1
|
Feng S, Li J, Liu T, Huang S, Chen X, Liu S, Zhou J, Zhao H, Hong Y. Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke. Neural Regen Res 2025; 20:491-502. [PMID: 38819062 PMCID: PMC11317962 DOI: 10.4103/nrr.nrr-d-23-01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/26/2023] [Accepted: 02/23/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00027/figure1/v/2024-05-28T214302Z/r/image-tiff Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury. Low-density lipoprotein receptor, a classic cholesterol regulatory receptor, has been found to inhibit NLR family pyrin domain containing protein 3 (NLRP3) inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer's disease. However, little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke. To address this issue in the present study, we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models. First, we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis. We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation. Second, we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus. Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype. Finally, we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin, an NLRP3 agonist, restored the neurotoxic astrocyte phenotype. These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Shuai Feng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juanji Li
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tingting Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiqi Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shen Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongdong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Shrivastava V, Tyagi S, Dey D, Singh A, Palanichamy JK, Sinha S, Sharma JB, Seth P, Sen S. Glial cholesterol redistribution in hypoxic injury in vitro influences oligodendrocyte maturation and myelination. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167476. [PMID: 39181517 DOI: 10.1016/j.bbadis.2024.167476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Hypoxic insult to the fetal brain causes loss of vulnerable premyelinating oligodendrocytes and arrested oligodendrocyte differentiation. Astrocytes influence oligodendrocyte differentiation and the astrocytic response to hypoxia could affect oligodendrocyte maturation under hypoxia. To identify pathways by which astrocytes influence oligodendroglial maturation in hypoxic injury, human fetal neural stem cell-derived astrocytes were exposed to 0.2 % oxygen for 48 hours. Transcriptomic analysis revealed the upregulation of the cholesterol-biosynthesis pathway in hypoxia-exposed astrocytes. Hypoxia-exposed primary astrocytes and astrocytic cell line (SVG) showed increased expression of hydroxy-methyl-glutaryl-CoA reductase (HMGCR), squalene epoxidase (SQLE), apolipoprotein E (apoE) and ATP-binding cassette transporter 1 (ABCA1) on qPCR and Western blot. Hypoxic SVG also showed increased cholesterol content in cells and culture supernatants and increased cell surface expression of ABCA1. Interestingly hypoxia-exposed premyelinating oligodendrocytes (Mo3.13) showed reduced cholesterol along with decreased expression of HMGCR and SQLE on qPCR and Western blot. Exogenous cholesterol increased the differentiation of Mo3.13 as measured by increased expression of myelin basic protein (MBP) on flow cytometry. Hypoxia exposure resulted in increased cholesterol transport from astrocytes to oligodendrocytes in cocultures with BODIPY-cholesterol labelled SVG and membrane-labelled Mo3.13. As exogenous cholesterol enhanced oligodendrocyte differentiation, our findings indicate that increased cholesterol synthesis by astrocytes and transport to oligodendrocytes could supplement oligodendroglial maturation in conditions of hypoxic brain injury in neonates.
Collapse
Affiliation(s)
- Vadanya Shrivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sagar Tyagi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Devanjan Dey
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - J B Sharma
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Seth
- Department of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Sudip Sen
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Shang G, Shao Q, Lv K, Xu W, Ji J, Fan S, Kang X, Cheng F, Wang X, Wang Q. Hypercholesterolemia and the Increased Risk of Vascular Dementia: a Cholesterol Perspective. Curr Atheroscler Rep 2024; 26:435-449. [PMID: 38814418 DOI: 10.1007/s11883-024-01217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Vascular dementia (VaD) is the second most prevalent type of dementia after Alzheimer's disease.Hypercholesterolemia may increase the risk of dementia, but the association between cholesterol and cognitive function is very complex. From the perspective of peripheral and brain cholesterol, we review the relationship between hypercholesterolemia and increased risk of VaD and how the use of lipid-lowering therapies affects cognition. RECENT FINDINGS Epidemiologic studies show since 1980, non-HDL-C levels of individuals has increased rapidly in Asian countries.The study has suggested that vascular risk factors increase the risk of VaD, such as disordered lipid metabolism. Dyslipidemia has been found to interact with chronic cerebral hypoperfusion to promote inflammation resulting in cognitive dysfunction in the brain.Hypercholesterolemia may be a risk factor for VaD. Inflammation could potentially serve as a link between hypercholesterolemia and VaD. Additionally, the potential impact of lipid-lowering therapy on cognitive function is also worth considering. Finding strategies to prevent and treat VaD is critical given the aging of the population to lessen the load on society. Currently, controlling underlying vascular risk factors is considered one of the most effective methods of preventing VaD. Understanding the relationship between abnormal cholesterol levels and VaD, as well as discovering potential serum biomarkers, is important for the early prevention and treatment of VaD.
Collapse
Affiliation(s)
- Guojiao Shang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Qi Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Kai Lv
- Department of Geratology, The Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, No.51 Xiaoguan Street, Andingmenwai, Chaoyang District, Beijing, China
| | - Wenxiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Shuning Fan
- Dongzhimen Hospital of Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, China
| | - Xiangdong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China.
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China.
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China.
| |
Collapse
|
4
|
Wang J, Ding X, Li C, Huang C, Ke C, Xu C, Wan C. Early exercise intervention promotes myelin repair in the brains of ischemic rats by inhibiting the MEK/ERK pathway. Transl Neurosci 2024; 15:20220335. [PMID: 38511170 PMCID: PMC10951688 DOI: 10.1515/tnsci-2022-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Our previous studies have shown that early exercise intervention after stroke increases neural activity and synaptic plasticity and promotes the recovery of nerve fiber bundle integrity in the brain. However, the effect of exercise on the repair of myelin in the brain and the related mechanism are still unclear. In this study, we randomly divided the rats into three groups. Before and after 28 days of intervention, body weight, nerve function, the infarct size, white matter fiber bundle integrity, and nerve myelin structure and function were observed by measuring body weight, analysis of modified neurological severity score, CatWalk gait analysis, MRI, luxol fast blue staining, immunofluorescence, and transmission electron microscopy. Changes in the expression of proteins in the MEK/ERK pathway were assessed. The results showed that early exercise intervention resulted in neurological recovery, decreased the infarct volume and increased nerve fiber integrity, the myelin coverage area, myelin basic protein (MBP) fluorescence intensity expression, and myelin thickness. Furthermore, the expression level of MBP was significantly increased after early exercise intervention, while the expression levels of p-MEK1/2 and p-ERK1/2 were significantly reduced. In the cell study, MBP expression levels were significantly higher in the oxygen and glucose deprivation and administration group.In summary, early exercise intervention after stroke can promote myelin repair by inhibiting the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Junyi Wang
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xinyu Ding
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chen Li
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chuan Huang
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Changkai Ke
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chunlei Xu
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chunxiao Wan
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| |
Collapse
|
5
|
Zhang Y, Ya D, Yang J, Jiang Y, Li X, Wang J, Tian N, Deng J, Yang B, Li Q, Liao R. EAAT3 impedes oligodendrocyte remyelination in chronic cerebral hypoperfusion-induced white matter injury. CNS Neurosci Ther 2024; 30:e14487. [PMID: 37803915 PMCID: PMC10805396 DOI: 10.1111/cns.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion-induced demyelination causes progressive white matter injury, although the pathogenic pathways are unknown. METHODS The Single Cell Portal and PanglaoDB databases were used to analyze single-cell RNA sequencing experiments to determine the pattern of EAAT3 expression in CNS cells. Immunofluorescence (IF) was used to detect EAAT3 expression in oligodendrocytes and oligodendrocyte progenitor cells (OPCs). EAAT3 levels in mouse brains were measured using a western blot at various phases of development, as well as in traumatic brain injury (TBI) and intracerebral hemorrhage (ICH) mouse models. The mouse bilateral carotid artery stenosis (BCAS) model was used to create white matter injury. IF, Luxol Fast Blue staining, and electron microscopy were used to investigate the effect of remyelination. 5-Ethynyl-2-Deoxy Uridine staining, transwell chamber assays, and IF were used to examine the effects of OPCs' proliferation, migration, and differentiation in vivo and in vitro. The novel object recognition test, the Y-maze test, the rotarod test, and the grid walking test were used to examine the impact of behavioral modifications. RESULTS A considerable amount of EAAT3 was expressed in OPCs and mature oligodendrocytes, according to single-cell RNA sequencing data. During multiple critical phases of mouse brain development, there were no substantial changes in EAAT3 levels in the hippocampus, cerebral cortex, or white matter. Furthermore, neither the TBI nor ICH models significantly affected the levels of EAAT3 in the aforementioned brain areas. The chronic white matter injury caused by BCAS, on the other hand, resulted in a strikingly high level of EAAT3 expression in the oligodendroglia and white matter. Correspondingly, blocking EAAT3 assisted in the recovery of cognitive and motor impairment as well as the restoration of cerebral blood flow following BCAS. Furthermore, EAAT3 suppression was connected to improved OPCs' survival and proliferation in vivo as well as faster OPCs' proliferation, migration, and differentiation in vitro. Furthermore, this study revealed that the mTOR pathway is implicated in EAAT3-mediated remyelination. CONCLUSIONS Our findings provide the first evidence that abnormally high levels of oligodendroglial EAAT3 in chronic cerebral hypoperfusion impair OPCs' pro-remyelination actions, hence impeding white matter repair and functional recovery. EAAT3 inhibitors could be useful in the treatment of ischemia demyelination.
Collapse
Affiliation(s)
- Yingmei Zhang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Dongshan Ya
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiaxin Yang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Yanlin Jiang
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Xiaoxia Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiawen Wang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Ning Tian
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jungang Deng
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Bin Yang
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Qinghua Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Rujia Liao
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| |
Collapse
|
6
|
Chen H, Zhou X, Hu J, Li S, Wang Z, Zhu T, Cheng H, Zhang G. Genetic insights into the association of statin and newer nonstatin drug target genes with human longevity: a Mendelian randomization analysis. Lipids Health Dis 2023; 22:220. [PMID: 38082436 PMCID: PMC10714481 DOI: 10.1186/s12944-023-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND It remains controversial whether the long-term use of statins or newer nonstatin drugs has a positive effect on human longevity. Therefore, this study aimed to investigate the genetic associations between different lipid-lowering therapeutic gene targets and human longevity. METHODS Two-sample Mendelian randomization analyses were conducted. The exposures comprised genetic variants that proxy nine drug target genes mimicking lipid-lowering effects (LDLR, HMGCR, PCKS9, NPC1L1, APOB, CETP, LPL, APOC3, and ANGPTL3). Two large-scale genome-wide association study (GWAS) summary datasets of human lifespan, including up to 500,193 European individuals, were used as outcomes. The inverse-variance weighting method was applied as the main approach. Sensitivity tests were conducted to evaluate the robustness, heterogeneity, and pleiotropy of the results. Causal effects were further validated using expression quantitative trait locus (eQTL) data. RESULTS Genetically proxied LDLR variants, which mimic the effects of lowering low-density lipoprotein cholesterol (LDL-C), were associated with extended lifespan. This association was replicated in the validation set and was further confirmed in the eQTL summary data of blood and liver tissues. Mediation analysis revealed that the genetic mimicry of LDLR enhancement extended lifespan by reducing the risk of major coronary heart disease, accounting for 22.8% of the mediation effect. The genetically proxied CETP and APOC3 inhibitions also showed causal effects on increased life expectancy in both outcome datasets. The lipid-lowering variants of HMGCR, PCKS9, LPL, and APOB were associated with longer lifespans but did not causally increase extreme longevity. No statistical evidence was detected to support an association between NPC1L1 and lifespan. CONCLUSION This study suggests that LDLR is a promising genetic target for human longevity. Lipid-related gene targets, such as PCSK9, CETP, and APOC3, might potentially regulate human lifespan, thus offering promising prospects for developing newer nonstatin therapies.
Collapse
Affiliation(s)
- Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China.
- Branch of Health Promotion and Education, Jiangsu Anti-aging Association, Nanjing, People's Republic of China.
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Jingwen Hu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuo Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Zi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Tong Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hong Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
7
|
Deng A, Wang S, Qin J, Yang P, Shen S, Zhou H, Chen X. ErbB4 processing is involved in OGD/R induced neuron injury. J Stroke Cerebrovasc Dis 2023; 32:107373. [PMID: 37734179 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Our previous study found that ErbB4 gene expression was changed after oxygen-glucose deprivation/reperfusion (OGD/R). However, the exact role and mechanism of ErbB4 in brain ischemia are largely unknown. In this study, we explored the protective effects of ErbB4 and its possible mechanism after OGD/R. METHODS Cerebral ischemia/reperfusion (I/R) injury model was established in vitro and in vivo. Cell viability, apoptosis, and ROS production were measured by MTT, TUNEL, and fluorescent probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). Infarct size was evaluated by TTC. We performed bioinformatics analyses to screen for novel key genes involved in ErbB4 changes. RNA-Seq was used to transcriptome analysis. RNA and protein expression were detected by quantitative RT‒PCR and western bloting. RESULTS The expression of 80-kDa ErbB4 decreased after cerebral I/R injury in vitro and in vivo. Co-expression network analysis revealed that ErbB4 expression was correlated with the changes in Adrb1, Adrb2, Ldlr, and Dab2. Quantitative RT‒PCR revealed that the mRNA expression levels of Adrb1, Adrb2, and Dab2 were upregulated, and that of Ldlr was decreased after OGD/R. Activation of ErbB4 expression by neuregulin 1 (NRG1) significantly promoted cell survival, attenuated hippocampal apoptosis, and decreased ROS production after OGD/R. Furthermore, the elimination of ErbB4 using a specific siRNA reversed these beneficial effects. CONCLUSION Our data revealed the neuroprotective effects of ErbB4 against OGD/R injury, and the action could be related to changes in the ErbB4 membrane-associated fragment and the expression of Adrb1, Adrb2, Ldlr, and Dab2.
Collapse
Affiliation(s)
- Aiqing Deng
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shouyan Wang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Panpan Yang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shaoze Shen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hongzhi Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
8
|
He Y, Li Z, Shi X, Ding J, Wang X. Metformin attenuates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2023; 43:78-94. [PMID: 37177813 PMCID: PMC10638997 DOI: 10.1177/0271678x231175189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/15/2023]
Abstract
Vascular cognitive impairment and dementia (VCID) is a series of cognitive dysfunction associated with cerebrovascular diseases and currently lacks effective treatments. The white matter, which is essential for neuronal information processing and integration, is nourished by a network of capillaries and is vulnerable to chronic hypoperfusion. Here, we show that metformin, a widely used drug for the treatment of type 2 diabetes, alleviates the white matter damage and improves cognitive impairment in a mouse model of VCID established by bilateral carotid artery stenosis (BCAS)-induced chronic hypoperfusion. Mechanistically, metformin restores the dysfunctions of oligodendrocyte precursor cells (OPCs) under hypoxia. Metformin up-regulates prolyl hydroxylases 2 via activating the AMP-activated protein kinase pathway, leading to hypoxia-inducible factor-1α (HIF-1α) degradation in OPCs. These findings suggest that metformin may have a promising therapeutic role in alleviating cognitive abnormalities by ameliorating white matter damage of VCID.
Collapse
Affiliation(s)
- Yixi He
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenghao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, NMU, Shanghai, China
| | - Xiaoyu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Li J, Xu P, Hong Y, Xie Y, Peng M, Sun R, Guo H, Zhang X, Zhu W, Wang J, Liu X. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury. J Neuroinflammation 2023; 20:148. [PMID: 37353794 DOI: 10.1186/s12974-023-02819-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Neuroinflammation is a vital pathophysiological process during ischemic stroke. Activated astrocytes play a major role in inflammation. Lipocalin-2 (LCN2), secreted by activated astrocytes, promotes neuroinflammation. Pyroptosis is a pro-inflammatory form of programmed cell death that has emerged as a new area of research in stroke. Nevertheless, the potential role of LCN2 in astrocyte pyroptosis remains unclear. METHODS An ischemic stroke model was established by middle cerebral artery occlusion (MCAO) in vivo. In this study, in vitro, oxygen-glucose deprivation and reoxygenation (O/R) were applied to cultured astrocytes. 24p3R (the LCN2 receptor) was inhibited by astrocyte-specific adeno-associated virus (AAV-GFAP-24p3Ri). MCC950 and Nigericin sodium salt (Nig) were used to inhibit or promote the activation of NLRP3 inflammasome pharmacologically, respectively. Histological and biochemical analyses were performed to assess astrocyte and neuron death. Additionally, the neurological deficits of mice were evaluated. RESULTS LCN2 expression was significantly induced in astrocytes 24 h after stroke onset in the mouse MCAO model. Lcn2 knockout (Lcn2-/-) mice exhibited reduced infarct volume and improved neurological and cognitive functions after MCAO. LCN2 and its receptor 24p3R were colocalized in astrocytes. Mechanistically, suppression of 24p3R by AAV-GFAP-24p3Ri alleviated pyroptosis-related pore formation and the secretion of pro-inflammatory cytokines via LCN2, which was then reversed by Nig-induced NLRP3 inflammasome activation. Astrocyte pyroptosis was exacerbated in Lcn2-/- mice by intracerebroventricular administration of recombinant LCN2 (rLCN2), while this aggravation was restricted by blocking 24p3R or inhibiting NLRP3 inflammasome activation with MCC950. CONCLUSION LCN2/24p3R mediates astrocyte pyroptosis via NLRP3 inflammasome activation following cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Juanji Li
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Pengfei Xu
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Yi Xie
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengna Peng
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Rui Sun
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Hongquan Guo
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Wusheng Zhu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Junjun Wang
- Department of Clinical Laboratory, Affiliated Jinling Hospital, Medical School of Nanjing University, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Xinfeng Liu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
10
|
Mok KKS, Yeung SHS, Cheng GWY, Ma IWT, Lee RHS, Herrup K, Tse KH. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J Neurochem 2023; 165:55-75. [PMID: 36549843 DOI: 10.1111/jnc.15748] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.
Collapse
Affiliation(s)
- Kingston King-Shi Mok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
11
|
Deng S, Shu S, Zhai L, Xia S, Cao X, Li H, Bao X, Liu P, Xu Y. Optogenetic Stimulation of mPFC Alleviates White Matter Injury-Related Cognitive Decline after Chronic Ischemia through Adaptive Myelination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202976. [PMID: 36529961 PMCID: PMC9929132 DOI: 10.1002/advs.202202976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Indexed: 06/07/2023]
Abstract
White matter injury (WMI), which reflects myelin loss, contributes to cognitive decline or dementia caused by cerebral vascular diseases. However, because pharmacological agents specifically for WMI are lacking, novel therapeutic strategies need to be explored. It is recently found that adaptive myelination is required for homeostatic control of brain functions. In this study, adaptive myelination-related strategies are applied to explore the treatment for ischemic WMI-related cognitive dysfunction. Here, bilateral carotid artery stenosis (BCAS) is used to model ischemic WMI-related cognitive impairment and uncover that optogenetic and chemogenetic activation of glutamatergic neurons in the medial prefrontal cortex (mPFC) promote the differentiation of oligodendrocyte precursor cells (OPCs) in the corpus callosum, leading to improvements in myelin repair and working memory. Mechanistically, these neuromodulatory techniques exert a therapeutic effect by inducing the secretion of Wnt2 from activated neuronal axons, which acts on oligodendrocyte precursor cells and drives oligodendrogenesis and myelination. Thus, this study suggests that neuromodulation is a promising strategy for directing myelin repair and cognitive recovery through adaptive myelination in the context of ischemic WMI.
Collapse
Affiliation(s)
- Shiji Deng
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Shu Shu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Lili Zhai
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Shengnan Xia
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Xiang Cao
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Huiya Li
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Xinyu Bao
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Pinyi Liu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Yun Xu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjing210008China
- Jiangsu Provincial Key Discipline of NeurologyNanjing210008China
- Nanjing Neurology Medical CenterNanjing210008China
| |
Collapse
|
12
|
Zhao X, Zhang S, Sanders AR, Duan J. Brain Lipids and Lipid Droplet Dysregulation in Alzheimer's Disease and Neuropsychiatric Disorders. Complex Psychiatry 2023; 9:154-171. [PMID: 38058955 PMCID: PMC10697751 DOI: 10.1159/000535131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Background Lipids are essential components of the structure and for the function of brain cells. The intricate balance of lipids, including phospholipids, glycolipids, cholesterol, cholesterol ester, and triglycerides, is crucial for maintaining normal brain function. The roles of lipids and lipid droplets and their relevance to neurodegenerative and neuropsychiatric disorders (NPDs) remain largely unknown. Summary Here, we reviewed the basic role of lipid components as well as a specific lipid organelle, lipid droplets, in brain function, highlighting the potential impact of altered lipid metabolism in the pathogenesis of Alzheimer's disease (AD) and NDPs. Key Messages Brain lipid dysregulation plays a pivotal role in the pathogenesis and progression of neurodegenerative and NPDs including AD and schizophrenia. Understanding the cell type-specific mechanisms of lipid dysregulation in these diseases is crucial for identifying better diagnostic biomarkers and for developing therapeutic strategies aiming at restoring lipid homeostasis.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Deciphering the Genetic Crosstalk between Microglia and Oligodendrocyte Precursor Cells during Demyelination and Remyelination Using Transcriptomic Data. Int J Mol Sci 2022; 23:ijms232314868. [PMID: 36499195 PMCID: PMC9738937 DOI: 10.3390/ijms232314868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Demyelinating disorders show impaired remyelination due to failure in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature myelin-forming oligodendrocytes, a process driven by microglia-OPC crosstalk. Through conducting a transcriptomic analysis of microarray studies on the demyelination-remyelination cuprizone model and using human samples of multiple sclerosis (MS), we identified molecules involved in this crosstalk. Differentially expressed genes (DEGs) of specific regions/cell types were detected in GEO transcriptomic raw data after cuprizone treatment and in MS samples, followed by functional analysis with GO terms and WikiPathways. Additionally, microglia-OPC crosstalk between microglia ligands, OPC receptors and target genes was examined with the NicheNet model. We identified 108 and 166 DEGs in the demyelinated corpus callosum (CC) at 2 and 4 weeks of cuprizone treatment; 427 and 355 DEGs in the remyelinated (4 weeks of cuprizone treatment + 14 days of normal diet) compared to 2- and 4-week demyelinated CC; 252 DEGs in MS samples and 2730 and 12 DEGs in OPC and microglia of 4-week demyelinated CC. At this time point, we found 95 common DEGs in the CC and OPCs, and one common DEG in microglia and OPCs, mostly associated with myelin and lipid metabolism. Crosstalk analysis identified 47 microglia ligands, 43 OPC receptors and 115 OPC target genes, all differentially expressed in cuprizone-treated samples and associated with myelination. Our differential expression pipeline identified demyelination/remyelination transcriptomic biomarkers in studies using diverse platforms and cell types/tissues. Cellular crosstalk analysis yielded novel markers of microglia ligands, OPC receptors and target genes.
Collapse
|
14
|
Zhao Y, Zhu W, Wan T, Zhang X, Li Y, Huang Z, Xu P, Huang K, Ye R, Xie Y, Liu X. Vascular endothelium deploys caveolin-1 to regulate oligodendrogenesis after chronic cerebral ischemia in mice. Nat Commun 2022; 13:6813. [PMID: 36357389 PMCID: PMC9649811 DOI: 10.1038/s41467-022-34293-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Oligovascular coupling contributes to white matter vascular homeostasis. However, little is known about the effects of oligovascular interaction on oligodendrocyte precursor cell (OPC) changes in chronic cerebral ischemia. Here, using a mouse of bilateral carotid artery stenosis, we show a gradual accumulation of OPCs on vasculature with impaired oligodendrogenesis. Mechanistically, chronic ischemia induces a substantial loss of endothelial caveolin-1 (Cav-1), leading to vascular secretion of heat shock protein 90α (HSP90α). Endothelial-specific over-expression of Cav-1 or genetic knockdown of vascular HSP90α restores normal vascular-OPC interaction, promotes oligodendrogenesis and attenuates ischemic myelin damage. miR-3074(-1)-3p is identified as a direct inducer of Cav-1 reduction in mice and humans. Endothelial uptake of nanoparticle-antagomir improves myelin damage and cognitive deficits dependent on Cav-1. In summary, our findings demonstrate that vascular abnormality may compromise oligodendrogenesis and myelin regeneration through endothelial Cav-1, which may provide an intercellular mechanism in ischemic demyelination.
Collapse
Affiliation(s)
- Ying Zhao
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Wusheng Zhu
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Ting Wan
- grid.233520.50000 0004 1761 4404Department of Neurology, Xijing Hospital, Air Force Medical University, Xi’an, Shanxi 710032 China
| | - Xiaohao Zhang
- grid.89957.3a0000 0000 9255 8984Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000 China
| | - Yunzi Li
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Zhenqian Huang
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Pengfei Xu
- grid.59053.3a0000000121679639Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036 Anhui China
| | - Kangmo Huang
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Ruidong Ye
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Yi Xie
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China
| | - Xinfeng Liu
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000 China ,grid.59053.3a0000000121679639Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036 Anhui China
| |
Collapse
|
15
|
Zhou Z, Ma Y, Xu T, Wu S, Yang GY, Ding J, Wang X. Deeper cerebral hypoperfusion leads to spatial cognitive impairment in mice. Stroke Vasc Neurol 2022; 7:527-533. [PMID: 35817499 PMCID: PMC9811541 DOI: 10.1136/svn-2022-001594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second-leading cause of dementia worldwide, which is caused by cerebrovascular diseases or relevant risk factors. However, there are no appropriate animal models, which can be used to study changes of neuropathology in the human VCI. To better understand the development of VCI, we modified three mouse models of chronical vascular diseases, and further compared the advantage and disadvantage of these models. We hope to establish a more suitable mouse model mimicking VCI in human beings. METHODS Adult male C57/BL6 mice (n=98) were used and animals underwent transient bilateral common carotid arteries occlusion (tBCCAO), or bilateral common carotid artery stenosis (BCAS), or right unilateral common carotid artery occlusion, respectively. Haemodynamic changes of surface cerebral blood flow (CBF) were examined up to 4 weeks. Spatial cognitive impairment was evaluated to determine the consequence of chronic cerebral ischaemia. RESULTS These mouse models showed different extents of CBF reduction and spatial reference memory impairment from 1 week up to 4 weeks postoperation compared with the control group (p<0.05). We found that (1) bilaterally ligation of common carotid artery caused decrease of 90% CBF in C57/BL6 mice (p<0.05) and caused acute instead of prolonged impairment of spatial reference memory (p<0.05); (2) unilateral ligation of common carotid artery did not cause severe ipsilateral ischaemia as seen in the tBCCAO mice and caused minor but significant spatial reference memory disturbance (p<0.05); and (3) 20% decrease in the bilateral CBF did not cause spatial reference memory impairment 4 weeks postoperation (p>0.05), while 30% decrease in bilateral or unilateral CBF led to significant memory disturbance in mice (p<0.05). CONCLUSION We demonstrated that BCAS using 0.16/0.18 mm microcoils is an alternative VCI mouse model when studying the mechanism and developing therapy of VCI.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tongtong Xu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China,Department of the State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Cheng GWY, Mok KKS, Yeung SHS, Kofler J, Herrup K, Tse KH. Apolipoprotein E ε4 Mediates Myelin Breakdown by Targeting Oligodendrocytes in Sporadic Alzheimer Disease. J Neuropathol Exp Neurol 2022; 81:717-730. [PMID: 35779013 DOI: 10.1093/jnen/nlac054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
White matter degradation in the frontal lobe is one of the earliest detectable changes in aging and Alzheimer disease. The ε4 allele of apolipoprotein E (APOE4) is strongly associated with such myelin pathology but the underlying cellular mechanisms remain obscure. We hypothesized that, as a lipid transporter, APOE4 directly triggers pathology in the cholesterol-rich myelin sheath independent of AD pathology. To test this, we performed immunohistochemistry on brain tissues from healthy controls, sporadic, and familial Alzheimer disease subjects. While myelin basic protein expression was largely unchanged, in frontal cortex the number of oligodendrocytes (OLs) was significantly reduced in APOE4 brains independent of their Braak stage or NIA-RI criteria. This high vulnerability of OLs was confirmed in humanized APOE3 or APOE4 transgenic mice. A gradual decline of OL numbers was found in the aging brain without associated neuronal loss. Importantly, the application of lipidated human APOE4, but not APOE3, proteins significantly reduced the formation of myelinating OL in primary cell culture derived from Apoe-knockout mice, especially in cholesterol-depleted conditions. Our findings suggest that the disruption of myelination in APOE4 carriers may represent a direct OL pathology, rather than an indirect consequence of amyloid plaque formation or neuronal loss.
Collapse
Affiliation(s)
- Gerald Wai-Yeung Cheng
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Kingston King-Shi Mok
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Sunny Hoi-Sang Yeung
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
17
|
Wan T, Zhu W, Zhao Y, Zhang X, Ye R, Zuo M, Xu P, Huang Z, Zhang C, Xie Y, Liu X. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat Commun 2022; 13:1134. [PMID: 35241660 PMCID: PMC8894352 DOI: 10.1038/s41467-022-28777-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/11/2022] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke can cause secondary myelin damage in the white matter distal to the primary injury site. The contribution of astrocytes during secondary demyelination and the underlying mechanisms are unclear. Here, using a mouse of distal middle cerebral artery occlusion, we show that lipocalin-2 (LCN2), enriched in reactive astrocytes, expression increases in nonischemic areas of the corpus callosum upon injury. LCN2-expressing astrocytes acquire a phagocytic phenotype and are able to uptake myelin. Myelin removal is impaired in Lcn2−/− astrocytes. Inducing re-expression of truncated LCN2(Δ2–20) in astrocytes restores phagocytosis and leads to progressive demyelination in Lcn2−/− mice. Co-immunoprecipitation experiments show that LCN2 binds to low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. Knockdown of Lrp1 reduces LCN2-induced myelin engulfment by astrocytes and reduces demyelination. Altogether, our findings suggest that LCN2/LRP1 regulates astrocyte-mediated myelin phagocytosis in a mouse model of ischemic stroke. Ischemic stroke can cause secondary demyelination. Whether phagocytic astrocytes can contribute to such demyelination is unclear. Here, the authors show that lipocalin-2 (LCN-2) expression increased in astrocytes upon injury. LCN-2 expressing astrocytes acquire a phagocytic phenotype and contribute to secondary demyelination in a mouse model of ischemic stroke.
Collapse
Affiliation(s)
- Ting Wan
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Xiaohao Zhang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Meng Zuo
- Department of Neurology, Southwest Hospital and the First Affiliated Hospital, Army Medical University, Chongqing, 400000, China
| | - Pengfei Xu
- Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Zhenqian Huang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China. .,Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China.
| |
Collapse
|
18
|
Abstract
Herpes simplex virus 1 (HSV-1) infects eye corneal tissues leading to herpetic stromal keratitis (HSK), which is one of the leading causes of blindness. Here in our study, we found that 6-thioguanine (6-TG), a once clinically approved medication for child acute myelogenous leukemia, inhibited multiple strains of HSV-1 infection in vitro and in vivo. 6-TG is more potent than acyclovir (ACV) and ganciclovir (GCV), with the 50% inhibitory concentration (IC50) of 6-TG at 0.104 μM with high stimulation index (SI) (SI = 6,475.48) compared to the IC50 of ACV at 1.253 μM and the IC50 of GCV at 1.257 μM. In addition, 6-TG at 500 μM topically applied to the eyes with HSV-1 infection significantly inhibits HSV-1 replication, alleviates virus-induced HSK pathogenesis, and improves eye conditions. More importantly, 6-TG is effective against ACV-resistant HSV-1 strains, including HSV-1/153 and HSV-1/blue. Knockdown of Rac1 with small interfering RNA (siRNA) negatively affected HSV-1 replication, suggesting that Rac1 facilitated HSV-1 replication. Following HSV-1 infection of human corneal epithelial cells (HCECs), endogenous Rac1 activity was upregulated by glutathione S-transferase (GST) pulldown assay. We further found that Rac1 was highly expressed in the corneal tissue of HSK patients compared to normal individuals. Mechanistic study showed that 6-TG inhibited HSV-1 replication by targeting Rac1 activity in HSV-1 infected cells, and the Rac1 is critical in the pathogenesis of HSK. Our results indicated that 6-TG is a promising therapeutic molecule for the treatment of HSK. IMPORTANCE We reported the discovery of 6-TG inhibition of HSV-1 infection and its inhibitory roles in HSK both in vitro and in vivo. 6-TG was shown to possess at least 10× more potent inhibitory activity against HSV-1 than ACV and GCV and, more importantly, inhibit ACV/GCV-resistant mutant viruses. Animal model studies showed that gel-formulated 6-TG topically applied to eyes locally infected with HSV-1 could significantly inhibit HSV-1 replication, alleviate virus-induced HSK pathogenesis, and improve eye conditions. Further study showed that HSV-1 infection upregulated Rac1 expression, and knockdown of Rac1 using siRNA markedly restricted HSV-1 replication, suggesting that Rac1 is required for HSV-1 replication. In addition, we also documented that Rac1 is highly expressed in corneal tissues from HSK patients, indicating that Rac1 is associated with HSK pathogenesis. In view of the high potency of 6-TG, low cytotoxicity, targeting a distinct therapeutic target, we suggest that 6-TG is a potential candidate for development as a therapeutic agent for HSK therapy.
Collapse
|
19
|
Huang S, Chen T, Suo Q, Shi R, Khan H, Ma Y, Tang Y, Yang GY, Zhang Z. BK Channel-Mediated Microglial Phagocytosis Alleviates Neurological Deficit After Ischemic Stroke. Front Cell Neurosci 2021; 15:683769. [PMID: 34276309 PMCID: PMC8281043 DOI: 10.3389/fncel.2021.683769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Microglial phagocytosis benefits neurological recovery after stroke. Large-conductance Ca2+-activated K+ currents are expressed in activated microglia, and BK channel knockout aggravates cerebral ischemic injury. However, the effect of BK channels on microglial phagocytosis after ischemic stroke remains unknown. Here, we explored whether BK channel activation is beneficial for neurological outcomes through microglial phagocytosis after ischemic stroke. ICR mice after transient middle cerebral artery occlusion (tMCAO) were treated with dimethyl sulfoxide (DMSO), BK channel activator NS19504, and inhibitor Paxilline. The results showed a decrease in BK channel expression after tMCAO. BK channel activator NS19504 alleviates neurological deficit after experimental modeling of tMCAO in mice compared to the control. Furthermore, we treated primary microglia with DMSO, NS19504, and Paxilline after oxygen glucose deprivation (OGD). NS19504 promoted primary microglial phagocytosing fluorescent beads and neuronal debris, which reduced neuronal apoptosis after stroke. These effects could be reversed by BK channel inhibitor Paxilline. Finally, NS19504 increased relative phosphorylated extracellular signal-regulated kinase 1/2 expression compared to the Paxilline group at the third day after stroke. Our findings indicate that microglial BK channels are a potential target for acute stage of ischemic stroke therapy.
Collapse
Affiliation(s)
- Shuxian Huang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Suo
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Haroon Khan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|