1
|
Rovatti PE, Muccini C, Punta M, Galli L, Mainardi I, Ponta G, Vago LAE, Castagna A. Impact of predicted HLA class I immunopeptidome on viral reservoir in a cohort of people living with HIV in Italy. HLA 2024; 103:e15298. [PMID: 37962099 DOI: 10.1111/tan.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
The class I HLA genotype has been widely recognized as a factor influencing HIV disease progression in treatment-naïve subjects. However, little is known regarding its role in HIV disease course and how it influences the size of the viral reservoir once anti-retroviral therapy (ART) is started. Here, leveraging on cutting-edge bioinformatic tools, we explored the relationship between HLA class I and the HIV reservoir in a cohort of 90 people living with HIV (PLWH) undergoing ART and who achieved viral suppression. Analysis of HLA allele distribution among patients with high and low HIV reservoir allowed us to document a predominant role of HLA-B and -C genes in regulating the size of HIV reservoir. We then focused on the analysis of HIV antigen (Ag) repertoire, by investigating immunogenetic parameters such as the degree of homozygosity, HLA evolutionary distance and Ag load. In particular, we used two different bioinformatic algorithms, NetMHCpan and MixMHCpred, to predict HLA presentation of immunogenic HIV-derived peptides and identified HLA-B*57:01 and HLA-B*58:01 among the highest ranking HLAs in terms of total load, suggesting that their previously reported protective role against HIV disease progression might be linked to a more effective viral recognition and presentation to Cytotoxic T lymphocytes (CTLs). Further, we speculated that some peptide-HLA complexes, including those produced by the interaction between HLA-B*27 and the HIV Gag protein, might be particularly relevant for the efficient regulation of HIV replication and containment of the HIV reservoir. Last, we provide evidence of a possible synergistic effect between the CCR5 ∆32 mutation and Ag load in controlling HIV reservoir.
Collapse
Affiliation(s)
- Pier Edoardo Rovatti
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Camilla Muccini
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Punta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Galli
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Luca Aldo Edoardo Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Castagna
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Levine B, Leskowitz R, Davis M. Personalized gene therapy locks out HIV, paving the way to control virus without antiretroviral drugs. Expert Opin Biol Ther 2015; 15:831-43. [PMID: 25947115 DOI: 10.1517/14712598.2015.1035644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Advances in adoptive immunotherapy have enabled gene therapy approaches to be tested in clinical trials that involve the transfer of engineered immune cells to specifically target HIV-infected cells or block HIV infection or transmission. Genetic editing through engineered targeted nucleases provides a method for producing cells that are permanently resistant to HIV. AREAS COVERED Here, we discuss current and developing gene therapy approaches aimed to confer resistance to HIV infection at the cellular level by targeting viral or cellular elements, with a focus on gene editing strategies that target viral entry. Human gene therapy trials in HIV infection are reviewed. EXPERT OPINION In concept, a single infusion of genetically modified cells could potentially reduce the need for lifelong medication by providing long-term control over the virus (functional immunity). While the dream of completely eliminating viral reservoirs (sterilizing immunity) is appealing, this presents a significant additional hurdle and may not be necessary to improve long-term health. A single infusion, or a small number of infusions, of engineered cells may be shown in confirmatory clinical trials to produce a meaningful biologic effect. These techniques have implications for targeted gene therapy in HIV and other diseases.
Collapse
Affiliation(s)
- Bruce Levine
- University of Pennsylvania , Philadelphia, PA , USA
| | | | | |
Collapse
|
3
|
Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370:901-10. [PMID: 24597865 PMCID: PMC4084652 DOI: 10.1056/nejmoa1300662] [Citation(s) in RCA: 1008] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND CCR5 is the major coreceptor for human immunodeficiency virus (HIV). We investigated whether site-specific modification of the gene ("gene editing")--in this case, the infusion of autologous CD4 T cells in which the CCR5 gene was rendered permanently dysfunctional by a zinc-finger nuclease (ZFN)--is safe. METHODS We enrolled 12 patients in an open-label, nonrandomized, uncontrolled study of a single dose of ZFN-modified autologous CD4 T cells. The patients had chronic aviremic HIV infection while they were receiving highly active antiretroviral therapy. Six of them underwent an interruption in antiretroviral treatment 4 weeks after the infusion of 10 billion autologous CD4 T cells, 11 to 28% of which were genetically modified with the ZFN. The primary outcome was safety as assessed by treatment-related adverse events. Secondary outcomes included measures of immune reconstitution and HIV resistance. RESULTS One serious adverse event was associated with infusion of the ZFN-modified autologous CD4 T cells and was attributed to a transfusion reaction. The median CD4 T-cell count was 1517 per cubic millimeter at week 1, a significant increase from the preinfusion count of 448 per cubic millimeter (P<0.001). The median concentration of CCR5-modified CD4 T cells at 1 week was 250 cells per cubic millimeter. This constituted 8.8% of circulating peripheral-blood mononuclear cells and 13.9% of circulating CD4 T cells. Modified cells had an estimated mean half-life of 48 weeks. During treatment interruption and the resultant viremia, the decline in circulating CCR5-modified cells (-1.81 cells per day) was significantly less than the decline in unmodified cells (-7.25 cells per day) (P=0.02). HIV RNA became undetectable in one of four patients who could be evaluated. The blood level of HIV DNA decreased in most patients. CONCLUSIONS CCR5-modified autologous CD4 T-cell infusions are safe within the limits of this study. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00842634.).
Collapse
Affiliation(s)
- Pablo Tebas
- From the Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.T., I.F., M.K., R.G.C., G.B.-S., G.P., W.-T.H., B.L.L., C.H.J.); Albert Einstein College of Medicine, Bronx, NY (D.S.); and Sangamo BioSciences, Richmond, CA (W.W.T., S.Q.W., G.L., S.K.S., R.T.S., M.A.G., G.N., M.C.H., P.D.G., D.G.A.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Santa-Marta M, de Brito PM, Godinho-Santos A, Goncalves J. Host Factors and HIV-1 Replication: Clinical Evidence and Potential Therapeutic Approaches. Front Immunol 2013; 4:343. [PMID: 24167505 PMCID: PMC3807056 DOI: 10.3389/fimmu.2013.00343] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/06/2013] [Indexed: 12/17/2022] Open
Abstract
HIV and human defense mechanisms have co-evolved to counteract each other. In the process of infection, HIV takes advantage of cellular machinery and blocks the action of the host restriction factors (RF). A small subset of HIV+ individuals control HIV infection and progression to AIDS in the absence of treatment. These individuals known as long-term non-progressors (LNTPs) exhibit genetic and immunological characteristics that confer upon them an efficient resistance to infection and/or disease progression. The identification of some of these host factors led to the development of therapeutic approaches that attempted to mimic the natural control of HIV infection. Some of these approaches are currently being tested in clinical trials. While there are many genes which carry mutations and polymorphisms associated with non-progression, this review will be specifically focused on HIV host RF including both the main chemokine receptors and chemokines as well as intracellular RF including, APOBEC, TRIM, tetherin, and SAMHD1. The understanding of molecular profiles and mechanisms present in LTNPs should provide new insights to control HIV infection and contribute to the development of novel therapies against AIDS.
Collapse
Affiliation(s)
- Mariana Santa-Marta
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa , Lisboa , Portugal ; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | | | | | | |
Collapse
|
5
|
Maier DA, Brennan AL, Jiang S, Binder-Scholl GK, Lee G, Plesa G, Zheng Z, Cotte J, Carpenito C, Wood T, Spratt SK, Ando D, Gregory P, Holmes MC, Perez EE, Riley JL, Carroll RG, June CH, Levine BL. Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 2013; 24:245-58. [PMID: 23360514 DOI: 10.1089/hum.2012.172] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since HIV requires CD4 and a co-receptor, most commonly C-C chemokine receptor 5 (CCR5), for cellular entry, targeting CCR5 expression is an attractive approach for therapy of HIV infection. Treatment of CD4(+) T cells with zinc-finger protein nucleases (ZFNs) specifically disrupting chemokine receptor CCR5 coding sequences induces resistance to HIV infection in vitro and in vivo. A chimeric Ad5/F35 adenoviral vector encoding CCR5-ZFNs permitted efficient delivery and transient expression following anti-CD3/anti-CD28 costimulation of T lymphocytes. We present data showing CD3/CD28 costimulation substantially improved transduction efficiency over reported methods for Ad5/F35 transduction of T lymphocytes. Modifications to the laboratory scale process, incorporating clinically compatible reagents and methods, resulted in a robust ex vivo manufacturing process capable of generating >10(10) CCR5 gene-edited CD4+ T cells from healthy and HIV+ donors. CD4+ T-cell phenotype, cytokine production, and repertoire were comparable between ZFN-modified and control cells. Following consultation with regulatory authorities, we conducted in vivo toxicity studies that showed no detectable ZFN-specific toxicity or T-cell transformation. Based on these findings, we initiated a clinical trial testing the safety and feasibility of CCR5 gene-edited CD4+ T-cell transfer in study subjects with HIV-1 infection.
Collapse
Affiliation(s)
- Dawn A Maier
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Introduction of potent combination antiretroviral therapy has led to the successful treatment of HIV infection, although adverse side effects, toxicities and drug resistance to currently available antiretroviral therapy regimens emerge, resulting in poorer outcomes. Alternative therapeutic interventions are needed to enhance HIV-1-specific immunity. The review will discuss the rationale for use of therapeutic immunization as a method to enhance HIV-1-specific immunity, and support the use of analytical treatment interruption to obtain and define immune correlates. RECENT FINDINGS Results of recent studies using structured treatment interruption strategies demonstrate that with proper features to protect against drug resistance and drops in CD4 cell counts, viral endpoints following analytical treatment interruption can be used as a tool for measuring efficacy of immunologic therapeutic interventions. The viral rebound dynamics during and viral set points established following analytical treatment interruptions should be used as study endpoints as they represents the host's anti-HIV immune response to the therapeutic vaccine. SUMMARY The results of recent treatment interruption studies support the use of an analytical treatment interruption as an effective tool to identify and define immune function correlates, and to generate data to support the subsequent conduct of larger, more definitive phase II/III studies.
Collapse
|
7
|
Abstract
The host immune system is profoundly affected during the acute phase of progressive immunodeficiency lentiviral infections. Studies of these alterations have been quite restricted in humans because of the limited availability of samples from acutely HIV-infected persons. Therefore, numerous studies have turned attention to nonhuman primate models. Specifically, SIV-infected rhesus macaques (RMs) have been informative for understanding the pathogenesis of HIV infection in humans. Indeed, advantages of the nonhuman primate model include the ability to study the very early events after infection and the ability to retrieve copious amounts of tissues. In addition, nonhuman primates allow for comparative studies between non-natural and natural hosts for SIV, in which SIV infection results in progression, or not, to AIDS, respectively. Although SIV infection of RM is the best model for HIV infection, the immunologic and/or virologic phenomena in SIV-infected RM do not always reflect those seen in HIV-infected humans. Here virologic and immunologic aspects of acute HIV infection of humans and SIV infection of Asian and African nonhuman primates are discussed and compared in relation to how these aspects relate to disease progression.
Collapse
|
8
|
Poropatich K, Sullivan DJ. Human immunodeficiency virus type 1 long-term non-progressors: the viral, genetic and immunological basis for disease non-progression. J Gen Virol 2010; 92:247-68. [PMID: 21106806 DOI: 10.1099/vir.0.027102-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A small subset of human immunodeficiency virus type 1 (HIV-1)-infected, therapy-naive individuals--referred to as long-term non-progressors (LTNPs)--maintain a favourable course of infection, often being asymptomatic for many years with high CD4(+) and CD8(+) T-cell counts (>500 cells μl(-1)) and low plasma HIV-RNA levels (<10 ,000 copies ml(-1)). Research in the field has undergone considerable development in recent years and LTNPs offer a piece of the puzzle in understanding the ways that persons can naturally control HIV-1 infection. Their method of control is based on viral, genetic and immunological components. With respect to virological features, genomic sequencing has shown that some LTNPs are infected with attenuated strains of HIV-1 and harbour mutant nef, vpr, vif or rev genes that contain single nuclear polymorphisms, or less frequently, large deletions, in conserved domains. Studies have also shown that some LTNPs have unique genetic advantages, including heterozygosity for the CCR5-Δ32 polymorphism, and have been found with excitatory mutations that upregulate the production of the chemokines that competitively inhibit HIV-1 binding to CCR5 or CXCR4. Lastly, immunological factors are crucial for providing LTNPs with a natural form of control, the most important being robust HIV-specific CD4(+) and CD8(+) T-cell responses that correlate with lower viral loads. Many LTNPs carry the HLA class I B57 allele that enhances presentation of antigenic peptides on the surface of infected CD4(+) cells to cytotoxic CD8(+) T cells. For these reasons, LTNPs serve as an ideal model for HIV-1 vaccine development due to their natural control of HIV-1 infection.
Collapse
Affiliation(s)
- Kate Poropatich
- The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | | |
Collapse
|
9
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
10
|
Abstract
The concept of personalizing antiretroviral therapy is not novel, since the complexity of the HIV patient and their therapy has always demanded consideration of the patient's 'pharmacoecology', taking into account factors such as adherence, drug-drug and food-drug interactions, underlying disease and host states, such as organ dysfunction and pregnancy. Recent advances in science have taken this one step further with the technology now available to use both a candidate and whole-genome approach to explore the genetics of host-virus interactions, as well as the pharmacogenetics of the toxicity and efficacy of antiretroviral therapy. The genetics of host-virus interactions have improved our understanding of the pathogenesis of HIV which will aid in the research and development of an HIV vaccine. Most published HIV pharmacogenetic studies have utilized a candidate gene approach. Although these types of studies have provided insight into the pathogenesis and pharmacogenetics of drug disposition, drug interactions, drug efficacy and toxicity and host-virus interactions, very few will lend themselves to a widespread clinical application. The application of HLA-B*5701 screening to prevent abacavir hypersensitivity acts as an important example of the successful widespread implementation of a pharmacogenetic test into the clinic and defines the key steps necessary for the clinical application of pharmacogenetic tests in general.
Collapse
Affiliation(s)
- Elizabeth J Phillips
- Institute for Immunology & Infectious Diseases, Murdoch University, Department of Clinical Immunology & Immunogenetics, 2nd Floor North Block, Royal Perth Hospital, Wellington Street, Perth, Western Australia 6000. .,Royal Perth Hospital, Perth, Western Australia.,Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Simon A Mallal
- Institute for Immunology & Infectious Diseases, Murdoch University, Department of Clinical Immunology & Immunogenetics, 2nd Floor North Block, Royal Perth Hospital, Wellington Street, Perth, Western Australia 6000. .,Royal Perth Hospital, Perth, Western Australia
| |
Collapse
|
11
|
Kaur G, Tuen M, Virland D, Cohen S, Mehra NK, Münz C, Abdelwahab S, Garzino-Demo A, Hioe CE. Antigen stimulation induces HIV envelope gp120-specific CD4(+) T cells to secrete CCR5 ligands and suppress HIV infection. Virology 2007; 369:214-25. [PMID: 17765942 PMCID: PMC2443714 DOI: 10.1016/j.virol.2007.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/19/2007] [Accepted: 07/31/2007] [Indexed: 02/08/2023]
Abstract
CD4(+) T cells are critical for effective immune responses against HIV, but they are also the main cell type targeted by the virus. To investigate the key factors that could protect these cells from infection, we evaluated the capacity of HIV gp120-specific human CD4(+) T cells to produce chemokines that inhibit HIV and determined their contribution in suppressing infection in the cells. Antigen stimulation of the CD4(+) T cells elicited production of high amounts of CCR5 chemokines MIP-1alpha (CCL3), MIP-1beta (CCL4), and RANTES (CCL5). Production of these CCR5 ligands was more readily and reproducibly detected than that of IFN-gamma or IL-2. Importantly, in association with secretion of the CCR5 ligands, antigen stimulation made these CD4(+) T cells more resistant to CCR5-tropic HIV-1. Conversely, in the absence of antigen stimulation, the cells were readily infected by the virus, and after infection, their capacity to produce MIP-1beta and IFN-gamma rapidly declined. Thus, vaccines that trigger HIV-specific CD4(+) T cells to elicit robust and rapid production of anti-viral chemokines would be advantageous. Such responses would protect virus-specific CD4(+) T cells from HIV infection and preserve their critical functions in mounting and maintaining long-lasting immunity against the virus.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Veterans Affairs New York Harbor Healthcare System and Department of Pathology, New York University School of Medicine, New York, New York, USA
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Michael Tuen
- Department of Veterans Affairs New York Harbor Healthcare System and Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Diana Virland
- Department of Veterans Affairs New York Harbor Healthcare System and Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Sandra Cohen
- Department of Veterans Affairs New York Harbor Healthcare System and Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Narinder K. Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Christian Münz
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, USA
| | - Sayed Abdelwahab
- Laboratory of Virus-Host Interactions, Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, USA
| | - Alfredo Garzino-Demo
- Laboratory of Virus-Host Interactions, Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, USA
| | - Catarina E. Hioe
- Department of Veterans Affairs New York Harbor Healthcare System and Department of Pathology, New York University School of Medicine, New York, New York, USA
- Corresponding author. VA Medical Center, 423 E. 23 St. Room 18-124 North, New York, NY 10010, phone: 212-263-6769, fax: 212-951-6321,
| |
Collapse
|
12
|
MacDermott RP, Sanderson IR, Reinecker HC. The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 2007. [DOI: 10.1002/ibd.3780040110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
13
|
Gorry PR, Dunfee RL, Mefford ME, Kunstman K, Morgan T, Moore JP, Mascola JR, Agopian K, Holm GH, Mehle A, Taylor J, Farzan M, Wang H, Ellery P, Willey SJ, Clapham PR, Wolinsky SM, Crowe SM, Gabuzda D. Changes in the V3 region of gp120 contribute to unusually broad coreceptor usage of an HIV-1 isolate from a CCR5 Delta32 heterozygote. Virology 2007; 362:163-78. [PMID: 17239419 PMCID: PMC1973138 DOI: 10.1016/j.virol.2006.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 10/30/2006] [Accepted: 11/16/2006] [Indexed: 11/26/2022]
Abstract
Heterozygosity for the CCR5 Delta32 allele is associated with delayed progression to AIDS in human immunodeficiency virus type 1 (HIV-1) infection. Here we describe an unusual HIV-1 isolate from the blood of an asymptomatic individual who was heterozygous for the CCR5 Delta32 allele and had reduced levels of CCR5 expression. The primary virus used CCR5, CXCR4, and an unusually broad range of alternative coreceptors to enter transfected cells. However, only CXCR4 and CCR5 were used to enter primary T cells and monocyte-derived macrophages, respectively. Full-length Env clones had an unusually long V1/V2 region and rare amino acid variants in the V3 and C4 regions. Mutagenesis studies and structural models suggested that Y308, D321, and to a lesser extent K442 and E444, contribute to the broad coreceptor usage of these Envs, whereas I317 is likely to be a compensatory change. Furthermore, database analysis suggests that covariation can occur at positions 308/317 and 308/321 in vivo. Y308 and D321 reduced dependence on the extracellular loop 2 (ECL2) region of CCR5, while these residues along with Y330, K442, and E444 enhanced dependence on the CCR5 N-terminus compared to clade B consensus residues at these positions. These results suggest that expanded coreceptor usage of HIV-1 can occur in some individuals without rapid progression to AIDS as a consequence of changes in the V3 region that reduce dependence on the ECL2 region of CCR5 by enhancing interactions with conserved structural elements in G-protein-coupled receptors.
Collapse
Affiliation(s)
- Paul R Gorry
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nolan D, Gaudieri S, Mallal S. Host genetics and viral infections: immunology taught by viruses, virology taught by the immune system. Curr Opin Immunol 2006; 18:413-21. [PMID: 16777398 DOI: 10.1016/j.coi.2006.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Viruses are prototypic obligate intracellular pathogens, and are therefore, by necessity, highly pre-adapted to surviving the host immune response. Nevertheless, host genetic factors remain an important determinant of disease outcome, particularly in the case of viruses that have encountered humans in the more recent past (e.g. human immunodeficiency virus). Recent studies have identified an increasingly rich network of functionally relevant polymorphic immune factors, including major MHC alleles, killer immunoglobulin-like receptors and functional chemokine receptor polymorphisms. Moreover, genetic variation is increasingly appreciated beyond the single genotype level, incorporating extended haplotypes as well as regions of segmental genetic duplication. These issues can be considered within an evolutionary perspective that acknowledges the crucial role of adaptive host-viral relationships in shaping both host and pathogen genetic diversity.
Collapse
Affiliation(s)
- David Nolan
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Level 2, North Block, Perth, Western Australia
| | | | | |
Collapse
|
15
|
Hladik F, Liu H, Speelmon E, Livingston-Rosanoff D, Wilson S, Sakchalathorn P, Hwangbo Y, Greene B, Zhu T, McElrath MJ. Combined effect of CCR5-Delta32 heterozygosity and the CCR5 promoter polymorphism -2459 A/G on CCR5 expression and resistance to human immunodeficiency virus type 1 transmission. J Virol 2005; 79:11677-84. [PMID: 16140745 PMCID: PMC1212613 DOI: 10.1128/jvi.79.18.11677-11684.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposed seronegative individuals (ES) with persistent high-risk sexual behavior may be less susceptible to human immunodeficiency virus type 1 (HIV-1) infection because they carry the chemokine receptor (CR) gene alleles CCR5 open reading frame (ORF) Delta32, CCR5 promoter -2459G, or CCR2 ORF 64I (CCR2-64I), all of which have been found to diminish HIV-1 infectivity and/or disease progression. To investigate this, we determined the haplotypes for these three genetic loci in 93 ES and 247 low-risk control individuals. To test if protective haplotypes exert their effect by modulating CR expression, we measured the protein expression of CCR5 and CXCR4 on circulating CD4+ T cells and CD14+ monocytes in 71 ES and 92 controls. To avoid investigator bias, the analysis was performed without knowledge of each subject's risk and genotype. The CCR5 -2459G allele was significantly enriched in ES Caucasian men, who constituted the majority (84%) of the ES cohort, compared to the control Caucasian men (P = 0.02). This increase was mostly attributable to a higher frequency of the -2459 A/G versus the -2459 A/A genotype in individuals heterozygous for the delta32 allele (P = 0.012). No protective influence of the CCR2-64I allele was observed. The haplotypes CCR5 ORF delta32/CCR5 -2459A (in complete linkage disequilibrium) and CCR5 ORF wt/CCR5 -2459G had a cumulative negative effect on the expression of CCR5, since we measured significantly reduced CCR5 densities on both T-helper cells and monocytes only when both haplotypes were present. Densities of CCR5 on lymphocytes and monocytes were correlated (r = 0.59; P < 0.0001), indicating concordance of CCR5 expression patterns across different cell types. We conclude that the CCR5 ORF delta32/wt-CCR5 -2459 A/G genotype combination offers an advantage in resisting sexual HIV-1 transmission and that this effect is mediated by a relative paucity of CCR5 on potential target cells of HIV-1.
Collapse
Affiliation(s)
- Florian Hladik
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Program in Infectious Diseases, 1100 Fairview Ave. N., P.O. Box 19024, D3-100, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nolan D, Gaudieri S, John M, Mallal S. Impact of host genetics on HIV disease progression and treatment: new conflicts on an ancient battleground. AIDS 2004; 18:1231-40. [PMID: 15362655 DOI: 10.1097/00002030-200406180-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Badley AD, Roumier T, Lum JJ, Kroemer G. Mitochondrion-mediated apoptosis in HIV-1 infection. Trends Pharmacol Sci 2003; 24:298-305. [PMID: 12823956 DOI: 10.1016/s0165-6147(03)00125-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS), which is caused by human immunodeficiency virus (HIV-1), involves the apoptotic destruction of lymphocytes and, in the context of AIDS-associated pathologies, of neurons and myocytes. Several proteins encoded by HIV-1 trigger apoptosis by inducing permeabilization of the mitochondrial membrane. Several nucleoside analogs used clinically in the treatment of HIV-1 inhibit the replication of mitochondrial DNA (mtDNA) and/or increase the frequency of mtDNA mutations. These cause severe mitochondriopathy and might contribute to lipodystrophy, the complication associated with HIV-1 therapy. HIV-1 protease inhibitors can inhibit apoptosis at the mitochondrial level, which might help to alleviate lymphopenia. Thus, it appears that the pathogenesis of AIDS, and the pharmacological interventions and complications associated with this disease, affect the mitochondrial regulation of apoptosis, which, therefore, largely determines the outcome of HIV-1 infection.
Collapse
Affiliation(s)
- Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester MN 55905, USA.
| | | | | | | |
Collapse
|
18
|
Lum JJ, Cohen OJ, Nie Z, Weaver JG, Gomez TS, Yao XJ, Lynch D, Pilon AA, Hawley N, Kim JE, Chen Z, Montpetit M, Sanchez-Dardon J, Cohen EA, Badley AD. Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J Clin Invest 2003; 111:1547-54. [PMID: 12750404 PMCID: PMC155040 DOI: 10.1172/jci16233] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The absence of immune defects that occurs in the syndrome of long-term nonprogressive (LTNP) HIV infection offers insights into the pathophysiology of HIV-induced immune disease. The (H[F/S]RIG)(2) domain of viral protein R (Vpr) induces apoptosis and may contribute to HIV-induced T cell depletion. We demonstrate a higher frequency of R77Q Vpr mutations in patients with LTNP than in patients with progressive disease. In addition, T cell infections using vesicular stomatitis virus G (VSV-G) pseudotyped HIV-1 Vpr R77Q result in less (P = 0.01) T cell death than infections using wild-type Vpr, despite similar levels of viral replication. Wild-type Vpr-associated events, including procaspase-8 and -3 cleavage, loss of mitochondrial transmembrane potential (deltapsi(m)), and DNA fragmentation factor activation are attenuated by R77Q Vpr. These data highlight the pathophysiologic role of Vpr in HIV-induced immune disease and suggest a novel mechanism of LTNP.
Collapse
Affiliation(s)
- Julian J Lum
- Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang B, Dyer WB, Zaunders JJ, Mikhail M, Sullivan JS, Williams L, Haddad DN, Harris G, Holt JAG, Cooper DA, Miranda-Saksena M, Boadle R, Kelleher AD, Saksena NK. Comprehensive analyses of a unique HIV-1-infected nonprogressor reveal a complex association of immunobiological mechanisms in the context of replication-incompetent infection. Virology 2002; 304:246-64. [PMID: 12504566 DOI: 10.1006/viro.2002.1706] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that a unique HIV-1-infected nonprogressor was infected with a nonevolving replication-incompetent HIV-1 strain, showing a total absence of viral evolution in vivo. Potent immune responses against HIV-1 were observed in his PBMC, despite an apparent lack of viral replication for at least 8 years. His PBMC resisted superinfection with CCR5, CXCR4, and dual-tropic HIV-1 strains, although highly purified CD4+ T cells supported infection, but without any visible cytopathic effect. Potent noncytolytic CD8+ T cell antiviral activity was shown to protect his PBMC from productive infection. This activity was not mediated by several known chemokines or IFN-gamma, which were produced at high levels after PHA activation of his CD8+ T cells, indicating the action of other CAF-like CD8 factors. This antiviral activity was a memory response, induced by HIV-specific stimulation to similar levels observed by PHA stimulation, but absent in ex vivo resting T cells. Immunological mechanisms associated with this antiviral suppressive activity included vigorous Gag-specific helper T cell proliferative responses and high-level IFN-gamma release by both CD4 and CD8 T cells. These responses were broadly directed against multiple Gag epitopes, both previously reported and some novel epitopes. Strong HIV-specific helper T cell function was also associated with strong neutralizing antibodies. Understanding how to induce these protective immune responses in other individuals could provide a major step forward in the design of effective immunotherapies or vaccines against HIV infection.
Collapse
Affiliation(s)
- Bin Wang
- Retroviral Genetics Laboratory, Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Westmead, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang OO, Boscardin WJ, Matud J, Hausner MA, Hultin LE, Hultin PM, Shih R, Ferbas J, Siegal FP, Shodell M, Shearer GM, Grene E, Carrington M, O'Brien S, Price CB, Detels R, Jamieson BD, Giorgi JV. Immunologic profile of highly exposed yet HIV type 1-seronegative men. AIDS Res Hum Retroviruses 2002; 18:1051-65. [PMID: 12396457 DOI: 10.1089/08892220260235416] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The host immune factors that determine susceptibility to HIV-1 infection are poorly understood. We compared multiple immunologic parameters in three groups of HIV-1-seronegative men: 14 highly exposed (HR10), 7 previously reported possibly to have sustained transient infection (PTI), and a control group of 14 low risk blood bank donors (BB). Virus-specific cellular immune assays were performed for CD4(+) T helper cell responses, CD8(+) cytotoxic T lymphocyte activity, CD8(+) cell chemokine release, and CD8(+) cell-derived antiviral soluble factor activity. General immune parameters evaluated included CCR5 genotype and phenotype, interferon alpha production by PBMCs, leukocyte subset analysis, and detailed T lymphocyte phenotyping. Comparisons revealed no detectable group-specific differences in measures of virus-specific immunity. However, the HR10 group differed from the BB group in several general immune parameters, having higher absolute monocyte counts, higher absolute CD8(+) T cell counts and percentages, lower naive and higher terminal effector CD8(+) cells, and lower levels of CD28(+)CD8(+) cells. These changes were not associated with seropositivity for other chronic viral infections. The PTI men appeared to have normal levels of monocytes and slightly elevated levels of CD8(+) T cells (also with increased effector and decreased naive cells). Although we cannot entirely exclude the contribution of other chronic viral infections, these findings suggest that long-lived systemic cellular antiviral immunity as detected by our assays is not a common mechanism for resistance to infection, and that resistance may be multifactorial. General immune parameters reflected by CD8(+) T cell levels and activation, and monocyte concentrations may affect the risk of infection with HIV-1, and/or serve as markers of exposure.
Collapse
Affiliation(s)
- Otto O Yang
- Department of Medicine, UCLA Medical Center, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Katzman M, Harper AL, Sudol M, Skinner LM, Eyster ME. Activity of HIV-1 integrases recovered from subjects with varied rates of disease progression. J Acquir Immune Defic Syndr 2001; 28:203-10. [PMID: 11694825 DOI: 10.1097/00042560-200111010-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We recently described 102 HIV-1 integrase sequences that were amplified from blood cells or plasma obtained up to 18 years ago from 5 hemophiliacs who later died of AIDS and 5 hemophiliacs subsequently classified as slow or nonprogressors ( J Acquir Immune Defic Syndr Hum Retrovirol 1998;19:99-110). Although the region of the HIV-1 genome that encodes integrase was highly conserved, none of the deduced protein sequences of the patient-derived enzymes matched that of the clade B consensus or standard laboratory integrases. To test the hypothesis that the activity of HIV-1 integrases prevalent within an infected person contributes to the rate of disease progression, we have now expressed and purified these proteins and compared them in various assays. Most of the 75 unique full-length integrase proteins from the 102 clones were enzymatically active. Comparison of proteins derived from samples obtained soon after infection showed that the specificity and extent of viral DNA processing and the amount of DNA joining (the two biologically relevant activities of integrase) did not differ between the two groups of patients. In addition, the relative usage of alternative nucleophiles for processing and the amount of nonspecific nicking catalyzed by the proteins were indistinguishable between the patient groups. Although the patient-derived enzymes often exhibited different patterns of target site preferences compared with the laboratory integrase, there was no correlation with clinical course. Thus, the activities of HIV-1 integrases prevalent within these infected individuals, at least as reflected by standard assays, did not influence or predict the rate of disease progression.
Collapse
Affiliation(s)
- M Katzman
- Department of Medicine, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033-0850, USA.
| | | | | | | | | |
Collapse
|
22
|
Cohen DE, Walker BD. Human Immunodeficieny Virus Pathogenesis and Prospects for Immune Control in Patients with Established Infection. Clin Infect Dis 2001; 32:1756-68. [PMID: 11360218 DOI: 10.1086/320759] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Revised: 12/26/2000] [Indexed: 01/06/2023] Open
Abstract
Infection with human immunodeficiency virus (HIV) results in inevitable progressive deterioration of the immune system in the majority of untreated patients. Prospects for virus eradication are remote, because HIV establishes long-lived reservoirs during the earliest stages of infection that are impervious to available antiviral therapies. Understanding how the immune system copes with this illness and other chronic viral infections is the key to designing future strategies for long-term control of viremia. Valuable insights have been gained from 2 populations in particular: patients with chronic, long-term, nonprogressing infections, in whom viremia is controllable in the absence of antiviral medications, and acutely infected patients, in whom the initial HIV-specific immune response might be preserved and augmented by timely intervention. These cases of immune control of HIV provide hope for the development of improved vaccine products that may eventually produce vaccine-induced immunity that will enhance durable control of HIV infection.
Collapse
Affiliation(s)
- D E Cohen
- Fenway Community Health Center, Boston, MA 02114, USA.
| | | |
Collapse
|
23
|
Desgranges C, Carvajal P, Afani A, Guzman MA, Sasco A, Sepulveda C. Frequency of CCR5 gene 32-basepair deletion in Chilean HIV-1 infected and non-infected individuals. Immunol Lett 2001; 76:115-7. [PMID: 11274729 DOI: 10.1016/s0165-2478(00)00328-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 32-basepair deletion polymorphism in the CCR5 chemokine receptor gene (CCR5Delta32) has been identified and shown to have functional significance in determining susceptibility to infection by human immunodeficiency virus type 1 (HIV-1) and possibly in influencing disease progression in HIV-1 positive individuals. These findings led to an interest in studies of DeltaCCR5 allele geographical distribution in human population, for complete understanding of the role of CCR5 in HIV-1 epidemiology. Inter-population variation in CCR5Delta32 frequency may be a significant factor in the prediction of AIDS endemicity. In this report we assessed the frequency of DeltaCCR5 in a Chilean population (63 HIV-1 infected and 62 non-infected individuals). No homozygous CCR5Delta32 individual was identified, and no significant difference was observed between HIV-1 infected (3/63) and non-infected (3/62) individuals for the heterozygote CCR5Delta32 state. This is the first evidence of the contribution of DeltaCCR5 allele to the genetic background of the Chilean population, which is characterized by intense ethnic admixture and by gene flow from the European Spanish gene pool.
Collapse
Affiliation(s)
- C Desgranges
- U271 INSERM, 151 cours A Thomas, 69003, Lyon, France.
| | | | | | | | | | | |
Collapse
|
24
|
Hassaïne G, Agostini I, Candotti D, Bessou G, Caballero M, Agut H, Autran B, Barthalay Y, Vigne R. Characterization of human immunodeficiency virus type 1 vif gene in long-term asymptomatic individuals. Virology 2000; 276:169-80. [PMID: 11022005 DOI: 10.1006/viro.2000.0543] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the sequence of the human immunodeficiency virus type 1 (HIV-1) vif genes from a cohort of 42 long-term nonprogressors (LTNP) and compared these sequences to those of 8 late progressors. The coding potential of the vif open reading frame directly derived by nested PCR from uncultured peripheral blood mononuclear cell DNA was conserved in all 50 individuals. The nucleotide distances between vif sequences were not significantly different between LTNP and late progressors, indicating similar selections of viruses within both types of long-term HIV-1-infected subjects. However, a statistically significant correlation between an amino acid signature at position 132 of Vif and the viral load was found within LTNP. Namely, amino acid Ser was associated with low viral load and amino acid Arg with high viral load. This signature was also observed when LTNP with low viral load were compared to progressors. The Ser132 signature was introduced in place of Arg132 present in the HIV-1 YU-2 Vif prototype into chimeric viruses to assess the impact of Vif signature on the virus. While the replication properties in the SupT1 cell line were unmodified, the mutagenized virus revealed a fivefold decreased replication in activated PBMC, suggesting a possible role of this Vif signature for viral production in vivo.
Collapse
Affiliation(s)
- G Hassaïne
- INSERM Unit U372, Université de la Méditerranée, Marseille Cedex 9, 13276, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dezzutti CS, Guenthner PC, Green TA, Cohen OJ, Spira TJ, Lal RB. Stromal-derived factor-1 chemokine gene variant is associated with the delay of HIV-1 disease progression in two longitudinal cohorts. AIDS 2000; 14:894-6. [PMID: 10839599 DOI: 10.1097/00002030-200005050-00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L, Hallahan CW, Selig SM, Schwartz D, Sullivan J, Connors M. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A 2000; 97:2709-14. [PMID: 10694578 PMCID: PMC15994 DOI: 10.1073/pnas.050567397] [Citation(s) in RCA: 777] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A unique cohort of HIV-1-infected long term nonprogressors (LTNP) with normal CD4(+) T cell counts and <50 copies/ml of plasma were prospectively recruited for study. HLA typing revealed a dramatic association between the HLA B*5701 class I allele and nonprogressive infection [85% (11 of 13) vs. 9.5% (19 of 200) in progressors; P < 0. 001]. Antigen-specific CD8(+) T cells were enumerated by flow cytometric detection of intracellular IFN-gamma in response to HIV antigens and HLA B*57-gag tetramer staining. No quantitative differences in the total HIV-specific CD8(+) T cell responses were observed between B*57(+) LTNP and five B*57(+) progressors (P = 0.4). Although similar frequencies of peptide specific CD8(+) T cells were also found, the gag-specific CD8(+) T cell response in the LTNP group was highly focused on peptides previously shown to be B*57-restricted. These findings indicate that, within this phenotypically and genotypically distinct cohort, a host immune factor is highly associated with restriction of virus replication and nonprogressive disease. They also strongly suggest a mechanism of virus specific immunity that directly operates through the B*5701 molecule. Further characterization of qualitative differences in the virus-specific responses that distinguish HLA B*57(+) LTNP from progressors may ultimately define mechanisms of effective immune mediated restriction of virus replication.
Collapse
Affiliation(s)
- S A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Department of Transfusion Medicine, Clinical Center, and Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
García F, Plana M, Vidal C, Cruceta A, O'Brien WA, Pantaleo G, Pumarola T, Gallart T, Miró JM, Gatell JM. Dynamics of viral load rebound and immunological changes after stopping effective antiretroviral therapy. AIDS 1999; 13:F79-86. [PMID: 10449278 DOI: 10.1097/00002030-199907300-00002] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND This study addresses the dynamic of viral load rebound and immune system changes in a cohort of eight consecutive HIV-1-infected patients in very early stages [all the patients were taking highly active antiretroviral therapy (HAART} and were recruited in the coordinating center from a larger study] who decided to discontinue HAART after 1 year of treatment and effective virologic response. The safety of this procedure and the outcome with reintroduction of the same treatment was also investigated. METHODS Plasma, cerebrospinal fluid (CSF), and lymphatic tissue viral loads were measured at baseline; lymphocyte immunophenotyping and CD4 lymphocyte proliferative responses to mitogens and specific antigens were assessed. The same antiretroviral therapy was reintroduced as soon as plasma viral load became detectable (above 200 copies/ml). RESULTS At day 0, plasma viral load was below 20 copies/ml in all eight patients (and below 5 copies/ml in five of eight patients). A rebound in plasma viral load was detected in all patients from day 3 to day 31 with a mean doubling time of 2.01 (SE 0.29) days. Three out of eight patients achieved a peak plasma viral load at least 0.5 log10 above baseline, pretreatment values. Mutations associated with resistance to reverse transcriptase or protease inhibitors were not detected. After 31 days off therapy, CD4 lymphocytes decreased [mean 45% (SE 4) to 37% (SE 3); P = 0.04], CD8+CD28+ lymphocytes decreased [mean 59% (SE 5) to 43% (SE 4); P = 0.03], and CD8+CD38+ lymphocytes increased [mean 55% (SE 3) to 66% (SE 4); P = 0.009]. Mean stimulation indices of lymphocytes treated with phytohemagglutinin (PHA) and CD3 decreased from day 0 to day 31 from 34% (SE 8) to 17% (SE 9) (P = 0.06) and from 24% (SE 8) to 5% (SE 2) (P = 0.02), respectively. These changes were mainly contributed by the group of five patients with plasma viral load below 5 copies/ml at day 0. Viral load dropped below 20 copies/ml in all patients after 1 month of restarting the same antiretroviral regimen. CONCLUSIONS Discontinuation of HAART after 1 year of successful treatment is followed by a rapid rebound of viral load; this rapidly returns to undetectable levels following reintroduction of the same treatment. In patients with more effective control of virus replication (viremia below 5 copise/ml), discontinuation of treatment was associated with more severe impairment of immunologic parameters.
Collapse
Affiliation(s)
- F García
- Infectious Diseases Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer Hospital Clínic, Faculty of Medicine, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cicala C, Arthos J, Ruiz M, Vaccarezza M, Rubbert A, Riva A, Wildt K, Cohen O, Fauci AS. Induction of Phosphorylation and Intracellular Association of CC Chemokine Receptor 5 and Focal Adhesion Kinase in Primary Human CD4+ T Cells by Macrophage-Tropic HIV Envelope. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.1.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Binding of HIV-1 envelope glycoproteins to the surface of a CD4+ cell transduces intracellular signals through the primary envelope receptor, CD4, and/or the envelope coreceptor, a seven-transmembrane chemokine receptor. Macrophage-tropic strains of HIV-1 preferentially use CCR5 as an entry coreceptor, whereas T cell-tropic strains use CXC chemokine receptor-4 for entry. Intracellular signals transduced by HIV-1 envelope may have immunopathogenic consequences, including anergy, syncytium formation, apoptosis, and inappropriate cell trafficking. We demonstrate here that a recombinant envelope protein derived from an M-tropic isolate of HIV-1 can transduce CD4-dependent as well as CCR5-dependent intracellular signals in primary human CD4+ T cells. Novel HIV-induced intracellular signals that were identified include tyrosine phosphorylation of focal adhesion kinase (FAK) and CCR5, which are involved in cell adhesion and chemotaxis, respectively. HIV envelope-induced cellular association of FAK and CCR5 was also demonstrated, suggesting that ligation of CD4 and CCR5 leads to the formation of an activation complex composed of FAK and CCR5. Activation of this signaling pathway by HIV-1 envelope may be an important pathogenic mechanism of dysregulated cellular activation and trafficking during HIV infection.
Collapse
Affiliation(s)
- Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Margaret Ruiz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mauro Vaccarezza
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrea Rubbert
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Agostino Riva
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathryn Wildt
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Oren Cohen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
29
|
Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17:657-700. [PMID: 10358771 DOI: 10.1146/annurev.immunol.17.1.657] [Citation(s) in RCA: 1624] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In addition to CD4, the human immunodeficiency virus (HIV) requires a coreceptor for entry into target cells. The chemokine receptors CXCR4 and CCR5, members of the G protein-coupled receptor superfamily, have been identified as the principal coreceptors for T cell line-tropic and macrophage-tropic HIV-1 isolates, respectively. The updated coreceptor repertoire includes numerous members, mostly chemokine receptors and related orphans. These discoveries provide a new framework for understanding critical features of the basic biology of HIV-1, including the selective tropism of individual viral variants for different CD4+ target cells and the membrane fusion mechanism governing virus entry. The coreceptors also provide molecular perspectives on central puzzles of HIV-1 disease, including the selective transmission of macrophage-tropic variants, the appearance of T cell line-tropic variants in many infected persons during progression to AIDS, and differing susceptibilities of individuals to infection and disease progression. Genetic findings have yielded major insights into the in vivo roles of individual coreceptors and their ligands; of particular importance is the discovery of an inactivating mutation in the CCR5 gene which, in homozygous form, confers strong resistance to HIV-1 infection. Beyond providing new perspectives on fundamental aspects of HIV-1 transmission and pathogenesis, the coreceptors suggest new avenues for developing novel therapeutic and preventative strategies to combat the AIDS epidemic.
Collapse
Affiliation(s)
- E A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
30
|
Naif HM, Li S, Alali M, Chang J, Mayne C, Sullivan J, Cunningham AL. Definition of the stage of host cell genetic restriction of replication of human immunodeficiency virus type 1 in monocytes and monocyte-derived macrophages by using twins. J Virol 1999; 73:4866-81. [PMID: 10233948 PMCID: PMC112530 DOI: 10.1128/jvi.73.6.4866-4881.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/1998] [Accepted: 02/22/1999] [Indexed: 11/20/2022] Open
Abstract
Using identical (ID) twins, we have previously demonstrated that host cell genes exert a significant impact on productive human immunodeficiency virus (HIV) infection of monocytes and macrophages (J. Chang et al., J. Virol. 70:7792-7803, 1996). Therefore, the stage in the replication cycle at which these host genetic influences act was investigated in a study using 8 pairs of ID twins and 10 pairs of sex- and age-matched unrelated donors (URDs). In the first phase of the study, blood monocytes and monocyte-derived macrophages (MDM) of ID twins and URDs were infected with 15 HIV type 1 strains. Four well-characterized primary isolates and HIV-BaL were then examined in more detail. The host cell genetic effect in MDM was exerted predominantly prior to complete reverse transcription, as the HIV DNA level and p24 antigen levels were concordant (r = 0.91, P = 0.0001) and similar between the pairs of ID twin pairs (r = 0.96, P = 0.0001) but discordant between URD pairs (r = 0.11, P = 0.3) in both phases of the study. To further examine genetic influence on viral entry, we examined the proportion of CCR5 membrane expression on MDM. As expected, there was wide variability in proportion of MDM expressing CCR5 among URDs (r = 0. 58, P = 0.2); however, this variability was significantly reduced between ID twin pairs (r = 0.81, P = 0.01). Differences in viral entry did not necessarily correlate with CCR5 expression, and only very low levels of CCR5 expression restricted HIV entry and production. In summary, the host cell genetic effect on HIV replication in macrophages appears to be exerted predominantly pre-reverse transcription. Although CCR5 was necessary for infection, other unidentified host genes are likely to limit productive infection.
Collapse
Affiliation(s)
- H M Naif
- Centre for Virus Research, Westmead Institutes of Health Research, Australian National Centre for HIV Virology Research, Westmead Hospital, Westmead, New South Wales 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hendel H, Hénon N, Lebuanec H, Lachgar A, Poncelet H, Caillat-Zucman S, Winkler CA, Smith MW, Kenefic L, O'Brien S, Lu W, Andrieu JM, Zagury D, Schächter F, Rappaport J, Zagury JF. Distinctive effects of CCR5, CCR2, and SDF1 genetic polymorphisms in AIDS progression. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1998; 19:381-6. [PMID: 9833747 DOI: 10.1097/00042560-199812010-00009] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Genetics of Resistance to Infection by HIV-1 (GRIV) cohort represents 200 nonprogressor/slow-progressor (Slowprog) and 90 fast-progressor (Fastprog) HIV-1-infected patients. Using this unique assembly, we performed genetic studies on three recently discovered polymorphisms of CCR5, CCR2, and SDF1, which have been shown to slow the rate of disease progression. The increased prevalence of mutant alleles among Slowprogs from the GRIV cohort was significant for CCR5 (p < .0001) but not for CCR2 (p = .09) or SDF1 (p = . 12), emphasizing the predominant role of CCR5 as the major HIV-1 coreceptor. However, the prevalence of the CCR2 mutant allele (64I) was significantly increased among Slowprogs homozygous for wild-type CCR5 compared with Fastprogs (p = .04). The prevalence of double mutants SDF1-3'A/3'A genotypes was also increased among Slowprogs homozygous for wild-type CCR5 compared with Fastprogs (p = .05). The effects of the CCR2 and SDF1 mutations are overshadowed by the protective effects of the CCR5 deletion. Predictive biologic markers such as CD4 cell counts or viral load in the Slowprog population did not show significant differences between Slowprog groups with wild-type or mutant alleles for the three genes. Thus, our data suggest that the effects of these genes are exerted earlier in infection and no longer evident in the Slowprog of the GRIV cohort whose average duration of HIV infection is 12 years. We conclude that these genes, whose products serve as viral coreceptors or their ligands, may play a role early in infection and delay the onset of disease. However, among Slowprogs, whose duration of infection is >8 years, they are no longer influential for maintenance of their longterm nonprogression status. Other genetic determinants may be responsible for late protective effects.
Collapse
Affiliation(s)
- H Hendel
- Laboratoire de Physiologie Cellulaire, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim A, Pettoello-Mantovani M, Goldstein H. Decreased susceptibility of peripheral blood mononuclear cells from individuals heterozygous for a mutant CCR5 allele to HIV infection. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1998; 19:145-9. [PMID: 9768623 DOI: 10.1097/00042560-199810010-00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Individuals homozygous for a deletion in the CCR5 gene (CCR5delta32/CCR5delta32) are resistant to HIV infection, indicating that this particular chemokine receptor plays a crucial role in the initiation of in vivo HIV infection. We investigated the effect of the heterozygote genotype (CCR5/CCR5delta32) on susceptibility of peripheral blood mononuclear cells (PBMC) to HIV infection. DESIGN Sensitivity to HIV infection of PBMC from volunteers with either the CCR5/CCR5, CCR5/CCR5delta32, or CCR5delta32/CCR5delta32 genotypes was examined by challenging their PBMCs with serial titers of HIV isolates with different cellular tropisms. The genotype of the PBMCs was correlated with the lowest viral inoculum required to initiate productive infection with either three M-tropic HIV-1 isolates, (92RW009A, HIV-1ada, and HIV-1(59)), one dual-tropic HIV-1 isolate (92BR021), or two T-tropic HIV-1 isolates (92UG021 and 92UG029). RESULTS PBMCs from the CCR5/CCR5delta32 group required a significantly higher inoculum (p value from .036 to .003) to become infected with these three M-tropic HIV-1 isolates than did PBMC from the CCR5/CCR5 group, but became infected after exposure to an inoculum of T-tropic HIV-1 isolates that was comparable to that which infected PBMCs from the CCR5/CCR5 individuals. CONCLUSIONS The decreased susceptibility of PBMCs from individuals heterozygous for the CCR5 deletion to HIV infection by M-tropic HIV-1 isolates may provide a mechanistic explanation for the delayed progression of disease in some CCR5/CCR5delta32 individuals.
Collapse
Affiliation(s)
- A Kim
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
33
|
Rare mutations in a domain crucial for V3-loopstructure prevail in replicating HIV from long-term non-progressors. AIDS 1998. [DOI: 10.1097/00002030-199809000-00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Cohen OJ, Paolucci S, Bende SM, Daucher M, Moriuchi H, Moriuchi M, Cicala C, Davey RT, Baird B, Fauci AS. CXCR4 and CCR5 genetic polymorphisms in long-term nonprogressive human immunodeficiency virus infection: lack of association with mutations other than CCR5-Delta32. J Virol 1998; 72:6215-7. [PMID: 9621092 PMCID: PMC110440 DOI: 10.1128/jvi.72.7.6215-6217.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polymorphisms in the coding sequences of CCR5 and CXCR4 were studied in a group of human immunodeficiency virus (HIV)-infected long-term nonprogressors. Two different point mutations were found in the CXCR4 coding sequence. One of these CXCR4 mutations was silent, and each was unique to two nonprogressors. The well-described 32-bp deletion within the CCR5 coding sequence (CCR5-Delta32) was found in 4 of 13 nonprogressors, and 12 different point mutations were found scattered over the CCR5 coding sequence from 8 nonprogressors. Most of the mutations created either silent or conservative changes in the predicted amino acid sequence: only one of these mutations was found in more than a single nonprogressor. All nonsilent mutations were tested in an HIV envelope-dependent fusion assay, and all functioned comparably to wild-type controls. Polymorphisms in the CXCR4 and CCR5 coding sequences other than CCR5-Delta32 do not appear to play a dominant mechanistic role in nonprogression among HIV-infected individuals.
Collapse
Affiliation(s)
- O J Cohen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-1876, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
MacDermott RP, Sanderson IR, Reinecker HC. The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 1998; 4:54-67. [PMID: 9552229 DOI: 10.1097/00054725-199802000-00009] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The final composition of leukocytes present in a site of inflammation in response to chemokine stimulation and activation may depend on both the nature of the secreted chemokines as well as the relative expression of the multitude of specific chemokine cell surface receptors on many different cell types. Because related receptors with different affinities and cross-reactive binding capabilities are present on each type of leukocyte, relative differences in receptor distribution and receptor affinity for specific chemokines may significantly influence which cells are ultimately attracted to and activated by each individual chemokine. Production of IL-8, MCP-1, and ENA-78 by endothelial cells, LPMNC, and epithelial cells in IBD could establish a chemotactic gradient capable of influencing the increased migration of monocytes/macrophages, granulocytes, and lymphocytes from the blood stream through the endothelium into both the mucosa and submucosa during chronic IBD. The ability of chemokines to induce chemotaxis, leukocyte activation, granule exocytosis, increased production of metalloenzymes, and up-regulation of respiratory burst activity indicates that there may be a variety of different mechanisms by which chemokines could markedly increase chronic inflammation and chronic intestinal tissue destruction in IBD.
Collapse
Affiliation(s)
- R P MacDermott
- Section of Gastroenterology, Lahey Hitchcock Clinic Medical Center, Burlington, Massachusetts, USA
| | | | | |
Collapse
|
36
|
Abstract
Host factors play an important role in determining rates of disease progression in human immunodeficiency virus (HIV)-infected individuals. HIV is able to subvert the host immune system by infecting CD4+ T cells that normally orchestrate immune responses and by inducing the secretion of proinflammatory cytokines that the virus can utilize to its own replicative advantage. The recognition that certain chemokine receptors serve as necessary co-factors for HIV entry into its target cells as well as the fact that ligands for these receptors can modulate the efficiency of HIV infection has expanded the number and scope of host factors that may impact the pathogenesis of HIV disease. This area of investigation will no doubt yield novel therapeutic strategies for intervention in HIV disease; however, caution is warranted in light of the enormous complexity of the pleiotropic cytokine and chemokine networks and the uncertainty inherent in manipulating these systems. HIV-infected long-term non-progressors represent an excellent model to study potential host factors involved in HIV disease pathogenesis. Genetic factors certainly have a major impact on the immune responses mounted by the host. In this regard, a polymorphism in the gene for the HIV co-receptor CC chemokine receptor 5 (CCR5), which serves as a co-receptor for macrophage (M)-tropic strains of HIV, affords a high degree of protection against HIV infection in individuals homozygous for the genetic defect and some degree of protection against disease progression in HIV-infected heterozygotes. HIV-specific immune responses, including cytotoxic T-lymphocyte (CTL) responses and neutralizing antibody responses, also appear to play salutary roles in protecting against disease progression.
Collapse
Affiliation(s)
- O J Cohen
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA.
| | | | | |
Collapse
|