1
|
Huang L, Liu M, Shen L, Chen D, Wu T, Gao Y. Polysaccharides from Yupingfeng granules ameliorated cyclophosphamide-induced immune injury by protecting intestinal barrier. Int Immunopharmacol 2025; 146:113866. [PMID: 39709910 DOI: 10.1016/j.intimp.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Immune injury is the main side effect caused by cyclophosphamide and the disruption of the intestinal barrier may be an important cause. Yupingfeng granules have been reported to have immunomodulatory effects and polysaccharides are important components of them. This study aimed to investigate the ameliorative effect of polysaccharides from Yupingfeng granules (YPFP) on cyclophosphamide induced immune injury and reveal their potential mechanisms based on its protective effect on the intestine. YPFP were isolated and preliminarily characterized. Pharmacodynamic evaluation revealed that YPFP treatment could effectively mitigate lesions of immune organs, ameliorate white blood cells and downregulate IL-10 level. Further, the protective effect of intestinal barrier on the basis of intestinal tight junctions, MUC-2, microflora, endogenous metabolites, pathways and immune cells was discussed to outline mechanisms. The results showed that YPFP repaired the integrity of intestinal epithelium, enhanced the abundance of Muribaculaceae_unclassified, Bacteroide and Muribaculum, downgraded the abundance of Lachnospiraceae_NK4A136_group, improved the excretion of lipids and bile acids especially 3-oxo-LCA, increased the content of SCFAs in feces and inhibited the expression of key proteins of PI3K-AKT and MAPK-JUN pathways. More importantly, Th17 and Treg balance was remodeled after YPFP administration, which might be related to certain differential metabolites and pathways enriched by metabolomics. This study provides a rich understanding of YPFP and lays a foundation for further development of Yupingfeng granules. It was shown for the first time that the immunomodulatory effect of YPFP might be involved in multiple mechanisms of intestinal homeostasis. YPFP could be regarded as an immunomodulator to alleviate immune damage caused by cyclophosphamide.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201201, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Mo Liu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Longhai Shen
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201201, China.
| | - Tong Wu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Yongjian Gao
- Sinopharm Group Guangdong Medi-World Pharmaceutical Co., Ltd., Guangzhou, China
| |
Collapse
|
2
|
Mehvish HB, Zhang S, Liang Y, Sun D, Qiu X, Qu K, Qin X, Li J, Yan F, Lang C, Xu L, Wang G, Chen J, He B, Zhang K, Wu W. Enhanced Osteoporosis Treatment via Nano Drug Coating Encapsulating Lactobacillus rhamnosus GG. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5326-5339. [PMID: 39789866 DOI: 10.1021/acsami.4c17985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Osteoporosis is the most common systemic skeletal disorder, particularly associated with aging and postmenopausal women. With the growing knowledge about the gut-bone axis, the therapeutic strategies for osteoporosis have been shifted toward regulating gut microbiota to promote positive bone metabolism. AlthoughLactobacillus rhamnosus GG (LGG) is widely reported to positively regulate bone metabolism by restoring the dysbiotic microbiome, oral administration is associated with sensitivity to gastric fluid and low bioavailability. Other studies also demonstrated that bisphosphonates ameliorate osteoporosis by directly regulating bone metabolism, especially inhibiting osteoclast activity. However, the side effects caused by bisphosphonate treatment still represent a significant problem. In this study, we assembled alendronate, a clinically used bisphosphonate, with DSPE-phospholipid nanoencapsulation and LGG (ADB), to protect LGG from the acidic environment of the stomach, while simultaneously reducing the gastrointestinal side effects associated with the oral administration of alendronate. We further investigated the potential of these DSPE-phospholipid nanoencapsulated bacteria ADB to repair osteoporotic bone deterioration, and their ability to regulate gut microbiota in vivo, which is strongly associated with the intrinsic environment. Compared with the same dosage of LGG and alendronate alone, ADB positively regulated bone metabolism, and osteoporosis was significantly revised in ovariectomized mice models.
Collapse
Affiliation(s)
- Hafza Behroz Mehvish
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Shirong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xu Qiu
- JinFeng Laboratory, Chongqing 401329, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Fei Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Chunhui Lang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Lixin Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
- JinFeng Laboratory, Chongqing 401329, China
| | - Jian Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Bo He
- Department of Orthopaedics Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China
- JinFeng Laboratory, Chongqing 401329, China
| |
Collapse
|
3
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
4
|
Sun Y, Li Z, Duan J, Liu E, Sun F, Yang L, Chen L, Yang S. Unveiling the Gut-Disc Axis: How Microbiome Dysbiosis Accelerates Intervertebral Disc Degeneration. J Inflamm Res 2024; 17:8271-8280. [PMID: 39525319 PMCID: PMC11549883 DOI: 10.2147/jir.s487936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome (GM), often referred to as the second genome of the human body, plays a crucial role in various metabolic processes and mediates the development of numerous diseases. Intervertebral disc degeneration (IDD) is an age-related degenerative spinal disease characterized by the loss of disc height, hydration, and integrity, leading to pain and reduced mobility. Although the pathogenesis of IDD is not fully understood, recent studies suggest that dysbiosis of the gut microbiome may accelerate the progression of IDD through multiple mechanisms. This article begins by discussing the potential relationship between GM dysbiosis and human diseases, followed by a comprehensive review of the regulatory mechanisms of GM in skeletal diseases within the gut-disc axis framework. Furthermore, it explores three potential pathways through which GM dysbiosis may mediate the development of IDD: immunomodulation, bacterial translocation and colonization, and the decomposition and absorption of intestinal metabolites. These pathways can disrupt disc cell homeostasis and promote degenerative changes. Finally, this paper summarizes for the first time the potential therapeutic approaches for delaying IDD by targeting the gut-disc axis, providing new insights into the pathogenesis and regenerative repair strategies for IDD.
Collapse
Affiliation(s)
- Yu Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Zhaoyong Li
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Jiahao Duan
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Enxu Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Fei Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Lei Yang
- Department of Orthopedics, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Long Chen
- Department of Orthopedics, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Shaofeng Yang
- Department of Orthopedics, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| |
Collapse
|
5
|
Geng Z, Sun T, Yu J, Wang N, Jiang Q, Wang P, Yang G, Li Y, Ding Y, Zhang J, Lin G, Zhao Y. Cinobufagin Suppresses Lipid Peroxidation and Inflammation in Osteoporotic Mice by Promoting the Delivery of miR-3102-5p by Macrophage-Derived Exosomes. Int J Nanomedicine 2024; 19:10497-10512. [PMID: 39439501 PMCID: PMC11495194 DOI: 10.2147/ijn.s483849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Background Cinobufagin, the primary active compound in toad venom, is commonly used for anti-tumor, anti-inflammatory, and analgesic purposes. However, its specific bone-protective effects remain uncertain. This research aims to ascertain the bone-protective properties of cinobufagin and investigate underlying mechanisms. Methods Mice were ovariectomized to establish an osteoporosis model, followed by intraperitoneal injections of cinobufagin and cinobufagin-treated RAW.264.7-derived exosomes for therapy. MicroCT, HE staining, and TRAP staining were employed to evaluate bone mass and therapeutic outcomes, while mRNA sequencing and immunoblotting were utilized to assess markers of bone metabolism, inflammation, and lipid peroxidation. Osteoblast and osteoclast precursor cells were differentiated to observe the impact of cinobufagin-treated exosomes derived from RAW264.7 cells on bone metabolism. Exosomes characteristics were studied using transmission electron microscopy and particle size analysis, and miRNA binding targets in exosomes were determined by luciferase reporting. Results In ovariectomized mice, cinobufagin and cinobufagin-treated exosomes from RAW264.7 cells increased trabecular bone density and mass in the femur, while also decreasing inflammation and lipid peroxidation. The effect was reversed by an exosomes inhibitor. In vitro experiments revealed that cinobufagin-treated exosomes from RAW264.7 cells enhanced osteogenic and suppressed osteoclast differentiation, possibly linked to Upregulated miR-3102-5p in RAW-derived exosomes. MiR-3102-5p targets the 3'UTR region of alox15, thereby suppressing its expression and reducing the lipid peroxidation process in osteoblasts. Conclusion Overall, this study clarified cinobufagin's bone-protective effects and revealed that cinobufagin can enhance the delivery of miR-3102-5p targeting alox15 through macrophage-derived exosomes, demonstrating anti-lipid peroxidation and anti-inflammatory effects.
Collapse
Affiliation(s)
- Zixiang Geng
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tiancheng Sun
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jie Yu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ning Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Qiang Jiang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Peige Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Guangyue Yang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yifei Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Guoqiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yongfang Zhao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
6
|
Xu L, Sun X, Han X, Li H, Li X, Zhu L, Wang X, Li J, Sun H. Dihydromyricetin ameliorate postmenopausal osteoporosis in ovariectomized mice: Integrative microbiomic and metabolomic analysis. Front Pharmacol 2024; 15:1452921. [PMID: 39415843 PMCID: PMC11479887 DOI: 10.3389/fphar.2024.1452921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
The gut microbiota may help mitigate bone loss linked to postmenopausal osteoporosis by affecting the immune and inflammatory responses and the gut-bone axis. Dihydromyricetin (DMY), a natural flavonoid, has some anti-inflammatory and antioxidant properties. This study aimed to investigate the mechanisms underlying the amelioration of bone loss in ovariectomized (OVX) mice treated with various doses of DMY. Eight-week-old C57/BL6 mice underwent ovariectomy and received varying DMY doses over 8 weeks. Thereafter, femoral bone microarchitecture, serum biomarker levels, and colon samples were analyzed to assess bone metabolism and inflammatory and hormonal responses. Fecal samples were subjected to 16S rDNA sequencing, and short-chain fatty acids were quantified. An untargeted metabolomics approach was applied to both serum and fecal samples to investigate alterations in the intestinal microbiota and metabolic profiles following DMY treatment in the OVX mice. The results show high-dose DMY has anti-osteoporotic effects. Compared to the OVX group, the DMY-treated group showed enhanced bone mineral density and reduced inflammation and colonic damage levels. The DMY treatment altered the gut microbiota composition, including the relative abundances at both the phylum and genus levels. In addition, DMY treatment increased the production of acetate and propionate. Metabolomic analysis revealed differential regulation of 37 and 70 metabolites in the serum and feces samples, respectively, in the DMY-treated group compared to those in the OVX group, affecting the serotonergic signaling, arachidonic acid metabolism, and unsaturated fatty acid biosynthesis pathways. In conclusion, these findings indicate that DMY can ameliorate bone loss in OVX mice via the gut-bone axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xianze Sun
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Xiaoqiang Han
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Li
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haibiao Sun
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Feng B, Lu J, Han Y, Han Y, Qiu X, Zeng Z. The role of short-chain fatty acids in the regulation of osteoporosis: new perspectives from gut microbiota to bone health: A review. Medicine (Baltimore) 2024; 103:e39471. [PMID: 39183408 PMCID: PMC11346881 DOI: 10.1097/md.0000000000039471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease characterized by low bone density and microarchitectural deterioration, resulting in increased fracture risk. With an aging population, osteoporosis imposes a heavy burden worldwide. Current pharmacotherapies such as bisphosphonates can reduce fracture risk but have limitations. Emerging research suggests that gut microbiota regulates bone metabolism through multiple mechanisms. Short-chain fatty acids (SCFAs) produced from microbial fermentation of dietary fiber beneficially impact bone health. Preclinical studies indicate that SCFAs such as butyrate and propionate prevent bone loss in osteoporosis models by inhibiting osteoclastogenesis and immune modulation. Early clinical data also suggest that SCFA supplementation may improve bone turnover markers in postmenopausal women. SCFAs likely act via inhibition of osteoclast differentiation, stimulation of osteoblast activity, regulation of T cells, and other pathways. However, optimal dosing, delivery methods, and long-term safety require further investigation. Modulating the gut-bone axis via supplementation, prebiotics/probiotics, diet, and lifestyle interventions represents an innovative therapeutic approach for osteoporosis. Harnessing the interplay between microbiome, metabolism, immunity, and bone may provide new directions for managing osteoporosis in the future.
Collapse
Affiliation(s)
- Boyi Feng
- Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Jingjing Lu
- Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Yanhua Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yaguang Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaokui Qiu
- Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Zhuoying Zeng
- Chemical Analysis and Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
8
|
Zhu F, Liu H, Cao Y, Dai B, Wu H, Li W. The combination of Butyricicoccus pullicaecorum and 3-hydroxyanthranilic acid prevents postmenopausal osteoporosis by modulating gut microbiota and Th17/Treg. Eur J Nutr 2024; 63:1945-1959. [PMID: 38753171 PMCID: PMC11329681 DOI: 10.1007/s00394-024-03400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMO) is a chronic condition characterized by decreased bone strength. This study aims to investigate the effects and mechanisms of the combination of Butyricicoccus pullicaecorum (Bp) and 3-hydroxyanthranilic acid (3-HAA) on PMO. METHODS The effects of Bp and 3-HAA on PMO were evaluated in ovariectomized (OVX) rats by assessing stereological parameters, femur microstructure, and autophagy levels. The T helper (Th) 17/Regulatory T (Treg) cells of rats were detected using flow cytometric analysis. Furthermore, the impact of Bp and 3-HAA on the gut microbiota of rats was assessed using 16S rRNA gene sequencing. The correlation between the gut microbiota of rats and Th17/Treg immune factors, as well as femoral stereo parameters, was separately assessed using Spearman rank correlation analysis. RESULTS Bp and 3-HAA treatments protected OVX rats by promoting osteogenesis and inhibiting autophagy. Compared to the Sham group, OVX rats showed an increase in Th17 cells and a decrease in Treg cells. Bp and 3-HAA reversed these changes. Enterorhabdus and Pseudomonas were significantly enriched in OVX rats. Bp and 3-HAA regulated the gut microbiota of OVX rats, enriching pathways related to nutrient metabolism and immune function. There was a correlation between the gut microbiota and the Th17/Treg, as well as femoral stereo parameters. The concurrent administration of Bp and 3-HAA medication facilitated the enrichment of gut microbiota associated with the improvement of PMO. CONCLUSION The combination therapy of Bp and 3-HAA can prevent PMO by modulating the gut microbiota and restoring Th17/Treg immune homeostasis.
Collapse
Affiliation(s)
- Fuping Zhu
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Hui Liu
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yinsheng Cao
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Bing Dai
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Hang Wu
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Wuping Li
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
| |
Collapse
|
9
|
Ahire JJ, Kumar V, Rohilla A. Understanding Osteoporosis: Human Bone Density, Genetic Mechanisms, Gut Microbiota, and Future Prospects. Probiotics Antimicrob Proteins 2024; 16:875-883. [PMID: 37874496 DOI: 10.1007/s12602-023-10185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Osteoporosis is a systemic condition of the skeleton that leads to diminished bone mass, a breakdown in the bone tissue's microscopic architecture, and an elevated risk of breaking a bone. The elderly and women particularly after menopause are disproportionately affected, and the condition generally stays undiagnosed until a broken bone causes severe pain and immobility. Causes of osteoporosis include low bone mass, more than normal bone loss, changes in hormone levels (decreased estrogen or testosterone), certain diseases and therapies, and lifestyle factors like smoking and inactivity. The spine, hip, and forearm are particularly vulnerable to osteoporosis-related fractures. The purpose of this article is to present a thorough understanding of osteoporosis, including the disease's connection to bone density in humans, and the major part played by genetic pathways and gut flora. The causes of osteoporosis, the effects of aging on bone density, and why some groups experience a higher incidence of the disease than others are investigated. The paper also includes animal and human experiments investigating the link between gut flora and osteoporosis. Finally, it looks to the future and speculates on possible developments in osteoporosis prevention and therapy.
Collapse
Affiliation(s)
- Jayesh J Ahire
- Dr. Reddy's Laboratories Limited, Hyderabad, 500016, India.
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, 131028, India
| | - Alka Rohilla
- Institute of Biology Sciences, Faculty of Science, University of Malaya, 5060, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
11
|
Luo ZQ, Huang YJ, Chen ZH, Lu CY, Zhou B, Gong XH, Shen Z, Wang T. A decade of insight: bibliometric analysis of gut microbiota's role in osteoporosis (2014-2024). Front Med (Lausanne) 2024; 11:1409534. [PMID: 38841589 PMCID: PMC11150527 DOI: 10.3389/fmed.2024.1409534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose Osteoporosis represents a profound challenge to public health, underscoring the critical need to dissect its complex etiology and identify viable targets for intervention. Within this context, the gut microbiota has emerged as a focal point of research due to its profound influence on bone metabolism. Despite this growing interest, the literature has yet to see a bibliometric study addressing the gut microbiota's contribution to both the development and management of osteoporosis. This study aims to fill this gap through an exhaustive bibliometric analysis. Our objective is to uncover current research hotspots, delineate key themes, and identify future research trends. In doing so, we hope to provide direction for future studies and the development of innovative treatment methods. Methods Relevant publications in this field were retrieved from the Web of Science Core Collection database. We used VOSviewer, CiteSpace, an online analysis platform and the R package "Bibliometrix" for bibliometric analysis. Results A total of 529 publications (including 351 articles and 178 reviews) from 61 countries, 881 institutions, were included in this study. China leads in publication volume and boast the highest cumulative citation. Shanghai Jiao Tong University and Southern Medical University are the leading research institutions in this field. Nutrients contributed the largest number of articles, and J Bone Miner Res is the most co-cited journal. Of the 3,166 scholars who participated in the study, Ohlsson C had the largest number of articles. Li YJ is the most co-cited author. "Probiotics" and "inflammation" are the keywords in the research. Conclusion This is the first bibliometric analysis of gut microbiota in osteoporosis. We explored current research status in recent years and identified frontiers and hot spots in this research field. We investigate the impact of gut microbiome dysregulation and its associated inflammation on OP progression, a topic that has garnered international research interest in recent years. Additionally, our study delves into the potential of fecal microbiota transplantation or specific dietary interventions as promising avenues for future research, which can provide reference for the researchers who focus on this research filed.
Collapse
Affiliation(s)
- Zhi Qiang Luo
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya Jing Huang
- Department of Rheumatology, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Ze Hua Chen
- Department of Orthopedics, The Orthopedics Hospital of Traditional Chinese Medicine, Zhuzhou, Hunan, China
| | - Chen Yin Lu
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Biao Zhou
- Department of Orthopedics, The First People’s Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Xiang Hao Gong
- Department of Oncology, Hengyang Central Hospital, Hengyang, Hunan, China
| | - Zhen Shen
- Department of Rehabilitation, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Tao Wang
- Department of Orthopedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
12
|
Li J, Liu C, Xu Y, Ling C, Tang Z, Kiram A, Hu Z, Zhu Z, Qiu Y, Liu Z. Gut Microbiota Alterations in Adolescent Idiopathic Scoliosis Are Associated with Aberrant Bone Homeostasis. Orthop Surg 2024; 16:965-975. [PMID: 38389213 PMCID: PMC10984819 DOI: 10.1111/os.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Low bone mineral density is the major prognostic factor for adolescent idiopathic scoliosis (AIS), but the underlying mechanisms remain unclear. Accumulating evidence suggests that gut microbiota (GM) have the potential to affect bone development, and the GM signatures are altered in AIS patients. However, the effect of GM alterations on aberrant bone homeostasis in AIS remains unclear. This study aims to investigate the GM profile in AIS patients with different bone mineral density (BMD) and explore the association between GM, osteopenia, and aberrant bone turnover. METHODS A total of 126 patients with AIS who received surgical treatment were retrospectively included in this study. We analyzed the composition of the GM by 16S rRNA sequencing and BMD by dual X-ray absorptiometry. Based on the BMD of the femur neck, the patients were divided into the osteopenia group (OPN) if the Z score < -1, and the normal (NOR) group if the Z score ≥ -1 SD compared to the healthy control. For the 16S rRNA sequencing, the raw reads were filtered to remove low-quality reads, and operational taxonomic units were identified with the Uparse program. Weighted UniFrac distance matrix for the beta-diversity metrics and principal coordinate analysis (PCoA) was performed, and the statistical comparisons were made with permutational multivariate analysis of variance (PERMANOVA) and analysis of similarity (ANONISM). Linear discriminant analysis effect size (LEfSe) was used to identify the enriched species in two groups. The "Random forest" was applied to determine the optimal biomarker for OPN according to the mean decrease in Gini value. The metabolic function was predicted by the Tax4Fun analysis. The Pearson correlation coefficient was used to evaluate the associations between GM species, bone turnover markers, and BMD. RESULTS The serum β-CTX was increased in the OPN group (n = 67) compared to the NOR group (n = 59). Patients in OPN groups showed significantly decreased α diversity indicated by the Shannon index. Principal coordinate analysis (PCoA) analysis showed significant clustering of GM between OPN and NOR groups. At genus level, the Escherichia-Shigella and Faecalibacterium were significantly enriched in the OPN group compared to that in the NOR group (p < 0.05), whereas the abundance of Prevotella was significantly decreased (p = 0.0012). The relative abundance of Megamonas and Prevotella was positively correlated with the femur BMD. The abundance of Escherichia-Shigella was negatively correlated with femur BMD and positively correlated with serum β-CTX levels. Functional analysis revealed significant differences in starch and sucrose metabolism, pyruvate and cysteine, and methionine metabolism between NOR and OPN groups. CONCLUSION The alterations of GM in AIS patients are correlated with osteopenia. The association between enriched species, BMD, and bone turnover markers provides novel diagnostic and therapeutic targets for the clinical management of AIS.
Collapse
Affiliation(s)
- Jie Li
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Changwei Liu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Yanjie Xu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chen Ling
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Ziyang Tang
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Abdukahar Kiram
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zongshan Hu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
13
|
Ju LL, Wei YK, Liu Y. Mendelian randomization study supports effect of gut microflora on fractures. Medicine (Baltimore) 2024; 103:e37017. [PMID: 38306537 PMCID: PMC10843377 DOI: 10.1097/md.0000000000037017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
To investigate the possible causal relationship between intestinal microflora and fractures using Mendelian randomization (MR). A 2-sample MR study of gut microbiota and fractures was conducted using a weighted inverse variance analysis with tests for heterogeneity, horizontal pleiotropy, and sensitivity. A causal association between fracture risk and specific bacterial taxa was identified at various taxonomic levels: 2 (Bacteroidia, P = .0304; Deltaproteobacteria P = .0304) at the class level, 3 (Bacteroidales, P = .0428; Desulfovibrionales, P = .0428; Enterobacteriales, P = .0208) at the order level, 2 (FamilyXI, P = .0304; Enterobacteriaceae P = .0332) at the family level, and 1 (Alistipes, P = .0405) at the genus level. This study revealed a causal relationship between gut microflora and fracture risk, demonstrating that the effect of different flora taxa flora abundance on fracture risk differs. It provides a reference for further studies.
Collapse
Affiliation(s)
- Ling-Ling Ju
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yong-Kang Wei
- The Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yanjun Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Meng Y, Sun J, Zhang G. Pick fecal microbiota transplantation to enhance therapy for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110860. [PMID: 37678703 DOI: 10.1016/j.pnpbp.2023.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In recent years, fecal microbiota transplantation (FMT) has emerged as a promising therapy for major depressive disorder (MDD). The goal of the operation is to restore a healthy gut microbiota by introducing feces from a healthy donor into the recipient's digestive system. The brain-gut axis is thought to have a significant role in regulating mood, behavior, and cognition, which supports the use of FMT in the treatment of MDD. Numerous studies have shown a correlation between abnormalities of the gut microbiota and MDD, whereas FMT has demonstrated the potential to restore microbial equilibrium. While FMT has shown encouraging results, it is crucial to highlight the potential hazards and limits inherent to this therapeutic approach. Stool donor-to-recipient disease transfer is a concern of FMT. Furthermore, it still needs to be determined what effect FMT has on the gut microbiota and the brain in the long run. This literature review provides an overview of the possible efficacy of FMT as a therapeutic modality for MDD. There is hope for patients who have not reacted well to typical antidepressant therapy since FMT may become an invaluable tool in the treatment of MDD as researchers continue to examine the relationship between gut microbiota and MDD.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China
| |
Collapse
|
15
|
Tyagi AM. Mechanism of action of gut microbiota and probiotic Lactobacillus rhamnosus GG on skeletal remodeling in mice. Endocrinol Diabetes Metab 2024; 7:e440. [PMID: 37505196 PMCID: PMC10782069 DOI: 10.1002/edm2.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Gut microbiota (GM) is the collection of small organisms such as bacteria, fungi, bacteriophages and protozoans living in the intestine in symbiotics relation within their host. GM regulates host metabolism by various mechanisms. METHODS This review aims to consolidate current information for physicians on the effect of GM on bone health. For this, an online search of the literature was conducted using the keywords gut microbiota, bone mass, osteoporosis, Lactobacillus and sex steroid. RESULTS AND CONCLUSIONS There is a considerable degree of variation in bone mineral density (BMD) within populations, and it is estimated that a significant component of BMD variability is due to genetics. However, the remaining causes of bone mass variance within populations remain largely unknown. A well-recognized cause of phenotypic variation in bone mass is the composition of the microbiome. Studies have shown that germ-free (GF) mice have higher bone mass compared to conventionally raised (CR) mice. Furthermore, GM dysbiosis, also called dysbacteriosis, is defined as any alteration in the composition of the microbial community that has been colonized in the host intestine and associated with the development of bone diseases. For instance, postmenopausal osteoporosis (PMO) and diabetes. GM can be modulated by several factors such as genetics, age, drugs, food habits and probiotics. Probiotics are defined as viable bacteria that confer health benefits by modulating GM when administered in adequate quantity. Lactobacillus rhamnosus GG (LGG) is a great example of such a probiotic. LGG has been shown to regulate bone mass in healthy mice as well as ovariectomized (OVX) mice via two different mechanisms. This review will focus on the literature regarding the mechanism by which GM and probiotic LGG regulate bone mass in healthy mice as well as in OVX mice, a model of PMO.
Collapse
|
16
|
Zhou Y, Sheng YJ, Li CY, Zou L, Tong CY, Zhang Y, Cao G, Shou D. Beneficial effect and mechanism of natural resourced polysaccharides on regulating bone metabolism through intestinal flora: A review. Int J Biol Macromol 2023; 253:127428. [PMID: 37838110 DOI: 10.1016/j.ijbiomac.2023.127428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Bone metabolism is an important biological process for maintaining bone health. Polysaccharides of natural origin exert beneficial effects on bone metabolism. Polysaccharide molecules often have difficulty passing through the intestinal cell membrane and are directly absorbed in the gastrointestinal tract. Therefore, polysaccharides may affect intestinal flora and play a role in disease treatment. We performed a comprehensive review of the relevant literature published from 2003 to 2023. We found that several polysaccharides from traditional Chinese medicines, including Astragalus, Achyranthes bidentata and Eucommia ulmoides, and the polysaccharides from several dietary fibers mainly composed of inulin, resistant starch, and dextran could enrich the intestinal microbiota group to regulate bone metabolism. The promotion of polysaccharide decomposition by regulating the Bacteroides phylum is particularly critical. Studies on the structure-activity relationship showed that molecular weight, glycosidic bonds, and monosaccharide composition may affect the ability of polysaccharides. The mechanism by which polysaccharides regulate intestinal flora to enhance bone metabolism may be related to the regulation of short-chain fatty acids, immunity, and hormones, involving some signaling pathways, such as TGF-β, Wnt/β-catenin, BMP/Smads, and RANKL. This paper provides a useful reference for the study of polysaccharides and suggests their potential application in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Yun Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yun Jie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Cheng Yan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Li Zou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chao Ying Tong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China; College of Chemistry and Chemical Engineering,Central South University, Changsha, Hunan 410083, PR China
| | - Yang Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
17
|
Sun A, Liu H, Sun M, Yang W, Liu J, Lin Y, Shi X, Sun J, Liu L. Emerging nanotherapeutic strategies targeting gut-X axis against diseases. Biomed Pharmacother 2023; 167:115577. [PMID: 37757494 DOI: 10.1016/j.biopha.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can coordinate with different tissues and organs to maintain human health, which derives the concept of the gut-X axis. Conversely, the dysbiosis of gut microbiota leads to the occurrence and development of various diseases, such as neurological diseases, liver diseases, and even cancers. Therefore, the modulation of gut microbiota offers new opportunities in the field of medicines. Antibiotics, probiotics or other treatments might restore unbalanced gut microbiota, which effects do not match what people have expected. Recently, nanomedicines with the high targeting ability and reduced toxicity make them an appreciative choice for relieving disease through targeting gut-X axis. Considering this paradigm-setting trend, the current review summarizes the advancements in gut microbiota and its related nanomedicines. Specifically, this article introduces the immunological effects of gut microbiota, summarizes the gut-X axis-associated diseases, and highlights the nanotherapeutics-mediated treatment via remolding the gut-X axis. Moreover, this review also discusses the challenges in studies related to nanomedicines targeting the gut microbiota and offers the future perspective, thereby aiming at charting a course toward clinic.
Collapse
Affiliation(s)
- Ao Sun
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hongyu Liu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China; Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiaxin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi Lin
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China.
| | - Linlin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
18
|
Guan Z, Xuanqi Z, Zhu J, Yuan W, Jia J, Zhang C, Sun T, Leng H, Jiang C, Xu Y, Song C. Estrogen deficiency induces bone loss through the gut microbiota. Pharmacol Res 2023; 196:106930. [PMID: 37722518 DOI: 10.1016/j.phrs.2023.106930] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Postmenopausal osteoporosis is a common bone metabolic disease, and gut microbiota (GM) imbalance plays an important role in the development of metabolic bone disease. Here, we show that ovariectomized mice had high levels of lipopolysaccharide in serum and gut microbiota dysbiosis through increases in luminal Firmicutes:Bacteroidetes ratio. We depleted the GM through antibiotic treatment and observed improvements in bone mass, bone microstructure, and bone strength in ovariectomized mice. Conversely, transplantation of GM adapted to ovariectomy induced bone loss. However, GM depletion reversed ovariectomy-induced gene expression in the tibia and increased periosteal bone formation. Furthermore, bioinformatics analysis revealed that the G-protein-coupled bile acid receptor (TGR5) and systemic inflammatory factors play key roles in bone metabolism. Silencing TGR5 expression through small interfering RNA (siRNA) in the local tibia and knockout of TGR5 attenuated the effects of GM depletion in ovariectomized mice, confirming these findings. Thus, this study highlights the critical role of the GM in inducing bone loss in ovariectomized mice and suggests that targeting TGR5 within the GM may have therapeutic potential for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zheng Xuanqi
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tiantong Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Huijie Leng
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China.
| |
Collapse
|
19
|
Wang H, Liu J, Wu Z, Zhao Y, Cao M, Shi B, Chen B, Chen N, Guo H, Li N, Chen J, Xu R. Gut microbiota signatures and fecal metabolites in postmenopausal women with osteoporosis. Gut Pathog 2023; 15:33. [PMID: 37415173 DOI: 10.1186/s13099-023-00553-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Women suffer from various distress and disturbances after menopause, including osteoporosis, a risk factor associated with multiple diseases. Altered gut microbiota has been implicated in postmenopausal osteoporosis. In this study, to understand gut microbiota signatures and fecal metabolite changes in postmenopausal women with osteoporosis, 108 postmenopausal women were recruited for intestinal microbiota and fecal metabolite detection. Among these participants, 98 patients, who met the inclusion criteria, were divided into postmenopausal osteoporosis (PMO) and non-postmenopausal osteoporosis (non-PMO) groups based on bone mineral density (BMD). The compositions of gut bacteria and fungi were examined by 16 S rRNA gene sequencing and ITS sequencing, respectively. Meanwhile, fecal metabolites were analyzed using liquid chromatography coupled with mass spectrometry (LC-MS). RESULTS We found that bacterial α-diversity and β-diversity were significantly altered in PMO compared to non-PMO patients. Interestingly, fungi composition showed larger changes, and the differences in β-diversity were more significant between PMO and non-PMO patients. Metabolomics analysis revealed that fecal metabolites, such as levulinic acid, N-Acetylneuraminic acid, and the corresponding signaling pathways were also changed significantly, especially in the alpha-Linolenic acid metabolism and selenocompound metabolism. The screened differential bacteria, fungi, and metabolites closely correlated with clinical findings between these two groups, for example, the bacterial genus, Fusobacterium, the fungal genus, Devriesia, and the metabolite, L-pipecolic acid, were significantly associated with BMD. CONCLUSIONS Our findings indicated that there were remarkable changes in gut bacteria, fungi, and fecal metabolites in postmenopausal women, and such changes were notably correlated with patients' BMD and clinical findings. These correlations provide novel insights into the mechanism of PMO development, potential early diagnostic indicators, and new therapeutic approaches to improve bone health in postmenopausal women.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China
| | - Jing Liu
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, No.201-209 Hubinnan Road, Siming District, Xiamen, Fujian Province, 361000, China
| | - Zuoxing Wu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China
| | - Yangyang Zhao
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, No.201-209 Hubinnan Road, Siming District, Xiamen, Fujian Province, 361000, China
| | - Man Cao
- Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, Fujian Province, 361001, China
| | - Baohong Shi
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China
| | - Baolong Chen
- Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, Fujian Province, 361001, China
| | - Ning Chen
- Department of Endocrinology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, China
| | - Hao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Na Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China
| | - Jian Chen
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, No.201-209 Hubinnan Road, Siming District, Xiamen, Fujian Province, 361000, China.
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, No. 4221 Xiang'an South Road, Xiang'an District, Xiamen, Fujian Province, 361102, China.
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
20
|
Xiang D, Zhou E, Wang M, Wang K, Zhou S, Ma Q, Zhong Z, Ye Q, Chen Y, Fan X, Wang Y. Artificial ovaries constructed from biodegradable chitin-based hydrogels with the ability to restore ovarian endocrine function and alleviate osteoporosis in ovariectomized mice. Reprod Biol Endocrinol 2023; 21:49. [PMID: 37208699 DOI: 10.1186/s12958-023-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Artificial ovary (AO) is an alternative approach to provide physiological hormone to post-menopausal women. The therapeutic effects of AO constructed using alginate (ALG) hydrogels are limited by their low angiogenic potential, rigidity, and non-degradability. To address these limitations, biodegradable chitin-based (CTP) hydrogels that promote cell proliferation and vascularization were synthesized, as supportive matrix. METHODS In vitro, follicles isolated from 10-12-days-old mice were cultured in 2D, ALG hydrogels, and CTP hydrogels. After 12 days of culture, follicle growth, steroid hormone levels, oocyte meiotic competence, and expression of folliculogenesis-related genes were monitored. Additionally, follicles isolated from 10-12-days-old mice were encapsulated in CTP and ALG hydrogels and transplanted into the peritoneal pockets of ovariectomised (OVX) mice. After transplantation, steroid hormone levels, body weight, rectal temperature, and visceral fat of the mice were monitored every two weeks. At 6 and 10 weeks after transplantation, the uterus, vagina, and femur were collected for histological examination. RESULTS The follicles developed normally in CTP hydrogels under in vitro culture conditions. Additionally, follicular diametre and survival rate, oestrogen production, and expression of folliculogenesis-related genes were significantly higher than those in ALG hydrogels. After one week of transplantation, the numbers of CD34-positive vessels and Ki-67-positive cells in CTP hydrogels were significantly higher than those in ALG hydrogels (P < 0.05), and the follicle recovery rate was significantly higher in CTP hydrogels (28%) than in ALG hydrogels (17.2%) (P < 0.05). After two weeks of transplantation, OVX mice implanted with CTP grafts exhibited normal steroid hormone levels, which were maintained until week eight. After 10 weeks of transplantation, CTP grafts effectively ameliorated bone loss and atrophy of the reproductive organs, as well as prevented the increase in body weight and rectal temperature in OVX mice, which were superior to those elicited by ALG grafts. CONCLUSIONS Our study is the first to demonstrate that CTP hydrogels support follicles longer than ALG hydrogels in vitro and in vivo. The results highlight the clinical potential of AO constructed using CTP hydrogels in the treatment of menopausal symptoms.
Collapse
Affiliation(s)
- Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kan Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Qing Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China.
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China.
| |
Collapse
|
21
|
Xie Y, Zhang Y, Wang T, Liu Y, Ma J, Wu S, Duan C, Qiao W, Cheng K, Lu L, Zhuang R, Bian K. Ablation of CD226 on CD4+ T cells modulates asthma progress associated with altered IL-10 response and gut microbiota. Int Immunopharmacol 2023; 118:110051. [PMID: 36989896 DOI: 10.1016/j.intimp.2023.110051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
To investigate the role of the costimulatory molecule CD226 in asthma pathogenesis, we produced a CD4+ T-cell-specific CD226 knockout mice model (Cd226ΔCD4) and induced airway allergic inflammation by administering ovalbumin (OVA). Our results revealed alleviated lung inflammation, decreased levels of OVA-specific IgE, and increased levels of IL-10 in the serum of Cd226ΔCD4 mice (P < 0.05). Moreover, IL-10 levels in CD4+ T cells were significantly elevated in the mediastinal lymph node, spleen, and Peyer's patches in the Cd226ΔCD4 mice compared with those in controls (P < 0.05 to P < 0.01). Notably, there was a significantly higher IL-10 mRNA levels in the large intestine of the mice (P < 0.05). The protective effect of CD226 deficiency is also associated with the accumulation of gut TCRγδ+ intraepithelial lymphocytes and reversion of the gut microbiome dysbiosis. The Bacteroidetes-to-Firmicutes ratio and the abundance of Akkermansia increased in the absence of CD226 after OVA treatment. Our data reveal the synchronous changes in the lung and intestine in OVA-treated CD226-knockout mice, supporting the gut-lung axis concept and providing evidence for novel therapeutic approaches for asthma.
Collapse
|
22
|
Barrea L, Verde L, Auriemma RS, Vetrani C, Cataldi M, Frias-Toral E, Pugliese G, Camajani E, Savastano S, Colao A, Muscogiuri G. Probiotics and Prebiotics: Any Role in Menopause-Related Diseases? Curr Nutr Rep 2023; 12:83-97. [PMID: 36746877 PMCID: PMC9974675 DOI: 10.1007/s13668-023-00462-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an overview of the menopause-related changes in microbiota and their role in the pathogenesis of menopause-related diseases. In addition, evidence on probiotic supplementation as a therapeutic strategy is discussed. RECENT FINDINGS The human microbiota is a complex community that lives in a mutualism relationship with the host. Menopause is associated with dysbiosis, and these changes in the composition of microbiota in different sites (gut, vaginal, and oral microbiota) might play a role in the pathogenesis of menopause-related diseases (i.e., osteoporosis, breast cancer, endometrial hyperplasia, periodontitis, and cardiometabolic diseases). The present review highlights the pivotal role of microbiota in postmenopausal women health, in particular it (a) may increase intestinal calcium absorption thus preventing osteoporosis, (b) is associated with reduced risk of breast cancer and type 1 endometrial hyperplasia, (c) reduces gingival inflammation and menopausal periodontitis, and (d) beneficially affects multiple cardiometabolic risk factors (i.e., obesity, inflammation, and blood glucose and lipid metabolism). However, whether oral probiotic supplementation might be used for the treatment of menopause-related dysbiosis requires further clarification.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via Porzio, isola F2, 80143, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Claudia Vetrani
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Evelyn Frias-Toral
- Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil, 090615, Ecuador
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
23
|
Zhou RX, Zhang YW, Cao MM, Liu CH, Rui YF, Li YJ. Linking the relation between gut microbiota and glucocorticoid-induced osteoporosis. J Bone Miner Metab 2023; 41:145-162. [PMID: 36912997 PMCID: PMC10010237 DOI: 10.1007/s00774-023-01415-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
Osteoporosis (OP) is the most prevalent metabolic bone disease, characterized by the low bone mass and microarchitectural deterioration of bone tissue. Glucocorticoid (GC) clinically acts as one of the anti-inflammatory, immune-modulating, and therapeutic drugs, whereas the long-term use of GC may cause rapid bone resorption, followed by prolonged and profound suppression of bone formation, resulting in the GC-induced OP (GIOP). GIOP ranks the first among secondary OP and is a pivotal risk for fracture, as well as high disability rate and mortality, at both societal and personal levels, vital costs. Gut microbiota (GM), known as the "second gene pool" of human body, is highly correlated with maintaining the bone mass and bone quality, and the relation between GM and bone metabolism has gradually become a research hotspot. Herein, combined with recent studies and based on the cross-linking relationship between GM and OP, this review is aimed to discuss the potential mechanisms of GM and its metabolites on the OP, as well as the moderating effects of GC on GM, thereby providing an emerging thought for prevention and treatment of GIOP.
Collapse
Affiliation(s)
- Rui-Xin Zhou
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuan-Wei Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Mu-Min Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Cun-Hao Liu
- School of Architecture, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
25
|
Gao XY, Jin Y, Zhao J, Zhang YL, Wang HW, Zhou BH. Th17-Related Cytokines Involved in Fluoride-Induced Cecal and Rectal Barrier Damage of Ovariectomized Rats. Biol Trace Elem Res 2022:10.1007/s12011-022-03519-6. [PMID: 36538210 DOI: 10.1007/s12011-022-03519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
To investigate fluoride (F)-induced intestine barrier damage and the role of estrogen deficiency in this progress, a rat model of estrogen deficiency was established through bilateral surgical removal of ovaries. The F exposure model was then continued by adding sodium fluoride (0, 25, 50, and 100 mg/L, calculated on a fluorine ion basis) to drinking water for 90 days. Afterward, intestinal mucosal structure, barrier function, and inflammatory cytokines were evaluated. The results showed that excessive F decreased the developmental parameters (crypt depth) of the cecum and rectum and inhibited the proliferation capacity of the intestinal epithelia, which are more obvious in the state of estrogen deficiency. The distribution of goblet cells and glycoproteins in the intestinal mucosa decreased with the increase in F concentration, and estrogen deficiency led to a further decline, especially in the rectum. Using the immunofluorescence method, the study showed that excessive F caused interleukin-17A (IL-17A) significantly decrease in the cecum and increase in the rectum. Meanwhile, F treatment remarkably upregulated the expression of intestinal IL-1β, IL-23, and IL-22, while the level of IL-6 was downregulated. In addition, estrogen deficiency increased IL-1β, IL-6, IL-23, and IL-22, but decreased IL-17A expression in the cecum and rectum. Collectively, F exposure damaged intestinal morphological structure, inhibited epithelial cell proliferation and mucus barrier function, and resulted in the disturbance of T helper (Th) 17 cell-related cytokines expression. Estrogen deficiency may further aggravate F-induced damage to the cecum and rectum.
Collapse
Affiliation(s)
- Xiao-Ying Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Yu-Ling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
26
|
Scutellarin ameliorates osteoarthritis by protecting chondrocytes and subchondral bone microstructure by inactivating NF-κB/MAPK signal transduction. Biomed Pharmacother 2022; 155:113781. [DOI: 10.1016/j.biopha.2022.113781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
|
27
|
Yan Q, Cai L, Guo W. New Advances in Improving Bone Health Based on Specific Gut Microbiota. Front Cell Infect Microbiol 2022; 12:821429. [PMID: 35860378 PMCID: PMC9289272 DOI: 10.3389/fcimb.2022.821429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/01/2022] [Indexed: 12/31/2022] Open
Abstract
The gut microbiota has been shown to play an important role in the pathogenesis of various diseases, including metabolic diseases, cardiovascular diseases, and cancer. Recent studies suggest that the gut microbiota is also closely associated with bone metabolism. However, given the high diversity of the gut microbiota, the effects of different taxa and compositions on bone are poorly understood. Previous studies demonstrated that the mechanisms underlying the effects of the gut microbiota on bone mainly include its modulation of nutrient absorption, intestinal permeability, metabolites (such as short-chain amino acids), immune responses, and hormones or neurotransmitters (such as 5-hydroxytryptamine). Several studies found that external interventions, such as dietary changes, improved bone health and altered the composition of the gut microbiota. This review summarises the beneficial gut bacteria and explores how dietary, natural, and physical factors alter the diversity and composition of the gut microbiota to improve bone health, thereby providing potential new insight into the prevention of osteoporosis.
Collapse
|
28
|
You K, Yang L, Shen J, Liu B, Guo Y, Chen T, Li G, Lu H. Relationship between Gut Microbiota and Bone Health. Mini Rev Med Chem 2022; 22:2406-2418. [PMID: 35249483 DOI: 10.2174/1389557522666220304230920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Gut microbiota (GM) are microorganisms that live in the host gastrointestinal tract, and their abundance varies throughout the host's life. With the development of sequencing technology, the role of GM in various diseases has been increasingly elucidated. Unlike earlier studies on orthopedic diseases, this review elucidates the correlation between GM health and bone health, and discusses the potential mechanism of GM effects on host metabolism, inflammation, and ability to induce or aggravate some common orthopedic diseases such as osteoarthritis, osteoporosis, rheumatoid arthritis, etc. Finally, the prospective methods of GM manipulation and evaluation of potential GM-targeting strategies in the diagnosis and treatment of orthopedic diseases are reviewed.
Collapse
Affiliation(s)
- Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Guowei Li
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
29
|
Yu J, Hang Y, Sun W, Wang G, Xiong Z, Ai L, Xia Y. Anti-Osteoporotic Effect of Lactobacillus brevis AR281 in an Ovariectomized Mouse Model Mediated by Inhibition of Osteoclast Differentiation. BIOLOGY 2022; 11:359. [PMID: 35336732 PMCID: PMC8944959 DOI: 10.3390/biology11030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
Osteoporosis is a global disease characterized by weakened bone microarchitecture, leading to osteoporotic fractures. Estrogen replacement therapy is the traditional treatment for osteoporosis but carries with it an increased risk of cardiac events. In search of a safe and effective treatment, we used Lactobacillus brevis AR281, which has anti-inflammatory properties, to conduct a 7-week experiment, investigating its inhibitory effects on osteoporosis in an ovariectomized (ovx) mouse model. The results demonstrated that AR281 significantly improved bone microarchitecture and biomechanical strength in ovx mice by attenuating bone resorption. AR281 significantly decreased the critical osteoclast activator, the ratio of the receptor activator for nuclear factor kappa B (NF-κB) ligand (RANKL) to osteoprotegerin, and pro-inflammatory osteoclastogenic mediators, such as IL-1, IL-6, and IL-17, which can increase the RANKL expression. Moreover, AR281 modulated intestinal microbiota in ovx mice increased the abundance of Akkermansia, which is responsible for the improvement of gut epithelial barrier integrity. In an in vitro trial, AR281 suppressed the number of osteoclasts differentiated from the osteoclast precursor RAW264.7 cells caused by RANKL through the tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)/NF-κB/nuclear factor of activated T cells c1 (NFATc1) pathway. Therefore, AR281 may be a natural alternative for combating osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Y.H.); (W.S.); (G.W.); (Z.X.); (L.A.)
| |
Collapse
|
30
|
Wang X, Zhang X, Han Y, Duan X, Wang J, Yan H, Wang S, Xu Y, Zhu Z, Wang L, Huang Y, Lin Q, Tan X, Zhuo J, Zhang H, Mao M, Gou W, Yi Z, Li X. Role of the major histocompatibility complex class II protein presentation pathway in bone immunity imbalance in postmenopausal osteoporosis. Front Endocrinol (Lausanne) 2022; 13:876067. [PMID: 36034452 PMCID: PMC9402988 DOI: 10.3389/fendo.2022.876067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bone immunity regulates osteoclast differentiation and bone resorption and is a potential target for the treatment of postmenopausal osteoporosis (PMOP). The molecular network between bone metabolism and the immune system is complex. However, the molecular mechanism underlying the involvement of the major histocompatibility complex class II (MHC-II) molecule protein presentation pathway in PMOP remains to be elucidated. The MHC-II molecule is a core molecule of the protein presentation pathway. It is combined with the processed short peptide and presented to T lymphocytes, thereby activating them to become effector T cells. T-cell-derived inflammatory factors promote bone remodeling in PMOP. Moreover, the MHC-II molecule is highly expressed in osteoclast precursors. MHC-II transactivator (CIITA) is the main regulator of MHC-II gene expression and the switch for protein presentation. CIITA is also a major regulator of osteoclast differentiation and bone homeostasis. Therefore, we hypothesized that the MHC-II promotes osteoclast differentiation, providing a novel pathogenic mechanism and a potential target for the treatment of PMOP.
Collapse
Affiliation(s)
- Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yidan Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xinwei Duan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianchang Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Yan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunteng Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zaishi Zhu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanfeng Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Junkuan Zhuo
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haifeng Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Min Mao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weiying Gou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhouping Yi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Xihai Li,
| |
Collapse
|
31
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|