1
|
Ren L, Fan Y, Wu W, Qian Y, He M, Li X, Wang Y, Yang Y, Wen X, Zhang R, Li C, Chen X, Hu J. Anxiety disorders: Treatments, models, and circuitry mechanisms. Eur J Pharmacol 2024; 983:176994. [PMID: 39271040 DOI: 10.1016/j.ejphar.2024.176994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Anxiety disorders are one of the most prevalent mental health conditions worldwide, imposing a significant burden on individuals affected by them and society in general. Current research endeavors aim to enhance the effectiveness of existing anxiolytic drugs and reduce their side effects through optimization or the development of new treatments. Several anxiolytic novel drugs have been produced as a result of discovery-focused research. However, many drug candidates that show promise in preclinical rodent model studies fail to offer any substantive clinical benefits to patients. This review provides an overview of the diagnosis and classification of anxiety disorders together with a systematic review of anxiolytic drugs with a focus on their targets, therapeutic applications, and side effects. It also provides a concise overview of the constraints and disadvantages associated with frequently administered anxiolytic drugs. Additionally, the study comprehensively reviews animal models used in anxiety studies and their associated molecular mechanisms, while also summarizing the brain circuitry related to anxiety. In conclusion, this article provides a valuable foundation for future anxiolytic drug discovery efforts.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China.
| | - Yue Fan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Wenjian Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yuanxin Qian
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Miao He
- College of Life Sciences and Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xinlong Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yizhu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yu Yang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xuetong Wen
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Ruijia Zhang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Chenhang Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xin Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Jingqing Hu
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Li JH, Zhao SJ, Guo Y, Chen F, Traub RJ, Wei F, Cao DY. Chronic stress induces wide-spread hyperalgesia: The involvement of spinal CCK 1 receptors. Neuropharmacology 2024; 258:110067. [PMID: 38992792 DOI: 10.1016/j.neuropharm.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Chronic primary pain (CPP) occurs in the absence of tissue injury and includes temporomandibular disorders (TMD), fibromyalgia syndrome (FMS) and irritable bowel syndrome (IBS). CPP is commonly considered a stress-related chronic pain and often presents as wide-spread pain or comorbid pain conditions in different regions of the body. However, whether prolonged stress can directly result in the development of CPP comorbidity remains unclear. In the present study, we adapted a 21 day heterotypic stress paradigm in mice and examined whether chronic stress induced wide-spread hyperalgesia, modeling comorbid CPP in the clinic. We found that chronic stress induced anxiety- and depression-like behaviors, and resulted in long-lasting wide-spread hyperalgesia over several body regions such as the orofacial area, hindpaw, thigh, upper back and abdomen in female mice. We further found that the expression of cholecystokinin (CCK)1 receptors was significantly increased in the L4-L5 spinal dorsal horn of the female mice after 14 and 21 day heterotypic stress compared with the control animals. Intrathecal injection of the CCK1 receptor antagonist CR-1505 blocked pain hypersensitivity in the subcervical body including the upper back, thigh, hindpaw and abdomen. These findings suggest that the upregulation of spinal CCK1 receptors after chronic stress contributes to the central mechanisms underlying the development of wide-spread hyperalgesia, and may provide a potential and novel central target for clinical treatment of CPP.
Collapse
Affiliation(s)
- Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Shi-Jie Zhao
- Department of Neurology, The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, 5 Weiyang West Road, Xianyang, Shaanxi, 712046, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Fei Chen
- Department of Neurology, The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, 5 Weiyang West Road, Xianyang, Shaanxi, 712046, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, 650 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, 650 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China; Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, 650 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
3
|
Wu CC, Yang J, Wang XQ. Analgesic effect of dance movement therapy: An fNIRS study. Neuroimage 2024; 301:120880. [PMID: 39362506 DOI: 10.1016/j.neuroimage.2024.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE This study aims to explores the physiological and psychological mechanisms of exercise-induced hypoalgesia (EIH) by combining the behavioral results with neuroimaging data on changes oxy-hemoglobin (HbO) in prefrontal cortex (PFC). METHODS A total of 97 healthy participants were recruited and randomly divided into three groups: a single dance movement therapy (DMT) group, a double DMT group, and control group. Evaluation indicators included the pressure pain threshold (PPT) test, the color-word stroop task (CWST) for wearing functional near-infrared spectroscopy (fNIRS), and the self-assessment manikin (SAM). The testing time is before intervention, after intervention, and one hour of sit rest after intervention. RESULTS 1) Repeated measures ANOVA revealed that, there is a time * group effect on the PPT values of the three groups of participants at three time points. After 30 min of acute dance intervention, an increase in the PPT values of 10 test points occurred in the entire body of the participants in the experimental group with a significant difference than the control group. 2) In terms of fNIRS signals, bilateral DLPFC and left VLPFC channels were significantly activated in the experimental group. 3) DMT significantly awakened participants and brought about pleasant emotions, but cognitive improvement was insignificant. 4) Mediation effect analysis found that the change in HbO concentration in DLPFC may be a mediator in predicting the degree of improvement in pressure pain threshold through dance intervention (total effect β = 0.7140). CONCLUSION In healthy adults, DMT can produce a diffuse EIH effect on improving pressure pain threshold, emotional experience but only showing an improvement trend in cognitive performance. Dance intervention significantly activates the left ventrolateral and bilateral dorsolateral prefrontal cortex. This study explores the central nervous system mechanism of EIH from a physiological and psychological perspective.
Collapse
Affiliation(s)
- Cheng-Cheng Wu
- Department of Education Office, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jin Yang
- Department of Education Office, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xue-Qiang Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; School of Rehabilitation Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
4
|
Wu D, Li M, Gong J, Huang W, Zeng W, Jiang Y. Analysis of pharmacological effects and mechanisms of compound essential oils via GC-MS and network pharmacology. Biomed Chromatogr 2024:e6033. [PMID: 39439351 DOI: 10.1002/bmc.6033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Aromatherapy based on essential oil (EO) has been widely used for alleviating pain and intense where no compound EO reports its application on pharmacological effects. In order to explore the active pharmaceutical ingredients (API) and mechanism of a compound EO, a blend of Artemisia argyi, Boswellia carterii, Commiphora myrrha, Cinnamomum cassia, Zingiber oj-jicinale, and Ilex pubescens EO, in treating neck and shoulder pain (NSP). Network pharmacology hyphenated with mice model was employed to investigate. Gas chromatography-mass spectrometry (GC-MS) was applied for the identification of constituents in compound EO. Lastly, transdermal absorption of compound EO was studied before verifying analgesic and anti-inflammatory effects in mice. Totally, 75 compounds were tentatively identified through GC-MS, predicting 46 potential analgesic targets. Moreover, 11 core targets were obtained through network topology screening. Animal test resulted that the compound EO had significantly stronger anti-inflammatory and analgesic effects compared to single EO. Multiple API in compound EO affected on targets and exerted therapeutic effects on NSP through multiple pathways. Afterwards, eucalyptol, camphor, and borneol from compound EO exhibited a sustained-release effect, which provide scientific basis to illustrate the application of compound EO in clinical.
Collapse
Affiliation(s)
- Dong Wu
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengchu Li
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianping Gong
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenping Huang
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenhui Zeng
- Jiangxi Drug Inspector Centre, Nanchang, China
| | - Ying Jiang
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Song Q, E S, Zhang Z, Liang Y. Neuroplasticity in the transition from acute to chronic pain. Neurotherapeutics 2024:e00464. [PMID: 39438166 DOI: 10.1016/j.neurot.2024.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Acute pain is a transient sensation that typically serves as part of the body's defense mechanism. However, in certain patients, acute pain can evolve into chronic pain, which persists for months or even longer. Neuroplasticity refers to the capacity for variation and adaptive alterations in the morphology and functionality of neurons and synapses, and it plays a significant role in the transmission and modulation of pain. In this paper, we explore the molecular mechanisms and signaling pathways underlying neuroplasticity during the transition of pain. We also examine the effects of neurotransmitters, inflammatory mediators, and central sensitization on neuroplasticity, as well as the potential of neuroplasticity as a therapeutic strategy for preventing chronic pain. The aims of this article is to clarify the role of neuroplasticity in the transformation from acute pain to chronic pain, with the hope of providing a novel theoretical basis for unraveling the pathogenesis of chronic pain and offering more effective strategies and approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Qingbiao Song
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Sihan E
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Zhiyu Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, China
| | - Yingxia Liang
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
6
|
Zhang L, Guo Y, Bai T, Zu M, Wei Q, Wu Y, Ji G, Lv H, Xie W, Wang K, Tian Y, Su J. Electroconvulsive Therapy Regulates the Interhemispheric Functional Connectivity of the Dorsomedial Prefrontal Cortex in Depressive Patients: Evidence from 2 Independent Samples. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:660-669. [PMID: 39403914 PMCID: PMC11474968 DOI: 10.62641/aep.v52i5.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND The dorsomedial prefrontal cortex (dmPFC) is considered a crucial node in emotional and cognitive processes. Voxel-mirrored homotopic connectivity (VMHC) is a validated methodology for investigating interhemispheric coordination. This study aims to elucidate the effects of electroconvulsive therapy (ECT) on the interhemispheric connectivity of the dmPFC in patients with depression, using VMHC as a measure of bilateral neural coordination. METHODS Thirty-three patients with depression, screened at the University of Science and Technology of China (USTC), and thirty-five patients with depression, screened at Anhui Medical University (AHMU), were selected as the subjects of this study. VMHC was employed to investigate the effects of ECT on bilateral hemispheric functional connectivity. The Hamilton Depression Rating Scale (HAMD) was used to assess depressive symptoms, and the relationships between changes in HAMD scores and VMHC values were examined. RESULTS Following ECT, the depressive symptoms of all participants decreased (p < 0.001). The VMHC values in the dmPFC were significantly increased in both groups after ECT (p < 0.01). No significant correlation was found between the increasing VMHC values in the dmPFC and the changes in HAMD scores in depressed patients (p > 0.05). CONCLUSION These results show that ECT regulates interhemispheric functional connectivity in depressed patients, and significantly increases the VMHC values in the dmPFC. Our findings may provide a useful method for optimizing the treatment of depression.
Collapse
Affiliation(s)
- Loufeng Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
- Department of Geriatric Psychology, The Fourth People’s Hospital of Hefei, 230000 Hefei, Anhui, China
| | - Yuanyuan Guo
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Meidan Zu
- Department of Medical Psychology and Sleep, The Second Affiliated Hospital of Anhui Medical University, 230601 Hefei, Anhui, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Yue Wu
- Department of Medical Psychology and Sleep, The Second Affiliated Hospital of Anhui Medical University, 230601 Hefei, Anhui, China
| | - Gongjun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022 Hefei, Anhui, China
- Hefei Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230022 Hefei, Anhui, China
| | - Huaming Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Wen Xie
- Department of Anxiety and Depression, Anhui Mental Health Center, 230000 Hefei, Anhui, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022 Hefei, Anhui, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
- Department of Medical Psychology and Sleep, The Second Affiliated Hospital of Anhui Medical University, 230601 Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022 Hefei, Anhui, China
| | - Jingyong Su
- The College of Computer Science and Technology, Harbin Institute of Technology, 518055 Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Du Y, Zhao Y, Zhang A, Li Z, Wei C, Zheng Q, Qiao Y, Liu Y, Ren W, Han J, Sun Z, Hu W, Liu Z. The Role of the Mu Opioid Receptors of the Medial Prefrontal Cortex in the Modulation of Analgesia Induced by Acute Restraint Stress in Male Mice. Int J Mol Sci 2024; 25:9774. [PMID: 39337262 PMCID: PMC11431787 DOI: 10.3390/ijms25189774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Mu opioid receptors (MORs) represent a vital mechanism related to the modulation of stress-induced analgesia (SIA). Previous studies have reported on the gamma-aminobutyric acid (GABA)ergic "disinhibition" mechanisms of MORs on the descending pain modulatory pathway of SIA induced in the midbrain. However, the role of the MORs expressed in the medial prefrontal cortex (mPFC), one of the main cortical areas participating in pain modulation, in SIA remains completely unknown. In this study, we investigated the contributions of MORs expressed on glutamatergic (MORGlut) and GABAergic (MORGABA) neurons of the medial prefrontal cortex (mPFC), as well as the functional role and activity of neurons projecting from the mPFC to the periaqueductal gray (PAG) region, in male mice. We achieved this through a combination of hot-plate tests, c-fos staining, and 1 h acute restraint stress exposure tests. The results showed that our acute restraint stress protocol produced mPFC MOR-dependent SIA effects. In particular, MORGABA was found to play a major role in modulating the effects of SIA, whereas MORGlut seemed to be unconnected to the process. We also found that mPFC-PAG projections were efficiently activated and played key roles in the effects of SIA, and their activation was mediated by MORGABA to a large extent. These results indicated that the activation of mPFC MORGABA due to restraint stress was able to activate mPFC-PAG projections in a potential "disinhibition" pathway that produced analgesic effects. These findings provide a potential theoretical basis for pain treatment or drug screening targeting the mPFC.
Collapse
Affiliation(s)
- Yinan Du
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Yukui Zhao
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Aozhuo Zhang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Zhiwei Li
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Chunling Wei
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Qiaohua Zheng
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Yanning Qiao
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Yihui Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Zongpeng Sun
- School of Psychology, Shaanxi Normal University, Xi’an 710062, China
| | - Weiping Hu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| |
Collapse
|
8
|
Huang P, Wu M, Liu M, Li X, Jiang Y, Chen Z. Hypoperfusion of periaqueductal gray as an imaging biomarker in chronic migraine beyond diagnosis: A 3D pseudocontinuous arterial spin labeling MR imaging. Brain Behav 2024; 14:e70008. [PMID: 39236093 PMCID: PMC11376439 DOI: 10.1002/brb3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The periaqueductal gray (PAG) is at the center of a powerful descending antinociceptive neuronal network, and is a key node in the descending pain regulatory system of pain. However, less is known about the altered perfusion of PAG in chronic migraine (CM). AIM To measure the perfusion of PAG matter, an important structure in pain modulation, in CM with magnetic resonance (MR) perfusion without contrast administration. METHODS Three-dimensional pseudocontinuous arterial spin labeling (3D-PCASL) and brain structure imaging were performed in 13 patients with CM and 15 normal subjects. The inverse deformation field generated by brain structure image segmentation was applied to the midbrain PAG template to generate individualized PAG. Then the perfusion value of the PAG area of the midbrain was extracted based on the individual PAG mask. RESULTS Cerebral blood flow (CBF) value of PAG in CM patients (47.98 ± 8.38 mL/100 mg min) was significantly lower than that of the control group (59.87 ± 14.24 mL/100 mg min). Receiver operating characteristic (ROC) curve analysis showed that the area under the curve was 0.77 (95% confidence interval [CI], 0.60, 0.94), and the cutoff value for the diagnosis of CM was 54.83 mL/100 mg min with a sensitivity 84.60% and a specificity 60%. CONCLUSION Imaging evidence of the impaired pain conduction pathway in CM may be related with the decreased perfusion in the PAG, which could be considered as an imaging biomarker for the diagnosis and therapy evaluation.
Collapse
Affiliation(s)
- Pan Huang
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mei Wu
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Mengqi Liu
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Xin Li
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yujiao Jiang
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
| | - Zhiye Chen
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Deng J, Chen L, Liu CC, Liu M, Guo GQ, Wei JY, Zhang JB, Fan HT, Zheng ZK, Yan P, Zhang XZ, Zhou F, Huang SX, Zhang JF, Xu T, Xie JD, Xin WJ. Distinct Thalamo-Subcortical Circuits Underlie Painful Behavior and Depression-Like Behavior Following Nerve Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401855. [PMID: 38973158 PMCID: PMC11425852 DOI: 10.1002/advs.202401855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.
Collapse
Affiliation(s)
- Jie Deng
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li Chen
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou, 510000, China
| | - Guo-Qing Guo
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jia-You Wei
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Bo Zhang
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510630, China
| | - Hai-Ting Fan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Kun Zheng
- Department of Electronic Engineering, Shantou University, Shantou, 515063, China
| | - Pu Yan
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhou
- Department of Neurology, First people's hospital of Foshan, Foshan, Guangdong, 510168, China
| | - Sui-Xiang Huang
- Department of Pain Medicine, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, 510630, China
| | - Ji-Feng Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, 510630, China
| | - Ting Xu
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing-Dun Xie
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
10
|
Li Y, Jiang Z, Zuo W, Huang C, Zhao J, Liu P, Wang J, Guo J, Zhang X, Wang M, Lu Y, Hou W, Wang Q. Sexual dimorphic distribution of G protein-coupled receptor 30 in pain-related regions of the mouse brain. J Neurochem 2024; 168:2423-2442. [PMID: 37924265 DOI: 10.1111/jnc.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Sex differences in pain sensitivity have contributed to the fact that medications for curing chronic pain are unsatisfactory. However, the underlying mechanism remains to be elucidated. Brain-derived estrogen participates in modulation of sex differences in pain and related emotion. G protein-coupled receptor 30 (GPR30), identified as a novel estrogen receptor with a different distribution than traditional receptors, has been proved to play a vital role in regulating pain affected by estrogen. However, the contribution of its distribution to sexually dimorphic pain-related behaviors has not been fully explored. In the current study, immunofluorescence assays were applied to mark the neurons expressing GPR30 in male and female mice (in metestrus and proestrus phase) in pain-related brain regions. The neurons that express CaMKIIα or VGAT were also labeled to observe overlap with GPR30. We found that females had more GPR30-positive (GPR30+) neurons in the primary somatosensory (S1) and insular cortex (IC) than males. In the lateral habenula (LHb) and the nucleus tractus solitarius (NTS), males had more GPR30+ neurons than females. Moreover, within the LHb, the expression of GPR30 varied with estrous cycle phase; females in metestrus had fewer GPR30+ neurons than those in proestrus. In addition, females had more GPR30+ neurons, which co-expressed CaMKIIα in the medial preoptic nucleus (mPOA) than males, while males had more than females in the basolateral complex of the amygdala (BLA). These findings may partly explain the different modulatory effects of GPR30 in pain and related emotional phenotypes between sexes and provide a basis for comprehension of sexual dimorphism in pain related to estrogen and GPR30, and finally provide new targets for exploiting new treatments of sex-specific pain.
Collapse
Affiliation(s)
- You Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chenchen Huang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Peizheng Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jingzhi Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
11
|
Wang W, Liu W, Liu S, Duan D, Ma Y, Zhang Z, Li C, Tang Y, Wang Z, Xing Y. Specific Activation of Dopamine Receptor D1 Expressing Neurons in the PrL Alleviates CSDS-Induced Anxiety-Like Behavior Comorbidity with Postoperative Hyperalgesia in Male Mice. Mol Neurobiol 2024:10.1007/s12035-024-04444-6. [PMID: 39177734 DOI: 10.1007/s12035-024-04444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Postoperative pain is a type of pain that occurs in clinical patients after surgery. Among the factors influencing the transition from acute postoperative pain to chronic postoperative pain, chronic stress has received much attention in recent years. Here, we investigated the role of dopamine receptor D1/D2 expressing pyramidal neurons in the prelimbic cortex (PrL) in modulating chronic social defeat stress (CSDS)-induced anxiety-like behavior comorbidity with postoperative hyperalgesia in male mice. Our results showed that preoperative CSDS induced anxiety-like behavior and significantly prolonged postoperative pain caused by plantar incision, but did not affect plantar wound recovery and inflammation. Reduced activation of dopamine receptor D1 or D2 expressing neurons in the PrL is a remarkable feature of male mice after CSDS, and chronic inhibition of dopamine receptor D1 or D2 expressing neurons in the PrL induced anxiety-like behavior and persistent postoperative pain. Further studies found that activation of D1 expressing but not D2 expressing neurons in the PrL ameliorated CSDS-induced anxiety-like behavior and postoperative hyperalgesia. Our results suggest that dopamine receptor D1 expressing neurons in the PrL play a crucial role in CSDS-induced anxiety-like behavior comorbidity with postoperative hyperalgesia in male mice.
Collapse
Affiliation(s)
- Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Weizhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX75246, USA
| | - Dongxiao Duan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
| | - Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Zijuan Zhang
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Changsheng Li
- Department of Anesthesiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhiju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China.
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China.
| |
Collapse
|
12
|
Obray JD, Wilkes ET, Scofield MD, Chandler LJ. Adolescent alcohol exposure promotes mechanical allodynia and alters synaptic function at inputs from the basolateral amygdala to the prelimbic cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599360. [PMID: 38948749 PMCID: PMC11212875 DOI: 10.1101/2024.06.17.599360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Binge drinking is common among adolescents despite mounting evidence linking it to various adverse health outcomes that include heightened pain perception. The prelimbic (PrL) cortex is vulnerable to insult from adolescent alcohol exposure and receives input from the basolateral amygdala (BLA) while sending projections to the ventrolateral periaqueductal gray (vlPAG) - two brain regions implicated in nociception. In this study, adolescent intermittent ethanol (AIE) exposure was carried out in male and female rats using a vapor inhalation procedure. Assessments of mechanical and thermal sensitivity revealed that AIE exposure induced protracted mechanical allodynia. To investigate synaptic function at BLA inputs onto defined populations of PrL neurons, retrobeads and viral labelling were combined with optogenetics and slice electrophysiology. Recordings from retrobead labelled cells in the PrL revealed AIE reduced BLA driven feedforward inhibition of neurons projecting from the PrL to the vlPAG, resulting in augmented excitation/inhibition (E/I) balance and increased intrinsic excitability. Consistent with this finding, recordings from virally tagged PrL parvalbumin interneurons (PVINs) demonstrated that AIE exposure reduced both E/I balance at BLA inputs onto PVINs and PVIN intrinsic excitability. These findings provide compelling evidence that AIE alters synaptic function and intrinsic excitability within a prefrontal nociceptive circuit.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425
| | - Erik T. Wilkes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425
| |
Collapse
|
13
|
Yu WL, Zhang Z, Zamponi GW. Spared nerve injury leads to reduced activity of neurons projecting from the ventrolateral periaqueductal gray to the locus coeruleus. Mol Brain 2024; 17:46. [PMID: 39049098 PMCID: PMC11267953 DOI: 10.1186/s13041-024-01121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
The ventrolateral periaqueductal gray (vlPAG) serves as a central hub for descending pain modulation. It receives upstream projections from the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (vlOFC), and projects downstream to the locus coeruleus (LC) and the rostroventral medulla (RVM). While much research has focused on upstream circuits and the LC-RVM connection, less is known about the PAG-LC circuit and its involvement in neuropathic pain. Here we examined the intrinsic electrophysiological properties of vlPAG-LC projecting neurons in Sham and spared nerve injury (SNI) operated mice. Injection of the retrotracer Cholera Toxin Subunit B (CTB-488) into the LC allowed the identification of LC-projecting neurons in the vlPAG. Electrophysiological recordings from CTB-488 positive cells revealed that both GABAergic and glutamatergic cells that project to the LC exhibited reduced intrinsic excitability after peripheral nerve injury. By contrast, CTB-488 negative cells did not exhibit alterations in firing properties after SNI surgery. An SNI-induced reduction of LC projecting cells was confirmed with c-fos labeling. Hence, SNI induces plasticity changes in the vlPAG that are consistent with a reduction in the descending modulation of pain signals.
Collapse
Affiliation(s)
- Wing Lam Yu
- Department of Clinical Neurosciences, Cuming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, T2N4N1, Canada
| | - Zizhen Zhang
- Department of Clinical Neurosciences, Cuming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, T2N4N1, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Cuming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, T2N4N1, Canada.
| |
Collapse
|
14
|
Cao X, Zhu M, Xu G, Li F, Yan Y, Zhang J, Wang J, Zeng F, Bao Y, Zhang X, Liu T, Zhang D. HCN channels in the lateral habenula regulate pain and comorbid depressive-like behaviors in mice. CNS Neurosci Ther 2024; 30:e14831. [PMID: 38961317 PMCID: PMC11222070 DOI: 10.1111/cns.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.
Collapse
Affiliation(s)
- Xue‐zhong Cao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Meng‐ye Zhu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Gang Xu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Fan Li
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yi Yan
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jin‐jin Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jianbing Wang
- Department of AnesthesiologyJiangxi Cancer HospitalNanchangJiangxiChina
| | - Fei Zeng
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yang Bao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xue‐xue Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Tao Liu
- Department of Pediatricsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Da‐ying Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
15
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Zheng F, Liu S, Yin Q, Zheng Y, Yang J, Huang H, Chen L, Wang Y, Chen X, Wang C. Long-term impact of self-compassion training with core stability exercise on patients with nonspecific chronic low back pain: A randomized controlled trial. J Psychosom Res 2024; 181:111678. [PMID: 38643684 DOI: 10.1016/j.jpsychores.2024.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE To compare the long-term effectiveness of self-compassion therapy (SCT) combined with core stability exercise (CSE) versus CSE alone in managing nonspecific chronic low back pain (NCLBP). METHODS The combined group received SCT and CSE, while the exercise group only received CSE. Treatment was administered once weekly for four weeks, followed by one year of follow-up. The primary outcomes were changes in functional limitations (measured by Roland and Morris Disability Questionnaire scores[RMDQ]) and self-reported back pain (measured by the Numeric Pain Rating Scale[NRS]) at 52 weeks, with assessments also conducted at 2, 4, and 16 weeks. RESULTS 52 (83.9%) completed the follow-up assessments and were included in the analysis (42 women [80.8%]; mean [SD] age,35.3 [10.0] years). In the combined group, the baseline mean (SD) RMDQ score was 9.3 (4.1),5.7 (5.8) at 2 weeks, 3.8 (3.4) at 4 weeks, 3.8 (3.7) at 16 weeks, and 2.4 (2.7) at 52 weeks. For the exercise group, the RMDQ scores were 8.2 (3.3) at baseline, 6.2 (4.2) at 2 weeks, 5.5 (4.7) at 4 weeks, 4.4 (4.5) at 16 weeks, and 5.2 (5.6) at 52 weeks. The estimated mean difference between the groups at 52 weeks was -3.356 points (95% CI, -5.835 to -0.878; P = 0.009), favoring the combined group. NRS scores showed similar changes. CONCLUSION The addition of self-compassion therapy enhances the long-term efficacy of core stability training for NCLBP (Preregistered at chictr.org.cn:ChiCTR2100042810).
Collapse
Affiliation(s)
- Fuming Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shufeng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qunhui Yin
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yiyi Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiajia Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Haoxuan Huang
- Department of psychology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lichang Chen
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuyin Wang
- Department of psychology, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Chen Q, Zhao M, Dong J, Yang K. Chronic restraint stress-induced hyperalgesia is modulated by the periaqueductal gray neurons projecting to the rostral ventromedial medulla in mice. Biochem Biophys Res Commun 2024; 710:149875. [PMID: 38604073 DOI: 10.1016/j.bbrc.2024.149875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Stress-induced hyperalgesia (SIH) is induced by repeated or chronic exposure to stressful or uncomfortable environments. However, the neural mechanisms involved in the modulatory effects of the periaqueductal gray (PAG) and its associated loops on SIH development hav e not been elucidated. In the present study, we used chronic restraint stress (CRS)-induced hyperalgesia as a SIH model and manipulated neuronal activity via a pharmacogenetic approach to investigate the neural mechanism underlying the effects of descending pain-modulatory pathways on SIH. We found that activation of PAG neurons alleviates CRS-induced hyperalgesia; on the other hand, PAG neurons inhibition facilitates CRS-induced hyperalgesia. Moreover, this modulatory effect is achieved by the neurons which projecting to the rostral ventromedial medulla (RVM). Our data thus reveal the functional role of the PAG-RVM circuit in SIH and provide analgesic targets in the brain for clinical SIH treatment.
Collapse
Affiliation(s)
- Qian Chen
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Mingwei Zhao
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiaxue Dong
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Pathology, Xinyang Central Hospital, Xinyang, Henan, 464099, China
| | - Kun Yang
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Anatomy, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China.
| |
Collapse
|
18
|
Botterill JJ, Khlaifia A, Appings R, Wilkin J, Violi F, Premachandran H, Cruz-Sanchez A, Canella AE, Patel A, Zaidi SD, Arruda-Carvalho M. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacology 2024; 49:993-1006. [PMID: 38233571 PMCID: PMC11039686 DOI: 10.1038/s41386-024-01795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ryan Appings
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Francesca Violi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Arely Cruz-Sanchez
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Anna Elisabete Canella
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - S Danyal Zaidi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
19
|
Han S, Ren J, Li Z, Wen J, Jiang B, Wei X. Deactivation of dorsal CA1 pyramidal neurons projecting to medial prefrontal cortex contributes to neuropathic pain and short-term memory impairment. Pain 2024; 165:1044-1059. [PMID: 37889600 DOI: 10.1097/j.pain.0000000000003100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Neuropathic pain after peripheral nerve injury is a multidimensional experience that includes sensory, affective, and cognitive components that interact with one another. Hypoexcitation of the medial prefrontal cortex (mPFC) was observed in mice with peripheral nerve injury, but the changes in neural inputs onto the mPFC have not been completely explored. Here, we report that the neural terminals from the dorsal hippocampus CA1 (dCA1) form excitatory connection with layer 5 pyramidal neurons in the prelimbic area (PrL) of the mPFC. Spared nerve injury (SNI) induced a reduction in the intrinsic excitability of dCA1 pyramidal neurons innervating the PrL and impairment in excitatory synaptic transmission onto dCA1 pyramidal cells. Specifically, activating the neural circuit from dCA1 to mPFC alleviated neuropathic pain behaviors and improved novel object recognition ability in SNI mice, whereas deactivating this pathway in naïve animals recapitulated tactile allodynia and memory deficits. These results indicated that hypoactivity in dCA1 pyramidal cells after SNI in turn deactivated layer 5 pyramidal neurons in PrL and ultimately caused pain hypersensitivity and memory deficits.
Collapse
Affiliation(s)
- Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiale Ren
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junjian Wen
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Zhang H, Zhu Z, Ma WX, Kong LX, Yuan PC, Bu LF, Han J, Huang ZL, Wang YQ. The contribution of periaqueductal gray in the regulation of physiological and pathological behaviors. Front Neurosci 2024; 18:1380171. [PMID: 38650618 PMCID: PMC11034386 DOI: 10.3389/fnins.2024.1380171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Periaqueductal gray (PAG), an integration center for neuronal signals, is located in the midbrain and regulates multiple physiological and pathological behaviors, including pain, defensive and aggressive behaviors, anxiety and depression, cardiovascular response, respiration, and sleep-wake behaviors. Due to the different neuroanatomical connections and functional characteristics of the four functional columns of PAG, different subregions of PAG synergistically regulate various instinctual behaviors. In the current review, we summarized the role and possible neurobiological mechanism of different subregions of PAG in the regulation of pain, defensive and aggressive behaviors, anxiety, and depression from the perspective of the up-down neuronal circuits of PAG. Furthermore, we proposed the potential clinical applications of PAG. Knowledge of these aspects will give us a better understanding of the key role of PAG in physiological and pathological behaviors and provide directions for future clinical treatments.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhe Zhu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Li-Fang Bu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Li M, Yang G. A mesocortical glutamatergic pathway modulates neuropathic pain independent of dopamine co-release. Nat Commun 2024; 15:643. [PMID: 38245542 PMCID: PMC10799877 DOI: 10.1038/s41467-024-45035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Dysfunction in the mesocortical pathway, connecting the ventral tegmental area (VTA) to the prefrontal cortex, has been implicated in chronic pain. While extensive research has focused on the role of dopamine, the contribution of glutamatergic signaling in pain modulation remains unknown. Using in vivo calcium imaging, we observe diminished VTA glutamatergic activity targeting the prelimbic cortex (PL) in a mouse model of neuropathic pain. Optogenetic activation of VTA glutamatergic terminals in the PL alleviates neuropathic pain, whereas inhibiting these terminals in naïve mice induces pain-like responses. Importantly, this pain-modulating effect is independent of dopamine co-release, as demonstrated by CRISPR/Cas9-mediated gene deletion. Furthermore, we show that VTA neurons primarily project to excitatory neurons in the PL, and their activation restores PL outputs to the anterior cingulate cortex, a key region involved in pain processing. These findings reveal a distinct mesocortical glutamatergic pathway that critically modulates neuropathic pain independent of dopamine signaling.
Collapse
Affiliation(s)
- Miao Li
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Tang QQ, Wu Y, Tao Q, Shen Y, An X, Liu D, Xu Z. Direct paraventricular thalamus-basolateral amygdala circuit modulates neuropathic pain and emotional anxiety. Neuropsychopharmacology 2024; 49:455-466. [PMID: 37848732 PMCID: PMC10724280 DOI: 10.1038/s41386-023-01748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
The comorbidity of chronic pain and mental dysfunctions such as anxiety disorders has long been recognized, but the underlying mechanisms remained poorly understood. Here, using a mouse model of neuropathic pain, we demonstrated that the thalamic paraventricular nucleus (PVT) played a critical role in chronic pain-induced anxiety-like behavioral abnormalities. Fiber photometry and electrophysiology demonstrated that chronic pain increased the activities in PVT glutamatergic neurons. Chemogenetic manipulation revealed that suppression of PVT glutamatergic neurons relieved pain-like behavior and anxiety-like behaviors. Conversely, selective activation of PVT glutamatergic neurons showed algesic and anxiogenic effects. Furthermore, the elevated excitability of PVT glutamatergic neurons resulted in increased excitatory inputs to the basolateral complex (BLA) neurons. Optogenetic manipulation of the PVT-BLA pathway bilaterally modulates both the pain-like behavior and anxiety-like phenotypes. These findings shed light on how the PVT-BLA pathway contributed to the processing of pain-like behavior and maladaptive anxiety, and targeting this pathway might be a straightforward therapeutic strategy to both alleviate nociceptive hypersensitivity and rescue anxiety behaviors in chronic pain conditions.
Collapse
Affiliation(s)
- Qian-Qian Tang
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Yuanyuan Wu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Qiang Tao
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Yanan Shen
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Xiaohu An
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Di Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zifeng Xu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China.
| |
Collapse
|
23
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
24
|
Seyed-Razavi Y, Kenyon BM, Qiu F, Harris DL, Hamrah P. A novel animal model of neuropathic corneal pain-the ciliary nerve constriction model. Front Neurosci 2023; 17:1265708. [PMID: 38144209 PMCID: PMC10749205 DOI: 10.3389/fnins.2023.1265708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Neuropathic pain arises as a result of peripheral nerve injury or altered pain processing within the central nervous system. When this phenomenon affects the cornea, it is referred to as neuropathic corneal pain (NCP), resulting in pain, hyperalgesia, burning, and photoallodynia, severely affecting patients' quality of life. To date there is no suitable animal model for the study of NCP. Herein, we developed an NCP model by constriction of the long ciliary nerves innervating the eye. Methods Mice underwent ciliary nerve constriction (CNC) or sham procedures. Safety was determined by corneal fluorescein staining to assess ocular surface damage, whereas Cochet-Bonnet esthesiometry and confocal microscopy assessed the function and structure of corneal nerves, respectively. Efficacy was assessed by paw wipe responses within 30 seconds of applying hyperosmolar (5M) saline at Days 3, 7, 10, and 14 post-constriction. Additionally, behavior was assessed in an open field test (OFT) at Days 7, 14, and 21. Results CNC resulted in significantly increased response to hyperosmolar saline between groups (p < 0.0001), demonstrating hyperalgesia and induction of neuropathic pain. Further, animals that underwent CNC had increased anxiety-like behavior in an open field test compared to controls at the 14- and 21-Day time-points (p < 0.05). In contrast, CNC did not result in increased corneal fluorescein staining or decreased sensation as compared to sham controls (p > 0.05). Additionally, confocal microscopy of corneal whole-mounts revealed that constriction resulted in only a slight reduction in corneal nerve density (p < 0.05), compared to naïve and sham groups. Discussion The CNC model induces a pure NCP phenotype and may be a useful model for the study of NCP, recapitulating features of NCP, including hyperalgesia in the absence of ocular surface damage, and anxiety-like behavior.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Fangfang Qiu
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Deshea L. Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Departments of Neuroscience and Immunology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
25
|
Jiang J, Tan S, Feng X, Peng Y, Long C, Yang L. Distinct ACC Neural Mechanisms Underlie Authentic and Transmitted Anxiety Induced by Maternal Separation in Mice. J Neurosci 2023; 43:8201-8218. [PMID: 37845036 PMCID: PMC10697407 DOI: 10.1523/jneurosci.0558-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
It is known that humans and rodents are capable of transmitting stress to their naive partners via social interaction. However, a comprehensive understanding of transmitted stress, which may differ from authentic stress, thus revealing unique neural mechanisms of social interaction resulting from transmitted stress and the associated anxiety, is missing. We used, in the present study, maternal separation (MS) as a stress model to investigate whether MS causes abnormal behavior in adolescence. A key concern in the analysis of stress transmission is whether the littermates of MS mice who only witness MS stress ("Partners") exhibit behavioral abnormalities similar to those of MS mice themselves. Of special interest is the establishment of the neural mechanisms underlying transmitted stress and authentic stress. The results show that Partners, similar to MS mice, exhibit anxiety-like behavior and hyperalgesia after witnessing littermates being subjected to early-life repetitive MS. Electrophysiological analysis revealed that mice subjected to MS demonstrate a reduction in both the excitatory and inhibitory synaptic activities of parvalbumin interneurons (PVINs) in the anterior cingulate cortex (ACC). However, Partners differed from MS mice in showing an increase in the number and excitability of GABAergic PVINs in the ACC and in the ability of chemogenetic PVIN inactivation to eliminate abnormal behavior. Furthermore, the social transfer of anxiety-like behavior required intact olfactory, but not visual, perception. This study suggests a functional involvement of ACC PVINs in mediating the distinct neural basis of transmitted anxiety.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) is a critical brain area in physical and social pain and contributes to the exhibition of abnormal behavior. ACC glutamatergic neurons have been shown to encode transmitted stress, but it remains unclear whether inhibitory ACC neurons also play a role. We evaluate, in this study, ACC neuronal, synaptic and network activities and uncover a critical role of parvalbumin interneurons (PVINs) in the expression of transmitted stress in adolescent mice who had witnessed MS of littermates in infancy. Furthermore, inactivation of ACC PVINs blocks transmitted stress. The results suggest that emotional contagion has a severe effect on brain function, and identify a potential target for the treatment of transmitted anxiety.
Collapse
Affiliation(s)
- Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyi Feng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yigang Peng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
26
|
Sullere S, Kunczt A, McGehee DS. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron 2023; 111:3414-3434.e15. [PMID: 37734381 PMCID: PMC10843525 DOI: 10.1016/j.neuron.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca2+ and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.
Collapse
Affiliation(s)
- Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Alissa Kunczt
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Chen Y, Xu Y, Dai J, Ni W, Ding Q, Wu X, Fang J, Wu Y. Research trends in chemogenetics for neuroscience in recent 14 years: A bibliometric study in CiteSpace. Medicine (Baltimore) 2023; 102:e35291. [PMID: 37800804 PMCID: PMC10552966 DOI: 10.1097/md.0000000000035291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Chemogenetics has been widely adopted in Neuroscience. Neuroscience has become a hot research topic for scientists. Therefore, the purpose of this study is to explore the current status and trends in the global application of chemogenetics in neuroscience over the last 14 years via CiteSpace. METHODS Publications related to chemogenetics in neuroscience were retrieved from the Science Citation Index-Extended Web of Science from 2008 to 2021. We used CiteSpace to analyze publications, citations, cited journals, countries, institutions, authors, cited authors, cited references, and keywords. RESULTS A total of 947 records were retrieved from 2008 to 2021 on February 21, 2022. The number and rate of publications and citations increased significantly. Journal of Neuroscience was the most cited journal, and BRAIN RES BULL ranked first in the centrality of cited journals. The United States of America (USA) had the highest number of publications among the countries. Takashi Minamoto was the most prolific author and Armbruster BN ranked the first among authors cited. The first article in the frequency ranking of the references cited was published by Roth BL. The keyword of "nucleus accumben (NAc)" had the highest frequency. The top 3 keywords with the strongest citation bursts include "transgenic mice," "cancer," and "blood-brain barrier." CONCLUSION The period 2008 to 2021 has seen a marked increase in research on chemogenetics in neuroscience. The application of chemogenetics is indispensable for research in the field of neuroscience. This bibliometrics study provides the current situation and trend in chemogenetic methods in neuroscience in recent 14 years, which may help researchers to identify the hot topics and frontiers for future studies in this field.
Collapse
Affiliation(s)
- Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunyun Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiale Dai
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqin Ni
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qike Ding
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyuan Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
29
|
Qin W, Wan Q, Yan J, Han X, Lu W, Ma Z, Ye T, Li Y, Li C, Wang C, Tay FR, Niu L, Jiao K. Effect of Extracellular Ribonucleic Acids on Neurovascularization in Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301763. [PMID: 37395388 PMCID: PMC10502862 DOI: 10.1002/advs.202301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.
Collapse
Affiliation(s)
- Wen‐pin Qin
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jian‐Fei Yan
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Xiao‐Xiao Han
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Wei‐Cheng Lu
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Zhang‐Yu Ma
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Tao Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Yu‐Tao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Chang‐Jun Li
- Department of EndocrinologyEndocrinology Research CenterThe Xiangya Hospital of Central South UniversityChangshaHunan410008P. R. China
| | - Chen Wang
- Department of StomatologyThe Eighth Medical Center of PLA General HospitalHaidian DistrictBeijingP. R. China100091
| | - Franklin R. Tay
- Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Kai Jiao
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| |
Collapse
|
30
|
Xie L, Wu H, Chen Q, Xu F, Li H, Xu Q, Jiao C, Sun L, Ullah R, Chen X. Divergent modulation of pain and anxiety by GABAergic neurons in the ventrolateral periaqueductal gray and dorsal raphe. Neuropsychopharmacology 2023; 48:1509-1519. [PMID: 36526697 PMCID: PMC10425368 DOI: 10.1038/s41386-022-01520-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
The ventrolateral periaqueductal gray (vlPAG) collaborates with the dorsal raphe (DR) in pain regulation and emotional response. However, the roles of vlPAG and DR γ-aminobutyric acid (GABA)-ergic neurons in regulating nociception and anxiety are contradictory and poorly understood. Here, we observed that pharmacogenetic co-activation of vlPAG and DR GABAergic (vlPAG-DRGABA+) neurons enhanced sensitivity to mechanical stimulation and promoted anxiety-like behavior in naïve mice. Simultaneous inhibition of vlPAG-DRGABA+ neurons showed adaptive anti-nociception and anti-anxiety effects on mice with inflammatory pain. Notably, vlPAGGABA+ and DRGABA+ neurons exhibited opposing effects on the sensitivity to mechanical stimulation in both naïve state and inflammatory pain. In contrast to the role of vlPAGGABA+ neurons in pain processing, chemogenetic inhibition and chronic ablation of DRGABA+ neurons remarkably promoted nociception while selectively activating DRGABA+ neurons ameliorated inflammatory pain. Additionally, utilizing optogenetic technology, we observed that the pronociceptive effect arising from DRGABA+ neuronal inhibition was reversed by the systemic administration of morphine. Our results collectively provide new insights into the modulation of pain and anxiety by specific midbrain GABAergic subpopulations, which may provide a basis for cell type-targeted or subregion-targeted therapies for pain management.
Collapse
Affiliation(s)
- Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihong Sun
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Su N, Cai P, Dou Z, Yin X, Xu H, He J, Li Z, Li C. Brain nuclei and neural circuits in neuropathic pain and brain modulation mechanisms of acupuncture: a review on animal-based experimental research. Front Neurosci 2023; 17:1243231. [PMID: 37712096 PMCID: PMC10498311 DOI: 10.3389/fnins.2023.1243231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Neuropathic pain (NP) is known to be associated with abnormal changes in specific brain regions, but the complex neural network behind it is vast and complex and lacks a systematic summary. With the help of various animal models of NP, a literature search on NP brain regions and circuits revealed that the related brain nuclei included the periaqueductal gray (PAG), lateral habenula (LHb), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC); the related brain circuits included the PAG-LHb and mPFC-ACC. Moreover, acupuncture and injurious information can affect different brain regions and influence brain functions via multiple aspects to play an analgesic role and improve synaptic plasticity by regulating the morphology and structure of brain synapses and the expression of synapse-related proteins; maintain the balance of excitatory and inhibitory neurons by regulating the secretion of glutamate, γ-aminobutyric acid, 5-hydroxytryptamine, and other neurotransmitters and receptors in the brain tissues; inhibit the overactivation of glial cells and reduce the release of pro-inflammatory mediators such as interleukins to reduce neuroinflammation in brain regions; maintain homeostasis of glucose metabolism and regulate the metabolic connections in the brain; and play a role in analgesia through the mediation of signaling pathways and signal transduction molecules. These factors help to deepen the understanding of NP brain circuits and the brain mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Na Su
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital, Jinan, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxue Yin
- Department of Science and Education, Shandong Academy of Chinese Medicine, Jinan, China
| | - Hongmin Xu
- Department of Gynecology, Laiwu Hospital of Traditional Chinese, Jinan, China
| | - Jing He
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- International Office, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|
32
|
Nguyen E, Grajales-Reyes JG, Gereau RW, Ross SE. Cell type-specific dissection of sensory pathways involved in descending modulation. Trends Neurosci 2023; 46:539-550. [PMID: 37164868 PMCID: PMC10836406 DOI: 10.1016/j.tins.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
Decades of research have suggested that stimulation of supraspinal structures, such as the periaqueductal gray (PAG) and rostral ventromedial medulla (RVM), inhibits nocifensive responses to noxious stimulation through a process known as descending modulation. Electrical stimulation and pharmacologic manipulations of the PAG and RVM identified transmitters and neuronal firing patterns that represented distinct cell types. Advances in mouse genetics, in vivo imaging, and circuit tracing methods, in addition to chemogenetic and optogenetic approaches, allowed the characterization of the cells and circuits involved in descending modulation in further detail. Recent work has revealed the importance of PAG and RVM neuronal cell types in the descending modulation of pruriceptive as well as nociceptive behaviors, underscoring their roles in coordinating complex behavioral responses to sensory input. This review summarizes how new technical advances that enable cell type-specific manipulation and recording of neuronal activity have supported, as well as expanded, long-standing views on descending modulation.
Collapse
Affiliation(s)
- Eileen Nguyen
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jose G Grajales-Reyes
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
33
|
Li X, Li Q, Xu L, Ma Z, Shi Y, Zhang X, Yang Y, Wang J, Fan L, Wu L. Involvement of Kir4.1 in pain insensitivity of the BTBR mouse model of autism spectrum disorder. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166700. [PMID: 36990129 DOI: 10.1016/j.bbadis.2023.166700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder. Abnormal pain sensation is a common clinical symptom of ASD that seriously affects the quality of life of patients with ASD and their families. However, the underlying mechanism is unclear. It is believed to be related to the excitability of neurons and the expression of ion channels. Herein, we confirmed that baseline pain and Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain were impaired in the BTBR T+ Itpr3tf/J (BTBR) mouse model of ASD. RNA sequencing (RNA-seq) analyses of the dorsal root ganglia (DRG), which are closely related to pain in ASD model mice, revealed that high expression of KCNJ10 (encoding Kir4.1) might be an important factor in ASD pain sensation abnormalities. The levels of Kir4.1 were further verified by western blotting, RT-qPCR, and immunofluorescence. By inhibiting Kir4.1, the pain insensitivity of BTBR mice improved, confirming that a high expression level of Kir4.1 was highly correlated with decreased pain sensitivity in ASD. Meanwhile, we found that the anxiety behaviours and the social novelty recognition were changed after CFA induced inflammatory pain. And after inhibiting Kir4.1, the stereotyped behaviours and social novelty recognition of BTBR mice were also improved. Further, we found that the expression levels of glutamate transporters, excitatory amino acid transporter 1 (EAAT1), and excitatory amino acid transporter 2 (EAAT2) were increased in the DRG of BTBR mice but decreased after inhibiting Kir4.1. This suggests that Kir4.1 may play a key role in the improvement of pain insensitivity in ASD by regulating glutamate transporters. In conclusion, our findings revealed the possible mechanism and role of Kir4.1 in the pain insensitivity in ASD, using bioinformatics analyses and animal experiments, and provided a theoretical basis for clinically targeted intervention in ASD.
Collapse
Affiliation(s)
- Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Lisha Xu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Zhe Ma
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China.
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China.
| |
Collapse
|
34
|
Li JN, Wu XM, Zhao LJ, Sun HX, Hong J, Wu FL, Chen SH, Chen T, Li H, Dong YL, Li YQ. Central medial thalamic nucleus dynamically participates in acute itch sensation and chronic itch-induced anxiety-like behavior in male mice. Nat Commun 2023; 14:2539. [PMID: 37137899 PMCID: PMC10156671 DOI: 10.1038/s41467-023-38264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Itch is an annoying sensation consisting of both sensory and emotional components. It is known to involve the parabrachial nucleus (PBN), but the following transmission nodes remain elusive. The present study identified that the PBN-central medial thalamic nucleus (CM)-medial prefrontal cortex (mPFC) pathway is essential for itch signal transmission at the supraspinal level in male mice. Chemogenetic inhibition of the CM-mPFC pathway attenuates scratching behavior or chronic itch-related affective responses. CM input to mPFC pyramidal neurons is enhanced in acute and chronic itch models. Specifically chronic itch stimuli also alter mPFC interneuron involvement, resulting in enhanced feedforward inhibition and a distorted excitatory/inhibitory balance in mPFC pyramidal neurons. The present work underscores CM as a transmit node of the itch signal in the thalamus, which is dynamically engaged in both the sensory and affective dimensions of itch with different stimulus salience.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue-Mei Wu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Liu-Jie Zhao
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jie Hong
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Feng-Ling Wu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Si-Hai Chen
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
- Department of Human Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, 014040, China.
| |
Collapse
|
35
|
Fan FC, Du Y, Zheng WH, Loh YP, Cheng Y. Carboxypeptidase E conditional knockout mice exhibit learning and memory deficits and neurodegeneration. Transl Psychiatry 2023; 13:135. [PMID: 37100779 PMCID: PMC10133319 DOI: 10.1038/s41398-023-02429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Carboxypeptidase E (CPE) is a multifunctional protein with many nonenzymatic functions in various systems. Previous studies using CPE knock-out mice have shown that CPE has neuroprotective effects against stress and is involved in learning and memory. However, the functions of CPE in neurons are still largely unknown. Here we used a Camk2a-Cre system to conditionally knockout CPE in neurons. The wild-type, CPEflox/-, and CPEflox/flox mice were weaned, ear-tagged, and tail clipped for genotyping at 3 weeks old, and they underwent open field, object recognition, Y-maze, and fear conditioning tests at 8 weeks old. The CPEflox/flox mice had normal body weight and glucose metabolism. The behavioral tests showed that CPEflox/flox mice had impaired learning and memory compared with wild-type and CPEflox/- mice. Surprisingly, the subiculum (Sub) region of CPEflox/flox mice was completely degenerated, unlike the CPE full knockout mice, which exhibit CA3 region neurodegeneration. In addition, doublecortin immunostaining suggested that neurogenesis in the dentate gyrus of the hippocampus was significantly reduced in CPEflox/flox mice. Interestingly, TrkB phosphorylation in the hippocampus was downregulated in CPEflox/flox mice, but brain-derived neurotrophic factor levels were not. In both the hippocampus and dorsal medial prefrontal cortex, we observed reduced MAP2 and GFAP expression in CPEflox/flox mice. Taken together, the results of this study demonstrate that specific neuronal CPE knockout leads to central nervous system dysfunction in mice, including learning and memory deficits, hippocampal Sub degeneration and impaired neurogenesis.
Collapse
Affiliation(s)
- Fang-Cheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Wen-Hui Zheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
36
|
Zhen W, Zhen H, Wang Y, Chen L, Niu X, Zhang B, Yang Z, Peng D. Mechanism of ERK/CREB pathway in pain and analgesia. Front Mol Neurosci 2023; 16:1156674. [PMID: 37008781 PMCID: PMC10060514 DOI: 10.3389/fnmol.2023.1156674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Research has long centered on the pathophysiology of pain. The Transient Receiver Potential (TRP) protein family is well known for its function in the pathophysiology of pain, and extensive study has been done in this area. One of the significant mechanisms of pain etiology and analgesia that lacks a systematic synthesis and review is the ERK/CREB (Extracellular Signal-Regulated Kinase/CAMP Response Element Binding Protein) pathway. The ERK/CREB pathway-targeting analgesics may also cause a variety of adverse effects that call for specialized medical care. In this review, we systematically compiled the mechanism of the ERK/CREB pathway in the process of pain and analgesia, as well as the potential adverse effects on the nervous system brought on by the inhibition of the ERK/CREB pathway in analgesic drugs, and we suggested the corresponding solutions.
Collapse
Affiliation(s)
- Weizhe Zhen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Hongjun Zhen
- Department of Orthopaedics, Handan Chinese Medicine Hospital, Handan, Hebei Province, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leian Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Niu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyuan Yang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dantao Peng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dantao Peng,
| |
Collapse
|
37
|
Ni L, Chen H, Xu X, Sun D, Cai H, Wang L, Tang Q, Hao Y, Cao S, Hu X. Neurocircuitry underlying the antidepressant effect of retrograde facial botulinum toxin in mice. Cell Biosci 2023; 13:30. [PMID: 36782335 PMCID: PMC9926702 DOI: 10.1186/s13578-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUNDS Botulinum toxin type A (BoNT/A) is extensively applied in spasticity and dystonia as it cleaves synaptosome-associated protein 25 (SNAP25) in the presynaptic terminals, thereby inhibiting neurotransmission. An increasing number of randomized clinical trials have suggested that glabellar BoNT/A injection improves depressive symptoms in patients with major depressive disorder (MDD). However, the underlying neuronal circuitry of BoNT/A-regulated depression remains largely uncharacterized. RESULTS Here, we modeled MDD using mice subjected to chronic restraint stress (CRS). By pre-injecting BoNT/A into the unilateral whisker intrinsic musculature (WIM), and performing behavioral testing, we showed that pre-injection of BoNT/A attenuated despair- and anhedonia-like phenotypes in CRS mice. By applying immunostaining of BoNT/A-cleaved SNAP25 (cl.SNAP25197), subcellular spatial localization of SNAP25 with markers of cholinergic neurons (ChAT) and post-synaptic membrane (PSD95), and injection of monosynaptic retrograde tracer CTB-488-mixed BoNT/A to label the primary nucleus of the WIM, we demonstrated that BoNT/A axonal retrograde transported to the soma of whisker-innervating facial motoneurons (wFMNs) and subsequent transcytosis to synaptic terminals of second-order neurons induced central effects. Furthermore, using transsynaptic retrograde and monosynaptic antegrade viral neural circuit tracing with c-Fos brain mapping and co-staining of neural markers, we observed that the CRS-induced expression of c-Fos and CaMKII double-positive neurons in the ventrolateral periaqueductal grey (vlPAG), which sent afferents to wFMNs, was down-regulated 3 weeks after BoNT/A facial pre-administration. Strikingly, the repeated and targeted silencing of the wFMNs-projecting CaMKII-positive neurons in vlPAG with a chemogenetic approach via stereotactic injection of recombinant adeno-associated virus into specific brain regions of CRS mice mimicked the antidepressant-like action of BoNT/A pre-treatment. Conversely, repeated chemogenetic activation of this potential subpopulation counteracted the BoNT/A-improved significant antidepressant behavior. CONCLUSION We reported for the first time that BoNT/A inhibited the wFMNs-projecting vlPAG excitatory neurons through axonal retrograde transport and cell-to-cell transcytosis from the injected location of the WIM to regulate depressive-like phenotypes of CRS mice. For the limited and the reversibility of side effects, BoNT/A has substantial advantages and potential application in MDD.
Collapse
Affiliation(s)
- Linhui Ni
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Hanze Chen
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Xinxin Xu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.13402.340000 0004 1759 700XDepartment of Ultrasonography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Di Sun
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Huaying Cai
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Li Wang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Qiwen Tang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Yonggang Hao
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.263761.70000 0001 0198 0694Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215125 China
| | - Shuxia Cao
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
38
|
Wu FL, Chen SH, Li JN, Zhao LJ, Wu XM, Hong J, Zhu KH, Sun HX, Shi SJ, Mao E, Zang WD, Cao J, Kou ZZ, Li YQ. Projections from the Rostral Zona Incerta to the Thalamic Paraventricular Nucleus Mediate Nociceptive Neurotransmission in Mice. Metabolites 2023; 13:metabo13020226. [PMID: 36837844 PMCID: PMC9966812 DOI: 10.3390/metabo13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Zona incerta (ZI) is an integrative subthalamic region in nociceptive neurotransmission. Previous studies demonstrated that the rostral ZI (ZIR) is an important gamma-aminobutyric acid-ergic (GABAergic) source to the thalamic paraventricular nucleus (PVT), but whether the ZIR-PVT pathway participates in nociceptive modulation is still unclear. Therefore, our investigation utilized anatomical tracing, fiber photometry, chemogenetic, optogenetic and local pharmacological approaches to investigate the roles of the ZIRGABA+-PVT pathway in nociceptive neurotransmission in mice. We found that projections from the GABAergic neurons in ZIR to PVT were involved in nociceptive neurotransmission. Furthermore, chemogenetic and optogenetic activation of the ZIRGABA+-PVT pathway alleviates pain, whereas inhibiting the activities of the ZIRGABA+-PVT circuit induces mechanical hypersensitivity and partial heat hyperalgesia. Importantly, in vivo pharmacology combined with optogenetics revealed that the GABA-A receptor (GABAAR) is crucial for GABAergic inhibition from ZIR to PVT. Our data suggest that the ZIRGABA+-PVT pathway acts through GABAAR-expressing glutamatergic neurons in PVT mediates nociceptive neurotransmission.
Collapse
Affiliation(s)
- Feng-Ling Wu
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Si-Hai Chen
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Liu-Jie Zhao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Xue-Mei Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jie Hong
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Ke-Hua Zhu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Su-Juan Shi
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - E Mao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Wei-Dong Zang
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| | - Yun-Qing Li
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of Anatomy, College of Basic Medicine, Dali University, Dali 671000, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| |
Collapse
|
39
|
Abstract
Pain is driven by sensation and emotion, and in turn, it motivates decisions and actions. To fully appreciate the multidimensional nature of pain, we formulate the study of pain within a closed-loop framework of sensory-motor prediction. In this closed-loop cycle, prediction plays an important role, as the interaction between prediction and actual sensory experience shapes pain perception and subsequently, action. In this Perspective, we describe the roles of two prominent computational theories-Bayesian inference and reinforcement learning-in modeling adaptive pain behaviors. We show that prediction serves as a common theme between these two theories, and that each of these theories can explain unique aspects of the pain perception-action cycle. We discuss how these computational theories and models can improve our mechanistic understandings of pain-centered processes such as anticipation, attention, placebo hypoalgesia, and pain chronification.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
| | - Jing Wang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
40
|
Shen Z, Li W, Chang W, Yue N, Yu J. Sex differences in chronic pain-induced mental disorders: Mechanisms of cerebral circuitry. Front Mol Neurosci 2023; 16:1102808. [PMID: 36891517 PMCID: PMC9986270 DOI: 10.3389/fnmol.2023.1102808] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mental disorders such as anxiety and depression induced by chronic pain are common in clinical practice, and there are significant sex differences in their epidemiology. However, the circuit mechanism of this difference has not been fully studied, as preclinical studies have traditionally excluded female rodents. Recently, this oversight has begun to be resolved and studies including male and female rodents are revealing sex differences in the neurobiological processes behind mental disorder features. This paper reviews the structural functions involved in the injury perception circuit and advanced emotional cortex circuit. In addition, we also summarize the latest breakthroughs and insights into sex differences in neuromodulation through endogenous dopamine, 5-hydroxytryptamine, GABAergic inhibition, norepinephrine, and peptide pathways like oxytocin, as well as their receptors. By comparing sex differences, we hope to identify new therapeutic targets to offer safer and more effective treatments.
Collapse
Affiliation(s)
- Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Yue
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Zhang L, Cui X, Ou Y, Liu F, Li H, Xie G, Li P, Zhao J, Xie G, Guo W. Abnormal long- and short-range functional connectivity in patients with first-episode drug-naïve melancholic and non-melancholic major depressive disorder. J Affect Disord 2023; 320:360-369. [PMID: 36206876 DOI: 10.1016/j.jad.2022.09.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND We attempted to explore the common and distinct long- and short-range functional connectivity (FC) patterns of melancholic and non-melancholic major depressive disorder (MDD) and their associations with clinical characteristics. METHODS Fifty-nine patients with first-episode drug-naïve MDD, including 31 patients with melancholic features and 28 patients with non-melancholic features, underwent resting-state functional magnetic resonance imaging (fMRI) scanning to examine long- and short-range FC. Thirty-two healthy volunteers were recruited as controls. The support vector machines (SVM) was applied to distinguish the melancholic patients from the non-melancholic patients by using the FC of abnormal brain regions. RESULTS Compared to healthy volunteers, patients with MDD showed increased long-range positive FC (lpFC) in the right insula/inferior frontal gyrus and left insula. Relative to non-melancholic patients, melancholic patients displayed decreased lpFC in the right lingual gyrus, decreased short-range positive FC (spFC) in the right middle temporal gyrus and right superior parietal lobule, increased lpFC in the left inferior parietal lobule, and increased spFC in the left middle occipital gyrus/inferior occipital gyrus, left cerebellum VII/IX, and bilateral cerebellum CrusII. Increased lpFC in the left inferior parietal lobule in melancholic patients was correlated with the TEPS abstract anticipatory scores. SVM results showed that FCs of five combinations within different brain regions could distinguish melancholic patients from non-melancholic patients. CONCLUSIONS FC abnormalities in the default mode network and parietal-occipital brain regions may underlie the neurobiology of melancholic MDD. An increased lpFC in the left inferior parietal lobule correlated with anhedonia may be a distinctive neurobiological feature of melancholic MDD.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Psychiatry, Guangzhou First People's Hospital, Guangzhou 510180, Guangdong, China
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
42
|
Ji YY, Liu X, Li X, Xiao YF, Ma T, Wang J, Feng Y, Shi J, Wang MQ, Li JL, Lai JH. Activation of the Vpdm VGLUT1-VPM pathway contributes to anxiety-like behaviors induced by malocclusion. Front Cell Neurosci 2022; 16:995345. [PMID: 36605612 PMCID: PMC9807610 DOI: 10.3389/fncel.2022.995345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Occlusal disharmony has a negative impact on emotion. The mesencephalic trigeminal nucleus (Vme) neurons are the primary afferent nuclei that convey proprioceptive information from proprioceptors and low-threshold mechanoreceptors in the periodontal ligament and jaw muscles in the cranio-oro-facial regions. The dorsomedial part of the principal sensory trigeminal nucleus (Vpdm) and the ventral posteromedial nucleus (VPM) of thalamus have been proven to be crucial relay stations in ascending pathway of proprioception. The VPM sends numerous projections to primary somatosensory areas (SI), which modulate emotion processing. The present study aimed to demonstrate the ascending trigeminal-thalamic-cortex pathway which would mediate malocclusion-induced negative emotion. Unilateral anterior crossbite (UAC) model created by disturbing the dental occlusion was applied. Tract-tracing techniques were used to identify the existence of Vme-Vpdm-VPM pathway and Vpdm-VPM-SI pathway. Chemogenetic and optogenetic methods were taken to modulate the activation of VpdmVGLUT1 neurons and the Vpdm-VPM pathway. Morphological evidence indicated the involvement of the Vme-Vpdm-VPM pathway, Vpdm-VPM-SI pathway and VpdmVGLUT1-VPM pathway in orofacial proprioception in wild-type mice and vesicular glutamate transporter 1 (VGLUT1): tdTomato mice, respectively. Furthermore, chemogenetic inhibition of VpdmVGLUT1 neurons and the Vpdm-VPM pathway alleviated anxiety-like behaviors in a unilateral anterior crossbite (UAC) model, whereas chemogenetic activation induced anxiety-like behaviors in controls and did not aggravate these behaviors in UAC mice. Finally, optogenetic inhibition of the VpdmVGLUT1-VPM pathway in VGLUT1-IRES-Cre mice reversed UAC-induced anxiety comorbidity. In conclusion, these results suggest that the VpdmVGLUT1-VPM neural pathway participates in the modulation of malocclusion-induced anxiety comorbidity. These findings provide new insights into the links between occlusion and emotion and deepen our understanding of the impact of occlusal disharmony on brain dysfunction.
Collapse
Affiliation(s)
- Yuan-Yuan Ji
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, China,Department of Anatomy, School of Medicine, Northwest University, Xi’an, China,Department of Anatomy, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Xin Liu
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi’an, China,Department of Stomatology, The 960th Hospital of People’s Liberation Army, Jinan, China
| | - Xin Li
- Department of Stomatology, The 960th Hospital of People’s Liberation Army, Jinan, China
| | - Yi-Fan Xiao
- Department of Anatomy, School of Medicine, Northwest University, Xi’an, China
| | - Teng Ma
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jian Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yue Feng
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Juan Shi
- Department of Anatomy, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Mei-Qing Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi’an, China,*Correspondence: Mei-Qing Wang,
| | - Jin-Lian Li
- Department of Anatomy, School of Medicine, Northwest University, Xi’an, China,Department of Anatomy, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China,Jin-Lian Li,
| | - Jiang-Hua Lai
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, China,Jiang-Hua Lai,
| |
Collapse
|
43
|
Qi X, Cui K, Zhang Y, Wang L, Tong J, Sun W, Shao S, Wang J, Wang C, Sun X, Xiao L, Xi K, Cui S, Liu F, Ma L, Zheng J, Yi M, Wan Y. A nociceptive neuronal ensemble in the dorsomedial prefrontal cortex underlies pain chronicity. Cell Rep 2022; 41:111833. [PMID: 36516746 DOI: 10.1016/j.celrep.2022.111833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Pain chronicity involves unpleasant experience in both somatosensory and affective aspects, accompanied with the prefrontal cortex (PFC) neuroplastic alterations. However, whether specific PFC neuronal ensembles underlie pain chronicity remains elusive. Here we identify a nociceptive neuronal ensemble in the dorsomedial prefrontal cortex (dmPFC), which shows prominent reactivity to nociceptive stimuli. We observed that this ensemble shows distinct molecular characteristics and is densely connected to pain-related regions including basolateral amygdala (BLA) and lateral parabrachial nuclei (LPB). Prolonged chemogenetic activation of this nociceptive neuronal ensemble, but not a randomly transfected subset of dmPFC neurons, induces chronic pain-like behaviors in normal mice. By contrast, silencing the nociceptive dmPFC neurons relieves both pain hypersensitivity and anxiety in mice with chronic inflammatory pain. These results suggest the presence of specific dmPFC neuronal ensembles in processing nociceptive information and regulating pain chronicity.
Collapse
Affiliation(s)
- Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Yu Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, P.R. China
| | - Linshu Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Weiqi Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Cheng Wang
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, P.R. China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Liming Xiao
- Institute of Systems Biomedicine, Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, P.R. China
| | - Ke Xi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, P.R. China.
| |
Collapse
|
44
|
Neural Subtype-dependent Cholinergic Modulation of Neural Activities by Activation of Muscarinic 2 Receptors and G Protein-activated Inwardly Rectifying Potassium Channel in Rat Periaqueductal Gray Neurons. Neuroscience 2022; 506:1-13. [PMID: 36270414 DOI: 10.1016/j.neuroscience.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Acetylcholine plays a pivotal role in the regulation of functions such as pain and the sleep and wake cycle by modulating neural activities of the ventrolateral periaqueductal gray (vlPAG). Electrophysiological studies have shown that cholinergic effects are inconsistent among recorded neurons, particularly in the depolarization and hyperpolarization of the resting membrane potential (RMP). This discrepancy may be due to the neural subtype-dependent cholinergic modulation of the RMP. To examine this possibility, we performed whole-cell patch-clamp recordings from subtype-identified neurons using vesicular GABA transporter (VGAT)-Venus × ChAT-TdTomato rats and elucidated cellular mechanisms of cholinergic effects on the RMP. The application of carbachol hyperpolarized the RMP of cholinergic neurons in a dose-dependent manner but had much less of an effect on other neural subtypes, including GABAergic/glycinergic and glutamatergic neurons. Cholinergic hyperpolarization was accompanied by a decrease in input resistance. These cholinergic effects were blocked by AF-DX384 or gallamine and were mimicked by arecaidine but-2-ynyl ester tosylate, suggesting that the carbachol-induced hyperpolarization of the RMP in cholinergic neurons is mediated via M2 receptors. Tertiapin suppressed the carbachol-induced G protein-activated inwardly rectifying potassium channel (GIRK) currents and hyperpolarization of the RMP in cholinergic neurons. Intracellular application of GDP-β-S blocked the carbachol-induced hyperpolarization of the RMP. Neostigmine slowly hyperpolarized the RMP in cholinergic neurons. These results suggest that neural firing of vlPAG cholinergic neurons is suppressed by GIRK currents induced via M2 receptor activation, and this negative feedback regulation of cholinergic neuronal activities can be induced by acetylcholine, which is intrinsically released in the vlPAG.
Collapse
|
45
|
Cao J, Liu X, Liu JX, Zhao S, Guo YX, Wang GY, Wang XL. Inhibition of glutamatergic neurons in layer II/III of the medial prefrontal cortex alleviates paclitaxel-induced neuropathic pain and anxiety. Eur J Pharmacol 2022; 936:175351. [DOI: 10.1016/j.ejphar.2022.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
|
46
|
Gao W, Long DD, Pan TT, Hu R, Chen DY, Mao Y, Chai XQ, Jin Y, Zhang Z, Wang D. Dexmedetomidine alleviates anxiety-like behavior in mice following peripheral nerve injury by reducing the hyperactivity of glutamatergic neurons in the anterior cingulate cortex. Biochem Pharmacol 2022; 206:115293. [DOI: 10.1016/j.bcp.2022.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
|
47
|
Mitra S, Thomas SA, Martin JA, Williams J, Woodhouse K, Chandra R, Li JX, Lobo MK, Sim FJ, Dietz DM. EGR3 regulates opioid-related nociception and motivation in male rats. Psychopharmacology (Berl) 2022; 239:3539-3550. [PMID: 36098762 PMCID: PMC10094589 DOI: 10.1007/s00213-022-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain and possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.
Collapse
Affiliation(s)
- Swarup Mitra
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
- Department of Biomedical Sciences, John C. Edwards School of Medicine, Marshall University, 1700, 3rd Avenue, Huntington, WV, 25755, USA.
| | - Shruthi A Thomas
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jennifer A Martin
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jamal Williams
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Kristen Woodhouse
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Jun Xu Li
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Fraser J Sim
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - David M Dietz
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
48
|
Yang L, Lu J, Guo J, Chen J, Xiong F, Wang X, Chen L, Yu C. Ventrolateral Periaqueductal Gray Astrocytes Regulate Nociceptive Sensation and Emotional Motivation in Diabetic Neuropathic Pain. J Neurosci 2022; 42:8184-8199. [PMID: 36109166 PMCID: PMC9636999 DOI: 10.1523/jneurosci.0920-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is a diabetes complication experienced by many patients. Ventrolateral periaqueductal gray (vlPAG) neurons are essential mediators of the descending pain modulation system, yet the role of vlPAG astrocytes in DNP remains unclear. The present study applied a multidimensional approach to elucidate the role of these astrocytes in DNP. We verified the activation of astrocytes in different regions of the PAG in male DNP-model rats. We found that only astrocytes in the vlPAG exhibited increased growth. Furthermore, we described differences in vlPAG astrocyte activity at different time points during DNP progression. After the 14th day of modeling, vlPAG astrocytes exhibited obvious activation and morphologic changes. Furthermore, activation of Gq-designer receptors exclusively activated by a designer drug (Gq-DREADDs) in vlPAG astrocytes in naive male rats induced neuropathic pain-like symptoms and pain-related aversion, whereas activation of Gi-DREADDs in vlPAG astrocytes in male DNP-model rats alleviated sensations of pain and promoted pain-related preference behavior. Thus, bidirectional manipulation of vlPAG astrocytes revealed their potential to regulate pain. Surprisingly, activation of Gi-DREADDs in vlPAG astrocytes also mitigated anxiety-like behavior induced by DNP. Thus, our results provide direct support for the hypothesis that vlPAG astrocytes regulate diabetes-associated neuropathic pain and concomitant anxiety-like behavior.SIGNIFICANCE STATEMENT Many studies examined the association between the ventrolateral periaqueductal gray (vlPAG) and neuropathic pain. However, few studies have focused on the role of vlPAG astrocytes in diabetic neuropathic pain (DNP) and DNP-related emotional changes. This work confirmed the role of vlPAG astrocytes in DNP by applying a more direct and robust approach. We used chemogenetics to bidirectionally manipulate the activity of vlPAG astrocytes and revealed that vlPAG astrocytes regulate DNP and pain-related behavior. In addition, we discovered that activation of Gi-designer receptors exclusively activated by a designer drug in vlPAG astrocytes alleviated anxiety-like behavior induced by DNP. Together, these findings provide new insights into DNP and concomitant anxiety-like behavior and supply new therapeutic targets for treating DNP.
Collapse
Affiliation(s)
- Lan Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Jingshan Lu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Jianpeng Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Fangfang Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Xinyao Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, Fujian China
| |
Collapse
|
49
|
Xu QY, Zhang HL, Du H, Li YC, Ji FH, Li R, Xu GY. Identification of a Glutamatergic Claustrum-Anterior Cingulate Cortex Circuit for Visceral Pain Processing. J Neurosci 2022; 42:8154-8168. [PMID: 36100399 PMCID: PMC9637003 DOI: 10.1523/jneurosci.0779-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic visceral pain is a major challenge for both patients and health providers. Although the central sensitization of the brain is thought to play an important role in the development of visceral pain, the detailed neural circuits remain largely unknown. Using a well-established chronic visceral hypersensitivity model induced by neonatal maternal deprivation (NMD) in male mice, we identified a distinct pathway whereby the claustrum (CL) glutamatergic neuron projecting to the anterior cingulate cortex (ACC) is critical for visceral pain but not for CFA-evoked inflammatory pain. By a combination of in vivo circuit-dissecting extracellular electrophysiological approaches and visceral pain related electromyographic (EMG) recordings, we demonstrated that optogenetic inhibition of CL glutamatergic activity suppressed the ACC neural activity and visceral hypersensitivity of NMD mice whereas selective activation of CL glutamatergic activity enhanced the ACC neural activity and evoked visceral pain of control mice. Further, optogenetic studies demonstrate a causal link between such neuronal activity and visceral pain behaviors. Chemogenetic activation or inhibition of ACC neural activities reversed the effects of optogenetic manipulation of CL neural activities on visceral pain responses. Importantly, molecular detection showed that NMD significantly enhances the expression of NMDA receptors and activated CaMKIIα in the ACC postsynaptic density (PSD) region. Together, our data establish a functional role for CL→ACC glutamatergic neurons in gating visceral pain, thus providing a potential treatment strategy for visceral pain.SIGNIFICANCE STATEMENT Studies have shown that sensitization of anterior cingulate cortex (ACC) plays an important role in chronic pain. However, it is as yet unknown whether there is a specific brain region and a distinct neural circuit that helps the ACC to distinguish visceral and somatic pain. The present study demonstrates that claustrum (CL) glutamatergic neurons maybe responding to colorectal distention (CRD) rather than somatic stimulation and that a CL glutamatergic projection to ACC glutamatergic neuron regulates visceral pain in mice. Furthermore, excessive NMDA receptors and overactive CaMKIIα in the ACC postsynaptic density (PSD) region were observed in mice with chronic visceral pain. Together, these findings reveal a novel neural circuity underlying the central sensitization of chronic visceral pain.
Collapse
Affiliation(s)
- Qi-Ya Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Hai-Long Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Han Du
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
50
|
Neurocircuit of chronic pain and pain-induced negative emotions and regulatory mechanisms of electroacupuncture. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|