1
|
Deng X, Qiu Z, Chen X, Liu J, Wang X, Li J, Zhang J, Cui X, Fu Y, Jiang M. Exploring the potential mechanism of ginsenoside Rg1 to regulate ferroptosis in Alzheimer's disease based on network pharmacology. Eur J Pharmacol 2024; 979:176859. [PMID: 39067563 DOI: 10.1016/j.ejphar.2024.176859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES To explore the pathogenesis of Alzheimer's disease (AD), the potential targets and signaling pathways of ginsenoside Rg1 against AD were investigated by network pharmacology. METHODS Ginsenoside Rg1 targets were identified through PubChem, PharmMapper, and Uniprot databases, while the GeneCards database was used to examine the respective targets of amyloid precursor protein (APP) and AD. Then, the common targets between ginsenoside Rg1 and APP were explored by the Venny tool, the interaction network diagram between the active components and the targets was built via Cytoscape software, as well as GO enrichment and KEGG pathway annotation analysis were performed. Furthermore, genes associated with ferroptosis were found by the GeneCards and FerrDb databases. Besides, the connection among ginsenoside Rg1, APP, ferroptosis, and AD was predicted and analyzed. Finally, the effects of ginsenosides Rg1 and liproxstain-1 on the proliferation and differentiation of APP/PS1 mice were evaluated by immunohistochemistry. RESULTS Ginsenoside Rg1, APP, ferroptosis, and AD had 12 hub genes. GO enrichment and KEGG pathway annotation analysis showed that EGFR, SRC, protein hydrolysis, protein phosphorylation, the Relaxin pathway, and the FoxO signaling pathway play an important role in the potential mechanism of ginsenoside Rg1's under regulation of ferroptosis anti-AD through the modulation of APP-related signaling pathways. The APP/PS1 mice experiment verified that ginsenosides Rg1 and liproxstain-1 can promote the proliferation and differentiation. CONCLUSION Ginsenoside Rg1, APP and ferroptosis may act on EGFR, SRC, the Relaxin and FoxO signaling pathways to regulate protein metabolism, protein phosphorylation and other pathways to improve AD symptoms.
Collapse
Affiliation(s)
- Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaoshuai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jiangxiu Liu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaowei Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jie Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jiankai Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| | - Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
2
|
Rodríguez-Martín M, Báez-Flores J, Ribes V, Isidoro-García M, Lacal J, Prieto-Matos P. Non-Mammalian Models for Understanding Neurological Defects in RASopathies. Biomedicines 2024; 12:841. [PMID: 38672195 PMCID: PMC11048513 DOI: 10.3390/biomedicines12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
RASopathies, a group of neurodevelopmental congenital disorders stemming from mutations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies manifest as abnormalities across multiple organ systems, with a pronounced impact on the central and peripheral nervous system. In the pursuit of understanding RASopathies' neurobiology and establishing phenotype-genotype relationships, in vivo non-mammalian models have emerged as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic models offer distinct advantages over traditional rodent models, providing a holistic perspective on complex genetics, multi-organ involvement, and the interplay among various pathway components, offering insights into the pathophysiological aspects of mutations-driven symptoms. This review underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of non-mammalian models in serving as a crucial preliminary step for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Vanessa Ribes
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Pierpont EI, Bennett AM, Schoyer L, Stronach B, Anschutz A, Borrie SC, Briggs B, Burkitt-Wright E, Castel P, Cirstea IC, Draaisma F, Ellis M, Fear VS, Frone MN, Flex E, Gelb BD, Green T, Gripp KW, Khoshkhoo S, Kieran MW, Kleemann K, Klein-Tasman BP, Kontaridis MI, Kruszka P, Leoni C, Liu CZ, Merchant N, Magoulas PL, Moertel C, Prada CE, Rauen KA, Roelofs R, Rossignol R, Sevilla C, Sevilla G, Sheedy R, Stieglitz E, Sun D, Tiemens D, White F, Wingbermühle E, Wolf C, Zenker M, Andelfinger G. The 8th International RASopathies Symposium: Expanding research and care practice through global collaboration and advocacy. Am J Med Genet A 2024; 194:e63477. [PMID: 37969032 PMCID: PMC10939912 DOI: 10.1002/ajmg.a.63477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarah C Borrie
- KU Leuven, Laboratory for the Research of Neurodegenerative Diseases
| | - Benjamin Briggs
- School of Medicine, Uniformed Services University of the Health Sciences
| | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and University of Manchester, Manchester, UK
| | - Pau Castel
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine
| | - Ion C Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University
- Institute of Applied Physiology, Ulm University
| | - Fieke Draaisma
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children’s Hospital
| | | | - Vanessa S. Fear
- Translational Genetics, Precision Health, Telethon Kids Institute, The University of Western Australia
| | - Megan N. Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Instituo Superiore di Sanità
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Karen W. Gripp
- Division of Medical Genetics, Department of Pediatrics, Nemours Children’s Hospital
| | - Sattar Khoshkhoo
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School
| | | | - Karolin Kleemann
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen
- German Center for Cardiovascular Research (DZHK), partner site Göttingen
| | | | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York, USA
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A.Gemelli, IRCCS, Rome, Italy
| | - Clifford Z. Liu
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine
| | | | - Pilar L. Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children’s Hospital
| | | | - Carlos E. Prada
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children’s Hospital of Chicago
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Katherine A. Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis
| | - Renée Roelofs
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | | | | | | | | | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children’s Hospital, University of California
| | - Daochun Sun
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center
| | - Dagmar Tiemens
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children’s Hospital
| | - Forest White
- Department of Biological Engineering, Massachusetts Institute of Technology
| | - Ellen Wingbermühle
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | - Cordula Wolf
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technical University Munich
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg
| | - Gregor Andelfinger
- Department of Anatomy and Cell Biology, McGill School of Biomedical Sciences
| |
Collapse
|
4
|
Saint-Laurent C, Mazeyrie L, Yart A, Edouard T. Novel therapeutic perspectives in Noonan syndrome and RASopathies. Eur J Pediatr 2024; 183:1011-1019. [PMID: 37863846 PMCID: PMC10951041 DOI: 10.1007/s00431-023-05263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Noonan syndrome belongs to the family of RASopathies, a group of multiple congenital anomaly disorders caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway. Collectively, all these pathogenic variants lead to increased RAS/MAPK activation. The better understanding of the molecular mechanisms underlying the different manifestations of NS and RASopathies has led to the identification of molecular targets for specific pharmacological interventions. Many specific agents (e.g. SHP2 and MEK inhibitors) have already been developed for the treatment of RAS/MAPK-driven malignancies. In addition, other molecules with the property of modulating RAS/MAPK activation are indicated in non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolemia). Conclusion: Drug repositioning of these molecules represents a challenging approach to treat or prevent medical complications associated with RASopathies. What is Known: • Noonan syndrome and related disorders are caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway, resulting in increased activation of this pathway. • This group of disorders is now known as RASopathies and represents one of the largest groups of multiple congenital anomaly diseases known. What is New: • The identification of pathophysiological mechanisms provides new insights into the development of specific therapeutic strategies, in particular treatment aimed at reducing RAS/MAPK hyperactivation. • Drug repositioning of specific agents already developed for the treatment of malignant (e.g. SHP2 and MEK inhibitors) or non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolaemia) represents a challenging approach to the treatment of RASopathies.
Collapse
Affiliation(s)
- Céline Saint-Laurent
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France
| | - Laurène Mazeyrie
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Armelle Yart
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Thomas Edouard
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France.
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
5
|
Manoli I, Sysol JR, Head PE, Epping MW, Gavrilova O, Crocker MK, Sloan JL, Koutsoukos SA, Wang C, Ktena YP, Mendelson S, Pass AR, Zerfas PM, Hoffmann V, Vernon HJ, Fletcher LA, Reynolds JC, Tsokos MG, Stratakis CA, Voss SD, Chen KY, Brown RJ, Hamosh A, Berry GT, Chen XS, Yanovski JA, Venditti CP. Lipodystrophy in methylmalonic acidemia associated with elevated FGF21 and abnormal methylmalonylation. JCI Insight 2024; 9:e174097. [PMID: 38271099 DOI: 10.1172/jci.insight.174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
A distinct adipose tissue distribution pattern was observed in patients with methylmalonyl-CoA mutase deficiency, an inborn error of branched-chain amino acid (BCAA) metabolism, characterized by centripetal obesity with proximal upper and lower extremity fat deposition and paucity of visceral fat, that resembles familial multiple lipomatosis syndrome. To explore brown and white fat physiology in methylmalonic acidemia (MMA), body composition, adipokines, and inflammatory markers were assessed in 46 patients with MMA and 99 matched controls. Fibroblast growth factor 21 levels were associated with acyl-CoA accretion, aberrant methylmalonylation in adipose tissue, and an attenuated inflammatory cytokine profile. In parallel, brown and white fat were examined in a liver-specific transgenic MMA mouse model (Mmut-/- TgINS-Alb-Mmut). The MMA mice exhibited abnormal nonshivering thermogenesis with whitened brown fat and had an ineffective transcriptional response to cold stress. Treatment of the MMA mice with bezafibrates led to clinical improvement with beiging of subcutaneous fat depots, which resembled the distribution seen in the patients. These studies defined what we believe to be a novel lipodystrophy phenotype in patients with defects in the terminal steps of BCAA oxidation and demonstrated that beiging of subcutaneous adipose tissue in MMA could readily be induced with small molecules.
Collapse
Affiliation(s)
- Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute
| | - Justin R Sysol
- Metabolic Medicine Branch, National Human Genome Research Institute
| | | | | | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Melissa K Crocker
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development; and
| | - Jennifer L Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute
| | | | - Cindy Wang
- Metabolic Medicine Branch, National Human Genome Research Institute
| | - Yiouli P Ktena
- Metabolic Medicine Branch, National Human Genome Research Institute
| | - Sophia Mendelson
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development; and
| | - Alexandra R Pass
- Metabolic Medicine Branch, National Human Genome Research Institute
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, NIH, Bethesda, Maryland, USA
| | - Victoria Hoffmann
- Office of Research Services, Division of Veterinary Resources, NIH, Bethesda, Maryland, USA
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Laura A Fletcher
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | | | - Maria G Tsokos
- Ultrastructural Pathology Section, Center for Cancer Research; and
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Rebecca J Brown
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Ada Hamosh
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoyuan Shawn Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development; and
| | | |
Collapse
|
6
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
7
|
Papadopoulou A, Bountouvi E. Skeletal defects and bone metabolism in Noonan, Costello and cardio-facio-cutaneous syndromes. Front Endocrinol (Lausanne) 2023; 14:1231828. [PMID: 37964950 PMCID: PMC10641803 DOI: 10.3389/fendo.2023.1231828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Noonan, Costello and Cardio-facio-cutaneous syndromes belong to a group of disorders named RASopathies due to their common pathogenetic origin that lies on the Ras/MAPK signaling pathway. Genetics has eased, at least in part, the distinction of these entities as they are presented with overlapping clinical features which, sometimes, become more pronounced with age. Distinctive face, cardiac and skeletal defects are among the primary abnormalities seen in these patients. Skeletal dysmorphisms range from mild to severe and may include anterior chest wall anomalies, scoliosis, kyphosis, short stature, hand anomalies, muscle weakness, osteopenia or/and osteoporosis. Patients usually have increased serum concentrations of bone resorption markers, while markers of bone formation are within normal range. The causative molecular defects encompass the members of the Ras/MAPK/ERK pathway and the adjacent cascades, important for the maintenance of normal bone homeostasis. It has been suggested that modulation of the expression of specific molecules involved in the processes of bone remodeling may affect the osteogenic fate decision, potentially, bringing out new pharmaceutical targets. Currently, the laboratory imprint of bone metabolism on the clinical picture of the affected individuals is not clear, maybe due to the rarity of these syndromes, the small number of the recruited patients and the methods used for the description of their clinical and biochemical profiles.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Clinical Biochemistry, University General Hospital “Attikon”, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
8
|
Wang X, Tan X, Zhang J, Wu J, Shi H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun Signal 2023; 21:200. [PMID: 37580745 PMCID: PMC10424420 DOI: 10.1186/s12964-023-01170-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/20/2023] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis, a newform of programmed cell death, driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes and is extremely dependent on iron ions, which is differs characteristics from traditional cell death has attracted greater attention. Based on the curiosity of this new form of regulated cell death, there has a tremendous progress in the field of mechanistic understanding of ferroptosis recent years. Ferroptosis is closely associated with the development of many diseases and involved in many diseases related signaling pathways. Not only a variety of oncoproteins and tumor suppressors can regulate ferroptosis, but multiple oncogenic signaling pathways can also have a regulatory effect on ferroptosis. Ferroptosis results in the accumulation of large amounts of lipid peroxides thus involving the onset of oxidative stress and energy stress responses. The MAPK pathway plays a critical role in oxidative stress and AMPK acts as a sensor of cellular energy and is involved in the regulation of the energy stress response. Moreover, activation of AMPK can induce the occurrence of autophagy-dependent ferroptosis and p53-activated ferroptosis. In recent years, there have been new advances in the study of molecular mechanisms related to the regulation of ferroptosis by both pathways. In this review, we will summarize the molecular mechanisms by which the MAPK-AMPK signaling pathway regulates ferroptosis. Meanwhile, we sorted out the mysterious relationship between MAPK and AMPK, described the crosstalk among ferroptosis and MAPK-AMPK signaling pathways, and summarized the relevant ferroptosis inducers targeting this regulatory network. This will provide a new field for future research on ferroptosis mechanisms and provide a new vision for cancer treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Jinping Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jiaping Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hongjuan Shi
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
9
|
Tamburrino F, Mazzanti L, Scarano E, Gibertoni D, Sirolli M, Zioutas M, Schiavariello C, Perri A, Mantovani A, Rossi C, Tartaglia M, Pession A. Lipid profile in Noonan syndrome and related disorders: trend by age, sex and genotype. Front Endocrinol (Lausanne) 2023; 14:1209339. [PMID: 37588986 PMCID: PMC10425765 DOI: 10.3389/fendo.2023.1209339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Background RASopathies are developmental disorders caused by dysregulation of the RAS-MAPK signalling pathway, which contributes to the modulation of multiple extracellular signals, including hormones and growth factors regulating energetic metabolism, including lipid synthesis, storage, and degradation. Subjects and methods We evaluated the body composition and lipid profiles of a single-centre cohort of 93 patients with a molecularly confirmed diagnosis of RASopathy by assessing height, BMI, and total cholesterol, HDL, triglycerides, apolipoprotein, fasting glucose, and insulin levels, in the context of a cross sectional and longitudinal study. We specifically investigated and compared anthropometric and haematochemistry data between the Noonan syndrome (NS) and Mazzanti syndrome (NS/LAH) groups. Results At the first evaluation (9.5 ± 6.2 years), reduced growth (-1.80 ± 1.07 DS) was associated with a slightly reduced BMI (-0.34 DS ± 1.15 DS). Lipid profiling documented low total cholesterol levels (< 5th percentile) in 42.2% of the NS group; in particular, in 48.9% of PTPN11 patients and in 28.6% of NS/LAH patients compared to the general population, with a significant difference between males and females. A high proportion of patients had HDL levels lower than the 26th percentile, when compared to the age- and sex-matched general population. Triglycerides showed an increasing trend with age only in NS females. Genotype-phenotype correlations were also evident, with particularly reduced total cholesterol in about 50% of patients with PTPN11 mutations with LDL-C and HDL-C tending to decrease during puberty. Similarly, apolipoprotein A1 and apolipoprotein B deficits were documented, with differences in prevalence associated with the genotype for apolipoprotein A1. Fasting glucose levels and HOMA-IR were within the normal range. Conclusion The present findings document an unfavourable lipid profile in subjects with NS, in particular PTPN11 mutated patients, and NS/LAH. Further studies are required to delineate the dysregulation of lipid metabolism in RASopathies more systematically and confirm the occurrence of previously unappreciated genotype-phenotype correlations involving the metabolic profile of these disorders.
Collapse
Affiliation(s)
- Federica Tamburrino
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | | | - Emanuela Scarano
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Dino Gibertoni
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Maria Sirolli
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Maximiliano Zioutas
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Concetta Schiavariello
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Annamaria Perri
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Alessio Mantovani
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Cesare Rossi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Andrea Pession
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Nakhaei-Rad S, Haghighi F, Bazgir F, Dahlmann J, Busley AV, Buchholzer M, Kleemann K, Schänzer A, Borchardt A, Hahn A, Kötter S, Schanze D, Anand R, Funk F, Kronenbitter AV, Scheller J, Piekorz RP, Reichert AS, Volleth M, Wolf MJ, Cirstea IC, Gelb BD, Tartaglia M, Schmitt JP, Krüger M, Kutschka I, Cyganek L, Zenker M, Kensah G, Ahmadian MR. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues. Commun Biol 2023; 6:657. [PMID: 37344639 PMCID: PMC10284840 DOI: 10.1038/s42003-023-05013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Dahlmann
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Alexandra Viktoria Busley
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karolin Kleemann
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Borchardt
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Funk
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Vera Kronenbitter
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marianne Volleth
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Matthew J Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Joachim P Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Kutschka
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany.
| | - George Kensah
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Chai CY, Maran S, Thew HY, Tan YC, Rahman NMANA, Cheng WH, Lai KS, Loh JY, Yap WS. Predicting Deleterious Non-Synonymous Single Nucleotide Polymorphisms (nsSNPs) of HRAS Gene and In Silico Evaluation of Their Structural and Functional Consequences towards Diagnosis and Prognosis of Cancer. BIOLOGY 2022; 11:1604. [PMID: 36358305 PMCID: PMC9688001 DOI: 10.3390/biology11111604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 10/19/2024]
Abstract
The Harvey rat sarcoma (HRAS) proto-oncogene belongs to the RAS family and is one of the pathogenic genes that cause cancer. Deleterious nsSNPs might have adverse consequences at the protein level. This study aimed to investigate deleterious nsSNPs in the HRAS gene in predicting structural alterations associated with mutants that disrupt normal protein-protein interactions. Functional and structural analysis was employed in analyzing the HRAS nsSNPs. Putative post-translational modification sites and the changes in protein-protein interactions, which included a variety of signal cascades, were also investigated. Five different bioinformatics tools predicted 33 nsSNPs as "pathogenic" or "harmful". Stability analysis predicted rs1554885139, rs770492627, rs1589792804, rs730880460, rs104894227, rs104894227, and rs121917759 as unstable. Protein-protein interaction analysis revealed that HRAS has a hub connecting three clusters consisting of 11 proteins, and changes in HRAS might cause signal cascades to dissociate. Furthermore, Kaplan-Meier bioinformatics analyses indicated that the HRAS gene deregulation affected the overall survival rate of patients with breast cancer, leading to prognostic significance. Thus, based on these analyses, our study suggests that the reported nsSNPs of HRAS may serve as potential targets for different proteomic studies, diagnoses, and therapeutic interventions focusing on cancer.
Collapse
Affiliation(s)
- Chuan-Yu Chai
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Hin-Yee Thew
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Yong-Chiang Tan
- School of Postgraduate Studies, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, No. 1, Jalan Menara Gading UCSI Height, Cheras, Kuala Lumpur 56000, Malaysia
| | - Wai-Sum Yap
- He & Ni Academy, Office Tower B, Northpoint Mid Valley City, Kuala Lumpur 59200, Malaysia
| |
Collapse
|
12
|
Aiyasiding X, Liao HH, Feng H, Zhang N, Lin Z, Ding W, Yan H, Zhou ZY, Tang QZ. Liquiritin Attenuates Pathological Cardiac Hypertrophy by Activating the PKA/LKB1/AMPK Pathway. Front Pharmacol 2022; 13:870699. [PMID: 35592411 PMCID: PMC9110825 DOI: 10.3389/fphar.2022.870699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Liquiritin (LQ) is one of the main flavonoids extracted from the roots of Glycyrrhiza spp., which are widely used in traditional Chinese medicine. Studies in both cellular and animal disease models have shown that LQ attenuates or prevents oxidative stress, inflammation, and apoptosis. However, the potential therapeutic effects of LQ on pressure overload-induced cardiac hypertrophy have not been so far explored. Therefore, we investigated the cardioprotective role of LQ and its underlying mechanisms in the aortic banding (AB)-induced cardiac hypertrophy mouse model. Methods and Results: Starting 3 days after AB surgery, LQ (80 mg/kg/day) was administered daily over 4 weeks. Echocardiography and pressure-volume loop analysis indicated that LQ treatment markedly improved hypertrophy-related cardiac dysfunction. Moreover, hematoxylin and eosin, picrosirius red, and TUNEL staining showed that LQ significantly inhibited cardiomyocyte hypertrophy, interstitial fibrosis, and apoptosis. Western blot assays further showed that LQ activated LKB1/AMPKα2/ACC signaling and inhibited mTORC1 phosphorylation in cardiomyocytes. Notably, LQ treatment failed to prevent cardiac dysfunction, hypertrophy, and fibrosis in AMPKα2 knockout (AMPKα2−/−) mice. However, LQ still induced LKB1 phosphorylation in AMPKα2−/− mouse hearts. In vitro experiments further demonstrated that LQ inhibited Ang II-induced hypertrophy in neonatal rat cardiomyocytes (NRCMs) by increasing cAMP levels and PKA activity. Supporting the central involvement of the cAMP/PKA/LKB1/AMPKα2 signaling pathway in the cardioprotective effects of LQ, inhibition of Ang II-induced hypertrophy and induction of LKB1 and AMPKα phosphorylation were no longer observed after inhibiting PKA activity. Conclusion: This study revealed that LQ alleviates pressure overload-induced cardiac hypertrophy in vivo and inhibits Ang II-induced cardiomyocyte hypertrophy in vitro via activating cAMP/PKA/LKB1/AMPKα2 signaling. These findings suggest that LQ might be a valuable adjunct to therapeutic approaches for treating pathological cardiac remodeling.
Collapse
Affiliation(s)
- Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|