1
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
2
|
Piekarska K, Radwan P, Tarnowska A, Wiśniewski A, Radwan M, Wilczyński JR, Malinowski A, Nowak I. ERAP, KIR, and HLA-C Profile in Recurrent Implantation Failure. Front Immunol 2021; 12:755624. [PMID: 34745129 PMCID: PMC8569704 DOI: 10.3389/fimmu.2021.755624] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/29/2023] Open
Abstract
The mother's uterine immune system is dominated by uterine natural killer (NK) cells during the first trimester of pregnancy. These cells express killer cell immunoglobulin-like receptors (KIRs) of inhibitory or activating function. Invading extravillous trophoblast cells express HLA-C molecules, and both maternal and paternal HLA-C allotypes are presented to KIRs. Endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) shape the HLA class I immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides to fit into the HLA class I groove. The inability to form the correct HLA class I complexes with the appropriate peptides may result in a lack of immune response by NK cells. The aim of this study was to investigate the role of ERAP1 and ERAP2 polymorphisms in the context of KIR and HLA-C genes in recurrent implantation failure (RIF). In addition, for the first time, we showed the results of ERAP1 and ERAP2 secretion into the peripheral blood of patients and fertile women. We tested a total of 881 women. Four hundred ninety-six females were patients who, together with their partners, participated in in vitro fertilization (IVF). A group of 385 fertile women constituted the control group. Women positive for KIR genes in the Tel AA region and HLA-C2C2 were more prevalent in the RIF group than in fertile women (p/pcorr. = 0.004/0.012, OR = 2.321). Of the ERAP polymorphisms studied, two of them (rs26653 and rs26618) appear to affect RIF susceptibility in HLA-C2-positive patients. Moreover, fertile women who gave birth in the past secreted significantly more ERAP1 than IVF women and control pregnant women (p < 0.0001 and p = 0.0005, respectively). In the case of ERAP2, the opposite result was observed; i.e., fertile women secreted far less ERAP2 than IVF patients (p = 0.0098). Patients who became pregnant after in vitro fertilization embryo transfer (IVF-ET) released far less ERAP2 than patients who miscarried (p = 0.0032). Receiver operating characteristic (ROC) analyses indicate a value of about 2.9 ng/ml of ERAP2 as a point of differentiation between patients who miscarried and those who gave birth to a healthy child. Our study indicates that both ERAP1 and ERAP2 may be involved in processes related to reproduction.
Collapse
Affiliation(s)
- Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
| | - Agnieszka Tarnowska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
- Faculty of Health Sciences, The Mazovian State University in Płock, Płock, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Łódź, Łódź, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers’ Memorial Hospital—Research Institute, Łódź, Poland
- Medical Centre Gynemed, Łódź, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
3
|
Kmiecik AM, Dzięgiel P, Podhorska-Okołów M. Nucleobindin-2/Nesfatin-1-A New Cancer Related Molecule? Int J Mol Sci 2021; 22:ijms22158313. [PMID: 34361082 PMCID: PMC8348729 DOI: 10.3390/ijms22158313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Cancer is a heterogeneous disease, and even tumors with similar clinicopathological characteristics show different biology, behavior, and treatment responses. As a result, there is an urgent need to define new prognostic and predictive markers to make treatment options more personalized. According to the latest findings, nucleobindin-2/nesfatin-1 (NUCB2/NESF-1) is an important factor in cancer development and progression. Nucleobindin-2 is a precursor protein of nesfatin-1. As NUCB2 and nesfatin-1 are colocalized in each tissue, their expression is often analyzed together as NUCB2. The metabolic function of NUCB2/NESF-1 is related to food intake, glucose metabolism, and the regulation of immune, cardiovascular and endocrine systems. Recently, it has been demonstrated that high expression of NUCB2/NESF-1 is associated with poor outcomes and promotes cell proliferation, migration, and invasion in, e.g., breast, colon, prostate, endometrial, thyroid, bladder cancers, or glioblastoma. Interestingly, nesfatin-1 is also considered an inhibitor of the proliferation of human adrenocortical carcinoma and ovarian epithelial carcinoma cells. These conflicting results make NUCB2/NESF-1 an interesting target of study in the context of cancer progression. The present review is the first to describe NUCB2/NESF-1 as a new prognostic and predictive marker in cancers.
Collapse
Affiliation(s)
- Alicja M. Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-7-1784-1365; Fax: +48-7-1784-0082
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
4
|
Skorupska A, Lenda R, Ożyhar A, Bystranowska D. The Multifaceted Nature of Nucleobindin-2 in Carcinogenesis. Int J Mol Sci 2021; 22:5687. [PMID: 34073612 PMCID: PMC8198689 DOI: 10.3390/ijms22115687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Nucb2 is a multifunctional protein associated with a variety of biological processes. Multiple studies have revealed that Nucb2, and its derivative nesfatin-1, are involved in carcinogenesis. Interestingly, the role of Nucb2/nesfatin-1 in tumorigenesis seems to be dual-both pro-metastatic and anti-metastatic. The implication of Nucb2/nesfatin-1 in carcinogenesis seems to be tissue dependent. Herein, we review the role of Nucb2/nesfatin-1 in both carcinogenesis and the apoptosis process, and we also highlight the multifaceted nature of Nucb2/nesfatin-1.
Collapse
Affiliation(s)
| | | | | | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (A.S.); (R.L.); (A.O.)
| |
Collapse
|
5
|
Saulle I, Marventano I, Saresella M, Vanetti C, Garziano M, Fenizia C, Trabattoni D, Clerici M, Biasin M. ERAPs Reduce In Vitro HIV Infection by Activating Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:1609-1617. [PMID: 33619214 DOI: 10.4049/jimmunol.2000991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
Recombinant human (rh) ERAP2-treated PBMCs are less susceptible to in vitro HIV-1 infection even when CD8+ T cells are depleted. We therefore investigated whether ERAP2 can trigger other immunocompetent cells, boosting their antiviral potential. To this end, human monocyte-derived macrophages (MDMs) differentiated from PBMCs of 15 healthy donors were in vitro HIV-1 infected in the presence/absence of 100 ng/ml of rhERAP2, rhERAP1, or rhERAP1+rhERAP2. Notably, rhERAP2 treatment resulted in a 7-fold reduction of HIV-1 replication in MDMs (p < 0.05). This antiviral activity was associated with an increased mRNA expression of CD80, IL-1β, IL-18, and TNF-α (p < 0.01 for cytokine) in in vitro ERAP2-treated HIV-1-infected MDMs and a greater release of IL-1β, TNF-α, IL-6, and IL-8 (p < 0.01 for each cytokine). The rhERAPs addition also induced the functional inflammasome activation by ASC speck formation in monocytes (p < 0.01) and in THP1-derived macrophages (p < 0.01) as well as a rise in the percentage of activated classical (CD14+CD16-HLA-DRII+CCR7+) and intermediate (CD14++CD16+HLA-DRII+CCR7+) monocytes (p < 0.02). Finally, THP-1-derived macrophages showed an increased phagocytosis following all ERAPs treatments. The discovery that ERAPs are able to trigger several antiviral mechanisms in monocyte/macrophages suggests that their anti-HIV potential is not limited to their canonical role in Ag presentation and CD8+ T cell activation. These findings pose the premise to further investigate the role of ERAPs in both innate and adaptive immunostimulatory pathways and suggest their potential use in novel preventive and therapeutic approaches against HIV-1 infection.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | | | | | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and.,Fondazione IRCCS Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy;
| |
Collapse
|
6
|
Genetic association of ERAP1 and ERAP2 with eclampsia and preeclampsia in northeastern Brazilian women. Sci Rep 2021; 11:6764. [PMID: 33762660 PMCID: PMC7990956 DOI: 10.1038/s41598-021-86240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/09/2021] [Indexed: 01/28/2023] Open
Abstract
The clinical spectrum of hypertensive disorders of pregnancy (HDP) is determined by the interplay between environmental and genetic factors, most of which remains unknown. ERAP1, ERAP2 and LNPEP genes code for multifunctional aminopeptidases involved with antigen processing and degradation of small peptides such as angiotensin II (Ang II), vasopressin and oxytocin. We aimed to test for associations between genetic variants in aminopeptidases and HDP. A total of 1282 pregnant women (normotensive controls, n = 693; preeclampsia, n = 342; chronic hypertension with superimposed preeclampsia, n = 61; eclampsia, n = 74; and HELLP syndrome, n = 112) were genotyped for variants in LNPEP (rs27300, rs38034, rs2303138), ERAP1 (rs27044, rs30187) and ERAP2 (rs2549796 rs2927609 rs11135484). We also evaluated the effect of ERAP1 rs30187 on plasma Ang II levels in an additional cohort of 65 pregnant women. The genotype C/C, in ERAP1 rs30187 variant (c.1583 T > C, p.Lys528Arg), was associated with increased risk of eclampsia (OR = 1.85, p = 0.019) whereas ERAP2 haplotype rs2549796(C)–rs2927609(C)–rs11135484(G) was associated with preeclampsia (OR = 1.96, corrected p-value = 0.01). Ang II plasma levels did not differ across rs30187 genotypic groups (p = 0.895). In conclusion, ERAP1 gene is associated with eclampsia whereas ERAP2 is associated with preeclampsia, although the mechanism by which genetic variants in ERAPs influence the risk of preeclampsia and eclampsia remain to be elucidated.
Collapse
|
7
|
Sharip A, Kunz J. Understanding the Pathogenesis of Spondyloarthritis. Biomolecules 2020; 10:biom10101461. [PMID: 33092023 PMCID: PMC7588965 DOI: 10.3390/biom10101461] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Spondyloarthritis comprises a group of inflammatory diseases of the joints and spine, with various clinical manifestations. The group includes ankylosing spondylitis, reactive arthritis, psoriatic arthritis, arthritis associated with inflammatory bowel disease, and undifferentiated spondyloarthritis. The exact etiology and pathogenesis of spondyloarthritis are still unknown, but five hypotheses explaining the pathogenesis exist. These hypotheses suggest that spondyloarthritis is caused by arthritogenic peptides, an unfolded protein response, HLA-B*27 homodimer formation, malfunctioning endoplasmic reticulum aminopeptidases, and, last but not least, gut inflammation and dysbiosis. Here we discuss the five hypotheses and the evidence supporting each. In all of these hypotheses, HLA-B*27 plays a central role. It is likely that a combination of these hypotheses, with HLA-B*27 taking center stage, will eventually explain the development of spondyloarthritis in predisposed individuals.
Collapse
MESH Headings
- Arthritis, Psoriatic/genetics
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/metabolism
- Arthritis, Psoriatic/pathology
- Arthritis, Reactive/genetics
- Arthritis, Reactive/immunology
- Arthritis, Reactive/metabolism
- Arthritis, Reactive/pathology
- HLA-B27 Antigen/genetics
- HLA-B27 Antigen/immunology
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammatory Bowel Diseases/genetics
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/pathology
- Joints/immunology
- Joints/pathology
- Spine/immunology
- Spine/pathology
- Spondylarthritis/genetics
- Spondylarthritis/immunology
- Spondylarthritis/metabolism
- Spondylarthritis/pathology
- Spondylitis, Ankylosing/genetics
- Spondylitis, Ankylosing/immunology
- Spondylitis, Ankylosing/metabolism
- Spondylitis, Ankylosing/pathology
- Unfolded Protein Response/genetics
- Unfolded Protein Response/immunology
Collapse
|
8
|
Impact of Natural Occurring ERAP1 Single Nucleotide Polymorphisms within miRNA-Binding Sites on HCMV Infection. Int J Mol Sci 2020; 21:ijms21165861. [PMID: 32824160 PMCID: PMC7461596 DOI: 10.3390/ijms21165861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that causes serious problems in people with a compromised immune system, whereas it coexists asymptomatically within the host with a healthy immune system. Like other viruses, HCMV has adopted multiples strategies to manipulate the host’s immune responses. Among them, expression of viral microRNAs (miRNAs) is one of the most intriguing. HCMV miR-UL112-5p and miR-US4-1 have been found to contribute to immune evasion by targeting the endoplasmic reticulum aminopeptidase 1 (ERAP1), a highly polymorphic key component of antigen processing. The current incomplete picture on the interplay between viral miRNAs and host immunity implies the need to better characterize the host genetic determinants. Naturally occurring single nucleotide polymorphisms (SNPs) within the miRNA binding sites of target genes may affect miRNA–target interactions. In this review, we focus on the relevance of 3′ untranslated region (3′UTR) ERAP1 SNPs within miRNA binding sites in modulating miRNA–mRNA interactions and the possible consequent individual susceptibility to HCMV infection. Moreover, we performed an in silico analysis using different bioinformatic algorithms to predict ERAP1 variants with a putative powerful biological function. This evidence provides a basis to deepen the knowledge on how 3′UTR ERAP1 variants may alter the mechanism of action of HCMV miRNAs, in order to develop targeted antiviral therapies.
Collapse
|
9
|
Revisiting TNF Receptor-Associated Periodic Syndrome (TRAPS): Current Perspectives. Int J Mol Sci 2020; 21:ijms21093263. [PMID: 32380704 PMCID: PMC7246474 DOI: 10.3390/ijms21093263] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is an autosomal dominant autoinflammatory syndrome characterized by prolonged and recurrent episodes of fever, abdominal and/or chest pain, arthralgia, myalgia, and erythematous rash. TRAPS is associated with heterozygous variants in the TNFRSF1A gene, which encodes the TNFR1 (tumor necrosis factor receptor 1) receptor. Disease-causing variants are found exclusively in the extracellular domain of TNFR1 and affect receptor structure and binding to the TNF ligand. The precise mechanism of the disease is still unclear, but it is thought that intracellular accumulation of misfolded mutant protein leads to endoplasmic reticulum stress and enhanced inflammatory responses through constitutive activation of various immune pathways. Other possible mechanisms contributing to the disease pathogenesis include defective receptor shedding, TNF-induced cell death, production of reactive oxygen species, and autophagy impairment. Patients' leucocytes are hyperresponsive to stimulation and produce elevated levels of proinflammatory cytokines. Systemic autoimmune (AA) amyloidosis is an important cause of morbidity and mortality in TRAPS. Over the last two decades, new therapies have changed the progression and outcome of the disease. In this review, we summarize clinical data from 209 patients with validated pathogenic variants reported in the literature and discuss TRAPS diagnosis, pathogenesis, and treatment options.
Collapse
|
10
|
Ma HY, Yamamoto G, Xu J, Liu X, Karin D, Kim JY, Alexandrov LB, Koyama Y, Nishio T, Benner C, Heinz S, Rosenthal SB, Liang S, Sun M, Karin G, Zhao P, Brodt P, Mckillop IH, Quehenberger O, Dennis E, Saltiel A, Tsukamoto H, Gao B, Karin M, Brenner DA, Kisseleva T. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J Hepatol 2020; 72:946-959. [PMID: 31899206 PMCID: PMC7167339 DOI: 10.1016/j.jhep.2019.12.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA. METHODS Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens. RESULTS We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra-/- and major urinary protein-urokinase-type plasminogen activator/Il-17ra-/- mice compared with wild-type mice. When the cell-specific role of IL-17RA signaling was examined, the development of HCC was decreased in both alcohol-fed Il-17raΔMΦ and Il-17raΔHep mice devoid of IL-17RA in myeloid cells and hepatocytes, but not in Il-17raΔHSC mice (deficient in IL-17RA in hepatic stellate cells). Deletion of Il-17ra in myeloid cells ameliorated tumorigenesis via suppression of pro-tumorigenic/inflammatory and pro-fibrogenic responses in alcohol-fed Il-17raΔMΦ mice. Remarkably, despite a normal inflammatory response, alcohol-fed Il-17raΔHep mice developed the fewest tumors (compared with Il-17raΔMΦ mice), with reduced steatosis and fibrosis. Steatotic IL-17RA-deficient hepatocytes downregulated the expression of Cxcl1 and other chemokines, exhibited a striking defect in tumor necrosis factor (TNF)/TNF receptor 1-dependent caspase-2-SREBP1/2-DHCR7-mediated cholesterol synthesis, and upregulated the production of antioxidant vitamin D3. The pharmacological blocking of IL-17A/Th-17 cells using anti-IL-12/IL-23 antibodies suppressed the progression of HCC (by 70%) in alcohol-fed mice, indicating that targeting IL-17 signaling might provide novel strategies for the treatment of alcohol-induced HCC. CONCLUSIONS Overall, IL-17A is a tumor-promoting cytokine, which critically regulates alcohol-induced hepatic steatosis, inflammation, fibrosis, and HCC. LAY SUMMARY IL-17A is a tumor-promoting cytokine, which critically regulates inflammatory responses in macrophages (Kupffer cells and bone-marrow-derived monocytes) and cholesterol synthesis in steatotic hepatocytes in an experimental model of alcohol-induced HCC. Therefore, IL-17A may be a potential therapeutic target for patients with alcohol-induced HCC.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA,Department of Surgery, University of California San Diego, San Diego, CA 92093, USA
| | - Gen Yamamoto
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA,Department of Surgery, University of California San Diego, San Diego, CA 92093, USA
| | - Jun Xu
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA,Department of Surgery, University of California San Diego, San Diego, CA 92093, USA
| | - Xiao Liu
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA,Department of Surgery, University of California San Diego, San Diego, CA 92093, USA
| | - Daniel Karin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Ju Youn Kim
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Yukinori Koyama
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Takahiro Nishio
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Chris Benner
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Sven Heinz
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Sara B. Rosenthal
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Shuang Liang
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Mengxi Sun
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Gabriel Karin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Peng Zhao
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Pnina Brodt
- Department of Medicine, McGill University and the McGill University Health Center, Montreal, QC H4A3J1, Canada
| | - Iain H. Mckillop
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Oswald Quehenberger
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Ed Dennis
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Alan Saltiel
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, Los Angeles, CA 90033, USA,University of Southern California, and Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - David A. Brenner
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Riahi P, Kazemnejad A, Mostafaei S, Meguro A, Mizuki N, Ashraf-Ganjouei A, Javinani A, Faezi ST, Shahram F, Mahmoudi M. ERAP1 polymorphisms interactions and their association with Behçet's disease susceptibly: Application of Model-Based Multifactor Dimension Reduction Algorithm (MB-MDR). PLoS One 2020; 15:e0227997. [PMID: 32023277 PMCID: PMC7001967 DOI: 10.1371/journal.pone.0227997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Behçet's disease (BD) is a chronic multi-systemic vasculitis with a considerable prevalence in Asian countries. There are many genes associated with a higher risk of developing BD, one of which is endoplasmic reticulum aminopeptidase-1 (ERAP1). In this study, we aimed to investigate the interactions of ERAP1 single nucleotide polymorphisms (SNPs) using a novel data mining method called Model-based multifactor dimensionality reduction (MB-MDR). METHODS We have included 748 BD patients and 776 healthy controls. A peripheral blood sample was collected, and eleven SNPs were assessed. Furthermore, we have applied the MB-MDR method to evaluate the interactions of ERAP1 gene polymorphisms. RESULTS The TT genotype of rs1065407 had a synergistic effect on BD susceptibility, considering the significant main effect. In the second order of interactions, CC genotype of rs2287987 and GG genotype of rs1065407 had the most prominent synergistic effect (β = 12.74). The mentioned genotypes also had significant interactions with CC genotype of rs26653 and TT genotype of rs30187 in the third-order (β = 12.74 and β = 12.73, respectively). CONCLUSION To the best of our knowledge, this is the first study investigating the interaction of a particular gene's SNPs in BD patients by applying a novel data mining method. However, future studies investigating the interactions of various genes could clarify this issue.
Collapse
Affiliation(s)
- Parisa Riahi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: (MM); (AK)
| | - Shayan Mostafaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Amir Ashraf-Ganjouei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Javinani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Shahram
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (MM); (AK)
| |
Collapse
|
12
|
Dimopoulou C, Lundgren JD, Sundal J, Ullum H, Aukrust P, Nielsen FC, Marvig RL. Variant in ERAP1 promoter region is associated with low expression in a patient with a Behçet-like MHC-I-opathy. J Hum Genet 2019; 65:325-335. [PMID: 31873220 DOI: 10.1038/s10038-019-0709-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 11/09/2022]
Abstract
Behçet disease (BD) is an immune-mediated disease. The cause of BD remains unknown, but the existence of multiple pathological pathways is suspected, including different genetic factors. Polymorphisms in ERAP1 gene have been associated with an increased risk of BD. However, while current BD-associated ERAP1 variants are suggested to contribute to disease by altering the activity of the encoded protein, there is no knowledge of variants that alter the expression level of ERAP1, despite previous associations between ERAP1 expression and BD. Here, we used whole-exome sequencing of a patient with a Behçet-like MHC-I-opathy to identify that the patient, unlike its healthy parents, was homozygous for a rare 1-bp deletion, rs140416843, in the promoter region of ERAP1. rs140416843 has not previously been associated with disease, but is linked to ERAP1 haplotype Hap10 which is associated with BD. The expression of ERAP1 by both RT-qPCR and RNA sequencing showed that ERAP1 mRNA expression correlated with the zygosity for the identified deletion and was decreased in comparison to a healthy cohort. In conclusion, we diagnosed the patient as having BD, and hypothesize that rs140416843-mediated changes in ERAP1 expression play a causative role in BD and that this risk factor is contributing to the association between Hap10 and BD. This is the first report to identify a variant that may cause BD by altering the expression of ERAP1, and our findings suggest that downregulation of ERAP1 expression can serve as a diagnostic marker for BD.
Collapse
Affiliation(s)
- Chrysoula Dimopoulou
- Centre of Excellence for Health, Immunity and Infection (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens D Lundgren
- Centre of Excellence for Health, Immunity and Infection (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jon Sundal
- Department of Infectious Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Insitute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
13
|
Marinaro F, Gómez-Serrano M, Jorge I, Silla-Castro JC, Vázquez J, Sánchez-Margallo FM, Blázquez R, López E, Álvarez V, Casado JG. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front Bioeng Biotechnol 2019; 7:431. [PMID: 31921832 PMCID: PMC6932983 DOI: 10.3389/fbioe.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial-derived Mesenchymal Stem Cells (endMSCs) are involved in the regeneration and remodeling of human endometrium, being considered one of the most promising candidates for stem cell-based therapies. Their therapeutic effects have been found to be mediated by extracellular vesicles (EV-endMSCs) with pro-angiogenic, anti-apoptotic, and immunomodulatory effects. Based on that, the main goal of this study was to characterize the proteome and microRNAome of these EV-endMSCs by proteomics and transcriptomics approaches. Additionally, we hypothesized that inflammatory priming of endMSCs may contribute to modify the therapeutic potential of these vesicles. High-throughput proteomics revealed that 617 proteins were functionally annotated as Extracellular exosome (GO:0070062), corresponding to the 70% of the EV-endMSC proteome. Bioinformatics analyses allowed us to identify that these proteins were involved in adaptive/innate immune response, complement activation, antigen processing/presentation, negative regulation of apoptosis, and different signaling pathways, among others. Of note, multiplexed quantitative proteomics and Systems Biology analyses showed that IFNγ priming significantly modulated the protein profile of these vesicles. As expected, proteins involved in antigen processing and presentation were significantly increased. Interestingly, immunomodulatory proteins, such as CSF1, ERAP1, or PYCARD were modified. Regarding miRNAs expression profile in EV-endMSCs, Next-Generation Sequencing (NGS) showed that the preferred site of microRNAome targeting was the nucleus (n = 371 microTargets), significantly affecting signal transduction (GO:0007165), cell proliferation (GO:0008283), and apoptotic processes (GO:0006915), among others. Interestingly, NGS analyses highlighted that several miRNAs, such as hsa-miR-150-5p or hsa-miR-196b-5p, were differentially expressed in IFNγ-primed EV-endMSCs. These miRNAs have a functional involvement in glucocorticoid receptor signaling, IL-6/8/12 signaling, and in the role of macrophages. In summary, these results allowed us to understand the complexity of the molecular networks in EV-endMSCs and their potential effects on target cells. To our knowledge, this is the first comprehensive study based on proteomic and genomic approaches to unravel the therapeutic potential of these extracellular vesicles, that may be used as immunomodulatory effectors in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Center for Tumor Biology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
14
|
Ranjit S, Wong JY, Tan JW, Sin Tay C, Lee JM, Yin Han Wong K, Pojoga LH, Brooks DL, Garza AE, Maris SA, Katayama IA, Williams JS, Rivera A, Adler GK, Williams GH, Romero JR. Sex-specific differences in endoplasmic reticulum aminopeptidase 1 modulation influence blood pressure and renin-angiotensin system responses. JCI Insight 2019; 4:129615. [PMID: 31672933 DOI: 10.1172/jci.insight.129615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
Salt sensitivity of blood pressure (SSBP) and hypertension are common, but the underlying mechanisms remain unclear. Endoplasmic reticulum aminopeptidase 1 (ERAP1) degrades angiotensin II (ANGII). We hypothesized that decreasing ERAP1 increases BP via ANGII-mediated effects on aldosterone (ALDO) production and/or renovascular function. Compared with WT littermate mice, ERAP1-deficient (ERAP1+/-) mice had increased tissue ANGII, systolic and diastolic BP, and SSBP, indicating that ERAP1 deficiency leads to volume expansion. However, the mechanisms underlying the volume expansion differed according to sex. Male ERAP1+/- mice had increased ALDO levels and normal renovascular responses to volume expansion (decreased resistive and pulsatility indices and increased glomerular volume). In contrast, female ERAP1+/- mice had normal ALDO levels but lacked normal renovascular responses. In humans, ERAP1 rs30187, a loss-of-function gene variant that reduces ANGII degradation in vitro, is associated with hypertension. In our cohort from the Hypertensive Pathotype (HyperPATH) Consortium, there was a significant dose-response association between rs30187 risk alleles and systolic and diastolic BP as well as renal plasma flow in men, but not in women. Thus, lowering ERAP1 led to volume expansion and increased BP. In males, the volume expansion was due to elevated ALDO with normal renovascular function, whereas in females the volume expansion was due to impaired renovascular function with normal ALDO levels.
Collapse
|
15
|
Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, Qiu G, Cao X, Weng X. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res 2019; 7:22. [PMID: 31666997 PMCID: PMC6804882 DOI: 10.1038/s41413-019-0057-8] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Ankylosing spondylitis (AS), a common type of spondyloarthropathy, is a chronic inflammatory autoimmune disease that mainly affects spine joints, causing severe, chronic pain; additionally, in more advanced cases, it can cause spine fusion. Significant progress in its pathophysiology and treatment has been achieved in the last decade. Immune cells and innate cytokines have been suggested to be crucial in the pathogenesis of AS, especially human leukocyte antigen (HLA)‑B27 and the interleukin‑23/17 axis. However, the pathogenesis of AS remains unclear. The current study reviewed the etiology and pathogenesis of AS, including genome-wide association studies and cytokine pathways. This study also summarized the current pharmaceutical and surgical treatment with a discussion of future potential therapies.
Collapse
Affiliation(s)
- Wei Zhu
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xuxia He
- 2Department of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Kaiyuan Cheng
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Linjie Zhang
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Di Chen
- 3Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Xiao Wang
- 4Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Guixing Qiu
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xu Cao
- 4Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Xisheng Weng
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| |
Collapse
|
16
|
Saulle I, Ibba SV, Torretta E, Vittori C, Fenizia C, Piancone F, Minisci D, Lori EM, Trabattoni D, Gelfi C, Clerici M, Biasin M. Endoplasmic Reticulum Associated Aminopeptidase 2 (ERAP2) Is Released in the Secretome of Activated MDMs and Reduces in vitro HIV-1 Infection. Front Immunol 2019; 10:1648. [PMID: 31379846 PMCID: PMC6646713 DOI: 10.3389/fimmu.2019.01648] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Haplotype-specific alternative splicing of the endoplasmic reticulum (ER) aminopeptidase type 2 (ERAP2) gene results in either full-length (FL, haplotype A) or alternatively spliced (AS, haplotype B) mRNA. HapA/HapA homozygous (HomoA) subjects show a reduced susceptibility to HIV-1 infection, probably secondary to the modulation of the antigen processing/presenting machinery. ERAP1 was recently shown to be secreted from the plasma membrane in response to activation; we investigated whether ERAP2 can be released as well and if the secreted form of this enzyme retains its antiviral function. Methods: Human monocyte derived macrophages (MDMs) were differentiated from peripheral blood mononuclear cells (PBMCs) isolated from 6 HomoA healthy controls and stimulated with IFNγ and LPS. ERAP2-FL secretion was evaluated by mass spectrometry. PBMCs (14 HomoA and 16 HomoB) and CD8-depleted PBMCs (CD8−PBMCs) (4 HomoA and 4 HomoB) were in vitro HIV-infected in the absence/presence of recombinant human ERAP2-FL (rhERAP2) protein; p24 viral antigen quantification was used to assess viral replication. IFNγ and CD69 mRNA expression, as well as the percentage of perforin-producing CD8+ T Lymphocytes, were analyzed 3 and 7-days post in vitro HIV-1-infection, respectively. The effect of rhERAP2 addition in cell cultures on T cell apoptosis, proliferation, activation, and maturation was evaluated as well on 24 h-stimulated PBMCs. Results: ERAP2 can be secreted from human MDMs in response to IFNγ/LPS stimulation. Notably, the addition of rhERAP2 to PBMC and CD8−PBMC cultures resulted in the reduction of viral replication, though these differences were statistically significant only in PBMCs (p < 0.05 in both HomoA and HomoB). This protective effect was associated with an increase in IFNγ and CD69 mRNA expression and in the percentage of perforin-expressing CD107+CD8+ cells. RhERAP2 addition also resulted in an increase in CD8+ activated lymphocyte (CD25+HLA−DRII+) and Effector Memory/Terminally differentiated CD8+ T cells ratio. Conclusions: This is the first report providing evidence for the release of ERAP2 in the secretome of immunocompetent cells. Data herein also indicate that exogenous ERAP2-FL exerts its protective function against HIV-1 infection, even in HomoB subjects who do not genetically produce it. Presumably, this defensive extracellular feature is only partially dependent on immune system modulation.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Salomè Valentina Ibba
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Enrica Torretta
- Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Cecilia Vittori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Davide Minisci
- Department of Infectious Disease, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Elisa Maria Lori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Science for Health, University of Milan, Milan, Italy.,I.R.C.C.S Orthopaedic Institute Galeazzi, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
17
|
ERAP1 allotypes shape the epitope repertoire of virus-specific CD8 + T cell responses in acute hepatitis C virus infection. J Hepatol 2019; 70:1072-1081. [PMID: 30769005 PMCID: PMC6527866 DOI: 10.1016/j.jhep.2019.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphisms are linked with human leukocyte antigen (HLA) class I-associated autoinflammatory disorders, including ankylosing spondylitis and Behçet's disease. Disease-associated ERAP1 allotypes exhibit distinct functional properties, but it remains unclear how differential peptide trimming in vivo affects the repertoire of epitopes presented to CD8+ T cells. The aim of this study was to determine the impact of ERAP1 allotypes on the virus-specific CD8+ T cell epitope repertoire in an HLA-B*27:05+ individual with acute hepatitis C virus (HCV) infection. METHODS We performed genetic and functional analyses of ERAP1 allotypes and characterized the HCV-specific CD8+ T cell repertoire at the level of fine epitope specificity and HLA class I restriction, in a patient who had acquired an HCV genotype 1a infection through a needle-stick injury. RESULTS Two hypoactive allotypic variants of ERAP1 were identified in an individual with acute HCV infection. The associated repertoire of virus-derived epitopes recognized by CD8+ T cells was uncommon in a couple of respects. Firstly, reactivity was directed away from classically immunodominant epitopes, preferentially targeting either novel or subdominant epitopes. Secondly, reactivity was biased towards longer epitopes (10-11-mers). Despite the patient exhibiting favorable prognostic indicators, these atypical immune responses failed to clear the virus and the patient developed persistent low-level infection with HCV. CONCLUSIONS ERAP1 allotypes modify the virus-specific CD8+ T cell epitope repertoire in vivo, leading to altered immunodominance patterns that may contribute to the failure of antiviral immunity after infection with HCV. LAY SUMMARY Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in antigen presentation. Genetic variants of ERAP1 (leading to distinct allotypes) are linked with specific autoinflammatory disorders, such as ankylosing spondylitis and Behçet's disease. We found that ERAP1 allotypes modified the repertoire of virus-specific CD8+ T cell epitopes in a patient with hepatitis C virus, leading to an altered pattern of immunodominance that may have contributed to the failure of antiviral immunity in this patient.
Collapse
|
18
|
Mahmoudi M, Ashraf-Ganjouei A, Javinani A, Shahram F, Meguro A, Mizuki N, Ahmadzadeh N, Jafarinejad-Farsangi S, Mostafaei S, Kavosi H, Faezi ST, Akhlaghi M, Davatchi F. Epistatic Interaction of ERAP1 and HLA-B*51 in Iranian Patients with Behçet's Disease. Sci Rep 2018; 8:17612. [PMID: 30514861 PMCID: PMC6279803 DOI: 10.1038/s41598-018-35700-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Behçet's Disease (BD) pathogenesis remains unclear, but some genetic loci and environmental factors are proposed to play a role. Here, we investigate the association of the endoplasmic reticulum aminopeptidase-1 (ERAP1) gene variants and HLA-B*51 with BD susceptibility and clinical manifestations in Iranian patients. In the study, 748 BD patients and 776 healthy individuals were included. The MGB-TaqMan Allelic Discrimination method was used to genotype 10 common missense single nucleotide polymorphisms (SNPs) and one intronic SNP in the ERAP1 gene region. We found no significant association between the 11 SNPs and BD in allelic and genotypic association tests. However, rs30187 showed the strongest association with BD in the recessive genotype model of the risk T allele in HLA-B*51 carriers. Although this became insignificant after correcting for multiple comparisons, the homozygous rs30187 risk allele genotype (TT) increased disease susceptibility in HLA-B*51 carriers in epistasis analysis, and the rs30187 TT recessive genotype showed a significant association with risk of cardiac involvement in the all patients and articular involvements in HLA-B*51 positive patients. Our findings suggest that gene-gene interactions between HLA-B*51 and ERAP1 variants is important for BD development, however, ERAP1 variants which interact with HLA-B*51 may differ among disease phenotypes or populations.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Javinani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shahram
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nooshin Ahmadzadeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Jafarinejad-Farsangi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Mostafaei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maassoumeh Akhlaghi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereydoun Davatchi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
The role of polymorphic ERAP1 in autoinflammatory disease. Biosci Rep 2018; 38:BSR20171503. [PMID: 30054427 PMCID: PMC6131210 DOI: 10.1042/bsr20171503] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/29/2023] Open
Abstract
Autoimmune and autoinflammatory conditions represent a group of disorders characterized by self-directed tissue damage due to aberrant changes in innate and adaptive immune responses. These disorders possess widely varying clinical phenotypes and etiology; however, they share a number of similarities in genetic associations and environmental influences. Whilst the pathogenic mechanisms of disease remain poorly understood, genome wide association studies (GWAS) have implicated a number of genetic loci that are shared between several autoimmune and autoinflammatory conditions. Association of particular HLA alleles with disease susceptibility represents one of the strongest genetic associations. Furthermore, recent GWAS findings reveal strong associations with single nucleotide polymorphisms in the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene and susceptibility to a number of these HLA-associated conditions. ERAP1 plays a major role in regulating the repertoire of peptides presented on HLA class I alleles at the cell surface, with the presence of single nucleotide polymorphisms in ERAP1 having a significant impact on peptide processing function and the repertoire of peptides presented. The impact of this dysfunctional peptide generation on CD8+ T-cell responses has been proposed as a mechanism of pathogenesis diseases where HLA and ERAP1 are associated. More recently, studies have highlighted a role for ERAP1 in innate immune-mediated pathways involved in inflammatory responses. Here, we discuss the role of polymorphic ERAP1 in various immune cell functions, and in the context of autoimmune and autoinflammatory disease pathogenesis.
Collapse
|
20
|
Su W, Du L, Liu S, Deng J, Cao Q, Yuan G, Kijlstra A, Yang P. ERAP1/ERAP2 and RUNX3 polymorphisms are not associated with ankylosing spondylitis susceptibility in Chinese Han. Clin Exp Immunol 2018; 193:95-102. [PMID: 29480940 PMCID: PMC6038008 DOI: 10.1111/cei.13121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that endoplasmic reticulum‐associated aminopeptidase (ERAP1/ERAP2) and runt‐related transcription factor 3 (RUNX3) gene polymorphisms are associated with AS (ankylosing spondylitis) in European Caucasians. However, contradictory results were reported in different Asian populations. The purpose of this study was to determine whether eleven candidate single nucleotide polymorphisms (SNPs) in ERAP1/ERAP2 and six in RUNX3 genes confer susceptibility to AS with or without acute anterior uveitis (AAU) [AS+AAU+ or AS+AAU–] in Chinese Han. Therefore, a case–control association study was performed in 882 AS+AAU–, 884 AS+AAU+ and 1727 healthy controls. Genotyping was performed using the iPLEXGold genotyping assay. A meta‐analysis was performed to assess the association of polymorphisms of ERAP1 with AS susceptibility in Asian populations. No association was found between SNPs of ERAP1/ERAP2/RUNX3 and susceptibility of AS with or without AAU. A case–control study between patients with human leucocyte antigen HLA‐B27‐positive and healthy controls also failed to demonstrate an association of the tested SNP with AS with or without AAU. Moreover, a meta‐analysis showed that there was no association of rs30187, rs27037, rs27980, rs27434 and rs27582 in ERAP1 with AS in Chinese Han. Taken together, 17 SNPs in ERAP1/ERAP2 and RUNX3 genes did not confer disease susceptibility to AS in Chinese Han.
Collapse
Affiliation(s)
- W Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - L Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - S Liu
- Rheumatology Department of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - J Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Q Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - G Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - A Kijlstra
- University Eye Clinic, Maastricht, Maastricht, the Netherlands
| | - P Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
21
|
Ozen G, Deniz R, Eren F, Erzik C, Unal AU, Yavuz S, Aydin SZ, Inanc N, Direskeneli H, Atagunduz P. Association of ERAP1, IL23R and PTGER4 Polymorphisms with Radiographic Severity of Ankylosing Spondylitis. Open Rheumatol J 2017; 11:1-9. [PMID: 28400866 PMCID: PMC5366379 DOI: 10.2174/1874312901711010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Radiographic severity of ankylosing spondylitis (AS) shows such great variance that some patients never develop syndesmophytes throughout the entire disease span, whereas some develop bamboo spine relatively early. Objective: To study the association between ERAP1, IL23R and PTGER4 single nucleotide polymorphisms (SNPs) and radiographic severity in AS patients. Methods: rs27044 and rs30187 (ERAP1), rs11209032 (IL23R) and rs10440635 (PTGER4) SNPs were genotyped in 235 AS patients fulfilling the modified New York criteria. Patients were classified as mild- and severe-AS according to modified Stoke AS spinal score (mSASSS). Mild-AS is defined as having mSASSS of “0” following at least 10 years of disease duration. Severe-AS is defined as having mSASSS of >20 (patients with mild vertebral changes (i.e. squaring or erosions) were omitted for clear stratification) regardless of disease duration. Results: The genotype distributions and allele frequencies of ERAP1 rs27044 and rs30187, IL23R rs11209032 and PTGER4 rs10440635 SNPs were similar in mild- (n=171, mSASSS=0, 55.6% HLA-B27 positive) and severe-AS patients (n=64, mSASSS=48.5±17.8, 73.4% HLA-B27 positive). After adjustment for clinical differences between groups (gender, disease duration, HLA-B27 and smoking status) by logistic regression analysis, none of the alleles in the investigated SNPs were found to be associated with radiographic severity of AS. Conclusion: In radiographically well-categorized AS patients, ERAP1 rs27044 and rs30187, IL23R rs11209032 and PTGER4 rs10440635 SNPs are not found to be associated with radiographic severity of AS.
Collapse
Affiliation(s)
- Gulsen Ozen
- Department of Rheumatology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Rabia Deniz
- Department of Internal Medicine, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Fatih Eren
- Department of Medical Biology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ali Ugur Unal
- Department of Rheumatology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Sule Yavuz
- Department of Rheumatology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| | - Sibel Zehra Aydin
- Department of Rheumatology, School of Medicine, Ottawa University, Ottawa, Ontario, Canada
| | - Nevsun Inanc
- Department of Rheumatology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Haner Direskeneli
- Department of Rheumatology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Pamir Atagunduz
- Department of Rheumatology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
22
|
Sessa M, Sullo MG, Mascolo A, Cimmaruta D, Romano F, Puca RV, Capuano A, Rossi F, Schiavo AL. A case of figurate urticaria by etanercept. J Pharmacol Pharmacother 2016; 7:106-8. [PMID: 27440958 PMCID: PMC4936077 DOI: 10.4103/0976-500x.184777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Etanercept is a competitive inhibitor of tumor necrosis factor-alpha (TNF-α) a polypeptide hormone, involved in the development of the immune system, in host defense and immune surveillance. Even if the etanercept mechanism of action is not completely understood, it is supposed that it negatively modulates biological responses mediated by molecules (cytokines, adhesion molecules, or proteinases) induced or regulated by TNF. For this reason, it is widely used in the treatment of immunologicals diseases, such as rheumatoid and psoriatic arthritis, polyarticular juvenile idiopathic active, ankylosing spondylitis, and plaque psoriasis. Etanercept has a good tolerability profile. Adverse events related to skin are rare, arising usually in about 5% of patients treated with anti-TNF α. In this scenario, we describe a case of figurate urticaria arose after the re-administration of etanercept in a patient affected by psoriasis and hepatitis B. A 65-year-old man, affected by psoriasis, was hospitalized in September 2014 to the Regional Center for the treatment of psoriasis and Biological Drugs of Second University of Naples for progressive extension of psoriatic skin lesions. The laboratory analysis detected positivity for hepatitis B virus (HBV) antigens. For this reason, it was administered to him lamivudine 100 mg/die about 30 days before to start etanercept treatment. The etanercept therapy has resulted in a progressive improving of skin manifestations, and the patient decided individually to stop the therapy. Afterwards, for worsening of the psoriatic lesions, he was again hospitalized and treated with the same therapeutic schedule (lamivudine followed by etanercept). Ten days after the start of therapy, the patient showed the onset of urticarial rash. Due to this, the treatment with lamivudine and etanercept was suspended and the patient's clinical conditions improved. It is probably that immunological disorders due to etanercept therapy and HBV infection could explain the onset of figurate urticaria in our patient. In this contest, the post-marketing surveillance confirms its important role in the monitoring of drugs tolerability and effectiveness.
Collapse
Affiliation(s)
- Maurizio Sessa
- Department of Experimental Medicine, Pharmacoepidemiology and Pharmacovigilance Centre of the Campania Region, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Giuseppa Sullo
- Department of Experimental Medicine, Pharmacoepidemiology and Pharmacovigilance Centre of the Campania Region, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Annamaria Mascolo
- Department of Experimental Medicine, Pharmacoepidemiology and Pharmacovigilance Centre of the Campania Region, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Daniela Cimmaruta
- Department of Experimental Medicine, Pharmacoepidemiology and Pharmacovigilance Centre of the Campania Region, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Romano
- Department of Dermatology, Second University of Naples, Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine, Pharmacoepidemiology and Pharmacovigilance Centre of the Campania Region, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Pharmacoepidemiology and Pharmacovigilance Centre of the Campania Region, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Ada Lo Schiavo
- Department of Dermatology, Second University of Naples, Naples, Italy
| |
Collapse
|
23
|
Tran TM, Hong S, Edwan JH, Colbert RA. ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface. Mol Immunol 2016; 74:10-7. [PMID: 27107845 PMCID: PMC5425939 DOI: 10.1016/j.molimm.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. METHODS ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. RESULTS ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. CONCLUSIONS Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes.
Collapse
Affiliation(s)
- Tri M Tran
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Sohee Hong
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Jehad H Edwan
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|
24
|
Wang J, Li H, Wang J, Gao X. Association between ERAP1 gene polymorphisms and ankylosing spondylitis susceptibility in Han population. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:11641-11646. [PMID: 26617903 PMCID: PMC4637719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/29/2015] [Indexed: 06/05/2023]
Abstract
PURPOSES The present study was designed to investigate the relationship between endoplasmic reticulum amino peptidase 1 (ERAP1) gene polymorphisms and ankylosing spondylitis (AS) in Han population of Shaanxi province. METHODS 100 AS patients and 100 healthy people were enrolled in present study as case and control groups respectively, and the control group was matched with the case group by age and gender. ERAP1 gene rs27434 and rs7711564 polymorphisms were test by TaqMan probe genotyping method. SHEsis software was used to operate linkage disequilibrium (LD) and haplotype analysis between the two single nucleotide polymorphisms (SNPs). χ(2) test was employed to compare the differences of the genotype, allele and haplotype frequencies between the case and control groups. Relative risk of AS was represented by odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS In ERAP1 rs27434 and rs7711564 polymorphisms, the frequencies of AA and CC genotypes in case group were significantly higher compared to those in control group (P=0.036; P=0.039), and so were the frequencies of A and C alleles (OR=1.589, 95% CI=1.070-2.359, P=0.028; OR=1.535, 95% CI=1.021-2.308, P=0.050). Linkage disequilibrium test and haplotype analysis of the alleles of the two SNPs showed that the frequency of A-C haplotype was higher in case group than that in control group (P=0.005), which indicated that A-C might be the susceptible haplotype to AS. CONCLUSIONS ERAP1 gene rs27434 and rs7711564 polymorphisms may increase the risk of AS.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, The Second Hospital Affiliated to Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| | - Hang Li
- Department of Orthopedics, The Second Hospital Affiliated to Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| | - Jianwei Wang
- Department of Orthopedics, The Second Hospital Affiliated to Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| | - Xiang Gao
- Department of Orthopedics, The Second Hospital Affiliated to Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Yousaf N, Low WY, Onipinla A, Mein C, Caulfield M, Munroe PB, Chernajovsky Y. Differences between disease-associated endoplasmic reticulum aminopeptidase 1 (ERAP1) isoforms in cellular expression, interactions with tumour necrosis factor receptor 1 (TNF-R1) and regulation by cytokines. Clin Exp Immunol 2015; 180:289-304. [PMID: 25545008 DOI: 10.1111/cei.12575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 01/28/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) processes peptides for major histocompatibility complex (MHC) class I presentation and promotes cytokine receptor ectodomain shedding. These known functions of ERAP1 may explain its genetic association with several autoimmune inflammatory diseases. In this study, we identified four novel alternatively spliced variants of ERAP1 mRNA, designated as ΔExon-11, ΔExon-13, ΔExon-14 and ΔExon-15. We also observed a rapid and differential modulation of ERAP1 mRNA levels and spliced variants in different cell types pretreated with lipopolysaccharide (LPS). We have studied three full-length allelic forms of ERAP1 (R127-K528, P127-K528, P127-R528) and one spliced variant (ΔExon-11) and assessed their interactions with tumour necrosis factor receptor 1 (TNF-R1) in transfected cells. We observed variation in cellular expression of different ERAP1 isoforms, with R127-K528 being expressed at a much lower level. Furthermore, the cellular expression of full-length P127-K528 and ΔExon-11 spliced variant was enhanced significantly when co-transfected with TNF-R1. Isoforms P127-K528, P127-R528 and ΔExon-11 spliced variant associated with TNF-R1, and this interaction occurred in a region within the first 10 exons of ERAP1. Supernatant-derived vesicles from transfected cells contained the full-length and ectodomain form of soluble TNF-R1, as well as carrying the full-length ERAP1 isoforms. We observed marginal differences between TNF-R1 ectodomain levels when co-expressed with individual ERAP1 isoforms, and treatment of transfected cells with tumour necrosis factor (TNF), interleukin (IL)-1β and IL-10 exerted variable effects on TNF-R1 ectodomain cleavage. Our data suggest that ERAP1 isoforms may exhibit differential biological properties and inflammatory mediators could play critical roles in modulating ERAP1 expression, leading to altered functional activities of this enzyme.
Collapse
Affiliation(s)
- N Yousaf
- Bone and Joint Research Unit, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Stratikos E, Stamogiannos A, Zervoudi E, Fruci D. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Front Oncol 2014; 4:363. [PMID: 25566501 PMCID: PMC4271575 DOI: 10.3389/fonc.2014.00363] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/28/2014] [Indexed: 01/29/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) are key components on the pathway that generates antigenic epitopes for presentation to cytotoxic T-lymphocytes (CTLs). Coding single nucleotide polymorphisms (SNPs) in these enzymes have been associated with pre-disposition to several major human diseases including inflammatory diseases with autoimmune etiology, viral infections, and virally induced cancer. The function of these enzymes has been demonstrated to affect CTL and natural killer cell responses toward healthy and malignant cells as well as the production of inflammatory cytokines. Recent studies have demonstrated that SNPs in ERAP1 and ERAP2 can affect their ability to generate or destroy antigenic epitopes and define the immunopeptidome. In this review, we examine the potential role of these enzymes and their polymorphic states on the generation of cytotoxic responses toward malignantly transformed cells. Given the current state-of-the-art, it is possible that polymorphic variation in these enzymes may contribute to the individual’s pre-disposition to cancer through altered generation or destruction of tumor antigens that can facilitate tumor immune evasion.
Collapse
Affiliation(s)
| | | | - Efthalia Zervoudi
- National Center for Scientific Research Demokritos , Athens , Greece
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù , Rome , Italy
| |
Collapse
|
27
|
Abstract
The endoplasmic reticulum aminopeptidase 1 (ERAP1) performs a major role in antigen processing, trimming N-terminally extended peptides to the final epitope for presentation by major histocompatibility complex class I molecules. Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) within ERAP1 as being associated with disease, in particular ankylosing spondylitis (AS). AS is a polygenic chronic inflammatory disease with a strong genetic link to HLA-B27 known for over 40 years. The association of ERAP1 SNPs with AS susceptibility is only observed in HLA-B27-positive individuals, which intersect on the antigen processing pathway. Recent evidence examining the trimming activity of polymorphic ERAP1 highlights its role in generating peptides for loading onto and stabilizing HLA-B27, and the consequent alterations in the interaction of specific NK cell receptors, and the activation of the unfolded protein response as important in the mechanism of disease pathogenesis. Here, we discuss the recent genetic association findings linking ERAP1 SNPs with AS disease susceptibility and the effect of these variants on ERAP1 function, highlighting mechanisms by which AS may arise. The identification of these functional variants of ERAP1 may lead to better stratification of AS patients by providing a diagnostic tool and a potential therapeutic target.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Somers Cancer Research Building, Southampton General Hospital, Mailpoint 824, Tremona Road, Southampton, SO16 6YD, UK
| | | | | | | |
Collapse
|
28
|
Kenna TJ, Lau MC, Keith P, Ciccia F, Costello ME, Bradbury L, Low PL, Agrawal N, Triolo G, Alessandro R, Robinson PC, Thomas GP, Brown MA. Disease-associated polymorphisms in ERAP1 do not alter endoplasmic reticulum stress in patients with ankylosing spondylitis. Genes Immun 2014; 16:35-42. [PMID: 25354578 DOI: 10.1038/gene.2014.62] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
The mechanism by which human leukocyte antigen B27 (HLA-B27) contributes to ankylosing spondylitis (AS) remains unclear. Genetic studies demonstrate that association with and interaction between polymorphisms of endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 influence the risk of AS. It has been hypothesised that ERAP1-mediated HLA-B27 misfolding increases endoplasmic reticulum (ER) stress, driving an interleukin (IL) 23-dependent, pro-inflammatory immune response. We tested the hypothesis that AS-risk ERAP1 variants increase ER-stress and concomitant pro-inflammatory cytokine production in HLA-B27(+) but not HLA-B27(-) AS patients or controls. Forty-nine AS cases and 22 healthy controls were grouped according to HLA-B27 status and AS-associated ERAP1 rs30187 genotypes: HLA-B27(+)ERAP1(risk), HLA-B27(+)ERAP1(protective), HLA-B27(-)ERAP1(risk) and HLA-B27(-)ERAP1(protective). Expression levels of ER-stress markers GRP78 (8 kDa glucose-regulated protein), CHOP (C/EBP-homologous protein) and inflammatory cytokines were determined in peripheral blood mononuclear cell and ileal biopsies. We found no differences in ER-stress gene expression between HLA-B27(+) and HLA-B27(-) cases or healthy controls, or between cases or controls stratified by carriage of ERAP1 risk or protective alleles in the presence or absence of HLA-B27. No differences were observed between expression of IL17A or TNF (tumour necrosis factor) in HLA-B27(+)ERAP1(risk), HLA-B27(+)ERAP1(protective) and HLA-B27(-)ERAP1(protective) cases. These data demonstrate that aberrant ERAP1 activity and HLA-B27 carriage does not alter ER-stress levels in AS, suggesting that ERAP1 and HLA-B27 may influence disease susceptibility through other mechanisms.
Collapse
Affiliation(s)
- T J Kenna
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - M C Lau
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - P Keith
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - F Ciccia
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università di Palermo, Palermo, Italy
| | - M-E Costello
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - L Bradbury
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - P-L Low
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - N Agrawal
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - G Triolo
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università di Palermo, Palermo, Italy
| | - R Alessandro
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università di Palermo, Palermo, Italy
| | - P C Robinson
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - G P Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - M A Brown
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Epistatic interaction of ERAP1 and HLA-B in Behçet disease: a replication study in the Spanish population. PLoS One 2014; 9:e102100. [PMID: 25019531 PMCID: PMC4096596 DOI: 10.1371/journal.pone.0102100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/14/2014] [Indexed: 11/25/2022] Open
Abstract
Behçet's disease (BD) is a multifactorial disorder associated with the HLA region. Recently, the ERAP1 gene has been proposed as a susceptibility locus with a recessive model and with epistatic interaction with HLA-B51. ERAP1 trims peptides in the endoplasmic reticulum to optimize their length for MHC-I binding. Polymorphisms in this gene have been related with the susceptibility to other immune-mediated diseases associated to HLA class I. Our aim was, the replication in the Spanish population of the association described in the Turkish population between ERAP1 (rs17482078) and BD. Additionally, in order to improve the understanding of this association we analyzed four additional SNPs (rs27044, rs10050860, rs30187 and rs2287987) associated with other diseases related to HLA class I and the haplotype blocks in this gene region. According to our results, frequencies of the homozygous genotypes for the minor alleles of all the SNPs were increased among patients and the OR values were higher in the subgroup of patients with the HLA-B risk factors, although differences were not statistically significant. Moreover, the presence of the same mutation in both chromosomes increased the OR values from 4.51 to 10.72 in individuals carrying the HLA-B risk factors. Therefore, although they were not statistically significant, our data were consistent with an association between ERAP1 and BD as well as with an epistatic interaction between ERAP1 and HLA-B in the Spanish population.
Collapse
|
30
|
Lee YJ, Won TJ, Hyung KE, Lee MJ, Moon YH, Lee IH, Go BS, Hwang KW. Bcl-2 knockdown accelerates T cell receptor-triggered activation-induced cell death in jurkat T cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:73-8. [PMID: 24634600 PMCID: PMC3951827 DOI: 10.4196/kjpp.2014.18.1.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/27/2013] [Accepted: 01/16/2014] [Indexed: 11/30/2022]
Abstract
Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-κB) translocation.
Collapse
Affiliation(s)
- Yun-Jung Lee
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Tae Joon Won
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Kyeong Eun Hyung
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Mi Ji Lee
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Young-Hye Moon
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ik Hee Lee
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Byung Sung Go
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Kwang Woo Hwang
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
31
|
Seregin SS, Rastall DPW, Evnouchidou I, Aylsworth CF, Quiroga D, Kamal RP, Godbehere-Roosa S, Blum CF, York IA, Stratikos E, Amalfitano A. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens. Autoimmunity 2013; 46:497-508. [PMID: 24028501 DOI: 10.3109/08916934.2013.819855] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic systemic arthritic disease that leads to significant disability and loss of quality of life in the ∼0.5% of the worldwide human population it affects. There is currently no cure for AS and mechanisms underlying its pathogenesis remain unclear. AS is highly genetic, with over 70% of the genetic risk being associated with the presence of HLA-B27 and endoplasmic reticulum aminopeptidase-1 (ERAP1) alleles. Furthermore, gene-gene interactions between HLA-B27 and ERAP1 AS risk alleles have recently been confirmed. Here, we demonstrate that various ERAP1 alleles can differentially mediate surface expression of antigens presented by HLA-B27 on human cells. Specifically, for all peptides tested, we found that an ERAP1 variant containing high AS risk SNPs reduced the amount of the peptide presented by HLA-B27, relative to low AS risk ERAP1 variants. These results were further validated using peptide catalysis assays in vitro, suggesting that high AS risk alleles have an enhanced catalytic activity that more rapidly destroys many HLA-B27-destined peptides, a result that correlated with decreased HLA-B27 presentation of the same peptides. These findings suggest that one mechanism underlying AS pathogenesis may involve an altered ability for AS patients harboring both HLA-B27 and high AS risk ERAP1 alleles to correctly display a variety of peptides to the adaptive arm of the immune system, potentially exposing such individuals to higher AS risk due to abnormal display of pathogen or self-derived peptides by the adaptive immune system.
Collapse
Affiliation(s)
- Sergey S Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University , East Lansing, MI , USA and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Aldhamen YA, Seregin SS, Rastall DPW, Aylsworth CF, Pepelyayeva Y, Busuito CJ, Godbehere-Roosa S, Kim S, Amalfitano A. Endoplasmic reticulum aminopeptidase-1 functions regulate key aspects of the innate immune response. PLoS One 2013; 8:e69539. [PMID: 23894499 PMCID: PMC3722114 DOI: 10.1371/journal.pone.0069539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/10/2013] [Indexed: 01/02/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase-1 (ERAP1) is a multifunctional, ubiquitously expressed enzyme whose peptide-trimming role during antigen processing for presentation by MHC I molecules is well established, however, a role for ERAP1 in modulating global innate immune responses has not been described to date. Here we demonstrate that, relative to wild type mice, mice lacking ERAP1 exhibit exaggerated innate immune responses early during pathogen recognition, as characterized by increased activation of splenic and hepatic NK and NKT cells and enhanced production of pro-inflammatory cytokines such as IL12 and MCP1. Our data also revealed that ERAP1 is playing a critical role in NK cell development and function. We observed higher frequencies of terminally matured NK cells, as well as higher frequencies of licensed NK cells (expressing the Ly49C and Ly49I receptors) in ERAP1-KO mice, results that positively correlated with an enhanced NK activation and IFNγ production by ERAP1-KO mice challenged with pro-inflammatory stimuli. Furthermore, during pathogen recognition, ERAP1 regulates IL12 production by CD11c(+) DCs specifically, with increases in IL12 production positively correlated with an increased phagocytic activity of splenic DCs and macrophages. Collectively, our results demonstrate a previously unrecognized, more central role for the ERAP1 protein in modulating several aspects of both the development of the innate immune system, and its responses during the initial stages of pathogen recognition. Such a role may explain why ERAP1 has been implicated by GWAS in the pathogenesis of autoimmune diseases that may be precipitated by aberrant responses to pathogen encounters.
Collapse
Affiliation(s)
- Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - David P. W. Rastall
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Charles F. Aylsworth
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher J. Busuito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sarah Godbehere-Roosa
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sungjin Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
33
|
Ankylosing spondylitis: from cells to genes. Int J Inflam 2013; 2013:501653. [PMID: 23970995 PMCID: PMC3736459 DOI: 10.1155/2013/501653] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease of unknown etiology, though it is considered an autoimmune disease. HLA-B27 is the risk factor most often associated with AS, and although the mechanism of involvement is unclear, the subtypes and other features of the relationship between HLA-B27 and AS have been studied for years. Additionally, the key role of IL-17 and Th17 cells in autoimmunity and inflammation suggests that the latter and the cytokines involved in their generation could play a role in the pathogenesis of this disease. Recent studies have described the sources of IL-17 and IL-23, as well as the characterization of Th17 cells in autoimmune diseases. Other cells, such as NK and regulatory T cells, have been implicated in autoimmunity and have been evaluated to ascertain their possible role in AS. Moreover, several polymorphisms, mutations and deletions in the regulatory proteins, protein-coding regions, and promoter regions of different genes involved in immune responses have been discovered and evaluated for possible genetic linkages to AS. In this review, we analyze the features of HLA-B27 and the suggested mechanisms of its involvement in AS while also focusing on the characterization of the immune response and the identification of genes associated with AS.
Collapse
|
34
|
Stratikos E, Stern LJ. Antigenic peptide trimming by ER aminopeptidases--insights from structural studies. Mol Immunol 2013; 55:212-9. [PMID: 23545452 DOI: 10.1016/j.molimm.2013.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 02/05/2023]
Abstract
Generation and destruction of antigenic peptides by ER resident aminopeptidases ERAP1 and ERAP2 have been shown in the last few years to be important for the correct functioning and regulation of the adaptive immune response. These two highly homologous aminopeptidases appear to have evolved complex mechanisms well suited for their biological role in antigen presentation. Furthermore, polymorphic variability in these enzymes appears to affect their function and predispose individuals to disease. This review discusses our current understanding of the molecular mechanisms behind ERAP1/2 function as suggested by several recently determined crystallographic structures of these enzymes.
Collapse
|
35
|
Endoplasmic reticulum aminopeptidase 1 and interleukin-23 receptor in ankylosing spondylitis. Curr Rheumatol Rep 2013; 14:383-9. [PMID: 22782541 DOI: 10.1007/s11926-012-0268-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) and interleukin-23 receptor (IL-23R) gene polymorphisms were found to be associated with ankylosing spondylitis (AS) in a nonsynonymous single nucleotide polymorphism association study, and this has been replicated in several studies across different populations. ERAP1 variants could lead to significant changes in the repertoire of peptides presented by MHC-I. Reading this in conjunction with the known association of AS with HLA-B27, a functional interaction between ERAP1 and HLA-B27 is very likely. ERAP1 has additionally been shown to be involved in cytokine receptor shedding. The IL-23R is one of the two receptors that mediate the action of IL-23. AS is associated with the same polymorphisms of IL-23R as those linked to psoriasis and inflammatory bowel disease. This suggests common genetic risks linking AS and extra-articular manifestations. This review focuses on the pathogenic potential of these two genes in AS.
Collapse
|
36
|
Genetic association with ERAP1 in psoriasis is confined to disease onset after puberty and not dependent on HLA-C*06. J Invest Dermatol 2012; 133:411-7. [PMID: 22931917 PMCID: PMC3547223 DOI: 10.1038/jid.2012.280] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HLA-C remains the strongest susceptibility candidate gene in psoriasis. Evidence for interaction between HLA-C and endoplasmic reticulum aminopeptidase 1 (ERAP1) confined to individuals carrying the HLA-C risk allele was recently reported. Psoriasis displays wide variation, and genetic heterogeneity is likely to contribute to clinical diversity. Age at disease onset is a putative discriminator, and separating psoriasis into early- (<40 years) and late-onset disease has been useful. To sharpen the age-dependent phenotype, we compared genotypes for ERAP1 (rs26653, rs30187, and rs27524) and HLA-C*06:02 in healthy controls and cases stratified for onset of psoriasis at <10, 10-20, 20-40, and >40 years of age. This approach revealed that association with ERAP1 was confined to cases with onset between 10 and 20 years (odds ratio 1.59, 95% confidence interval: 1.28-1.98, P=0.00008) and no association was detected in cases with onset below 10 years, reflecting genetic heterogeneity within the childhood psoriasis population. In contrast to earlier findings, association with ERAP1 was neither dependent on nor interacting with HLA-C*06:02. ERAP1 single-nucleotide polymorphism rs26653, which, to our knowledge, has not previously been reported in psoriasis, is nonsynonymous, has suggestive functional consequences, and herein displays strong association with disease.
Collapse
|
37
|
Cifaldi L, Romania P, Lorenzi S, Locatelli F, Fruci D. Role of endoplasmic reticulum aminopeptidases in health and disease: from infection to cancer. Int J Mol Sci 2012; 13:8338-8352. [PMID: 22942706 PMCID: PMC3430237 DOI: 10.3390/ijms13078338] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/27/2012] [Accepted: 06/29/2012] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are essential for the maturation of a wide spectrum of proteins involved in various biological processes. In the ER, these enzymes work in concert to trim peptides for presentation on MHC class I molecules. Loss of ERAPs function substantially alters the repertoire of peptides presented by MHC class I molecules, critically affecting recognition of both NK and CD8+ T cells. In addition, these enzymes are involved in the modulation of inflammatory responses by promoting the shedding of several cytokine receptors, and in the regulation of both blood pressure and angiogenesis. Recent genome-wide association studies have identified common variants of ERAP1 and ERAP2 linked to several human diseases, ranging from viral infections to autoimmunity and cancer. More recently, inhibition of ER peptide trimming has been shown to play a key role in stimulating innate and adaptive anti-tumor immune responses, suggesting that inhibition of ERAPs might be exploited for the establishment of innovative therapeutic approaches against cancer. This review summarizes data currently available for ERAP enzymes in ER peptide trimming and in other immunological and non-immunological functions, paying attention to the emerging role played by these enzymes in human diseases.
Collapse
Affiliation(s)
- Loredana Cifaldi
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
| | - Paolo Romania
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
| | - Silvia Lorenzi
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
| | - Franco Locatelli
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
- University of Pavia, Corso Strada Nuova 65, Pavia I-27100, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Bambino Gesù Children’s Hospital IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy; E-Mails: (L.C.); (P.R.); (S.L.); (F.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-6-68592657; Fax: +39-6-68592904
| |
Collapse
|
38
|
Wang CM, Ho HH, Chang SW, Wu YJJ, Lin JC, Chang PY, Wu J, Chen JY. ERAP1 genetic variations associated with HLA-B27 interaction and disease severity of syndesmophytes formation in Taiwanese ankylosing spondylitis. Arthritis Res Ther 2012; 14:R125. [PMID: 22632381 PMCID: PMC3446506 DOI: 10.1186/ar3855] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/08/2012] [Accepted: 05/25/2012] [Indexed: 12/20/2022] Open
Abstract
Introduction Ankylosing spondylitis (AS) is a familial, heritable disease specified by syndesmophyte formation leading to an ankylosed spine. Endoplasmic reticulum aminopeptidase 1 (ERAP1) genetic variations have been widely proved to be associated with AS in several ethnic populations. The aim of this study was to investigate whether ERAP1 single nucleotide polymorphisms (SNPs) are associated with AS susceptibility and disease severity in Taiwanese. Methods Four ERAP1 SNPs (rs27037, rs27980, rs27044 and rs30187) were genotyped in 797 Taiwanese AS patients and 1,150 healthy controls. Distributions of genotype and alleles were compared between AS patients and healthy controls, and among AS patients stratified by clinical parameters. Results The SNP rs27037T allele appeared to be a risk factor for AS susceptibility (P = 5.5 × 10-5, OR 1.30, 95% CI: 1.15 to 1.48; GT+TT vs. GG P = 9.3 × 10-5, OR 1.49, 95% CI: 1.22 to 1.82). In addition, the coding SNP (cSNP) rs27044G allele (P = 1.5 × 10-4, OR 1.28, 95% CI: 1.13 to 1.46; CG+GG vs. CC, P = 1.7 × 10-3, OR 1.44, 95% CI: 1.15 to 1.81) and the cSNP rs30187T allele (P = 1.7 × 10-3, OR 1.23, 95% CI: 1.08 to 1.40; CT+TT vs. CC P = 6.1 × 10-3, OR 1.38, 95% CI: 1.10 to 1.74) were predisposing factors for AS. Notably, the rs27044G allele carriers (CG+GG vs. CC, P = 0.015, OR 1.59, 95% CI: 1.33 to 2.30) and rs30187T allele carriers (CT+TT vs. CC, P = 0.011, OR 1.63, 95% CI: 1.12 to 2.38) were susceptible to syndesmophyte formation in AS patients. Furthermore, two cSNPs (rs27044 and rs30187) strongly associated with HLA-B27 positivity in AS patients. Finally, the ERAP1 SNP haplotype TCG (rs27037T/rs27980C/rs27044G) is a major risk factor for AS (adjusted P <0.00001, OR 1.38, 95% CI: 1.12 to 1.58) in Taiwanese. Conclusions This study provides the first evidence of ERAP1 SNPs involving syndesmophyte formation. The interactions between ERAP1 SNPs and HLA-B27 play critical roles in pMHC I pathway processing contributing to the pathogenesis of AS in multiple populations.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, No, 5, Fu-Shin St, Kwei-Shan, Tao-Yuan, 33375 Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yewdell JW, Lu X. Don't mess with ERAAP! Nat Immunol 2012; 13:526-8. [PMID: 22610241 DOI: 10.1038/ni.2306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Abstract
That gut and joint inflammation are linked in spondyloarthritis (SpA) has been recognized for almost three decades. Intriguingly, microscopic gut inflammation, which occurs frequently in patients with SpA, is an important risk factor for clinically overt Crohn's disease and ankylosing spondylitis. This Review describes current insights into the underlying mechanisms that lead to chronic gut inflammation in patients with SpA. We propose that the development of chronic bowel inflammation in these individuals occurs through a transition phase, in which inflammation evolves from an acute into a chronic state. Our transition model implies that different cell types are involved at different stages during disease progression, with stromal cells having an important role in chronicity. In addition, deficient regulatory feedback mechanisms or genetically determined alterations in antigen presentation, endoplasmic reticulum stress, autophagy or cytokine signaling might also favor a transition from self-limiting acute inflammation to chronic inflammation. We anticipate that this transition phase might be an important window for therapeutic intervention.
Collapse
|
41
|
Abstract
Ankylosing spondylitis (AS), psoriasis and inflammatory bowel disease (IBD) often coexist in the same patient and in their families. In AS, genes within the MHC region, in particular HLA-B27, account for nearly 25% of disease hereditability, with additional small contributions from genes outside of the MHC locus, including those involved in intracellular antigen processing (that is, ERAP1, which interacts with HLA-B27) and cytokine genes such as those involved in the IL-17-IL-23 pathway. Similar to AS, the strongest genetic signal of susceptibility to psoriasis and psoriatic arthritis also emanates from the MHC region (attributable mostly to HLA-C(*)06:02 although other genes have been implicated), and gene-gene interaction of HLA-C with ERAP1. The remaining hereditary load is from genes involved in cytokine production, specifically genes in the IL-17-IL-23 pathway, the NFκB pathway and the type 2 T-helper pathway. In IBD, similar genetic influences are operative. Indeed, genes important in the regulation of the IL-17-IL-23 pathway and, in Crohn's disease, genes important for autophagy (that is, NOD2 and ATG16L1 and IRGM) have a role in conferring susceptibility of individuals to these diseases. Thus, AS, psoriasis and IBD seem to share similar pathogenic mechanisms of aberrant intracellular antigen processing or elimination of intracellular bacteria and cytokine production, especially in the IL-17-IL-23 pathway.
Collapse
Affiliation(s)
- John D Reveille
- The University of Texas Health Science Center at Houston, MSB 5.270, 6431 Fannin, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Lee YH, Choi SJ, Ji JD, Song GG. Associations between ERAP1 polymorphisms and ankylosing spondylitis susceptibility: a meta-analysis. Inflamm Res 2011; 60:999-1003. [PMID: 21877190 DOI: 10.1007/s00011-011-0374-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/09/2011] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE The aim of this study was to determine whether five polymorphisms of endoplasmic reticulum aminopeptidase 1 (ERAP1) confer susceptibility to ankylosing spondylitis (AS). METHODS The authors conducted five types of meta-analysis on the associations between the rs27044, rs17482078, rs10050860, rs30187, and rs2287987 polymorphisms of ERAP1 and AS susceptibility, using fixed and random effects models. RESULTS Six studies were included in this meta-analysis, which in total involved 4,594 AS patients and 3,971 controls, five European populations, and one Asian population. Meta-analysis identified a significant association between AS and the two alleles of the rs27044 polymorphism in all study subjects [odds ratio (OR) = 1.333, 95% confidence interval (CI) = 1.102-1.612, p = 0.003]. Stratification by ethnicity identified a significant association between this polymorphism and AS in Europeans (OR = 1.281, 95% CI = 1.032-1.588, p = 0.024) and in Asians (OR = 1.554, 95% CI = 1.313-1.838, p = 2 × 10(-8)), and meta-analysis of the rs30187 polymorphism showed the same pattern. Furthermore, analysis revealed significant associations between the two alleles of the rs17482078, rs10050860, and rs2287987 polymorphisms and the risk of developing AS in Europeans (OR = 0.726, 95% CI = 0.655-0.805, p < 1 × 10(-10); OR = 0.724, 95% CI = 0.665-0.787, p < 1 × 10(-10); OR = 0.708, 95% CI = 0.639-0.784, p < 1 × 10(-10), respectively). However, the single Asian study included showed no association between the rs17482078, rs30187, and rs2287987 polymorphisms and AS. CONCLUSIONS This meta-analysis shows that the rs27044, rs17482078, rs10050860, rs30187, and rs2287987 polymorphisms of ERAP1 are associated with the development of AS in Europeans. However, further study of this association is required in other ethnic groups.
Collapse
Affiliation(s)
- Young Ho Lee
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1 Anam-dong 5 ga, Seongbuk-gu, Seoul, 136-705, Korea.
| | | | | | | |
Collapse
|
43
|
Wu W, Ding Y, Chen Y, Hua Z, Liu H, Wang H, Jiao G. Susceptibility to ankylosing spondylitis: evidence for the role of ERAP1, TGFb1 and TLR9 gene polymorphisms. Rheumatol Int 2011; 32:2517-21. [PMID: 21833528 DOI: 10.1007/s00296-011-1994-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 07/03/2011] [Indexed: 12/22/2022]
Abstract
Genetic factors are thought to be crucial in the pathogenesis of ankylosing spondylitis (AS). Recent studies have reported that ERAP1, TGBβ1 and TLRs genes are likely to have association with AS in different populations. We carried out this study to determine whether single-nucleotide polymorphisms covering the three genes are associated with AS in a Chinese Han population. Genomic DNA was isolated from the peripheral blood of 328 patients with AS and 627 healthy blood donors from Jinan region as a case-control study. The diagnosis of AS was made according to the modified New York criteria. The ERAP1 rs27044, TGBβ1 rs1800470 and TLR9 rs55704465 were genotyped by a polymerase chain reaction--restriction fragment length polymorphism method. Strong association with AS was observed for marker rs27044, but no significant differences were observed between AS patients and controls in the frequencies of the carriership of the alleles rs55704465 and rs1800470. Our data thus indicate that ERAP1 likely constitutes one of AS-associated loci of susceptibility after HLA in Chinese Han population. On the contrary, TGFB1 and TLR9 variations show no association with the susceptibility of AS.
Collapse
Affiliation(s)
- Wenliang Wu
- Department of Orthopaedic and Trauma Surgery, Shandong University Qilu Hospital, 250012 Jinan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Evans DM, Spencer CCA, Pointon JJ, Su Z, Harvey D, Kochan G, Oppermann U, Opperman U, Dilthey A, Pirinen M, Stone MA, Appleton L, Moutsianas L, Moutsianis L, Leslie S, Wordsworth T, Kenna TJ, Karaderi T, Thomas GP, Ward MM, Weisman MH, Farrar C, Bradbury LA, Danoy P, Inman RD, Maksymowych W, Gladman D, Rahman P, Morgan A, Marzo-Ortega H, Bowness P, Gaffney K, Gaston JSH, Smith M, Bruges-Armas J, Couto AR, Sorrentino R, Paladini F, Ferreira MA, Xu H, Liu Y, Jiang L, Lopez-Larrea C, Díaz-Peña R, López-Vázquez A, Zayats T, Band G, Bellenguez C, Blackburn H, Blackwell JM, Bramon E, Bumpstead SJ, Casas JP, Corvin A, Craddock N, Deloukas P, Dronov S, Duncanson A, Edkins S, Freeman C, Gillman M, Gray E, Gwilliam R, Hammond N, Hunt SE, Jankowski J, Jayakumar A, Langford C, Liddle J, Markus HS, Mathew CG, McCann OT, McCarthy MI, Palmer CNA, Peltonen L, Plomin R, Potter SC, Rautanen A, Ravindrarajah R, Ricketts M, Samani N, Sawcer SJ, Strange A, Trembath RC, Viswanathan AC, Waller M, Weston P, Whittaker P, Widaa S, Wood NW, McVean G, Reveille JD, Wordsworth BP, Brown MA, Donnelly P. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 2011; 43:761-7. [PMID: 21743469 PMCID: PMC3640413 DOI: 10.1038/ng.873] [Citation(s) in RCA: 672] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 06/03/2011] [Indexed: 02/07/2023]
Abstract
Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10(-8) in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10(-6) overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.
Collapse
Affiliation(s)
- David M Evans
- Medical Research Council (MRC) Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Goto Y, Ogawa K, Hattori A, Tsujimoto M. Secretion of endoplasmic reticulum aminopeptidase 1 is involved in the activation of macrophages induced by lipopolysaccharide and interferon-gamma. J Biol Chem 2011; 286:21906-14. [PMID: 21531727 DOI: 10.1074/jbc.m111.239111] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme with an important role in processing antigenic peptides presented to class I major histocompatibility complex in the endoplasmic reticulum. In this study, we found that endoplasmic reticulum-retained ERAP1 was secreted from macrophages in response to activation by treatment with lipopolysaccharide (LPS) and interferon (IFN)-γ and enhanced their phagocytic activity. Enhancement of the phagocytic activity of murine macrophage RAW264.7 cells induced by LPS/IFN-γ was inhibited by a potent aminopeptidase inhibitor, amastatin. The addition of recombinant wild-type but not inactive mutant ERAP1 to culture medium enhanced phagocytosis. These results suggest that enhancement of phagocytic activity is at least in part mediated by secreted ERAP1 through the generation of active peptides processed by the enzyme. Our data reveal ERAP1-mediated activation of macrophages for the first time and will provide new insights into the role of this enzyme in innate immunity.
Collapse
Affiliation(s)
- Yoshikuni Goto
- Laboratory of Cellular Biochemistry, RIKEN, Wako, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
46
|
Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc Natl Acad Sci U S A 2011; 108:7745-50. [PMID: 21508329 DOI: 10.1073/pnas.1101262108] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)(18)-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K(528)R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.
Collapse
|
47
|
Stoll ML. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis. Clin Exp Rheumatol 2011; 29:322-30. [PMID: 21269576 PMCID: PMC3266164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/05/2010] [Indexed: 05/30/2023]
Abstract
The immune system can be divided into the innate and adaptive arms. Historically, most of the research into the pathogenesis of spondyloarthritis (SpA) and other types of chronic arthritis focused on the adaptive immune system. Recently, the pendulum has shifted, and much current work in SpA focuses on innate immunity. Herein, I summarise evidence demonstrating that both the innate and the adaptive arms of the immune system are involved in the pathogenesis of SpA, propose a mechanism in which both arms interact to maintain chronic arthritis, and discuss potential research directions.
Collapse
Affiliation(s)
- M L Stoll
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390-9063, USA.
| |
Collapse
|
48
|
Tsai FJ, Lee YC, Chang JS, Huang LM, Huang FY, Chiu NC, Chen MR, Chi H, Lee YJ, Chang LC, Liu YM, Wang HH, Chen CH, Chen YT, Wu JY. Identification of novel susceptibility Loci for kawasaki disease in a Han chinese population by a genome-wide association study. PLoS One 2011; 6:e16853. [PMID: 21326860 PMCID: PMC3033903 DOI: 10.1371/journal.pone.0016853] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/16/2011] [Indexed: 01/01/2023] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS) in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs) detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit) gene: rs1873668 (p = 9.52×10⁻⁵), rs4243399 (p = 9.93×10⁻⁵), and rs16849083 (p = 9.93×10⁻⁵). We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1) gene (rs149481, p(best) = 4.61×10⁻⁵). Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667) clustered in an area containing immunoglobulin heavy chain variable regions genes, with p(best)-values between 2.08×10⁻⁵ and 8.93×10⁻⁶, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Genetics, Medical Research and Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Ching Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Jeng-Sheng Chang
- Divisions of Cardiology, Department of Pediatrics, China Medical University and Hospital, Taichung, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Yuan Huang
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Nan-Chang Chiu
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ming-Ren Chen
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsin Chi
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yann-Jinn Lee
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Min Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Hua Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
49
|
Evnouchidou I, Kamal RP, Seregin SS, Goto Y, Tsujimoto M, Hattori A, Voulgari PV, Drosos AA, Amalfitano A, York IA, Stratikos E. Cutting Edge: Coding single nucleotide polymorphisms of endoplasmic reticulum aminopeptidase 1 can affect antigenic peptide generation in vitro by influencing basic enzymatic properties of the enzyme. THE JOURNAL OF IMMUNOLOGY 2011; 186:1909-13. [PMID: 21242517 DOI: 10.4049/jimmunol.1003337] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ER aminopeptidase 1 (ERAP1) customizes antigenic peptide precursors for MHC class I presentation and edits the antigenic peptide repertoire. Coding single nucleotide polymorphisms (SNPs) in ERAP1 were recently linked with predisposition to autoimmune disease, suggesting a link between pathogenesis of autoimmunity and ERAP1-mediated Ag processing. To investigate this possibility, we analyzed the effect that disease-linked SNPs have on Ag processing by ERAP1 in vitro. Michaelis-Menten analysis revealed that the presence of SNPs affects the Michaelis constant and turnover number of the enzyme. Strikingly, specific ERAP1 allele-substrate combinations deviate from standard Michaelis-Menten behavior, demonstrating substrate-inhibition kinetics; to our knowledge, this phenomenon has not been described for this enzyme. Cell-based Ag-presentation analysis was consistent with changes in the substrate inhibition constant K(i), further supporting that ERAP1 allelic composition may affect Ag processing in vivo. We propose that these phenomena should be taken into account when evaluating the possible link between Ag processing and autoimmunity.
Collapse
Affiliation(s)
- Irini Evnouchidou
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen R, Yao L, Meng T, Xu W. The association between seven ERAP1 polymorphisms and ankylosing spondylitis susceptibility: a meta-analysis involving 8,530 cases and 12,449 controls. Rheumatol Int 2011; 32:909-14. [PMID: 21229357 DOI: 10.1007/s00296-010-1712-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 12/18/2010] [Indexed: 01/17/2023]
Abstract
Besides the MHC gene, HLA-B27, ERAP1 is one of the non-MHC genes which also play key roles in the pathogenesis of AS. It has been reported that there is an association between ERAP1 polymorphisms and AS Risk. However, the results were inconclusive. The aim of the current study was to determine the contribution of ERAP1 polymorphisms to ankylosing spondylitis (AS) susceptibility. To derive a more precise estimation of the association, a meta-analysis was performed by searching the MEDLINE and EMBASE data base. The crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to access the strength of association between ERAP1 polymorphisms and AS risk. The pooled ORs were performed for minor allele versus major allele in all polymorphisms. Nine case-control studies consisting of 8,530 AS patients and 12,449 controls were identified in this meta-analysis. Except in rs27434 (P = 0.23), the significant correlation between ERAP1 polymorphisms and AS susceptibility has been detected in rs27044 (OR 1.57, P < 0.001), rs17482078 (OR 1.271, P < 0.001), rs10050860 (OR 0.772, P = 0.006), rs30187 (OR 1.348, P < 0.001), rs2287987 (OR 0.746, P < 0.001) and rs27037 (OR 1.257, P = 0.001). This meta-analysis demonstrates that the ERAP1 polymorphisms may play a significant role in susceptibility to AS. However, this result should be identified by more convincing experimental evidences in molecular level and population level.
Collapse
Affiliation(s)
- Rui Chen
- The Department of Orthopedics, Changhai Hospital, Second Military Medical University, 200433 Shanghai, People's Republic of China
| | | | | | | |
Collapse
|