the Pkd1 gene also significantly increases EV production. Using a cell culture system, we also show that loss of either the Tsc2 or Pkd1 gene results in EVs that exhibit an enhanced uptake by renal epithelial cells and a prolonged half-life. Loss of the primary cilia significantly reduces EV production in renal collecting duct cells. Cells that have a disrupted Pkd1 gene produce EVs that have altered kinetics and a prolonged half-life, possibly impacting the duration of the EV cargo effect on the recipient cell. These results demonstrate the interplay between primary cilia and EVs and support a role for EVs in polycystic kidney disease pathogenesis.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- US FDA National Center for Toxicological Research, Jefferson, AR 72079, USA;
| | - Fahad Zadjali
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Ying Yao
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.K.); (A.H.)
- CIBSS—Centre for Integrative Biological Signaling Studies, 79104 Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.K.); (A.H.)
| | - Kenneth W. Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Darshan Mehta
- US FDA National Center for Toxicological Research, Jefferson, AR 72079, USA;
| | - John J. Bissler
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Pediatric Medicine Department, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
6
|
Senum SR, Li Y(SM, Benson KA, Joli G, Olinger E, Lavu S, Madsen CD, Gregory AV, Neatu R, Kline TL, Audrézet MP, Outeda P, Nau CB, Meijer E, Ali H, Steinman TI, Mrug M, Phelan PJ, Watnick TJ, Peters DJ, Ong AC, Conlon PJ, Perrone RD, Cornec-Le Gall E, Hogan MC, Torres VE, Sayer JA, Harris PC, Harris PC. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet 2022; 109:136-156. [PMID: 34890546 DOI: 10.1016/j.ajhg.2021.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Generation of heterozygous PKD1 mutant pigs exhibiting early-onset renal cyst formation. J Transl Med 2022; 102:560-569. [PMID: 34980882 PMCID: PMC9042704 DOI: 10.1038/s41374-021-00717-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 11/08/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, manifesting as the progressive development of fluid-filled renal cysts. In approximately half of all patients with ADPKD, end-stage renal disease results in decreased renal function. In this study, we used CRISPR-Cas9 and somatic cell cloning to produce pigs with the unique mutation c.152_153insG (PKD1insG/+). Pathological analysis of founder cloned animals and progeny revealed that PKD1insG/+ pigs developed many pathological conditions similar to those of patients with heterozygous mutations in PKD1. Pathological similarities included the formation of macroscopic renal cysts at the neonatal stage, number and cystogenic dynamics of the renal cysts formed, interstitial fibrosis of the renal tissue, and presence of a premature asymptomatic stage. Our findings demonstrate that PKD1insG/+ pigs recapitulate the characteristic symptoms of ADPKD.
Collapse
|
8
|
Bowden SA, Rodger EJ, Chatterjee A, Eccles MR, Stayner C. Recent Discoveries in Epigenetic Modifications of Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms222413327. [PMID: 34948126 PMCID: PMC8708269 DOI: 10.3390/ijms222413327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a heritable renal disease that results in end-stage kidney disease, due to the uncontrolled bilateral growth of cysts throughout the kidneys. While it is known that a mutation within a PKD-causing gene is required for the development of ADPKD, the underlying mechanism(s) causing cystogenesis and progression of the disease are not well understood. Limited therapeutic options are currently available to slow the rate of cystic growth. Epigenetic modifications, including DNA methylation, are known to be altered in neoplasia, and several FDA-approved therapeutics target these disease-specific changes. As there are many similarities between ADPKD and neoplasia, we (and others) have postulated that ADPKD kidneys contain alterations to their epigenetic landscape that could be exploited for future therapeutic discovery. Here we summarise the current understanding of epigenetic changes that are associated with ADPKD, with a particular focus on the burgeoning field of ADPKD-specific alterations in DNA methylation.
Collapse
Affiliation(s)
- Sarah A. Bowden
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Correspondence: ; Tel.: +64-3-479-5060; Fax: +64-3-479-7136
| |
Collapse
|
9
|
Daneshgar N, Baguley AW, Liang PI, Wu F, Chu Y, Kinter MT, Benavides GA, Johnson MS, Darley-Usmar V, Zhang J, Chan KS, Dai DF. Metabolic derangement in polycystic kidney disease mouse models is ameliorated by mitochondrial-targeted antioxidants. Commun Biol 2021; 4:1200. [PMID: 34671066 PMCID: PMC8528863 DOI: 10.1038/s42003-021-02730-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressively enlarging cysts. Here we elucidate the interplay between oxidative stress, mitochondrial dysfunction, and metabolic derangement using two mouse models of PKD1 mutation, PKD1RC/null and PKD1RC/RC. Mouse kidneys with PKD1 mutation have decreased mitochondrial complexes activity. Targeted proteomics analysis shows a significant decrease in proteins involved in the TCA cycle, fatty acid oxidation (FAO), respiratory complexes, and endogenous antioxidants. Overexpressing mitochondrial-targeted catalase (mCAT) using adeno-associated virus reduces mitochondrial ROS, oxidative damage, ameliorates the progression of PKD and partially restores expression of proteins involved in FAO and the TCA cycle. In human ADPKD cells, inducing mitochondrial ROS increased ERK1/2 phosphorylation and decreased AMPK phosphorylation, whereas the converse was observed with increased scavenging of ROS in the mitochondria. Treatment with the mitochondrial protective peptide, SS31, recapitulates the beneficial effects of mCAT, supporting its potential application as a novel therapeutic for ADPKD.
Collapse
Affiliation(s)
- Nastaran Daneshgar
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew W Baguley
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peir-In Liang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fei Wu
- Department of Statistics and Actuarial Science, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Yi Chu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gloria A Benavides
- Department of Pathology, Mitochondrial Medicine Laboratory, University of Alabama, Birmingham, AL, USA
| | - Michelle S Johnson
- Department of Pathology, Mitochondrial Medicine Laboratory, University of Alabama, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, Mitochondrial Medicine Laboratory, University of Alabama, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, Mitochondrial Medicine Laboratory, University of Alabama, Birmingham, AL, USA
| | - Kung-Sik Chan
- Department of Statistics and Actuarial Science, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Dao-Fu Dai
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Kumar P, Zadjali F, Yao Y, Bissler JJ. Renal cystic disease in tuberous sclerosis complex. Exp Biol Med (Maywood) 2021; 246:2111-2117. [PMID: 34488473 DOI: 10.1177/15353702211038378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is associated with TSC1 or TSC2 gene mutations resulting in hyperactivation of the mTORC1 pathway. This mTORC1 activation is associated with abnormal tissue development and proliferation such that in the kidney there are both solid tumors and cystic lesions. This review summarizes recent advances in tuberous sclerosis complex nephrology and focuses on the genetics and cell biology of tuberous sclerosis complex renal disease, highlighting a role of extracellular vesicles and the innate immune system in disease pathogenesis.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA
| | - Fahad Zadjali
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, PC 123, Oman
| | - Ying Yao
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA
| | - John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
11
|
Lee K, Gusella GL, He JC. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease. Kidney Int 2021; 100:67-78. [PMID: 33831367 PMCID: PMC8855879 DOI: 10.1016/j.kint.2021.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Various cellular insults and injury to renal epithelial cells stimulate repair mechanisms to adapt and restore the organ homeostasis. Renal tubular epithelial cells are endowed with regenerative capacity, which allows for a restoration of nephron function after acute kidney injury. However, recent evidence indicates that the repair is often incomplete, leading to maladaptive responses that promote the progression to chronic kidney disease. The dysregulated cell cycle and proliferation is also a key feature of renal tubular epithelial cells in polycystic kidney disease and HIV-associated nephropathy. Therefore, in this review, we provide an overview of cell cycle regulation and the consequences of dysregulated cell proliferation in acute kidney injury, polycystic kidney disease, and HIV-associated nephropathy. An increased understanding of these processes may help define better targets for kidney repair and combat chronic kidney disease progression.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - G Luca Gusella
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| |
Collapse
|
12
|
Zhang JQJ, Saravanabavan S, Chandra AN, Munt A, Wong ATY, Harris PC, Harris DCH, McKenzie P, Wang Y, Rangan GK. Up-Regulation of DNA Damage Response Signaling in Autosomal Dominant Polycystic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:902-920. [PMID: 33549515 DOI: 10.1016/j.ajpath.2021.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022]
Abstract
DNA damage and alterations in DNA damage response (DDR) signaling could be one of the molecular mechanisms mediating focal kidney cyst formation in autosomal dominant polycystic kidney disease (ADPKD). The aim of this study was to test the hypothesis that markers of DNA damage and DDR signaling are increased in human and experimental ADPKD. In the human ADPKD transcriptome, the number of up-regulated DDR-related genes was increased by 16.6-fold compared with that in normal kidney, and by 2.5-fold in cystic compared with that in minimally cystic tissue (P < 0.0001). In end-stage human ADPKD tissue, γ-H2A histone family member X (H2AX), phosphorylated ataxia telangiectasia and radiation-sensitive mutant 3 (Rad3)-related (pATR), and phosphorylated ataxia telangiectasia mutated (pATM) localized to cystic kidney epithelial cells. In vitro, pATR and pATM were also constitutively increased in human ADPKD tubular cells (WT 9-7 and 9-12) compared with control (HK-2). In addition, extrinsic oxidative DNA damage by hydrogen peroxide augmented γ-H2AX and cell survival in human ADPKD cells, and exacerbated cyst growth in the three-dimensional Madin-Darby canine kidney cyst model. In contrast, DDR-related gene expression was only transiently increased on postnatal day 0 in Pkd1RC/RC mice, and not altered at later time points up to 12 months of age. In conclusion, DDR signaling is dysregulated in human ADPKD and during the early phases of murine ADPKD. The constitutive expression of the DDR pathway in ADPKD may promote survival of PKD1-mutated cells and contribute to kidney cyst growth.
Collapse
Affiliation(s)
- Jennifer Q J Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ashley N Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Annette T Y Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Peter C Harris
- Mayo Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, Minnesota
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul McKenzie
- Department of Tissue Pathology, NSW Health Pathology, Royal Prince Alfred Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Abstract
Tuberous sclerosis complex (TSC) is a genetic condition caused by a mutation in either the TSC1 or TSC2 gene. Disruption of either of these genes leads to impaired production of hamartin or tuberin proteins, leading to the manifestation of skin lesions, tumors, and seizures. TSC can manifest in multiple organ systems with the cutaneous and renal systems being the most commonly affected. These manifestations can secondarily lead to the development of hypertension, chronic kidney disease, and neurocognitive declines. The renal pathologies most commonly seen in TSC are angiomyolipoma, renal cysts, and less commonly, oncocytomas. In this review, we highlight the current understanding on the renal manifestations of TSC along with current diagnosis and treatment guidelines.
Collapse
|
14
|
Molecular dysregulation of ciliary polycystin-2 channels caused by variants in the TOP domain. Proc Natl Acad Sci U S A 2020; 117:10329-10338. [PMID: 32332171 PMCID: PMC7229662 DOI: 10.1073/pnas.1920777117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic variants in PKD2 which encodes for the polycystin-2 ion channel are responsible for many clinical cases of autosomal dominant polycystic kidney disease (ADPKD). Despite our strong understanding of the genetic basis of ADPKD, we do not know how most variants impact channel function. Polycystin-2 is found in organelle membranes, including the primary cilium-an antennae-like structure on the luminal side of the collecting duct. In this study, we focus on the structural and mechanistic regulation of polycystin-2 by its TOP domain-a site with unknown function that is commonly altered by missense variants. We use direct cilia electrophysiology, cryogenic electron microscopy, and superresolution imaging to determine that variants of the TOP domain finger 1 motif destabilizes the channel structure and impairs channel opening without altering cilia localization and channel assembly. Our findings support the channelopathy classification of PKD2 variants associated with ADPKD, where polycystin-2 channel dysregulation in the primary cilia may contribute to cystogenesis.
Collapse
|
15
|
Bissler JJ, Budde K, Sauter M, Franz DN, Zonnenberg BA, Frost MD, Belousova E, Berkowitz N, Ridolfi A, Christopher Kingswood J. Effect of everolimus on renal function in patients with tuberous sclerosis complex: evidence from EXIST-1 and EXIST-2. Nephrol Dial Transplant 2020; 34:1000-1008. [PMID: 30053159 PMCID: PMC6545468 DOI: 10.1093/ndt/gfy132] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background A reduction in renal angiomyolipoma volume observed with everolimus (EVE) treatment in patients with tuberous sclerosis complex (TSC) has been postulated to translate to clinical benefit by reducing the risk of renal hemorrhage and chronic renal failure. Methods The long-term effects of EVE on renal function (∼4 years of treatment) were examined in patients treated with EVE in the Phase 3 EXIST-1 and EXIST-2 studies. Patients in EXIST-1 had TSC and subependymal giant cell astrocytoma (SEGA), and patients in EXIST-2 had renal angiomyolipoma and a definite diagnosis of TSC or sporadic lymphangioleiomyomatosis. EVE was administered at 4.5 mg/m2/day, with adjustment to achieve target trough levels of 5–15 ng/mL in EXIST-1 and at 10 mg/day in EXIST-2. Estimated glomerular filtration rate (eGFR) and creatinine levels were assessed at baseline, at Weeks 2, 4, 6, 8, 12 and 18, then every 3 months thereafter. Proteinuria was graded according to National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. Results A total of 111 patients from EXIST-1 and 112 patients from EXIST-2 were included in this analysis. Respective mean ages at EVE initiation were 10.5 [standard deviation (SD) 6.45] and 33.2 (SD 10.29) years, and 3.6% and 37.5% of patients had undergone prior renal intervention. Mean baseline eGFR was 115 and 88 mL/min/1.73 m2 in EXIST-1 and EXIST-2, respectively. Overall, mean eGFR remained stable over time in both studies, with an decline in renal function mostly confined to some patients with severely compromised renal function before treatment. Patients with prior renal intervention exhibited low eGFR values throughout the study. The incidence of proteinuria increased after initiating treatment with EVE and was mostly Grade 1/2 in severity, with Grade 3 proteinuria reported in only two patients. Measurements of proteinuria were limited by the use of urine dipstick tests. Conclusions The use of EVE does not appear to be nephrotoxic in patients with SEGA or renal angiomyolipoma associated with TSC and may preserve renal function in most patients. ClinicalTrials.gov identifiers NCT00789828 and NCT00790400
Collapse
Affiliation(s)
- John J Bissler
- St. Jude Children's Research Hospital and Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Matthias Sauter
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - David N Franz
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Elena Belousova
- Moscow Research and Clinical Institute of Pediatrics, Moscow, Russian Federation
| | | | | | | |
Collapse
|
16
|
Ta CM, Vien TN, Ng LCT, DeCaen PG. Structure and function of polycystin channels in primary cilia. Cell Signal 2020; 72:109626. [PMID: 32251715 DOI: 10.1016/j.cellsig.2020.109626] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Variants in genes which encode for polycystin-1 and polycystin-2 cause most forms of autosomal dominant polycystic disease (ADPKD). Despite our strong understanding of the genetic determinants of ADPKD, we do not understand the structural features which govern the function of polycystins at the molecular level, nor do we understand the impact of most disease-causing variants on the conformational state of these proteins. These questions have remained elusive because polycystins localize to several organelle membranes, including the primary cilia. Primary cilia are microtubule based organelles which function as cellular antennae. Polycystin-2 and related polycystin-2 L1 are members of the transient receptor potential (TRP) ion channel family, and form distinct ion channels in the primary cilia of disparate cell types which can be directly measured. Polycystin-1 has both ion channel and adhesion G-protein coupled receptor (GPCR) features-but its role in forming a channel complex or as a channel subunit chaperone is undetermined. Nonetheless, recent polycystin structural determination by cryo-EM has provided a molecular template to understand their biophysical regulation and the impact of disease-causing variants. We will review these advances and discuss hypotheses regarding the regulation of polycystin channel opening by their structural domains within the context of the primary cilia.
Collapse
Affiliation(s)
- Chau My Ta
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, IL 60611, USA
| | - Thuy N Vien
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, IL 60611, USA
| | - Leo C T Ng
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, IL 60611, USA
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Kenter AT, Rentmeester E, van Riet J, Boers R, Boers J, Ghazvini M, Xavier VJ, van Leenders GJLH, Verhagen PCMS, van Til ME, Eussen B, Losekoot M, de Klein A, Peters DJM, van IJcken WFJ, van de Werken HJG, Zietse R, Hoorn EJ, Jansen G, Gribnau JH. Cystic renal-epithelial derived induced pluripotent stem cells from polycystic kidney disease patients. Stem Cells Transl Med 2020; 9:478-490. [PMID: 32163234 PMCID: PMC7103626 DOI: 10.1002/sctm.18-0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
Autosomal‐dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, leading to kidney failure in most patients. In approximately 85% of cases, the disease is caused by mutations in PKD1. How dysregulation of PKD1 leads to cyst formation on a molecular level is unknown. Induced pluripotent stem cells (iPSCs) are a powerful tool for in vitro modeling of genetic disorders. Here, we established ADPKD patient‐specific iPSCs to study the function of PKD1 in kidney development and cyst formation in vitro. Somatic mutations are proposed to be the initiating event of cyst formation, and therefore, iPSCs were derived from cystic renal epithelial cells rather than fibroblasts. Mutation analysis of the ADPKD iPSCs revealed germline mutations in PKD1 but no additional somatic mutations in PKD1/PKD2. Although several somatic mutations in other genes implicated in ADPKD were identified in cystic renal epithelial cells, only few of these mutations were present in iPSCs, indicating a heterogeneous mutational landscape, and possibly in vitro cell selection before and during the reprogramming process. Whole‐genome DNA methylation analysis indicated that iPSCs derived from renal epithelial cells maintain a kidney‐specific DNA methylation memory. In addition, comparison of PKD1+/− and control iPSCs revealed differences in DNA methylation associated with the disease history. In conclusion, we generated and characterized iPSCs derived from cystic and healthy control renal epithelial cells, which can be used for in vitro modeling of kidney development in general and cystogenesis in particular.
Collapse
Affiliation(s)
- Annegien T Kenter
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Eveline Rentmeester
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Ruben Boers
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands.,Delft Diagnostic Laboratories (DDL), Rijswijk, The Netherlands
| | - Mehrnaz Ghazvini
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Vanessa J Xavier
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | | | - Paul C M S Verhagen
- Department of Urology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Marjan E van Til
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Joost H Gribnau
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020; 71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The transcription factors Myc and p53 associated with oncogenesis play determinant roles in a human genetic disorder, autosomal dominant polycystic kidney disease (ADPKD), that was coined early in ADPKD etiology a «neoplasia in disguise ». These factors are interdependent master cell regulators of major biological processes including proliferation, apoptosis, cell growth, metabolism, inflammation, fibrosis and differentiation that are all modulated in ADPKD. Myc and p53 proteins evolved to respond and carry out overlapping functions via opposing mechanisms of action. Studies in human ADPKD kidneys, caused by mutations in the PKD1 or PKD2 genes, reveal reduced p53 expression and high expression of Myc in the cystic tubular epithelium. Myc and p53 via direct interaction act respectively, as transcriptional activator and repressor of PKD1 gene expression, consistent with increased renal PKD1 levels in ADPKD. Mouse models generated by Pkd1 and Pkd2 gene dosage dysregulation reproduce renal cystogenesis with activation of Myc expression and numerous signaling pathways, strikingly similar to those determined in human ADPKD. In fact, upregulation of renal Myc expression is also detected in virtually all non-orthologous animal models of PKD. A definitive causal connection of Myc with cystogenesis was established by renal overexpression of Myc in transgenic mice that phenocopies human ADPKD. The network of activated signaling pathways in human and mouse cystogenesis individually or in combination can target Myc as a central node of PKD pathogenesis. One or many of the multiple functions of Myc upon activation can play a role in every phases of ADPKD development and lend credence to the notion of "Myc addiction" for cystogenesis. We propose that the residual p53 levels are conducive to an ADPKD biological program without cancerogenesis while a "p53 dependent annihilation" mechanism would be permissive to oncogenesis. Of major importance, Myc ablation in orthologous mouse models or direct inhibition in non-orthologous mouse model significantly delays cystogenesis consistent with pharmacologic or genetic inhibition of Myc upstream regulator or downstream targets in the mouse. Together, these studies on PKD proteins upon dysregulation not only converged on Myc as a focal point but also attribute to Myc upregulation a causal and « driver » role in pathogenesis. This review will present and discuss our current knowledge on Myc and p53, focused on PKD mouse models and ADPKD.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
19
|
Zadjali F, Kumar P, Yao Y, Johnson D, Astrinidis A, Vogel P, Gross KW, Bissler JJ. Tuberous Sclerosis Complex Axis Controls Renal Extracellular Vesicle Production and Protein Content. Int J Mol Sci 2020; 21:E1729. [PMID: 32138326 PMCID: PMC7084746 DOI: 10.3390/ijms21051729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
The tuberous sclerosis complex (Tsc) proteins regulate the conserved mTORC1 growth regulation pathway. We identified that loss of the Tsc2 gene in mouse inner medullary collecting duct (mIMCD) cells induced a greater than two-fold increase in extracellular vesicle (EV) production compared to the same cells having an intact Tsc axis. We optimized EV isolation using a well-established size exclusion chromatography method to produce high purity EVs. Electron microscopy confirmed the purity and spherical shape of EVs. Both tunable resistive pulse sensing (TRPS) and dynamic light scattering (DLS) demonstrated that the isolated EVs possessed a heterogenous size distribution. Approximately 90% of the EVs were in the 100-250 nm size range, while approximately 10% had a size greater than 250 nm. Western blot analysis using proteins isolated from the EVs revealed the cellular proteins Alix and TSG101, the transmembrane proteins CD63, CD81, and CD9, and the primary cilia Hedgehog signaling-related protein Arl13b. Proteomic analysis of EVs identified a significant difference between the Tsc2-intact and Tsc2-deleted cell that correlated well with the increased production. The EVs may be involved in tissue homeostasis and cause disease by overproduction and altered protein content. The EVs released by renal cyst epithelia in TSC complex may serve as a tool to discover the mechanism of TSC cystogenesis and in developing potential therapeutic strategies.
Collapse
Affiliation(s)
- Fahad Zadjali
- Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (P.K.); (Y.Y.); (A.A.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (P.K.); (Y.Y.); (A.A.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Ying Yao
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (P.K.); (Y.Y.); (A.A.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Daniel Johnson
- Molecular Bioinformatics Center, University of Tennessee Health Science Center Memphis, TN 38103, USA;
| | - Aristotelis Astrinidis
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (P.K.); (Y.Y.); (A.A.)
| | - Peter Vogel
- Department of Veterinary Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Kenneth W. Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA;
| | - John J. Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (P.K.); (Y.Y.); (A.A.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Department of Pediatrics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
20
|
Kataoka H, Fukuoka H, Makabe S, Yoshida R, Teraoka A, Ushio Y, Akihisa T, Manabe S, Sato M, Mitobe M, Tsuchiya K, Nitta K, Mochizuki T. Prediction of Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease Using PKD1/PKD2 Mutations. J Clin Med 2020; 9:jcm9010146. [PMID: 31948117 PMCID: PMC7019244 DOI: 10.3390/jcm9010146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) patients with PKD1 mutations, particularly those with truncating mutations, show poor prognosis. However, the differences in disease progression with different mutation types are unclear. Here, a comparative study was conducted on the renal prognosis of patients with ADPKD who were categorized based on genotype (PKD1 versus PKD2 mutation), mutation type (truncating mutation: nonsense, frameshift, splicing mutation, and large deletion; non-truncating mutation: substitution and in-frame deletion), and mutation position. A total of 123 patients visiting our hospital were enrolled. Renal prognosis was poor for those with PKD1 splicing, PKD1 frameshift, and PKD2 splicing mutations. Despite the truncating mutation, the renal prognosis was relatively favorable for patients with nonsense mutations. Three out of five patients with PKD2 mutation required renal replacement therapy before 58 years of age. In conclusion, we showed that renal prognosis differs according to mutation types in both PKD1 and PKD2, and that it was favorable for those with nonsense mutations among patients with PKD1 truncating mutations. It was also confirmed that renal prognosis was not always favorable in patients with PKD2 mutations. A detailed assessment of mutation types may be useful for predicting the renal prognosis of patients with ADPKD.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Hinata Fukuoka
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Rie Yoshida
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Atsuko Teraoka
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Yusuke Ushio
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Taro Akihisa
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Shun Manabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Masayo Sato
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Michihiro Mitobe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence: ; Tel.: +81-3-3353-8111
| |
Collapse
|
21
|
The role of DNA damage as a therapeutic target in autosomal dominant polycystic kidney disease. Expert Rev Mol Med 2019; 21:e6. [PMID: 31767049 DOI: 10.1017/erm.2019.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is caused by heterozygous germ-line mutations in either PKD1 (85%) or PKD2 (15%). It is characterised by the formation of numerous fluid-filled renal cysts and leads to adult-onset kidney failure in ~50% of patients by 60 years. Kidney cysts in ADPKD are focal and sporadic, arising from the clonal proliferation of collecting-duct principal cells, but in only 1-2% of nephrons for reasons that are not clear. Previous studies have demonstrated that further postnatal reductions in PKD1 (or PKD2) dose are required for kidney cyst formation, but the exact triggering factors are not clear. A growing body of evidence suggests that DNA damage, and activation of the DNA damage response pathway, are altered in ciliopathies. The aims of this review are to: (i) analyse the evidence linking DNA damage and renal cyst formation in ADPKD; (ii) evaluate the advantages and disadvantages of biomarkers to assess DNA damage in ADPKD and finally, (iii) evaluate the potential effects of current clinical treatments on modifying DNA damage in ADPKD. These studies will address the significance of DNA damage and may lead to a new therapeutic approach in ADPKD.
Collapse
|
22
|
Stayner C, Brooke DG, Bates M, Eccles MR. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease. Curr Med Chem 2019; 26:3081-3102. [PMID: 29737248 DOI: 10.2174/0929867325666180508095654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. RESULTS Here, we review compounds in clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney- targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. CONCLUSION Many compounds are currently in clinical trial for ADPKD yet, to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal.
Collapse
Affiliation(s)
- Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Darby G Brooke
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Bates
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| |
Collapse
|
23
|
Arora V, Bijarnia-Mahay S, Tiwari V, Bansal S, Gupta P, Setia N, Puri RD, Verma IC. Co-inheritance of pathogenic variants in PKD1 and PKD2 genes presenting as severe antenatal phenotype of autosomal dominant polycystic kidney disease. Eur J Med Genet 2019; 63:103734. [PMID: 31349084 DOI: 10.1016/j.ejmg.2019.103734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by pathogenic variants in either PKD1 or PKD2 genes. Disease severity is dependent on various factors including the presence of modifier genes. We describe a family with recurrent foetal presentation of ADPKD due to co-inheritance of pathogenic variants in both PKD1 [c.3860T > C; p.(Leu1287Pro)] and PKD2 [(c.1000C > A; p.(Pro334Thr)] genes. Familial segregation studies revealed the mother and the father to be heterozygous for the same variants in the PKD1 and PKD2 genes, respectively, as found in the foetus. Renal ultrasonography detected evidence of cystic disease in the mother and two of her family members. No cysts were detected in the father, however the paternal grandfather died of renal cystic disease. The absence of disease in the father can be explained by the phenomenon of incomplete penetrance, or Knudson's two-hit hypothesis of cystogenesis in the grandfather. This case underscores the importance of sequencing PKD2 gene even in the presence of a familial PKD1 variant, as well as genetic testing of the cysts for evidence of the second hit.
Collapse
Affiliation(s)
- Veronica Arora
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| | - Vaibhav Tiwari
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Savita Bansal
- Department of Obstetrics and Gynaecology and Fetal Medicine, Fortis Escorts Hospital, Jaipur, Rajasthan, India
| | - Pallav Gupta
- Department of Pathology, Sir Ganga Ram Hospital, New Delhi, India
| | - Nitika Setia
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna D Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
24
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the relentless growth of numerous fluid-filled cysts in the kidneys. Mutations in PKD1 and PKD2, genes that encode polycystin 1 and 2, respectively, are responsible for most cases of ADPKD. Currently, the cellular mechanisms responsible for cyst formation remain poorly understood. In vitro models have been used by researchers to investigate cellular processes for cyst formation in carefully controlled experimental conditions. Madin-Darby canine kidney (MDCK) cells, a distal tubule epithelial cell line, were first used to form 3-dimensional (3-D) cysts within a hydrated collagen gel. This method was applied to epithelial cells cultured from cysts of human ADPKD kidneys, allowing investigators to study cellular mechanisms for cyst growth using cells that harbor the genetic mutations responsible for ADPKD in humans. Studies using ADPKD in vitro cysts have provided insight into cellular processes regulating cell proliferation, fluid secretion, and cell polarity. These assays were used to demonstrate the central role of cAMP agonists, such as arginine vasopressin, on cyst growth; and to test the effectiveness of potential therapeutic agents, including tolvaptan. Results obtained from in vitro cyst experiments demonstrate the translational value of cell model systems for investigating the mechanisms for cyst formation in human ADPKD. In this chapter, we describe protocols for growing ADPKD cells in a 3-D in vitro cyst assay and measuring total cyst volume by microscopy and image analysis.
Collapse
|
25
|
Abstract
Autosomal dominant polycystic kidney (ADPKD) is a common genetic disorder characterized by the presence of numerous fluid-filled cysts that lead to a progressive decline in renal function. Cystic tissues and primary cyst epithelial cells obtained from discarded human ADPKD kidneys provide unique biomaterials for the investigation of cellular mechanisms involved in cyst growth and changes in the microenvironment adjacent to the cysts. ADPKD cells have been used to develop straightforward in vitro cell model assays to study events down-stream of the mutant proteins in carefully controlled experimental conditions, test specific hypotheses, and evaluate the cellular response to potential therapeutic drugs. Normal cadaver kidneys deemed unsuitable for transplantation and "non-involved" portions of nephrectomy specimens removed for the treatment of kidney cancer provide important control tissues and the source of primary normal human kidney (NHK) cells for comparison to ADPKD specimens. This chapter describes the methods used in the collection of cystic and non-cystic tissues from ADPKD and normal kidneys and the generation of primary cell cultures. We also highlight strengths and weaknesses of using immortalized isogenic normal and PKD mutant cell lines.
Collapse
Affiliation(s)
- Darren P Wallace
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States.
| | - Gail A Reif
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
26
|
A Monoallelic Two-Hit Mechanism in PLCD1 Explains the Genetic Pathogenesis of Hereditary Trichilemmal Cyst Formation. J Invest Dermatol 2019; 139:2154-2163.e5. [PMID: 31082376 DOI: 10.1016/j.jid.2019.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023]
Abstract
Trichilemmal cysts are common hair follicle-derived intradermal cysts. The trait shows an autosomal dominant mode of transmission with incomplete penetrance. Here, we describe the pathogenetic mechanism for the development of hereditary trichilemmal cysts. By whole-exome sequencing of DNA from the blood samples of 5 affected individuals and subsequent Sanger sequencing of a family cohort including 35 affected individuals, this study identified a combination of the Phospholipase C Delta 1 germline variants c.903A>G, p.(Pro301Pro) and c.1379C>T, p.(Ser460Leu) as a high-risk factor for trichilemmal cyst development. Allele-specific PCRs and cloning experiments showed that these two variants are present on the same allele. The analysis of tissue from several cysts revealed that an additional somatic Phospholipase C Delta 1 mutation on the same allele is required for cyst formation. In two different functional in vitro assays, this study showed that the protein function of the cyst-specific 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase delta-1 protein variant is modified. This pathologic mechanism defines a monoallelic model of the two-hit mechanism proposed for tumor development and other hereditary cyst diseases.
Collapse
|
27
|
Bissler JJ, Zadjali F, Bridges D, Astrinidis A, Barone S, Yao Y, Redd JR, Siroky BJ, Wang Y, Finley JT, Rusiniak ME, Baumann H, Zahedi K, Gross KW, Soleimani M. Tuberous sclerosis complex exhibits a new renal cystogenic mechanism. Physiol Rep 2019; 7:e13983. [PMID: 30675765 PMCID: PMC6344348 DOI: 10.14814/phy2.13983] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a tumor predisposition syndrome with significant renal cystic and solid tumor disease. While the most common renal tumor in TSC, the angiomyolipoma, exhibits a loss of heterozygosity associated with disease, we have discovered that the renal cystic epithelium is composed of type A intercalated cells that have an intact Tsc gene that have been induced to exhibit Tsc-mutant disease phenotype. This mechanism appears to be different than that for ADPKD. The murine models described here closely resemble the human disease and both appear to be mTORC1 inhibitor responsive. The induction signaling driving cystogenesis may be mediated by extracellular vesicle trafficking.
Collapse
Affiliation(s)
- John J. Bissler
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
- St. Jude Children's Research HospitalMemphisTennessee
| | - Fahad Zadjali
- Department of Clinical BiochemistryCollege of Medicine & Health SciencesSultan Qaboos UniversityMuscatOman
| | - Dave Bridges
- Department of Nutritional SciencesUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Aristotelis Astrinidis
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - Sharon Barone
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| | - Ying Yao
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - JeAnna R. Redd
- Department of Nutritional SciencesUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Brian J. Siroky
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhio
| | - Yanqing Wang
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Joel T. Finley
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - Michael E. Rusiniak
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Heinz Baumann
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Kamyar Zahedi
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| | - Kenneth W. Gross
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Manoocher Soleimani
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| |
Collapse
|
28
|
Kleczko EK, Marsh KH, Tyler LC, Furgeson SB, Bullock BL, Altmann CJ, Miyazaki M, Gitomer BY, Harris PC, Weiser-Evans MCM, Chonchol MB, Clambey ET, Nemenoff RA, Hopp K. CD8 + T cells modulate autosomal dominant polycystic kidney disease progression. Kidney Int 2018; 94:1127-1140. [PMID: 30249452 PMCID: PMC6319903 DOI: 10.1016/j.kint.2018.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited nephropathy. To date, therapies alleviating the disease have largely focused on targeting abnormalities in renal epithelial cell signaling. ADPKD has many hallmarks of cancer, where targeting T cells has brought novel therapeutic interventions. However, little is known about the role and therapeutic potential of T cells in ADPKD. Here, we used an orthologous ADPKD model, Pkd1 p.R3277C (RC), to begin to define the role of T cells in disease progression. Using flow cytometry, we found progressive increases in renal CD8+ and CD4+ T cells, correlative with disease severity, but with selective activation of CD8+ T cells. By immunofluorescence, T cells specifically localized to cystic lesions and increased levels of T-cell recruiting chemokines (CXCL9/CXCL10) were detected by qPCR/in situ hybridization in the kidneys of mice, patients, and ADPKD epithelial cell lines. Importantly, immunodepletion of CD8+ T cells from one to three months in C57Bl/6 Pkd1RC/RC mice resulted in worsening of ADPKD pathology, decreased apoptosis, and increased proliferation compared to IgG-control, consistent with a reno-protective role of CD8+ T cells. Thus, our studies suggest a functional role for T cells, specifically CD8+ T cells, in ADPKD progression. Hence, targeting this pathway using immune-oncology agents may represent a novel therapeutic approach for ADPKD.
Collapse
Affiliation(s)
- Emily K Kleczko
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth H Marsh
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Logan C Tyler
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Seth B Furgeson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bonnie L Bullock
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher J Altmann
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Makoto Miyazaki
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Berenice Y Gitomer
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter C Harris
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michel B Chonchol
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
29
|
Kenter AT, van Rossum-Fikkert SE, Salih M, Verhagen PCMS, van Leenders GJLH, Demmers JAA, Jansen G, Gribnau J, Zietse R, Hoorn EJ. Identifying cystogenic paracrine signaling molecules in cyst fluid of patients with polycystic kidney disease. Am J Physiol Renal Physiol 2018; 316:F204-F213. [PMID: 30403162 DOI: 10.1152/ajprenal.00470.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD) paracrine signaling molecules in cyst fluid can induce proliferation and cystogenesis of neighboring renal epithelial cells. However, the identity of this cyst-inducing factor is still unknown. The aim of this study was to identify paracrine signaling proteins in cyst fluid using a 3D in vitro cystogenesis assay. We collected cyst fluid from 15 ADPKD patients who underwent kidney or liver resection (55 cysts from 13 nephrectomies, 5 cysts from 2 liver resections). For each sample, the ability to induce proliferation and cyst formation was tested using the cystogenesis assay (RPTEC/TERT1 cells in Matrigel with cyst fluid added for 14 days). Kidney cyst fluid induced proliferation and cyst growth of renal epithelial cells in a dose-dependent fashion. Liver cyst fluid also induced cystogenesis. Using size exclusion chromatography, 56 cyst fluid fractions were obtained of which only the fractions between 30 and 100 kDa showed cystogenic potential. Mass spectrometry analysis of samples that tested positive or negative in the assay identified 43 candidate cystogenic proteins. Gene ontology analysis showed an enrichment for proteins classified as enzymes, immunity proteins, receptors, and signaling proteins. A number of these proteins have previously been implicated in ADPKD, including secreted frizzled-related protein 4, S100A8, osteopontin, and cysteine rich with EGF-like domains 1. In conclusion, both kidney and liver cyst fluids contain paracrine signaling molecules that drive cyst formation. Using size exclusion chromatography and mass spectrometry, we procured a candidate list for future studies. Ultimately, cystogenic paracrine signaling molecules may be targeted to abrogate cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Annegien T Kenter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam , The Netherlands.,Department of Cell Biology, Erasmus Medical Center, Rotterdam , The Netherlands.,Department of Developmental Biology, Erasmus Medical Center, Rotterdam , The Netherlands
| | | | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam , The Netherlands
| | | | | | | | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center, Rotterdam , The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam , The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam , The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam , The Netherlands
| |
Collapse
|
30
|
Bissler JJ, Christopher Kingswood J. Renal manifestation of tuberous sclerosis complex. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:338-347. [PMID: 30307110 DOI: 10.1002/ajmg.c.31654] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/07/2022]
Abstract
Tuberous sclerosis complex (TSC) is a tumor predisposition syndrome with significant renal cystic and solid tumor disease. It commonly causes several types of cystic disease and benign tumors (angiomyolipomata) in the kidneys that can both lead to significant premature loss of glomerular filtration rate. The main risks of angiomyolipomata, severe bleeding, loss of renal function, and pulmonary lymphangioleiomyomatosis, can be ameliorated by active surveillance and preemptive therapy with mTOR inhibitors. The cystogenic mechanism may involve primary cilia, but also appears to also involve a majority of normal tubular cells and may be driven by a minority of cells with mutations inactivating both their TSC1 or TSC2 genes. Malignant tumors are rare.
Collapse
Affiliation(s)
- John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN
- St. Jude Children's Research Hospital, Memphis, TN
| | - J Christopher Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St. Georges University of London, London, United kingdom
| |
Collapse
|
31
|
Lea WA, Parnell SC, Wallace DP, Calvet JP, Zelenchuk LV, Alvarez NS, Ward CJ. Human-Specific Abnormal Alternative Splicing of Wild-Type PKD1 Induces Premature Termination of Polycystin-1. J Am Soc Nephrol 2018; 29:2482-2492. [PMID: 30185468 DOI: 10.1681/asn.2018040442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The major form of autosomal dominant polycystic kidney disease is caused by heterozygous mutations in PKD1, the gene that encodes polycystin-1 (PC1). Unlike PKD1 genes in the mouse and most other mammals, human PKD1 is unusual in that it contains two long polypyrimidine tracts in introns 21 and 22 (2.5 kbp and 602 bp, respectively; 97% cytosine and thymine). Although these polypyrimidine tracts have been shown to form thermodynamically stable segments of triplex DNA that can cause DNA polymerase stalling and enhance the local mutation rate, the efficiency of transcription and splicing across these cytosine- and thymine-rich introns has been unexplored. METHODS We used RT-PCR and Western blotting (using an mAb to the N terminus) to probe splicing events over exons 20-24 in the mouse and human PKD1 genes as well as Nanopore sequencing to confirm the presence of multiple splice forms. RESULTS Analysis of PC1 indicates that humans, but not mice, have a smaller than expected protein product, which we call Trunc_PC1. The findings show that Trunc_PC1 is the protein product of abnormal differential splicing across introns 21 and 22 and that 28.8%-61.5% of PKD1 transcripts terminate early. CONCLUSIONS The presence of polypyrimidine tracts decreases levels of full-length PKD1 mRNA from normal alleles. In heterozygous individuals, low levels of full-length PC1 may reduce polycystin signaling below a critical "cystogenic" threshold.
Collapse
Affiliation(s)
- Wendy A Lea
- The Jared Grantham Kidney Institute and Departments of.,Internal Medicine
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute and Departments of.,Biochemistry and Molecular Biology
| | - Darren P Wallace
- The Jared Grantham Kidney Institute and Departments of.,Internal Medicine.,Molecular and Integrative Physiology, and
| | - James P Calvet
- The Jared Grantham Kidney Institute and Departments of.,Biochemistry and Molecular Biology
| | - Lesya V Zelenchuk
- The Jared Grantham Kidney Institute and Departments of.,Internal Medicine
| | - Nehemiah S Alvarez
- Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; and.,De Novo Genomics, Kansas City, Kansas
| | - Christopher J Ward
- The Jared Grantham Kidney Institute and Departments of .,Internal Medicine.,Biochemistry and Molecular Biology
| |
Collapse
|
32
|
Tan AY, Zhang T, Michaeel A, Blumenfeld J, Liu G, Zhang W, Zhang Z, Zhu Y, Rennert L, Martin C, Xiang J, Salvatore SP, Robinson BD, Kapur S, Donahue S, Bobb WO, Rennert H. Somatic Mutations in Renal Cyst Epithelium in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2018; 29:2139-2156. [PMID: 30042192 DOI: 10.1681/asn.2017080878] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a ciliopathy caused by mutations in PKD1 and PKD2 that is characterized by renal tubular epithelial cell proliferation and progressive CKD. Although the molecular mechanisms involved in cystogenesis are not established, concurrent inactivating constitutional and somatic mutations in ADPKD genes in cyst epithelium have been proposed as a cellular recessive mechanism. METHODS We characterized, by whole-exome sequencing (WES) and long-range PCR techniques, the somatic mutations in PKD1 and PKD2 genes in renal epithelial cells from 83 kidney cysts obtained from nine patients with ADPKD, for whom a constitutional mutation in PKD1 or PKD2 was identified. RESULTS Complete sequencing data by long-range PCR and WES was available for 63 and 65 cysts, respectively. Private somatic mutations of PKD1 or PKD2 were identified in all patients and in 90% of the cysts analyzed; 90% of these mutations were truncating, splice site, or in-frame variations predicted to be pathogenic mutations. No trans-heterozygous mutations of PKD1 or PKD2 genes were identified. Copy number changes of PKD1 ranging from 151 bp to 28 kb were observed in 12% of the cysts. WES also identified significant mutations in 53 non-PKD1/2 genes, including other ciliopathy genes and cancer-related genes. CONCLUSIONS These findings support a cellular recessive mechanism for cyst formation in ADPKD caused primarily by inactivating constitutional and somatic mutations of PKD1 or PKD2 in kidney cyst epithelium. The potential interactions of these genes with other ciliopathy- and cancer-related genes to influence ADPKD severity merits further evaluation.
Collapse
Affiliation(s)
- Adrian Y Tan
- Departments of Pathology and Laboratory Medicine.,Microbiology and Immunology
| | | | | | - Jon Blumenfeld
- Medicine, and.,The Rogosin Institute, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York; and
| | - Genyan Liu
- Departments of Pathology and Laboratory Medicine
| | | | | | - Yi Zhu
- Departments of Pathology and Laboratory Medicine
| | - Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, South Carolina
| | - Che Martin
- Departments of Pathology and Laboratory Medicine
| | | | | | | | - Sandip Kapur
- Surgery, Weill Cornell Medicine, New York, New York
| | - Stephanie Donahue
- The Rogosin Institute, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York; and
| | - Warren O Bobb
- The Rogosin Institute, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York; and
| | | |
Collapse
|
33
|
Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 2018; 7:33183. [PMID: 29443690 PMCID: PMC5812715 DOI: 10.7554/elife.33183] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
Mutations in the polycystin genes, PKD1 or PKD2, results in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although a genetic basis of ADPKD is established, we lack a clear understanding of polycystin proteins’ functions as ion channels. This question remains unsolved largely because polycystins localize to the primary cilium – a tiny, antenna-like organelle. Using a new ADPKD mouse model, we observe primary cilia that are abnormally long in cells associated with cysts after conditional ablation of Pkd1 or Pkd2. Using primary cultures of collecting duct cells, we show that polycystin-2, but not polycystin-1, is a required subunit for the ion channel in the primary cilium. The polycystin-2 channel preferentially conducts K+ and Na+; intraciliary Ca2+, enhances its open probability. We introduce a novel method for measuring heterologous polycystin-2 channels in cilia, which will have utility in characterizing PKD2 variants that cause ADPKD.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thuy Vien
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Jingjing Duan
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Shu-Hsien Sheu
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Paul G DeCaen
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
34
|
Deletion of Pkd1 in renal stromal cells causes defects in the renal stromal compartment and progressive cystogenesis in the kidney. J Transl Med 2017; 97:1427-1438. [PMID: 28892094 DOI: 10.1038/labinvest.2017.97] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by PKD1 and PKD2 gene mutations, is one of the most common genetic diseases, affecting up to 1 in 500 people. Mutations of PKD1 account for over 85% of ADPKD cases. However, mechanisms of disease progression and explanations for the wide range in disease phenotype remain to be elucidated. Moreover, functional roles of PKD1 in the renal stromal compartment are poorly understood. In this work, we tested if Pkd1 is essential for development and maintenance of the renal stromal compartment and if this role contributes to pathogenesis of polycystic kidney disease using a novel tissue-specific knockout mouse model. We demonstrate that deletion of Pkd1 from renal stromal cells using Foxd1-driven Cre causes a spectrum of defects in the stromal compartment, including excessive apoptosis/proliferation and extracellular matrix deficiency. Renal vasculature was also defective. Further, mutant mice showed epithelial changes and progressive cystogenesis in adulthood modeling human ADPKD. Altogether, we provide robust evidence to support indispensable roles for Pkd1 in development and maintenance of stromal cell derivatives by using a novel ADPKD model. Moreover, stromal compartment defects caused by Pkd1 deletion might serve as an important mechanism for pathogenesis of ADPKD.
Collapse
|
35
|
Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease. Mol Cell Biol 2017; 37:MCB.00337-17. [PMID: 28993480 PMCID: PMC5705822 DOI: 10.1128/mcb.00337-17] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) constitutes the most inherited kidney disease. Mutations in the PKD1 and PKD2 genes, encoding the polycystin 1 and polycystin 2 Ca2+ ion channels, respectively, result in tubular epithelial cell-derived renal cysts. Recent clinical studies demonstrate oxidative stress to be present early in ADPKD. Mitochondria comprise the primary reactive oxygen species source and also their main effector target; however, the pathophysiological role of mitochondria in ADPKD remains uncharacterized. To clarify this function, we examined the mitochondria of cyst-lining cells in ADPKD model mice (Ksp-Cre PKD1flox/flox) and rats (Han:SPRD Cy/+), demonstrating obvious tubular cell morphological abnormalities. Notably, the mitochondrial DNA copy number and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) expression were decreased in ADPKD model animal kidneys, with PGC-1α expression inversely correlated with oxidative stress levels. Consistent with these findings, human ADPKD cyst-derived cells with heterozygous and homozygous PKD1 mutation exhibited morphological and functional abnormalities, including increased mitochondrial superoxide. Furthermore, PGC-1α expression was suppressed by decreased intracellular Ca2+ levels via calcineurin, p38 mitogen-activated protein kinase (MAPK), and nitric oxide synthase deactivation. Moreover, the mitochondrion-specific antioxidant MitoQuinone (MitoQ) reduced intracellular superoxide and inhibited cyst epithelial cell proliferation through extracellular signal-related kinase/MAPK inactivation. Collectively, these results indicate that mitochondrial abnormalities facilitate cyst formation in ADPKD.
Collapse
|
36
|
Abstract
INTRODUCTION Polycystic kidney disease (PKD) is clinically and genetically heterogeneous and constitutes the most common heritable kidney disease. Most patients are affected by the autosomal dominant form (ADPKD) which generally is an adult-onset multisystem disorder. By contrast, the rarer recessive form ARPKD usually already manifests perinatally or in childhood. In some patients, however, ADPKD and ARPKD can phenotypically overlap with early manifestation in ADPKD and only late onset in ARPKD. Progressive fibrocystic renal changes are often accompanied by severe hepatobiliary changes or other extrarenal abnormalities. Areas covered: A reduced dosage of disease proteins disturbs cell homeostasis and explains a more severe clinical course in some PKD patients. Cystic kidney disease is also a common feature of other ciliopathies and genetic syndromes. Genetic diagnosis may guide clinical management and helps to avoid invasive measures and to detect renal and extrarenal comorbidities early in the clinical course. Expert Commentary: The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach. Interpretation of data becomes the challenge and bench and bedside benefit from digitized multidisciplinary interrelationships.
Collapse
Affiliation(s)
- Carsten Bergmann
- a Center for Human Genetics , Bioscientia , Ingelheim , Germany.,b Department of Medicine , University Hospital Freiburg , Freiburg , Germany
| |
Collapse
|
37
|
Freiermuth JL, Powell‐Castilla IJ, Gallicano GI. Toward a CRISPR Picture: Use of CRISPR/Cas9 to Model Diseases in Human Stem Cells In Vitro. J Cell Biochem 2017; 119:62-68. [DOI: 10.1002/jcb.26162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Jamie L. Freiermuth
- Special Master's Program, Georgetown UniversityWashingtonDistrict of Columbia
| | | | - G. Ian Gallicano
- Biochemistry and Molecular and Cellular BiologyGeorgetown UniversityWashingtonDistrict of Columbia
| |
Collapse
|
38
|
Tolvaptan treatment for severe neonatal autosomal-dominant polycystic kidney disease. Pediatr Nephrol 2017; 32:893-896. [PMID: 28194574 PMCID: PMC5368203 DOI: 10.1007/s00467-017-3584-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Severe neonatal autosomal-dominant polycystic kidney disease (ADPKD) is rare and easily confused with recessive PKD. Managing such infants is difficult and often unsuccessful. CASE DIAGNOSIS/TREATMENT A female infant with massive renal enlargement, respiratory compromise and hyponatraemia was treated with the arginine vasopressin receptor 2 antagonist tolvaptan. This resolved hyponatraemia, and there was no further increase in renal size. CONCLUSION Tolvaptan may be a useful treatment for severe neonatal PKD.
Collapse
|
39
|
Rangan GK, Lopez-Vargas P, Nankivell BJ, Tchan M, Tong A, Tunnicliffe DJ, Savige J. Autosomal Dominant Polycystic Kidney Disease: A Path Forward. Semin Nephrol 2016; 35:524-37. [PMID: 26718155 DOI: 10.1016/j.semnephrol.2015.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the commonest inherited cause of renal failure in adults, and is due to loss-of-function mutations in either the PKD1 or PKD2 genes, which encode polycystin-1 and polycystin-2, respectively. These proteins have an essential role in maintaining the geometric structure of the distal collecting duct in the kidney in adult life, and their dysfunction predisposes to renal cyst formation. The typical renal phenotype of ADPKD is the insidious development of hundreds of renal cysts, which form in childhood and grow progressively through life, causing end-stage kidney failure in the fifth decade in about half affected by the mutation. Over the past 2 decades, major advances in genetics and disease pathogenesis have led to well-conducted randomized controlled trials, and observational studies that have resulted in an accumulation of evidence-based data, and raise hope that the lifetime risk of kidney failure due to ADPKD will be progressively curtailed during this century. This review will provide a contemporary summary of the current state of the field in disease pathogenesis and therapeutics, and also briefly highlights the importance of clinical practice guidelines, patient perspectives, patient-reported outcomes, uniform trial reporting, and health-economics in ADPKD.
Collapse
Affiliation(s)
- Gopala K Rangan
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Sydney, Australia; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia.
| | - Pamela Lopez-Vargas
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Brian J Nankivell
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Sydney, Australia; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| | - Allison Tong
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Judy Savige
- The University of Melbourne, Department of Medicine, Melbourne Health and Northern Health, Melbourne, Australia; Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Mechanisms of pulmonary cyst pathogenesis in Birt-Hogg-Dube syndrome: The stretch hypothesis. Semin Cell Dev Biol 2016; 52:47-52. [PMID: 26877139 DOI: 10.1016/j.semcdb.2016.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
Loss-of-function mutations in the folliculin gene (FLCN) on chromosome 17p cause Birt-Hogg-Dube syndrome (BHD), which is associated with cystic lung disease. The risk of lung collapse (pneumothorax) in BHD patients is 50-fold higher than in the general population. The cystic lung disease in BHD is distinctive because the cysts tend to be basilar, subpleural and lentiform, differentiating BHD from most other cystic lung diseases. Recently, major advances in elucidating the primary functions of the folliculin protein have been made, including roles in mTOR and AMPK signaling via the interaction of FLCN with FNIP1/2, and cell-cell adhesion via the physical interaction of FLCN with plakophilin 4 (PKP4), an armadillo-repeat containing protein that interacts with E-cadherin and is a component of the adherens junctions. In addition, in just the last three years, the pulmonary impact of FLCN deficiency has been examined for the first time. In mouse models, evidence has emerged that AMPK signaling and cell-cell adhesion are involved in alveolar enlargement. In addition, the pathologic features of human BHD cysts have been recently comprehensively characterized. The "stretch hypothesis" proposes that cysts in BHD arise because of fundamental defects in cell-cell adhesion, leading to repeated respiration-induced physical stretch-induced stress and, over time, expansion of alveolar spaces particularly in regions of the lung with larger changes in alveolar volume and at weaker "anchor points" to the pleura. This hypothesis ties together many of the new data from cellular and mouse models of BHD and from the human pathologic studies. Critical questions remain. These include whether the consequences of stretch-induced cyst formation arise through a destructive/inflammatory program or a proliferative program (or both), whether cyst initiation involves a "second hit" genetic event inactivating the remaining wild-type copy of FLCN (as is known to occur in BHD-associated renal cell carcinomas), and whether cyst initiation involves exclusively the epithelial compartment versus an interaction between the epithelium and mesenchyme. Ultimately, understanding the mechanisms of cystic lung disease in BHD may help to elucidate the pathogenesis of primary spontaneous pneumothorax, with more than 20,000 cases reported annually in the United States alone.
Collapse
|
41
|
Zheng W, Shen F, Hu R, Roy B, Yang J, Wang Q, Zhang F, King JC, Sergi C, Liu SM, Cordat E, Tang J, Cao Y, Ali D, Chen XZ. Far Upstream Element-Binding Protein 1 Binds the 3' Untranslated Region of PKD2 and Suppresses Its Translation. J Am Soc Nephrol 2016; 27:2645-57. [PMID: 26839368 DOI: 10.1681/asn.2015070836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/24/2015] [Indexed: 01/02/2023] Open
Abstract
Autosomal dominant polycystic kidney disease pathogenesis can be recapitulated in animal models by gene mutations in or dosage alterations of polycystic kidney disease 1 (PKD1) or PKD2, demonstrating that too much and too little PKD1/PKD2 are both pathogenic. Gene dosage manipulation has become an appealing approach by which to compensate for loss or gain of gene function, but the mechanisms controlling PKD2 expression remain incompletely characterized. In this study, using cultured mammalian cells and dual-luciferase assays, we found that the 3' untranslated region (3'UTR) of PKD2 mRNA inhibits luciferase protein expression. We then identified nucleotides 691-1044, which we called 3FI, as the 3'UTR fragment necessary for repressing the expression of luciferase or PKD2 in this system. Using a pull-down assay and mass spectrometry we identified far upstream element-binding protein 1 (FUBP1) as a 3FI-binding protein. In vitro overexpression of FUBP1 inhibited the expression of PKD2 protein but not mRNA. In embryonic zebrafish, FUBP1 knockdown (KD) by morpholino injection increased PKD2 expression and alleviated fish tail curling caused by morpholino-mediated KD of PKD2. Conversely, FUBP1 overexpression by mRNA injection significantly increased pronephric cyst occurrence and tail curling in zebrafish embryos. Furthermore, FUBP1 binds directly to eukaryotic translation initiation factor 4E-binding protein 1, indicating a link to the translation initiation complex. These results show that FUBP1 binds 3FI in the PKD2 3'UTR to inhibit PKD2 translation, regulating zebrafish disease phenotypes associated with PKD2 KD.
Collapse
Affiliation(s)
- Wang Zheng
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China; Membrane Protein Disease Research Group, Department of Physiology
| | - Fan Shen
- Membrane Protein Disease Research Group, Department of Physiology, Medical Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | - Ruikun Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - JungWoo Yang
- Membrane Protein Disease Research Group, Department of Physiology
| | - Qian Wang
- Membrane Protein Disease Research Group, Department of Physiology
| | - Fan Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jennifer C King
- Membrane Protein Disease Research Group, Department of Physiology
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Song-Mei Liu
- Medical Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | | | - Jingfeng Tang
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Xing-Zhen Chen
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China; Membrane Protein Disease Research Group, Department of Physiology,
| |
Collapse
|
42
|
Abstract
Autosomal dominant polycystic kidney disease is caused by mutation of PKD1 (polycystic kidney disease-1) or PKD2 (polycystic kidney disease-2). PKD1 and PKD2 encode PC1 (polycystin-1) and PC2 (polycystin-2), respectively. In addition, the mutation of cilia-associated proteins is also a recognized major factor of pathogenesis, since PC1 and PC2 are located in primary cilium. Abnormalities of PC1 or PC2 lead to aberrant signaling through downstream pathways, such as the negative growth regulation, G protein activation, and canonical and non-canonical Wnt pathways. According to the "second hit" model, an additional somatic mutation results in the expansion of cyst growth. In this chapter we discuss the genetic mechanisms and signaling pathways involved in ADPKD.
Collapse
|
43
|
Papillary renal cell carcinoma with a somatic mutation in MET in a patient with autosomal dominant polycystic kidney disease. Cancer Genet 2015; 209:11-20. [PMID: 26718059 DOI: 10.1016/j.cancergen.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2 and is characterized by proliferation of renal tubular epithelium and progressive chronic kidney disease. Derangements in similar cellular signaling pathways occur in ADPKD and renal malignancies, although an association of these disorders has not been established. Herein, we present a case of papillary RCC (pRCC) incidentally discovered in a patient with ADPKD following bilateral native nephrectomy during renal transplantation. Whole exome sequencing of the pRCC found a somatic missense mutation in MET proto-oncogene, p.Val1110Ile, not present in kidney cyst epithelium or non-cystic tissue. RNA sequencing demonstrated increased mRNA expression of MET and pathway-related genes, but no significant copy number variation of MET was detected. Genetic analysis of PKD genes from peripheral blood lymphocytes and renal cyst epithelium identified a constitutional PKD1 germline mutation, p.Trp1582Ser, predicted to be pathogenic. Unique somatic mutations in PKD1 were also detected in 80% of the renal cysts analyzed, but not in the pRCC. These results suggest that, in this patient, the pRCC utilized a signaling pathway involving MET that was distinct from the pathogenesis of ADPKD. This is the first report of PKD1 mutations and a somatic mutation of the MET oncogene in a pRCC in ADPKD.
Collapse
|
44
|
Seeger-Nukpezah T, Geynisman DM, Nikonova AS, Benzing T, Golemis EA. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol 2015; 11:515-34. [PMID: 25870008 PMCID: PMC5902186 DOI: 10.1038/nrneph.2015.46] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Centre for Integrated Oncology, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Daniel M Geynisman
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anna S Nikonova
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Centre for Molecular Medicine Cologne, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Erica A Golemis
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
45
|
Cornec-Le Gall E, Audrézet MP, Le Meur Y, Chen JM, Férec C. Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat 2015; 35:1393-406. [PMID: 25263802 DOI: 10.1002/humu.22708] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is characterized by the progressive development and expansion of bilateral fluid-filled cysts derived from the renal tubule epithelial cells. Although typically leading to end-stage renal disease in late middle age, ADPKD represents a continuum, from neonates with hugely enlarged cystic kidneys to cases with adequate kidney function into old age. Since the identification of the first causative gene (i.e., PKD1, encoding polycystin 1) 20 years ago, genetic studies have uncovered a large part of the key factors that underlie the phenotype variability. Here, we provide a comprehensive review of these significant advances as well as those related to disease pathogenesis models, including mutation analysis of PKD1 and PKD2 (encoding polycystin 2), current mutation detection rate, allelic heterogeneity, genotype and phenotype relationships (in terms of three different inheritance patterns: classical autosomal dominant inheritance, complex inheritance, and somatic and germline mosaicism), modifier genes, the role of second somatic mutation hit in renal cystogenesis, and findings from mouse models of polycystic kidney disease. Based upon a combined consideration of the current knowledge, we attempted to propose a unifying framework for explaining the phenotype variability in ADPKD.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France; Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Régional Universitaire, Hôpital de la Cavale Blanche, Brest, France
| | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Cystic kidney diseases are common renal disorders characterized by the formation of fluid-filled epithelial cysts in the kidneys. The progressive growth and expansion of the renal cysts replace existing renal tissue within the renal parenchyma, leading to reduced renal function. While several genes have been identified in association with inherited causes of cystic kidney disease, the molecular mechanisms that regulate these genes in the context of post-transcriptional regulation are still poorly understood. There is increasing evidence that microRNA (miRNA) dysregulation is associated with the pathogenesis of cystic kidney disease. RECENT FINDINGS In this review, recent studies that implicate dysregulation of miRNA expression in cystogenesis will be discussed. The relationship of specific miRNAs, such as the miR-17∼92 cluster and cystic kidney disease, miR-92a and von Hippel-Lindau syndrome, and alterations in LIN28-LET7 expression in Wilms tumor will be explored. SUMMARY At present, there are no specific treatments available for patients with cystic kidney disease. Understanding and identifying specific miRNAs involved in the pathogenesis of these disorders may have the potential to lead to the development of novel therapies and biomarkers.
Collapse
|
47
|
Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Res Clin Pract 2014; 33:73-8. [PMID: 26877954 PMCID: PMC4714135 DOI: 10.1016/j.krcp.2014.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
The primary cilium of renal epithelia acts as a transducer of extracellular stimuli. Polycystin (PC)1 is the protein encoded by the PKD1 gene that is responsible for the most common and severe form of autosomal dominant polycystic kidney disease (ADPKD). PC1 forms a complex with PC2 via their respective carboxy-terminal tails. Both proteins are expressed in the primary cilia. Mutations in either gene affect the normal architecture of renal tubules, giving rise to ADPKD. PC1 has been proposed as a receptor that modulates calcium signals via the PC2 channel protein. The effect of PC1 dosage has been described as the rate-limiting modulator of cystic disease. Reduced levels of PC1 or disruption of the balance in PC1/PC2 level can lead to the clinical features of ADPKD, without complete inactivation. Recent data show that ADPKD resulting from inactivation of polycystins can be markedly slowed if structurally intact cilia are also disrupted at the same time. Despite the fact that no single model or mechanism from these has been able to describe exclusively the pathogenesis of cystic kidney disease, these findings suggest the existence of a novel cilia-dependent, cyst-promoting pathway that is normally repressed by polycystin function. The results enable us to rethink our current understanding of genetics and cilia signaling pathways of ADPKD.
Collapse
|
48
|
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3’-untranslated region of multiple target genes. Pathogenesis results from defects in several gene sets; therefore, disease progression could be prevented using miRNAs targeting multiple genes. Moreover, recent studies suggest that miRNAs reflect the stage of the specific disease, such as carcinogenesis. Cystic diseases, including polycystic kidney disease, polycystic liver disease, pancreatic cystic disease, and ovarian cystic disease, have common processes of cyst formation in the specific organ. Specifically, epithelial cells initiate abnormal cell proliferation and apoptosis as a result of alterations to key
genes. Cysts are caused by fluid accumulation in the lumen. However, the molecular mechanisms underlying cyst formation and progression remain unclear. This review aims to introduce the key miRNAs related to cyst formation, and we suggest that miRNAs could be useful biomarkers and potential therapeutic targets in several cystic diseases. [BMB Reports 2013; 46(7):338-345]
Collapse
Affiliation(s)
- Yu Mi Woo
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Korea
| | | |
Collapse
|
49
|
Fedeles SV, Gallagher AR, Somlo S. Polycystin-1: a master regulator of intersecting cystic pathways. Trends Mol Med 2014; 20:251-60. [PMID: 24491980 DOI: 10.1016/j.molmed.2014.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially lethal monogenic disorder, with more than 12 million cases worldwide. The two causative genes for ADPKD, PKD1 and PKD2, encode protein products polycystin-1 (PC1) and polycystin-2 (PC2 or TRPP2), respectively. Recent data have shed light on the role of PC1 in regulating the severity of the cystic phenotypes in ADPKD, autosomal recessive polycystic kidney disease (ARPKD), and isolated autosomal dominant polycystic liver disease (ADPLD). These studies showed that the rate for cyst growth was a regulated trait, a process that can be either sped up or slowed down by alterations in functional PC1. These findings redefine the previous understanding that cyst formation occurs as an 'on-off' process. Here, we review these and other related studies with an emphasis on their translational implications for polycystic diseases.
Collapse
Affiliation(s)
- Sorin V Fedeles
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
50
|
Bilineal inheritance of PKD1 abnormalities mimicking autosomal recessive polycystic disease. Pediatr Nephrol 2013; 28:2217-20. [PMID: 23624871 DOI: 10.1007/s00467-013-2484-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Dominant polycystic kidney disease is common and usually presents clinically in adulthood. Recessive polycystic kidney disease is much less common and frequently presents antenatally or in the neonatal period with severe renal involvement. These are usually thought of as clinically distinct entities but diagnostic confusion is not infrequent. CASE-DIAGNOSIS/TREATMENT We describe an infant with antenatally diagnosed massive renal enlargement and oligohydramnios with no resolvable cysts on ultrasound scanning. He underwent bilateral nephrectomy because of respiratory compromise and poor renal function but died subsequently of overwhelming sepsis. Genetic analysis revealed that he had bilineal inheritance of abnormalities of PKD1 and no demonstrable abnormalities of PKD2 or PKHD1. CONCLUSIONS Biallelic inheritance of abnormalities of PKD1 may causextremely severe disease resembling autosomal recessive polycystic kidney disease (ARPKD) which can result indiagnostic confusion. Accurate diagnosis is essential forgenetic counseling [corrected].
Collapse
|