1
|
Goraya N, Wesson DE. Pathophysiology of Diet-Induced Acid Stress. Int J Mol Sci 2024; 25:2336. [PMID: 38397012 PMCID: PMC10888592 DOI: 10.3390/ijms25042336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Diets can influence the body's acid-base status because specific food components yield acids, bases, or neither when metabolized. Animal-sourced foods yield acids and plant-sourced food, particularly fruits and vegetables, generally yield bases when metabolized. Modern diets proportionately contain more animal-sourced than plant-sourced foods, are, thereby, generally net acid-producing, and so constitute an ongoing acid challenge. Acid accumulation severe enough to reduce serum bicarbonate concentration, i.e., manifesting as chronic metabolic acidosis, the most extreme end of the continuum of "acid stress", harms bones and muscles and appears to enhance the progression of chronic kidney disease (CKD). Progressive acid accumulation that does not achieve the threshold amount necessary to cause chronic metabolic acidosis also appears to have deleterious effects. Specifically, identifiable acid retention without reduced serum bicarbonate concentration, which, in this review, we will call "covert acidosis", appears to cause kidney injury and exacerbate CKD progression. Furthermore, the chronic engagement of mechanisms to mitigate the ongoing acid challenge of modern diets also appears to threaten health, including kidney health. This review describes the full continuum of "acid stress" to which modern diets contribute and the mechanisms by which acid stress challenges health. Ongoing research will develop clinically useful tools to identify stages of acid stress earlier than metabolic acidosis and determine if dietary acid reduction lowers or eliminates the threats to health that these diets appear to cause.
Collapse
Affiliation(s)
- Nimrit Goraya
- Department of Internal Medicine, Baylor Scott & White Health, Temple, TX 76508, USA;
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, TX 76508, USA
| | - Donald E. Wesson
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Dallas, TX 78712, USA
| |
Collapse
|
2
|
Koh ES. Hidden Acid Retention with Normal Serum Bicarbonate Level in Chronic Kidney Disease. Electrolyte Blood Press 2023; 21:34-43. [PMID: 37434806 PMCID: PMC10329907 DOI: 10.5049/ebp.2023.21.1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 07/13/2023] Open
Abstract
Management of metabolic acidosis is crucial for preserving bone, muscle, and renal health, as evidenced by the results of several interventional studies conducted on patients with chronic kidney disease (CKD). Considering the continuity of CKD progression over time, it is reasonable to deduce that a subclinical form of metabolic acidosis may exist prior to the manifestation of overt metabolic acidosis. Covert H+ retention with normal serum bicarbonate level in patients with CKD may result in maladaptive responses that contribute to kidney function deterioration, even in the early stages of the disease. The loss of adaptive compensatory mechanisms of urinary acid excretion may be a key factor in this process. Early modulation of these responses could be an important therapeutic strategy in preventing CKD progression. However, to date, the optimal approach for alkali therapy in subclinical metabolic acidosis in CKD remains uncertain. There is a lack of established guidelines on when to initiate alkali therapy, potential side effects of alkali agents, and the optimal blood bicarbonate levels based on evidence-based practices. Therefore, further research is necessary to address these concerns and establish more robust guidelines for the use of alkali therapy in patients with CKD. Herein, we provide an overview of recent developments on this subject and examine the potential therapeutic approaches that interventional treatments may present for patients with hidden H+ retention, exhibiting normal serum bicarbonate levels - commonly described as subclinical or eubicarbonatemic metabolic acidosis in patients with CKD.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wesson DE. The Importance of Recognizing and Addressing the Spectrum of Acid Stress. Adv Chronic Kidney Dis 2022; 29:364-372. [PMID: 36175074 DOI: 10.1053/j.ackd.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023]
Abstract
Acid accumulation sufficient to reduce plasma bicarbonate concentration, thereby recognized as chronic metabolic acidosis, harms bones and muscles and appears to enhance progression of CKD. Evolving evidence supports that progressive acid accumulation that is not enough to cause chronic metabolic acidosis nevertheless has deleterious effects. Measurable acid retention without reduced plasma bicarbonate concentration, called eubicarbonatemic acidosis, also appears to cause kidney injury and exacerbate CKD progression. Furthermore, chronic engagement of mechanisms to mitigate the ongoing acid challenge of net acid-producing diets of developed societies also appears to be deleterious, including for kidney health. This review challenges clinicians to consider the growing evidence for a spectrum of acid-accumulation disorders that include lesser degrees of acid accumulation than metabolic acidosis yet are harmful. Further research will develop clinically useful tools to identify individuals suffering from these earlier stages of acid stress and determine if the straightforward and comparatively inexpensive intervention of dietary acid reduction relieves or eliminates the harm they appear to cause.
Collapse
Affiliation(s)
- Donald E Wesson
- The University of Texas at Austin Dell Medical School, Austin, TX; Donald E Wesson Consulting LLC, Dallas, TX.
| |
Collapse
|
4
|
Abstract
Acid-related injury from chronic metabolic acidosis is recognized through growing evidence of its deleterious effects, including kidney and other organ injury. Progressive acid accumulation precedes the signature manifestation of chronic metabolic acidosis, decreased plasma bicarbonate concentration. Acid accumulation that is not enough to manifest as metabolic acidosis, known as eubicarbonatemic acidosis, also appears to cause kidney injury, with exacerbated progression of CKD. Chronic engagement of mechanisms to mitigate the acid challenge from Western-type diets also appears to cause kidney injury. Rather than considering chronic metabolic acidosis as the only acid-related condition requiring intervention to reduce kidney injury, this review supports consideration of acid-related injury as a continuum. This "acid stress" continuum has chronic metabolic acidosis at its most extreme end, and high-acid-producing diets at its less extreme, yet detrimental, end.
Collapse
Affiliation(s)
- Donald E. Wesson
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Dallas, Texas
| |
Collapse
|
5
|
Bovée DM, Cuevas CA, Zietse R, Danser AHJ, Mirabito Colafella KM, Hoorn EJ. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms. Am J Physiol Renal Physiol 2020; 319:F729-F745. [DOI: 10.1152/ajprenal.00407.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) causes salt-sensitive hypertension that is often resistant to treatment and contributes to the progression of kidney injury and cardiovascular disease. A better understanding of the mechanisms contributing to salt-sensitive hypertension in CKD is essential to improve these outcomes. This review critically explores these mechanisms by focusing on how CKD affects distal nephron Na+ reabsorption. CKD causes glomerulotubular imbalance with reduced proximal Na+ reabsorption and increased distal Na+ delivery and reabsorption. Aldosterone secretion further contributes to distal Na+ reabsorption in CKD and is not only mediated by renin and K+ but also by metabolic acidosis, endothelin-1, and vasopressin. CKD also activates the intrarenal renin-angiotensin system, generating intratubular angiotensin II to promote distal Na+ reabsorption. High dietary Na+ intake in CKD contributes to Na+ retention by aldosterone-independent activation of the mineralocorticoid receptor mediated through Rac1. High dietary Na+ also produces an inflammatory response mediated by T helper 17 cells and cytokines increasing distal Na+ transport. CKD is often accompanied by proteinuria, which contains plasmin capable of activating the epithelial Na+ channel. Thus, CKD causes both local and systemic changes that together promote distal nephron Na+ reabsorption and salt-sensitive hypertension. Future studies should address remaining knowledge gaps, including the relative contribution of each mechanism, the influence of sex, differences between stages and etiologies of CKD, and the clinical relevance of experimentally identified mechanisms. Several pathways offer opportunities for intervention, including with dietary Na+ reduction, distal diuretics, renin-angiotensin system inhibitors, mineralocorticoid receptor antagonists, and K+ or H+ binders.
Collapse
Affiliation(s)
- Dominique M. Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Catharina A. Cuevas
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katrina M. Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Abstract
A large body of work in animals and human beings supports the hypothesis that metabolic acidosis has a deleterious effect on the progression of kidney disease. Alkali therapy, whether pharmacologically or through dietary intervention, appears to slow CKD progression, but an appropriately powered randomized controlled trial with a low risk of bias is required to reach a more definitive conclusion. Recent work on urinary ammonium excretion has shown that the development of prognostic tools related to acidosis is not straightforward, and that application of urine markers such as ammonium may require more nuance than would be predicted based on our understanding of the pathophysiology.
Collapse
Affiliation(s)
- Wei Chen
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY; Department of Medicine, Nephrology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - David S Levy
- Department of Medicine, Nephrology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Matthew K Abramowitz
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
7
|
Wesson DE, Buysse JM, Bushinsky DA. Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease. J Am Soc Nephrol 2020; 31:469-482. [PMID: 31988269 DOI: 10.1681/asn.2019070677] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Retrospective analyses and single-center prospective studies identify chronic metabolic acidosis as an independent and modifiable risk factor for progression of CKD. In patients with CKD, untreated chronic metabolic acidosis often leads to an accelerated reduction in GFR. Mechanisms responsible for this reduction include adaptive responses that increase acid excretion but lead to a decline in kidney function. Metabolic acidosis in CKD stimulates production of intrakidney paracrine hormones including angiotensin II, aldosterone, and endothelin-1 (ET-1) that mediate the immediate benefit of increased kidney acid excretion, but their chronic upregulation promotes inflammation and fibrosis. Chronic metabolic acidosis also stimulates ammoniagenesis that increases acid excretion but also leads to ammonia-induced complement activation and deposition of C3 and C5b-9 that can cause tubule-interstitial damage, further worsening disease progression. These effects, along with acid accumulation in kidney tissue, combine to accelerate progression of kidney disease. Treatment of chronic metabolic acidosis attenuates these adaptive responses; reduces levels of angiotensin II, aldosterone, and ET-1; reduces ammoniagenesis; and diminishes inflammation and fibrosis that may lead to slowing of CKD progression.
Collapse
Affiliation(s)
- Donald E Wesson
- Baylor Scott & White Health and Wellness Center, Dallas, Texas; .,Department of Internal Medicine, Texas A&M College of Medicine, Bryan, Texas
| | | | - David A Bushinsky
- Division of Nephrology, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
8
|
Novel dietary and pharmacologic approaches for acid–base modulation to preserve kidney function and manage uremia. Curr Opin Nephrol Hypertens 2020; 29:39-48. [DOI: 10.1097/mnh.0000000000000568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Himmel NJ, Wang Y, Rodriguez DA, Sun MA, Blount MA. Chronic lithium treatment induces novel patterns of pendrin localization and expression. Am J Physiol Renal Physiol 2018; 315:F313-F322. [PMID: 29667915 PMCID: PMC6139525 DOI: 10.1152/ajprenal.00065.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022] Open
Abstract
Prolonged lithium treatment is associated with various renal side effects and is known to induce inner medullary collecting duct (IMCD) remodeling. In animals treated with lithium, the fraction of intercalated cells (ICs), which are responsible for acid-base homeostasis, increases compared with renal principal cells (PCs). To investigate the intricacies of lithium-induced IMCD remodeling, male Sprague-Dawley rats were fed a lithium-enriched diet for 0,1, 2, 3, 6, 9, or 12 wk. Urine osmolality was decreased at 1 wk, and from 2 to 12 wk, animals were severely polyuric. After 6 wk of lithium treatment, approximately one-quarter of the cells in the initial IMCD expressed vacuolar H+-ATPase, an IC marker. These cells were localized in portions of the inner medulla, where ICs are not normally found. Pendrin, a Cl-/[Formula: see text] exchanger, is normally expressed only in two IC subtypes found in the convoluted tubule, the cortical collecting duct, and the connecting tubule. At 6 wk of lithium treatment, we observed various patterns of pendrin localization and expression in the rat IMCD, including a novel phenotype wherein pendrin was coexpressed with aquaporin-4. These observations collectively suggest that renal IMCD cell plasticity may play an important role in lithium-induced IMCD remodeling.
Collapse
Affiliation(s)
- Nathaniel J Himmel
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Yirong Wang
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Daniel A Rodriguez
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Michael A Sun
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Mitsi A Blount
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
10
|
Goraya N, Wesson DE. Kidney Response to the Spectrum of Diet-Induced Acid Stress. Nutrients 2018; 10:nu10050596. [PMID: 29751620 PMCID: PMC5986476 DOI: 10.3390/nu10050596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic ingestion of the acid (H+)-producing diets that are typical of developed societies appears to pose a long-term threat to kidney health. Mechanisms employed by kidneys to excrete this high dietary H+ load appear to cause long-term kidney injury when deployed over many years. In addition, cumulative urine H+ excretion is less than the cumulative increment in dietary H+, consistent with H+ retention. This H+ retention associated with the described high dietary H+ worsens as the glomerular filtration rate (GFR) declines which further exacerbates kidney injury. Modest H+ retention does not measurably change plasma acid–base parameters but, nevertheless, causes kidney injury and might contribute to progressive nephropathy. Current clinical methods do not detect H+ retention in its early stages but the condition manifests as metabolic acidosis as it worsens, with progressive decline of the glomerular filtration rate. We discuss this spectrum of H+ injury, which we characterize as “H+ stress”, and the emerging evidence that high dietary H+ constitutes a threat to long-term kidney health.
Collapse
Affiliation(s)
- Nimrit Goraya
- Baylor Scott & White Health Department of Internal Medicine, Temple, TX 76508, USA.
- A&M Health Science Center College of Medicine, Temple, TX 76508, USA.
| | - Donald E Wesson
- Baylor Scott & White Health Department of Internal Medicine, Dallas, TX 75210, USA.
- A&M Health Science Center College of Medicine, Dallas, TX 75210, USA.
| |
Collapse
|
11
|
Goraya N, Wesson DE. Management of the Metabolic Acidosis of Chronic Kidney Disease. Adv Chronic Kidney Dis 2017; 24:298-304. [PMID: 29031356 DOI: 10.1053/j.ackd.2017.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/27/2017] [Indexed: 01/31/2023]
Abstract
Subjects with CKD and reduced glomerular filtration rate are at risk for chronic metabolic acidosis, and CKD is its most common cause. Untreated metabolic acidosis, even in its mildest forms, is associated with increased mortality and morbidity and should therefore be treated. If reduced glomerular filtration rate or the tubule abnormality causing chronic metabolic acidosis cannot be corrected, it is typically treated with dietary acid (H+) reduction using Na+-based alkali, usually NaHCO3. Dietary H+ reduction can also be accomplished with the addition of base-producing foods such as fruits and vegetables and limiting intake of H+-producing foods like animal-sourced protein. The optimal dose of Na+-based alkali that prevents the untoward effects of metabolic acidosis while minimizing adverse effects and the appropriate combination of this traditional therapy with dietary strategies remain to be determined by ongoing studies. Recent emerging evidence supports a phenomenon of H+ retention, which precedes the development of metabolic acidosis by plasma acid-base parameters, but further studies will be needed to determine how best to identify patients with this phenomenon and whether they too should be treated with dietary H+ reduction.
Collapse
|
12
|
Kramer H. Kidney Disease and the Westernization and Industrialization of Food. Am J Kidney Dis 2017; 70:111-121. [DOI: 10.1053/j.ajkd.2016.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023]
|
13
|
Wesson DE, Pruszynski J, Cai W, Simoni J. Acid retention with reduced glomerular filtration rate increases urine biomarkers of kidney and bone injury. Kidney Int 2016; 91:914-927. [PMID: 27988208 DOI: 10.1016/j.kint.2016.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022]
Abstract
Diets high in acid of developed societies that do not cause metabolic acidosis in patients with chronic kidney disease nevertheless appear to cause acid retention with associated morbidity, particularly in those with reduced glomerular filtration rate. Here we used a rat 2/3 nephrectomy model of chronic kidney disease to study induction and maintenance of acid retention and its consequences on indicators of kidney and bone injury. Dietary acid was increased in animals eating base-producing soy protein with acid-producing casein and in casein-eating animals with added ammonium chloride. Using microdialysis to measure the kidney cortical acid content, we found that nephrectomized animals had greater acid retention than sham-operated animals when both ate the soy diet. Each increment in dietary acid further increased acid retention more in nephrectomized than in sham rats. Nephrectomized and sham animals achieved similar steady-state daily urine net acid excretion in response to increments in dietary acid but nephrectomized animals took longer to do so, contributing to greater acid retention that was maintained until the increased dietary acid was stopped. Acid retention was associated with increased urine excretion of both N-acetyl-β-D-glucosaminidase and deoxypyridinoline, greater in nephrectomized than control rats, consistent with kidney tubulointerstitial and bone matrix injury, respectively. Greater acid retention in nephrectomized than control animals was induced by a slower increase in urinary net acid excretion rate in response to the increment in dietary acid and also maintained until the dietary acid increment was stopped. Thus, acid retention increased biomarkers of kidney and bone injury in the urine, supporting untoward consequences to these two tissues.
Collapse
Affiliation(s)
- Donald E Wesson
- Baylor Scott and White Health, Dallas, TX, USA; Department of Medicine, Texas A&M College of Medicine, Temple, TX, USA.
| | - Jessica Pruszynski
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wendy Cai
- Department of Biostatistics, Baylor Scott and White Health, Temple, TX, USA
| | - Jan Simoni
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
14
|
Sun X, Stephens L, DuBose TD, Petrovic S. Adaptation by the collecting duct to an exogenous acid load is blunted by deletion of the proton-sensing receptor GPR4. Am J Physiol Renal Physiol 2015; 309:F120-36. [DOI: 10.1152/ajprenal.00507.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/05/2015] [Indexed: 12/14/2022] Open
Abstract
We previously reported that the deletion of the pH sensor GPR4 causes a non-gap metabolic acidosis and defective net acid excretion (NAE) in the GPR4 knockout mouse (GPR4−/−) (Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, and Petrovic S. J Am Soc Nephrol 21: 1745–1755, 2010). Since the major regulatory site of NAE in the kidney is the collecting duct (CD), we examined acid-base transport proteins in intercalated cells (ICs) of the CD and found comparable mRNA expression of kidney anion exchanger 1 (kAE1), pendrin, and the a4 subunit of H+-ATPase in GPR4−/− vs. +/+. However, NH4Cl loading elicited adaptive doubling of AE1 mRNA in GPR4+/+, but a 50% less pronounced response in GPR4−/−. In GPR4+/+, NH4Cl loading evoked a cellular response characterized by an increase in AE1-labeled and a decrease in pendrin-labeled ICs similar to what was reported in rabbits and rats. This response did not occur in GPR4−/−. Microperfusion experiments demonstrated that the activity of the basolateral Cl−/HCO3− exchanger, kAE1, in CDs isolated from GPR4−/− failed to increase with NH4Cl loading, in contrast to the increase observed in GPR4+/+. Therefore, the deficiency of GPR4 blunted, but did not eliminate the adaptive response to an acid load, suggesting a compensatory response from other pH/CO2/bicarbonate sensors. Indeed, the expression of the calcium-sensing receptor (CaSR) was nearly doubled in GPR4−/− kidneys, in the absence of apparent disturbances of Ca2+ homeostasis. In summary, the expression and activity of the key transport proteins in GPR4−/− mice are consistent with spontaneous metabolic acidosis, but the adaptive response to a superimposed exogenous acid load is blunted and might be partially compensated for by CaSR.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lisa Stephens
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Thomas D. DuBose
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Snezana Petrovic
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Claude D. Pepper Older Americans Independence Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| |
Collapse
|
15
|
Jain N, Reilly RF. Effects of dietary interventions on incidence and progression of CKD. Nat Rev Nephrol 2014; 10:712-24. [PMID: 25331786 DOI: 10.1038/nrneph.2014.192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traditional strategies for management of patients with chronic kidney disease (CKD) have not resulted in any change in the growing prevalence of CKD worldwide. A historic belief that eating healthily might ameliorate kidney disease still holds credibility in the 21(st) century. Dietary sodium restriction to <2.3 g daily, a diet rich in fruits and vegetables and increased water consumption corresponding to a urine output of 3-4 l daily might slow the progression of early CKD, polycystic kidney disease or recurrent kidney stones. Current evidence suggests that a reduction in dietary net acid load could be beneficial in patients with CKD, but the supremacy of any particular diet has yet to be established. More trials of dietary interventions are needed, especially in diabetic nephropathy, before evidence-based recommendations can be made. In the meantime, nephrologists should discuss healthy dietary habits with their patients and provide individualized care aimed at maximizing the potential benefits of dietary intervention, reducing the incidence of CKD and delaying its progression to end-stage renal disease. Keeping in mind the lack of data on hard outcomes, dietary recommendations should take into account barriers to adherence and be tailored to different cultures, ethnicities and geographical locations.
Collapse
Affiliation(s)
- Nishank Jain
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8856, USA
| | - Robert F Reilly
- Division of Nephrology, Medical Service, Veterans Affairs North Texas Health Care System, Nephrology Section, MC 111G1, 4500 South Lancaster Road, Dallas, TX 75216-7167, USA
| |
Collapse
|
16
|
Guh YJ, Tseng YC, Yang CY, Hwang PP. Endothelin-1 regulates H⁺-ATPase-dependent transepithelial H⁺ secretion in zebrafish. Endocrinology 2014; 155:1728-37. [PMID: 24424055 DOI: 10.1210/en.2013-1775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Endothelin-1 (EDN1) is an important regulator of H⁺ secretion in the mammalian kidney. EDN1 enhances renal tubule H⁺-ATPase activity, but the underlying mechanism remains unclear. To further elucidate the role of EDN1 in vertebrates' acid-base regulation, the present study used zebrafish as the model to examine the effects of EDN1 and its receptors on transepithelial H⁺ secretion. Expression of EDN1 and one of its receptors, EDNRAa, was stimulated in zebrafish acclimated to acidic water. A noninvasive scanning ion-selective electrode technique was used to show that edn1 overexpression enhances H⁺ secretion in embryonic skin at 3 days post fertilization. EDNRAa loss of function significantly decreased EDN1- and acid-induced H⁺ secretion. Abrogation of EDN1-enhanced H⁺ secretion by a vacuolar H⁺-ATPase inhibitor (bafilomycin A1) suggests that EDN1 exerts its action by regulating the H⁺-ATPase-mediated H⁺ secretion. EDN1 does not appear to affect H⁺ secretion through either altering the abundance of H⁺-ATPase or affecting the cell differentiation of H⁺-ATPase-rich ionocytes, because the reduction in secretion upon ednraa knockdown was not accompanied by decreased expression of H⁺-ATPase or reduced H⁺-ATPase-rich cell density. These findings provide evidence that EDN1 signaling is involved in acid-base regulation in zebrafish and enhance our understanding of EDN1 regulation of transepithelial H⁺ secretion in vertebrates.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Graduate Institute of Life Sciences (Y.-J.G., P.-P.H.), National Defense Medical Center, Taipei, Taiwan; Institute of Cellular and Organismic Biology (Y.-J.G., C.-Y.Y., P.-P.H.), Academia Sinica, Taipei, Taiwan; Department of Life Science (Y.-C.T.), National Taiwan Normal University and Institute of Fisheries Science (C.-Y.Y.), National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
17
|
Chen W, Abramowitz MK. Metabolic acidosis and the progression of chronic kidney disease. BMC Nephrol 2014; 15:55. [PMID: 24708763 PMCID: PMC4233646 DOI: 10.1186/1471-2369-15-55] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
Metabolic acidosis is a common complication of chronic kidney disease. Accumulating evidence identifies acidosis not only as a consequence of, but as a contributor to, kidney disease progression. Several mechanistic pathways have been identified in this regard. The dietary acid load, even in the absence of overt acidosis, may have deleterious effects. Several small trials now suggest that the treatment of acidosis with oral alkali can slow the progression of kidney disease.
Collapse
Affiliation(s)
| | - Matthew K Abramowitz
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Scialla JJ, Anderson CAM. Dietary acid load: a novel nutritional target in chronic kidney disease? Adv Chronic Kidney Dis 2013; 20:141-9. [PMID: 23439373 PMCID: PMC3604792 DOI: 10.1053/j.ackd.2012.11.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 02/07/2023]
Abstract
Nonvolatile acid is produced from the metabolism of organic sulfur in dietary protein and the production of organic anions during the combustion of neutral foods. Organic anion salts that are found primarily in plant foods are directly absorbed in the gastrointestinal tract and yield bicarbonate. The difference between endogenously produced nonvolatile acid and absorbed alkali precursors yields the dietary acid load, technically known as the net endogenous acid production, and must be excreted by the kidney to maintain acid-base balance. Although typically 1 mEq/kg/day, dietary acid load is lower with greater intake of fruits and vegetables. In the setting of CKD, a high dietary acid load invokes adaptive mechanisms to increase acid excretion despite reduced nephron number, such as increased per nephron ammoniagenesis and augmented distal acid excretion mediated by the renin-angiotensin system and endothelin-1. These adaptations may promote kidney injury. Additionally, high dietary acid loads produce low-grade, subclinical acidosis that may result in bone and muscle loss. Early studies suggest that lowering the dietary acid load can improve subclinical acidosis, preserve bone and muscle, and slow the decline of glomerular filtration rate in animal models and humans. Studies focusing on hard clinical outcomes are needed.
Collapse
Affiliation(s)
- Julia J Scialla
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Most patients with reduced glomerular filtration rate (GFR) have progressive GFR decline despite currently recommended kidney-protective interventions. Recent studies support that dietary acid reduction with Na(+)-based alkali or food types that yield base when metabolized provides kidney protection that is additive to currently recommended interventions. We review these recent studies in light of current kidney-protective recommendations for chronic kidney disease (CKD). RECENT FINDINGS Animal models of CKD show that metabolic acidosis and/or dietary acid induce intrakidney mechanisms that cause kidney injury and mediate progressive GFR decline. Translational studies in patients show that NaHCO(3) ameliorates kidney injury in patients with CKD and reduced GFR, with and without metabolic acidosis; NaHCO(3) and base-inducing food types each ameliorate kidney injury in patients with reduced GFR without metabolic acidosis; and NaHCO(3) and Na(+) citrate each slow GFR decline in CKD patients with reduced GFR, with and without metabolic acidosis. SUMMARY Recently published studies in animals and humans suggest that acid-base-related mechanisms mediate nephropathy progression. These studies support that dietary acid reduction with Na(+)-based alkali or alkali-inducing food is an effective kidney-protective adjunct to current strategies and support re-examination of current recommendations for CKD management.
Collapse
|
20
|
Pallini A, Hulter HN, Muser J, Krapf R. Role of endothelin-1 in renal regulation of acid-base equilibrium in acidotic humans. Am J Physiol Renal Physiol 2012; 303:F991-9. [PMID: 22859405 DOI: 10.1152/ajprenal.00309.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin-1 inhibits collecting duct sodium reabsorption and stimulates proximal and distal tubule acidification in experimental animals both directly and indirectly via increased mineralocorticoid activity. Diet-induced acid loads have been shown to increase renal endothelin-1 activity, and it is hypothesized that increased dietary acid-induced endothelin-1 activity may be a causative progression factor in human renal insufficiency and that this might be reversed by provision of dietary alkali. We sought to clarify, in normal human volunteers, the role of endothelin-1 in renal acidification and to determine whether the effect is dependent on dietary sodium chloride. Acid-base equilibrium was studied in seven normal human volunteers with experimentally induced metabolic acidosis [NH(4)Cl 2.1 mmol·kg body weight (BW)(-1)·day(-1)] with and without inhibition of endogenous endothelin-1 activity by the endothelin A/B-receptor antagonist bosentan (125 BID p.o./day) both during dietary NaCl restriction (20 mmol/day) and NaCl repletion (2 mmol NaCl·kg BW(-1)·day(-1)). During NaCl restriction, but not in the NaCl replete state, bosentan significantly increased renal net acid excretion in association with stimulation of ammoniagenesis resulting in a significantly increased plasma bicarbonate concentration (19.0 ± 0.8 to 20.1 ± 0.9 mmol/l) despite a decrease in mineralocorticoid activity and an increase in endogenous acid production. In pre-existing human metabolic acidosis, endothelin-1 activity worsens acidosis by decreasing the set-point for renal regulation of plasma bicarbonate concentration, but only when dietary NaCl provision is restricted.
Collapse
Affiliation(s)
- Alexandra Pallini
- Univ. Dept. of Medicine, Kantonsspital Bruderholz, CH-4101 Bruderholz/Basel, Switzerland
| | | | | | | |
Collapse
|
21
|
Kovesdy CP. Metabolic acidosis and kidney disease: does bicarbonate therapy slow the progression of CKD? Nephrol Dial Transplant 2012; 27:3056-62. [DOI: 10.1093/ndt/gfs291] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Wesson DE, Jo CH, Simoni J. Angiotensin II receptors mediate increased distal nephron acidification caused by acid retention. Kidney Int 2012; 82:1184-94. [PMID: 22832514 DOI: 10.1038/ki.2012.267] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with a moderately reduced glomerular filtration rate (GFR) typically have no metabolic acidosis and a urine net acid excretion comparable to those with normal GFR, supporting greater per nephron acidification with moderately reduced GFR. We modeled such patients using rats with a surgical reduction of 2/3 kidney mass, yielding animals with reduced GFR without metabolic acidosis. We then tested the hypothesis that reduction of nephron mass augments distal nephron acidification in remnant nephrons mediated by increased angiotensin II activity, and that the latter is induced by underlying acid retention. Nephron mass reduction yielded lower GFR than controls (sham operation), higher acid retention (measured by microdialysis of kidney cortex), higher distal nephron acidification, and higher plasma and kidney levels of angiotensin II, but plasma total CO(2) and urine net acid excretion were not different. Angiotensin II receptor antagonism reduced distal nephron acidification to levels similar to control. Dietary alkali that lowered acid retention to that of control also reduced plasma and kidney levels of angiotensin II and reduced distal nephron acidification to control. Angiotensin II receptor antagonism with dietary alkali had no significant added effect on distal nephron acidification. Thus, nephron reduction that moderately reduced GFR with no metabolic acidosis is characterized by increased angiotensin II activity. This mediates increased distal nephron acidification and is induced by acid retention.
Collapse
Affiliation(s)
- Donald E Wesson
- Texas A&M Health Sciences Center College of Medicine, Temple, Texas 76502, USA.
| | | | | |
Collapse
|
23
|
Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int 2011; 81:86-93. [PMID: 21881553 DOI: 10.1038/ki.2011.313] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neutralization of dietary acid with sodium bicarbonate decreases kidney injury and slows the decline of the glomerular filtration rate (GFR) in animals and patients with chronic kidney disease. The sodium intake, however, could be problematic in patients with reduced GFR. As alkali-induced dietary protein decreased kidney injury in animals, we compared the efficacy of alkali-inducing fruits and vegetables with oral sodium bicarbonate to diminish kidney injury in patients with hypertensive nephropathy at stage 1 or 2 estimated GFR. All patients were evaluated 30 days after no intervention; daily oral sodium bicarbonate; or fruits and vegetables in amounts calculated to reduce dietary acid by half. All patients had 6 months of antihypertensive control by angiotensin-converting enzyme inhibition before and during these studies, and otherwise ate ad lib. Indices of kidney injury were not changed in the stage 1 group. By contrast, each treatment of stage 2 patients decreased urinary albumin, N-acetyl β-D-glucosaminidase, and transforming growth factor β from the controls to a similar extent. Thus, a reduction in dietary acid decreased kidney injury in patients with moderately reduced eGFR due to hypertensive nephropathy and that with fruits and vegetables was comparable to sodium bicarbonate. Fruits and vegetables appear to be an effective kidney protective adjunct to blood pressure reduction and angiotensin-converting enzyme inhibition in hypertensive and possibly other nephropathies.
Collapse
Affiliation(s)
- Nimrit Goraya
- Department of Internal Medicine, Texas A&M College of Medicine, Temple, Texas 76508, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
25
|
Wesson DE, Simoni J, Broglio K, Sheather S. Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol Renal Physiol 2011; 300:F830-7. [PMID: 21270096 DOI: 10.1152/ajprenal.00587.2010] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dietary alkali slows GFR decline in humans with a moderately reduced glomerular filtration rate (GFR) despite the absence of metabolic acidosis. Similarly, dietary alkali slows GFR decline in animals with 2/3 nephrectomy (Nx), a chronic kidney disease (CKD) model without metabolic acidosis in which GFR decline is mediated by acid (H(+)) retention through endothelin (ET) and mineralocorticoid receptors. To gain insight as to whether this mechanism might mediate GFR decline in humans, we explored whether macroalbuminuric subjects with moderately reduced (CKD stage 2 = 60-90 ml/min; CKD 2) compared with normal estimated GFR (> 90 ml/min; CKD 1), each without metabolic acidosis, have H(+) retention that increases plasma levels of ET-1 and aldosterone. Baseline plasma ET and aldosterone concentrations were each higher in CKD 2 than CKD 1. Baseline dietary H(+) and urine net acid excretion (NAE) were not different between groups, but an acute oral NaHCO₃ bolus reduced urine NAE less (i.e., postbolus urine NAE was higher) in CKD 2 than CKD 1, consistent with greater H(+) retention in CKD 2 subjects. Thirty days of oral NaHCO₃ reduced H(+) retention in CKD 2 but not CKD 1 subjects and reduced plasma ET and aldosterone in both groups but to levels that remained higher in CKD 2 for each. Subjects with CKD stage 2 eGFR and no metabolic acidosis nevertheless have H(+) retention that increases plasma ET and aldosterone levels, factors that might mediate subsequent GFR decline and other untoward vascular effects.
Collapse
Affiliation(s)
- Donald E Wesson
- Department of Internal Medicine, Texas A&M College of Medicine, St., Temple, TX, USA.
| | | | | | | |
Collapse
|
26
|
Mechanism of bicarbonate effect in CKD. Kidney Int 2010. [DOI: 10.1038/ki.2010.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int 2010; 78:1128-35. [PMID: 20861823 DOI: 10.1038/ki.2010.348] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rats with 5/6 nephrectomy have metabolic acidosis with a progressive decline in the glomerular filtration rate (GFR) ameliorated by endothelin and aldosterone antagonists and by dietary alkali. Interestingly, rats with 2/3 nephrectomy have no metabolic acidosis yet have a progressive GFR decline induced by acid retention and ameliorated by dietary alkali. Because patients without metabolic acidosis but with a moderately reduced GFR have a progressive GFR decline, ameliorated by oral sodium bicarbonate, we used rats with 2/3 nephrectomy to model these patients. Kidney acid content, endothelin-1, and aldosterone (measured by microdialysis) were higher in the rats with 2/3 nephrectomy than those with a sham operation despite no differences in plasma acid-base parameters. The GFR of the former but not the latter was lower at 25 than at 1 week after nephrectomy. Endothelin and aldosterone antagonism improved the preservation of GFR; however, this remained lower at week 24 than at week 1. By contrast, the GFR at weeks 24 and 1 was not different if the rats were given dietary alkali to normalize the kidney acid content. Antagonist of endothelin and aldosterone yielded no added GFR benefit. Thus, our study shows that (1) the decline in GFR in 2/3 nephrectomy is mediated by acid retention-induced kidney endothelin and aldosterone production; (2) receptor antagonism and dietary alkali are not additive; and (3) dietary alkali better preserves GFR than both endothelin and aldosterone receptor antagonism.
Collapse
Affiliation(s)
- Donald E Wesson
- Department of Medicine, Scott and White Healthcare and Texas A&M College of Medicine, Temple, Texas 76508, USA.
| | | |
Collapse
|
28
|
Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 2010; 78:303-9. [PMID: 20445497 DOI: 10.1038/ki.2010.129] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In most patients with hypertensive nephropathy and low glomerular filtration rate (GFR), the kidney function progressively declines despite the adequate control of the hypertension with angiotensin-converting enzyme inhibition. Previously we found that 2 years of oral sodium citrate slowed GFR decline in patients whose estimated GFR (eGFR) was very low (mean 33 ml/min). This treatment also slowed GFR decline in an animal model of surgically reduced nephron mass. Here, we tested if daily oral sodium bicarbonate slowed GFR decline in patients with hypertensive nephropathy with reduced but relatively preserved eGFR (mean 75 ml/min) in a 5-year, prospective, randomized, placebo-controlled, and blinded interventional study. Patients matched for age, ethnicity, albuminuria, and eGFR received daily placebo or equimolar sodium chloride or bicarbonate while maintaining antihypertensive regimens (including angiotensin-converting enzyme inhibition) aiming for their recommended blood pressure targets. After 5 years, the rate of eGFR decline, estimated using plasma cystatin C, was slower and eGFR was higher in patients given sodium bicarbonate than in those given placebo or sodium chloride. Thus, our study shows that in hypertensive nephropathy, daily sodium bicarbonate is an effective kidney protective adjunct to blood pressure control along with angiotensin-converting enzyme inhibition.
Collapse
Affiliation(s)
- Ashutosh Mahajan
- Department of Internal Medicine, Texas A&M College of Medicine, Temple, Texas 76508, USA
| | | | | | | | | | | |
Collapse
|
29
|
Phisitkul S, Khanna A, Simoni J, Broglio K, Sheather S, Rajab MH, Wesson DE. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int 2010; 77:617-23. [PMID: 20072112 DOI: 10.1038/ki.2009.519] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metabolic acidosis often accompanies low glomerular filtration rate and induces secretion of endothelin, which in turn might mediate kidney injury. Here we tested whether treatment of metabolic acidosis in patients with low glomerular filtration rate reduced the progression of kidney disease. Fifty-nine patients with hypertensive nephropathy and metabolic acidosis had their blood pressure reduced with regimens that included angiotensin-converting enzyme inhibition. Thirty patients were then prescribed sodium citrate, and the remaining 29, unable or unwilling to take sodium citrate, served as controls. All were followed for 24 months with maintenance of their blood pressure reduction. Urine endothelin-1 excretion, a surrogate of kidney endothelin production, and N-acetyl-beta-D-glucosaminidase, a marker of kidney tubulointerstitial injury, were each significantly lower, while the rate of estimated glomerular filtration rate decline was significantly slower. The estimated glomerular filtration rate was statistically higher after 24 months of sodium citrate treatment compared to the control group. Hence it appears that sodium citrate is an effective kidney-protective adjunct to blood pressure reduction and angiotensin-converting enzyme inhibition.
Collapse
Affiliation(s)
- Sorot Phisitkul
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Busque SM, Wagner CA. Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney. Am J Physiol Renal Physiol 2009; 297:F440-50. [PMID: 19458124 DOI: 10.1152/ajprenal.90318.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidneys produce ammonium to buffer and excrete acids through metabolism of glutamine. Expression of the glutamine transporter Slc38a3 (SNAT3) increases in kidney during metabolic acidosis (MA), suggesting a role during ammoniagenesis. Potassium depletion and high dietary protein intake are known to elevate renal ammonium excretion. In this study, we examined SNAT3, phosphate-dependent glutaminase (PDG), and phosphoenolpyruvate carboxykinase (PEPCK) regulation during a control (0.36%) or low-K(+) (0.02%) diet for 7 or 14 days or a control (20%) or high-protein (50%) diet for 7 days. MA was induced in control and low-K(+) groups by addition of NH(4)Cl. Urinary ammonium excretion increased during MA, after 14-day K(+) restriction alone, and during high protein intake. SNAT3, PDG, and PEPCK mRNA abundance were elevated during MA and after 14-day K(+) restriction but not during high protein intake. SNAT3 protein abundance was enhanced during MA (both control and low K(+)), after 14-day low-K(+) treatment alone, and during high protein intake. Seven-day dietary K(+) depletion alone had no effect. Immunohistochemistry showed SNAT3 staining in earlier parts of the proximal tubule during 14-day K(+) restriction with and without NH(4)Cl treatment and during high protein intake. In summary, SNAT3, PDG, and PEPCK mRNA expression were congruent with urinary ammonium excretion during MA. Chronic dietary K(+) restriction, high protein intake, and MA enhance ammoniagenesis, an effect that may involve enhanced SNAT3 mRNA and protein expression. Our data suggest that SNAT3 plays an important role as the glutamine uptake mechanism in ammoniagenesis under these conditions.
Collapse
Affiliation(s)
- Stephanie M Busque
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
31
|
Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass. Kidney Int 2009; 75:929-35. [DOI: 10.1038/ki.2009.6] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Stricklett PK, Strait KA, Kohan DE. Novel Mechanism for Regulation of Endothelin Synthesis: Role of Extracellular pH. Cell Physiol Biochem 2008; 21:117-22. [DOI: 10.1159/000113753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2007] [Indexed: 11/19/2022] Open
|
33
|
Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors. Kidney Int 2007; 73:192-9. [PMID: 17978813 DOI: 10.1038/sj.ki.5002647] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary casein promotes a progressive decline in the glomerular filtration rate (GFR) of remnant kidneys associated with metabolic acidosis and an endothelin-mediated increase in renal acidification. We tested whether diets that affect the acid-base status contributes to the decline of GFR through endothelin receptors in rats with a remnant kidney. Rats on a casein diet had metabolic acidosis at baseline and developed a progressive decline in GFR after renal mass reduction. Dietary sodium bicarbonate but not sodium chloride ameliorated metabolic acidosis and prevented the decrease in GFR but only after the sodium bicarbonate-induced increase in blood pressure was treated. Dietary soy protein did not induce baseline metabolic acidosis and rats with remnant kidney on a soy diet had no decrease in their GFR. By contrast, rats with a remnant kidney on soy protein given dietary acid developed metabolic acidosis and a decreased GFR. This decline in GFR was prevented in either case by endothelin A but not endothelin A/B receptor antagonism. Our study suggests that the casein-induced decline in GFR of the remnant kidney is mediated by metabolic acidosis through endothelin A receptors.
Collapse
|
34
|
Abstract
Endothelin is a potent vasoconstrictor that recent studies show modulates transport in kidney tubules, including that related to acidification. The data support a physiologic role for endothelin in mediating enhanced kidney tubule acidification in response to an acid challenge to systemic acid-base balance status. The data to date do not support an endothelin role in maintaining kidney tubule acidification in control, nonacid-challenged states. Endothelin also contributes to the enhanced acidification of some pathophysiologic states and might have a role in some of the untoward outcomes associated with these conditions. This reviews supports continuation of studies into the physiologic and possibly pathophysiologic role of endothelin in settings of increased tubule acidification.
Collapse
Affiliation(s)
- Donald E Wesson
- Division of Nephrology and Hypertension, Texas Tech University Health Sciences Center, Texas Tech University School of Medicine, 3601 Fourth Street, Lubbock, TX 79430, USA.
| |
Collapse
|
35
|
Wesson DE, Nathan T, Rose T, Simoni J, Tran RM. Dietary protein induces endothelin-mediated kidney injury through enhanced intrinsic acid production. Kidney Int 2006; 71:210-7. [PMID: 17164833 DOI: 10.1038/sj.ki.5002036] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dietary protein as casein (CAS) augments intrinsic acid production, induces endothelin-mediated kidney acidification, and promotes kidney injury. We tested the hypothesis that dietary CAS induces endothelin-mediated kidney injury through augmented intrinsic acid production. Munich-Wistar rats ate minimum electrolyte diets from age 8 to 96 weeks with 50 or 20% protein as either acid-inducing CAS or non-acid-inducing SOY. Urine net acid excretion and distal nephron net HCO3 reabsorption by in vivo microperfusion (Net J(HCO3)) were higher in 50 than 20% CAS but not 50 and 20% SOY. At 96 weeks, 50% compared the 20% CAS had higher urine endothelin-1 excretion (U(ET-1)V) and a higher index of tubulo-interstitial injury (TII) at pathology (2.25+/-0.21 vs 1.25+/-0.13 U, P<0.03), but each parameter was similar in 50 and 20% SOY. CAS (50%) eating NaHCO3 to reduce intrinsic acid production had lower Net J(HCO3), lower U(ET-1)V, and less TII. By contrast, 50% SOY eating dietary acid as (NH4)2SO4 had higher Net J(HCO3), higher U(ET-1)V, and more TII. Endothelin A/B but not A receptor antagonism reduced Net J(HCO3) in 50% CAS and 50% SOY+(NH4)2SO4 animals. By contrast, endothelin A but not A/B receptor antagonism reduced TII in each group. The data support that increased intake of acid-inducing dietary protein induces endothelin B-receptor-mediated increased Net J(HCO3) and endothelin A-receptor-mediated TII through augmented intrinsic acid production.
Collapse
Affiliation(s)
- D E Wesson
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Endothelin (ET) is a potent vasoconstrictor that is now known to modulate kidney tubule transport, including kidney tubule acidification. Animals undergoing an acid challenge to systemic acid-base status and with some models of chronic metabolic acidosis have increased kidney ET production. Increased ET production/activity contributes to enhanced kidney tubule acidification that facilitates kidney acid excretion in response to an acid challenge to systemic acid-base status. The data to date support a physiologic role for ET in mediating enhanced kidney acidification in response to acid challenges, but do not support an ET role in maintaining kidney tubule acidification in control, non-acid-challenged states. ET increases acidification in both the proximal and distal nephron and appears to exert its effects both directly and indirectly, the latter through modulating the levels and/or activity or other mediators of kidney tubule acidification. ET also contributes to enhanced kidney acidification in some pathophysiologic states and might contribute to some untoward outcomes associated with these conditions. Whether ET should be a therapeutic target in treating and/or preventing some of these untoward outcomes remains an open question. This review supports continued research into the physiologic and possibly pathophysiologic role of ET in settings of increased kidney tubule acidification.
Collapse
Affiliation(s)
- D E Wesson
- Division of Nephrology and Hypertension, Departments of Internal Medicine and Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
37
|
Tsuruoka S, Watanabe S, Purkerson JM, Fujimura A, Schwartz GJ. Endothelin and nitric oxide mediate adaptation of the cortical collecting duct to metabolic acidosis. Am J Physiol Renal Physiol 2006; 291:F866-73. [PMID: 16705153 DOI: 10.1152/ajprenal.00027.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin (ET) and nitric oxide (NO) modulate ion transport in the kidney. In this study, we defined the function of ET receptor subtypes and the NO guanylate cyclase signaling pathway in mediating the adaptation of the rabbit cortical collecting duct (CCD) to metabolic acidosis. CCDs were perfused in vitro and incubated for 3 h at pH 6.8, and bicarbonate transport or cell pH was measured before and after acid incubation. Luminal chloride was reversibly removed to isolate H(+) and HCO(3)(-) secretory fluxes and to raise the pH of beta-intercalated cells. Acid incubation caused reversal of polarity of net HCO(3)(-) transport from secretion to absorption, comprised of a 40% increase in H(+) secretion and a 75% decrease in HCO(3)(-) secretion. The ET(B) receptor antagonist BQ-788, as well as the NO synthase inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME), attenuated the adaptive decrease in HCO(3)(-) secretion by 40%, but only BQ-788 inhibited the adaptive increase in H(+) secretion. There was no effect of inactive d-NAME or the ET(A) receptor antagonist BQ-123. Both BQ-788 and l-NAME inhibited the acid-induced inactivation (endocytosis) of the apical Cl(-)/HCO(3)(-) exchanger. The guanylate cyclase inhibitor LY-83583 and cGMP-dependent protein kinase inhibitor KT-5823 affected HCO(3)(-) transport similarly to l-NAME. These data indicate that signaling via the ET(B) receptor regulates the adaptation of the CCD to metabolic acidosis and that the NO guanylate cyclase component of ET(B) receptor signaling mediates downregulation of Cl(-)/HCO(3)(-) exchange and HCO(3)(-) secretion.
Collapse
Affiliation(s)
- Shuichi Tsuruoka
- Department of Pharmacology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | |
Collapse
|
38
|
Dhaun N, Goddard J, Webb DJ. The endothelin system and its antagonism in chronic kidney disease. J Am Soc Nephrol 2006; 17:943-55. [PMID: 16540557 DOI: 10.1681/asn.2005121256] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The incidence of chronic kidney disease (CKD) is increasing worldwide. Cardiovascular disease (CVD) is strongly associated with CKD and constitutes one of its major causes of morbidity and mortality. Treatments that slow the progression of CKD and improve the cardiovascular risk profile of patients with CKD are needed. The endothelins (ET) are a family of related peptides, of which ET-1 is the most powerful endogenous vasoconstrictor and the predominant isoform in the cardiovascular and renal systems. The ET system has been widely implicated in both CVD and CKD. ET-1 contributes to the pathogenesis and maintenance of hypertension and arterial stiffness and more novel cardiovascular risk factors such as oxidative stress and inflammation. Through these, ET also contributes to endothelial dysfunction and atherosclerosis. By reversal of these effects, ET antagonists may reduce cardiovascular risk. In particular relation to the kidney, antagonism of the ET system may be of benefit in improving renal hemodynamics and reducing proteinuria. ET likely also is involved in progression of renal disease, and data are emerging to suggest a synergistic role for ET receptor antagonists with angiotensin-converting enzyme inhibitors in slowing CKD progression.
Collapse
Affiliation(s)
- Neeraj Dhaun
- The Queen's Medical Research Institute, 3rd Floor East, Room E3.23, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | |
Collapse
|
39
|
Wesson DE, Simoni J, Prabhakar S. Endothelin-Induced Increased Nitric Oxide Mediates Augmented Distal Nephron Acidification as a Result of Dietary Protein. J Am Soc Nephrol 2006; 17:406-13. [PMID: 16396962 DOI: 10.1681/asn.2005070775] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Tested was the hypothesis that enhanced nitric oxide (NO) production that is stimulated by increased renal endothelin activity mediates decreased distal nephron HCO(3) secretion that is induced by dietary protein. Munich-Wistar rats that ate minimum electrolyte diets with 50% casein-provided protein (HiPro) compared with controls that ate 20% protein for 3 wk had higher urine excretion of endothelin-1 (80 +/- 15.7 versus 29 +/- 3.9 fmol/kg body wt per d; P < 0.02) and of the NO metabolites NO(2)/NO(3) (21.2 +/- 1.9 versus 14.9 +/- 0.8 mumol/kg body wt per d; P < 0.03). Bosentan, an endothelin A/B receptor antagonist, reduced HiPro rats' urine excretion of net acid (5859 +/- 654 versus 8017 +/- 1103 micromol/d; P < 0.03, paired t test) and NO(2)/NO(3) (18.1 +/- 1.1 versus 22.9 +/- 2.0 micromol/kg body wt per d; P < 0.05, paired t test). N-nitro-l-arginine methyl ester (L-NAME), an NO synthase inhibitor, also decreased urine net acid excretion (6621 +/- 717 versus 8449 +/- 1086 micromol/d; P < 0.05, paired t test) but was not additive to bosentan. L-NAME increased in situ late distal nephron HCO(3) delivery in HiPro rats (18.8 +/- 1.7 versus 9.6 +/- 1.4 pmol/mm per min; P < 0.001) that was mediated by increased distal nephron HCO(3) secretion (-7.2 +/- 0.7 versus -3.5 +/- 0.4 pmol/mm per min; P < 0.001) without changes in distal nephron transtubule HCO(3) permeability or H(+) secretion. Bosentan decreased H(+) secretion and increased HCO(3) secretion in the distal nephron of HiPro rats, but L-NAME had no additive effect on either component. The data support that dietary protein augments distal nephron acidification through decreased HCO(3) secretion that is mediated through endothelin-stimulated NO.
Collapse
Affiliation(s)
- Donald E Wesson
- Texas Tech University Health Sciences Center, Renal Section, 3601 4th Street, Lubbock, TX 79430, USA.
| | | | | |
Collapse
|
40
|
Khanna A, Simoni J, Wesson DE. Endothelin-Induced Increased Aldosterone Activity Mediates Augmented Distal Nephron Acidification as a Result of Dietary Protein. J Am Soc Nephrol 2005; 16:1929-35. [PMID: 15872074 DOI: 10.1681/asn.2004121054] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The hypothesis that increased dietary protein augments distal nephron acidification through endothelin-mediated increased aldosterone activity was tested. Munich-Wistar rats were studied after 3 wk of diets with 50% high protein (HiPro) and 20% control (CON) casein-provided protein, the latter comparable to standard diet. HiPro versus CON rats had higher distal nephron H+ secretion by in vivo microperfusion as shown previously. Perfusion with inhibitors of Na+/H+ exchange (EIPA, 10(-5) M), H+-ATPase (bafilomycin, 10(-7) M), and H+-K+-ATPase (Sch 28080 [10(-5) M] and ouabain [10(-3) M]) support that higher Na+/H+ exchange and higher H+-ATPase but not higher H+-K+-ATPase activity mediated increased H+ secretion in HiPro rats. Oral bosentan, an endothelin A/B receptor antagonist, decreased distal nephron H+ secretion in HiPro rats as a result of reduced Na+/H+ exchange and H+-ATPase activity as shown previously by the authors' laboratory. HiPro versus CON rats had higher plasma aldosterone (60.9 +/- 5.9 versus 42.2 +/- 4.4 pg/ml; P < 0.024) and higher urine aldosterone excretion (21.9 +/- 3.9 versus 10.5 +/- 2.8 ng/d; P < 0.04) in the absence but not presence of bosentan, consistent with endothelin-mediated increased aldosterone secretion. HiPro rats that did versus did not ingest the aldosterone antagonist spironolactone had lower distal nephron H+ secretion (29.2 +/- 3.3 versus 42.1 +/- 3.8 pmol/mm per min; P < 0.05) as a result of lower H+-ATPase activity without differences in Na+/H+ exchange or H+-K+-ATPase activity. The data support that dietary protein provided as casein increases distal nephron acidification through endothelin-stimulated Na+/H+ exchange and endothelin-stimulated aldosterone secretion that increases H+-ATPase activity.
Collapse
Affiliation(s)
- Apurv Khanna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Renal Section, 3601 Fourth Street, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
41
|
Khanna A, Simoni J, Hacker C, Duran MJ, Wesson DE. Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2005; 116:239-56; discussion 257-8. [PMID: 16555618 PMCID: PMC1473158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We tested the hypothesis that increased dietary protein augments distal nephron acidification through an endothelin-dependent mechanism. Munich-Wistar rats ate minimum electrolyte diets of 50% (HiPro) and 20% (CON) casein-provided protein, the latter comparable to standard chow. HiPro vs. CON had higher distal nephron H+ secretion (41.3 +/- 4.0 vs. 23.0 +/- 2.1 pmol/mm.min, p < 0.002) mediated by augmented Na+/H+ exchange and H(+)-ATPase activity. Renal cortex of HiPro vs. CON had higher ET-1 addition to microdialysate and higher ET-1 mRNA, consistent with increased renal ET-1 production. Bosentan, an endothelin A/B receptor antagonist, decreased HiPro distal nephron H+ secretion (28.4 +/- 2.4 vs. 41.3 +/- 4.0 pmol/mm.min, p < 0.016) through decreased Na+/H+ exchange and decreased H(+)-ATPase activity. Increased dietary protein augments distal nephron acidification through an endothelin-sensitive increase in Na+/H+ exchange and H(+)-ATPase activity, supporting an endothelin role in the distal nephron response to this common challenge to acid-base status.
Collapse
Affiliation(s)
- Apurv Khanna
- From the Texas Tech University Health Sciences Center, Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas
| | - Jan Simoni
- From the Texas Tech University Health Sciences Center, Department of Surgery, Texas Tech University School of Medicine, Lubbock, Texas
| | - Callenda Hacker
- From the Texas Tech University Health Sciences Center, Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas
| | - Marie-Josée Duran
- From the Texas Tech University Health Sciences Center, Department of Physiology, Texas Tech University School of Medicine, Lubbock, Texas
| | - Donald E Wesson
- From the Texas Tech University Health Sciences Center, Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas
- From the Texas Tech University Health Sciences Center, Department of Physiology, Texas Tech University School of Medicine, Lubbock, Texas
- Principle author's information: Donald E. Wesson, M.D., Texas Tech University Health Sciences Center, Renal Section, 3601 Fourth Street, Lubbock, TX 79430(806) 743-3107(806) 743-3177
| |
Collapse
|
42
|
Bailey MA, Giebisch G, Abbiati T, Aronson PS, Gawenis LR, Shull GE, Wang T. NHE2-mediated bicarbonate reabsorption in the distal tubule of NHE3 null mice. J Physiol 2004; 561:765-75. [PMID: 15604231 PMCID: PMC1665379 DOI: 10.1113/jphysiol.2004.074716] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 10/06/2004] [Indexed: 12/16/2022] Open
Abstract
NHE3(-/-) mice display a profound defect in proximal tubule bicarbonate reabsorption but are only mildly acidotic owing to reduced glomerular filtration rate and enhanced H(+) secretion in distal nephron segments. In vivo microperfusion of rat distal tubules suggests that a significant fraction of bicarbonate reabsorption in this nephron segment is mediated by NHE2. Two approaches were used to evaluate the role of distal tubule NHE2 in compensating for the proximal defect of H(+) secretion in NHE3(-/-) mice. First, renal clearance experiments were used to assess the impact of HOE694, an inhibitor with significant affinity for NHE2, on excretion of bicarbonate in NHE3(-/-) and NHE2(-/-) mice. Second, in vivo micropuncture and microperfusion were employed to measure the concentration of bicarbonate in early distal tubule fluid and to measure distal bicarbonate reabsorption during a constant bicarbonate load. Our data show that HOE694 had no effect on urinary bicarbonate excretion in NHE3(+/+) mice, whereas bicarbonate excretion was higher in NHE3(-/-) mice receiving HOE694. HOE694 induced a significant increase in bicarbonate excretion in mice given an acute bicarbonate load, but there was no effect during metabolic acidosis. Bicarbonate excretion was not affected by HOE694 in bicarbonate-loaded NHE2(-/-) mice. In vivo micropuncture revealed that early distal bicarbonate concentration was elevated in both bicarbonate-loaded and NHE3(-/-) mice. Further, microperfusion experiments showed that HOE694-sensitive bicarbonate reabsorption capacity was higher in acidotic and NHE3 null animals. We conclude that NHE2 contributes importantly to acidification in the distal tubule, and that it plays a major role in limiting urinary bicarbonate losses in states in which a high luminal bicarbonate load is presented to the distal tubule, such as in NHE3 null mice.
Collapse
Affiliation(s)
- Matthew A Bailey
- Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Prabhakar SS. Regulatory and functional interaction of vasoactive factors in the kidney and extracellular pH. Kidney Int 2004; 66:1742-54. [PMID: 15496145 DOI: 10.1111/j.1523-1755.2004.00951.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A growing body of evidence suggests that vasoactive factors produced in the kidney such as nitric oxide, endothelins, angiotensin, and prostaglandins participate actively in the regulation of acid-base homeostasis under physiologic conditions. In addition, recent reports indicate that alterations in the systemic acid-base status may also influence the generation of vasoactive cytokines in the kidney, which in turn may mediate the renal effector processes that tend to restore normality under such conditions. Metabolic acidosis, which so frequently accompanies many forms of chronic renal failure (CRF), may contribute to down-regulation of intrarenal nitric oxide production that characterizes CRF. Reduced extracellular pH inhibits inducible nitric oxide production in mesangial cells by altering the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidation, an important posttranslational mechanism in the inducible nitric oxide synthase (iNOS) activation. The underlying defects resulting in the uncoupling of NADPH oxidation in acidemic microenvironment are discussed. Acidosis stimulates renal production of endothelins, which mediate proximal tubular acidification by enhancing sodium-hydrogen exchanger-3 (NHE-3) activity. Renal endothelins mediate enhanced urinary acid excretion following dietary acid ingestion, an effect that is effectively blocked by endothelin receptor blockers. Reduced extracellular pH stimulates endothelin secretion from renal microvascular endothelial cells, which may promote enhanced acid excretion from the distal tubule under conditions of acidosis. These phenomena as well as the role of angiotensin and renal prostaglandins in mediating renal acidification in normal and acidotic conditions are discussed in this review, which describe the regulatory interaction between extracellular pH and renal vasoactive factors.
Collapse
Affiliation(s)
- Sharma S Prabhakar
- Division of Nephrology, Department of Internal Medicine, Texas Tech Health Science Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
44
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
During the response to metabolic acidosis, the intercalated cell of the collecting tubule converts from one that secretes HCO3(-) to one that absorbs HCO3(-) by H(+) secretion. The molecular basis of this complex change in phenotype was studied in an immortalized intercalated cell line. We found that it was induced by secretion, polymerization, and deposition of a protein, which we termed hensin, into the extracellular matrix. Surprisingly, this change in phenotype is identical to terminal differentiation of epithelial cells in that it recapitulated all the characteristics of terminal differentiation, including a change in cell shape, acquisition of specialized apical structures (microvilli and ruffles), and the ability to secrete and endocytose materials in a regulated manner from the apical membrane. Hensin is expressed in most epithelia, and others have discovered that it is deleted in a large number of epithelial tumors. These results suggest that conversion of polarity of the intercalated cells represents a process of terminal differentiation.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine and Physiology, College of Physicians and Surgeons, Columbia University, New York 10032, USA.
| |
Collapse
|
46
|
Tsuruoka S, Schwartz GJ, Wakaumi M, Nishiki K, Yamamoto H, Purkerson JM, Fujimura A. Nitric oxide production modulates cyclosporin A-induced distal renal tubular acidosis in the rat. J Pharmacol Exp Ther 2003; 305:840-5. [PMID: 12626650 DOI: 10.1124/jpet.102.048207] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclosporine A (CsA) causes distal renal tubular acidosis (dRTA) in humans and rodents. Because mice deficient in nitric-oxide (NO) synthase develop acidosis, we examined how NO production modulated H+ excretion during acid loading and CsA treatment in a rat model. Rats received CsA, L-arginine (L-Arg), or N omega-nitro-L-arginine methyl ester (L-NAME), or combinations of CsA and L-NAME or L-Arg, followed by NH4Cl (acute acid load). In vehicle-treated rats, NH4Cl loading reduced serum and urine (HCO3-) and urine pH, which was associated with increases in serum [K+] and [Cl-] and urine NH3 excretion. Similar to CsA (7.5 mg/kg), L-NAME impaired H+ excretion of NH4Cl-loaded animals. The combination CsA and L-NAME reduced H+ excretion to a larger extent than either drug alone. In contrast, administration of L-Arg ameliorated the effect of CsA on H+ excretion. Urine pH after NH4Cl was 5.80 +/- 0.09, 6.11 +/- 0.13*, 6.37 +/- 0.16*, and 5.77 +/- 0.09 in the vehicle, CsA, CsA + L-NAME and CsA + L-Arg groups, respectively (*P < 0.05). The effect of CsA and alteration of NO synthesis were mediated at least in part by changes in bicarbonate absorption in perfused cortical collecting ducts. CsA or L-NAME reduced net HCO3- absorption, and, when combined, completely inhibited it. CsA + L-Arg restored HCO3- absorption to near control levels. Administration of CsA along with L-NAME reduced NO production to below levels observed with either drug alone. These results suggest that CsA causes dRTA by inhibiting H+ pumps in the distal nephron. Inhibition of NO synthesis may be one of the mechanisms underlying the CsA effect.
Collapse
Affiliation(s)
- Shuichi Tsuruoka
- Department of Clinical Pharmacology, Jichi Medical School, 3311 Yakushiji, Minamikawachi, Kawachi, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Frische S, Kwon TH, Frøkiaer J, Madsen KM, Nielsen S. Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol 2003; 284:F584-93. [PMID: 12556366 DOI: 10.1152/ajprenal.00254.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anion exchanger pendrin is present in the apical plasma membrane of type B and non-A-non-B intercalated cells of the cortical collecting duct (CCD) and connecting tubule and is involved in HCO(3)(-) secretion. In this study, we investigated whether the abundance and subcellular localization of pendrin are regulated in response to experimental metabolic acidosis and alkalosis with maintained water and sodium intake. NH(4)Cl loading (0.033 mmol NH(4)Cl/g body wt for 7 days) dramatically reduced pendrin abundance to 22 +/- 4% of control values (n = 6, P < 0.005). Immunoperoxidase labeling for pendrin showed reduced intensity in NH(4)Cl-loaded animals compared with control animals. Moreover, double-label laser confocal microscopy revealed a reduction in the fraction of cells in the CCD exhibiting pendrin labeling to 65% of the control value (n = 6, P < 0.005). Conversely, NaHCO(3) loading (0.033 mmol NaHCO(3)/g body wt for 7 days) induced a significant increase in pendrin expression to 153 +/- 11% of control values (n = 6, P < 0.01) with no change in the fraction of cells expressing pendrin. Immunoelectron microscopy revealed no major changes in the subcellular distribution, with abundant labeling in both the apical plasma membrane and the intracellular vesicles in all conditions. These results indicate that changes in pendrin protein expression play a key role in the well-established regulation of HCO(3)(-) secretion in the CCD in response to chronic changes in acid-base balance and suggest that regulation of pendrin expression may be clinically important in the correction of acid-base disturbances.
Collapse
Affiliation(s)
- Sebastian Frische
- The Water and Salt Research Center, Institute of Anatomy, and Institute of Experimental Clinical Research, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
48
|
Wesson DE. Endogenous endothelins mediate increased acidification in remnant kidneys. J Am Soc Nephrol 2001; 12:1826-1835. [PMID: 11518775 DOI: 10.1681/asn.v1291826] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Because endothelins (ET) mediate increased renal acidification induced by dietary acid and animals with reduced renal mass exhibit increased urinary ET-1 excretion, the hypothesis that ET mediate increased renal acidification in remnant kidneys was tested. Four weeks before the study, rats underwent a 5/6 nephrectomy (Nx) and a microdialysis apparatus was inserted into the remnant left kidney and the left kidney of sham-treated control animals, for measurements of renal ET-1 contents. Nx animals exhibited greater ET-1 addition to the renal dialysate than did control animals (681 +/- 91 versus 290 +/- 39 fmol/g kidney wt per min, P < 0.002) and greater urinary ET-1 excretion (346 +/- 79 versus 125 +/- 24 fmol/d, P < 0.02). Urinary net acid excretion rates were similar for Nx and control animals (732 +/- 106 versus 1005 +/- 293 microEq/d, P = 0.4), but Nx animals exhibited greater in situ HCO(3)(-) reabsorption in proximal (972.3 +/- 77 versus 482.6 +/- 42.4 pmol/min, P < 0.001) and distal (62.7 +/- 6.7 versus 24.3 +/- 2.5 pmol/min, P < 0.001) tubules. Orally administered bosentan, an ET(A/B) receptor antagonist, decreased urinary net acid excretion in Nx animals (to 394 +/- 99 microEq/d, P < 0.04 versus without bosentan); the decrease was mediated by decreased HCO(3)(-) reabsorption in both the proximal and distal tubules. Furthermore, bosentan decreased blood base excess in Nx animals (0.1 +/- 0.3 to -0.12 +/- 0.03 microM/ml blood, P < 0.002), consistent with acid retention. The data demonstrate that endogenous ET mediate increased urinary acid excretion in the remnant kidneys of Nx animals.
Collapse
Affiliation(s)
- Donald E Wesson
- Texas Tech University Health Sciences Center, Texas Tech University School of Medicine, Lubbock, Texas
| |
Collapse
|
49
|
Laghmani K, Preisig PA, Moe OW, Yanagisawa M, Alpern RJ. Endothelin-1/endothelin-B receptor-mediated increases in NHE3 activity in chronic metabolic acidosis. J Clin Invest 2001; 107:1563-9. [PMID: 11413164 PMCID: PMC200190 DOI: 10.1172/jci11234] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Accepted: 05/02/2001] [Indexed: 12/20/2022] Open
Abstract
Decreases in blood pH activate NHE3, the proximal tubular apical membrane Na/H antiporter. In cultured renal epithelial cells, activation of the endothelin-B (ET(B)) receptor increases NHE3 activity. To examine the role of the ET(B) receptor in the response to acidosis in vivo, the present studies examined ET(B) receptor-deficient mice, rescued from neonatal lethality by expression of a dopamine beta-hydroxylase promoter/ET(B) receptor transgene (Tg/Tg:ET(B)(-/-) mice). In proximal tubule suspensions from Tg/Tg:ET(B)(+/-) mice, 10(-8) M endothelin-1 (ET-1) increased NHE3 activity, but this treatment had no effect on tubules from Tg/Tg:ET(B)(-/-) mice. Acid ingestion for 7 days caused a greater decrease in blood HCO(3)(-) concentration in Tg/Tg:ET(B)(-/-) mice compared with Tg/Tg:ET(B)(+/+) and Tg/Tg:ET(B)(+/-) mice. Whereas acid ingestion increased apical membrane NHE3 by 42-46% in Tg/Tg:ET(B)(+/+) and Tg/Tg:ET(B)(+/-) mice, it had no effect on NHE3 in Tg/Tg:ET(B)(-/-) mice. In C57BL/6 mice, excess acid ingestion increased renal cortical preproET-1 mRNA expression 2.4-fold and decreased preproET-3 mRNA expression by 37%. On a control diet, Tg/Tg:ET(B)(-/-) mice had low rates of ammonium excretion, which could not be attributed to an inability to acidify the urine, as well as hypercitraturia, with increased titratable acid excretion. Acid ingestion increased ammonium excretion, citrate absorption, and titratable acid excretion to the same levels in Tg/Tg:ET(B)(-/-) and Tg/Tg:ET(B)(+/+) mice. In conclusion, metabolic acidosis increases ET-1 expression, which increases NHE3 activity via the ET(B) receptor.
Collapse
Affiliation(s)
- K Laghmani
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9003, USA
| | | | | | | | | |
Collapse
|
50
|
Peng Y, Amemiya M, Yang X, Fan L, Moe OW, Yin H, Preisig PA, Yanagisawa M, Alpern RJ. ET(B) receptor activation causes exocytic insertion of NHE3 in OKP cells. Am J Physiol Renal Physiol 2001; 280:F34-42. [PMID: 11133512 DOI: 10.1152/ajprenal.2001.280.1.f34] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin-1 (ET-1) activates sodium/hydrogen exchanger 3 (NHE3) in opossum kidney clone P (OKP) cells expressing ET(B) receptors. ET-1 (10(-8) M) caused a two- to threefold increase in apical membrane NHE3 (assessed by surface biotinylation), in the absence of a change in total cellular NHE3. A maximal effect was achieved within 15 min. The increase in apical NHE3 was not blocked by cytochalasin D but was blocked by latrunculin B, which also prevented the ET-1-induced increase in NHE3 activity. Endocytic internalization of NHE3, measured as protection of biotinylated NHE3 from the membrane-impermeant, sulfhydryl-reducing agent MesNa was minimal within 35 min and was not regulated by ET-1. Exocytic insertion of NHE3, measured as the appearance of biotinylated NHE3 after the blockade of reactive sites with sulfo-NHS-acetate, was increased in response to ET-1. These studies demonstrate that ET-1 induces net trafficking of NHE3 to the apical membrane that is mediated by enhanced exocytic insertion and is required for increased NHE3 activity.
Collapse
Affiliation(s)
- Y Peng
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | | | | | | | |
Collapse
|