1
|
Fopiano KA, Zhazykbayeva S, El-Battrawy I, Buncha V, Pearson WM, Hardell DJ, Lang L, Hamdani N, Bagi Z. PDE9A Inhibition Improves Coronary Microvascular Rarefaction and Left Ventricular Diastolic Dysfunction in the ZSF1 Rat Model of HFpEF. Microcirculation 2024:e12888. [PMID: 39325678 DOI: 10.1111/micc.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE Heart failure with preserved ejection fraction (HFpEF) commonly arises from comorbid diseases, such as hypertension, obesity, and diabetes mellitus. Selective inhibition of phosphodiesterase 9A (PDE9A) has emerged as a potential therapeutic approach for treating cardiometabolic diseases. Coronary microvascular disease (CMD) is one of the key mechanisms contributing to the development of left ventricular (LV) diastolic dysfunction in HFpEF. Our study aimed to investigate the mechanisms by which PDE9A inhibition could ameliorate CMD and improve LV diastolic function in HFpEF. METHODS AND RESULTS The obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid (ZSF1) rat model of HFpEF was employed in which it was found that a progressively developing coronary microvascular rarefaction is associated with LV diastolic dysfunction when compared to lean, nondiabetic hypertensive controls. Obese ZSF1 rats had an increased cardiac expression of PDE9A. Treatment of obese ZSF1 rats with the selective PDE9A inhibitor, PF04447943 (3 mg/kg/day, oral gavage for 2 weeks), improved coronary microvascular rarefaction and LV diastolic dysfunction, which was accompanied by reduced levels of oxidative and nitrosative stress markers, hydrogen peroxide, and 3-nitrotyrosine. Liquid chromatography-mass spectrometry (LC-MS) proteomic analysis identified peroxiredoxins (PRDX) as downregulated antioxidants in the heart of obese ZSF1 rats, whereas Western immunoblots showed that the protein level of PRDX5 was significantly increased by the PF04447943 treatment. CONCLUSIONS Thus, in the ZSF1 rat model of human HFpEF, PDE9A inhibition improves coronary vascular rarefaction and LV diastolic dysfunction, demonstrating the usefulness of PDE9A inhibitors in ameliorating CMD and LV diastolic dysfunction through augmenting PRDX-dependent antioxidant mechanisms.
Collapse
Affiliation(s)
- Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Saltanat Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut Für Forschung Und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut Für Forschung Und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - William M Pearson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Davis J Hardell
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Liwei Lang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut Für Forschung Und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
- Department of Pharmacology and Pharmacotherapy, Center for Pharmacology and Drug Research & Development, HCEMM-SU Cardiovascular Comorbidities Research Group, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, The Netherlands
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Severino A, Reyes-Gaido OE, Nguyen P, Elkarim A, Luczak ED, Mesubi OO. SGLT2 inhibitors protect against diabetic cardiomyopathy and atrial fibrillation through a CaMKII independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614368. [PMID: 39386626 PMCID: PMC11463538 DOI: 10.1101/2024.09.23.614368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been implicated as an important mediator of the increasingly evident cardioprotective benefits exerted by sodium-glucose transport protein 2 channel inhibitors (SGLT2i). However, the exact nature of the relationship between CaMKII and SGLT2i remains unclear. Here, we find that empagliflozin but not dapagliflozin attenuated susceptibility to atrial fibrillation (AF) in a type 2 diabetic (T2D) mouse model. However, both empagliflozin and dapagliflozin protected from diabetic cardiomyopathy in T2D mice. We then used real-time microscopy of neonatal rat ventricular cardiomyocytes (NRVMs) with the CaMKII biosensor - CaMKAR to demonstrate that direct inhibition of CaMKII is not essential for the effects of SGLT2i in these cells. Therefore, we conclude that the benefits of SGLT2i in heart disease likely occur through indirect modulation of CaMKII activity, or possibly through an alternative pathway altogether.
Collapse
Affiliation(s)
- Alex Severino
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oscar E Reyes-Gaido
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pauline Nguyen
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmed Elkarim
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Luczak
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olurotimi O Mesubi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhang C, Xue ZH, Luo WH, Jiang MY, Wu Y. The therapeutic potential of phosphodiesterase 9 (PDE9) inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:759-772. [PMID: 38979973 DOI: 10.1080/13543776.2024.2376632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Phosphodiesterase 9 (PDE9) has been demonstrated as a potential target for neurological disorders and cardiovascular diseases, such as Alzheimer's disease and heart failure. For the last few years, a series of PDE9 inhibitors with structural diversities have been developed and patented by researchers and pharmaceutical companies, providing insights into first-in-class therapies of PDE9 drug candidates. AREA COVERED This review provides an overview of PDE9 inhibitors in patents from 2018 to the present. EXPERT OPINION Only a few of the current PDE9 inhibitors are highly selective over other PDEs, which limits their application in pharmacological and clinical research. The design and development of highly selective PDE9 inhibitors remain the top priority in future research. The advantages of targeting PDE9 rather than other PDEs in treating neurodegenerative diseases need to be explained thoroughly. Besides, application of PDE9 inhibitor-based combination therapies sheds light on treating diabetes and refractory heart diseases. Finally, PDE9 inhibitors should be further explored in clinical indications beyond neurological disorders and cardiovascular diseases.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Zhao-Hang Xue
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Wei-Hao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Mei-Yan Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
4
|
Wang Y, Zhao M, Liu X, Xu B, Reddy GR, Jovanovic A, Wang Q, Zhu C, Xu H, Bayne EF, Xiang W, Tilley DG, Ge Y, Tate CG, Feil R, Chiu JC, Bers DM, Xiang YK. Carvedilol Activates a Myofilament Signaling Circuitry to Restore Cardiac Contractility in Heart Failure. JACC Basic Transl Sci 2024; 9:982-1001. [PMID: 39297139 PMCID: PMC11405995 DOI: 10.1016/j.jacbts.2024.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 09/21/2024]
Abstract
Phosphorylation of myofilament proteins critically regulates beat-to-beat cardiac contraction and is typically altered in heart failure (HF). β-Adrenergic activation induces phosphorylation in numerous substrates at the myofilament. Nevertheless, how cardiac β-adrenoceptors (βARs) signal to the myofilament in healthy and diseased hearts remains poorly understood. The aim of this study was to uncover the spatiotemporal regulation of local βAR signaling at the myofilament and thus identify a potential therapeutic target for HF. Phosphoproteomic analysis of substrate phosphorylation induced by different βAR ligands in mouse hearts was performed. Genetically encoded biosensors were used to characterize cyclic adenosine and guanosine monophosphate signaling and the impacts on excitation-contraction coupling induced by β1AR ligands at both the cardiomyocyte and whole-heart levels. Myofilament signaling circuitry was identified, including protein kinase G1 (PKG1)-dependent phosphorylation of myosin light chain kinase, myosin phosphatase target subunit 1, and myosin light chain at the myofilaments. The increased phosphorylation of myosin light chain enhances cardiac contractility, with a minimal increase in calcium (Ca2+) cycling. This myofilament signaling paradigm is promoted by carvedilol-induced β1AR-nitric oxide synthetase 3 (NOS3)-dependent cyclic guanosine monophosphate signaling, drawing a parallel to the β1AR-cyclic adenosine monophosphate-protein kinase A pathway. In patients with HF and a mouse HF model of myocardial infarction, increasing expression and association of NOS3 with β1AR were observed. Stimulating β1AR-NOS3-PKG1 signaling increased cardiac contraction in the mouse HF model. This research has characterized myofilament β1AR-PKG1-dependent signaling circuitry to increase phosphorylation of myosin light chain and enhance cardiac contractility, with a minimal increase in Ca2+ cycling. The present findings raise the possibility of targeting this myofilament signaling circuitry for treatment of patients with HF.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meimi Zhao
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Bing Xu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Qingtong Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Heli Xu
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Donald M Bers
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
5
|
Barthou A, Kamel R, Leroy J, Vandecasteele G, Fischmeister R. [Cyclic nucleotide phosphodiesterases: therapeutic targets in cardiac hypertrophy and failure]. Med Sci (Paris) 2024; 40:534-543. [PMID: 38986098 DOI: 10.1051/medsci/2024083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple isoforms of PDEs with different enzymatic properties and subcellular locally regulate cyclic nucleotide levels and associated cellular functions. This organisation is severely disrupted during hypertrophy and heart failure (HF), which may contribute to disease progression. Clinically, PDE inhibition has been seen as a promising approach to compensate for the catecholamine desensitisation that accompanies heart failure. Although PDE3 inhibitors such as milrinone or enoximone can be used clinically to improve systolic function and relieve the symptoms of acute CHF, their chronic use has proved detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as potential new targets for the treatment of HF, each with a unique role in local cyclic nucleotide signalling pathways. In this review, we describe cAMP and cGMP signalling in cardiomyocytes and present the different families of PDEs expressed in the heart and their modifications in pathological cardiac hypertrophy and HF. We also review results from preclinical models and clinical data indicating the use of specific PDE inhibitors or activators that may have therapeutic potential in CI.
Collapse
Affiliation(s)
| | - Rima Kamel
- Université Paris-Saclay, Inserm UMR-S 1180, Orsay, France
| | - Jérôme Leroy
- Université Paris-Saclay, Inserm UMR-S 1180, Orsay, France
| | | | | |
Collapse
|
6
|
Liu Y, Liu Z, Ren Z, Han Q, Chen X, Han J, Qiu G, Sun C. NDUFA9 and its crotonylation modification promote browning of white adipocytes by activating mitochondrial function in mice. Int J Biochem Cell Biol 2024; 171:106583. [PMID: 38657899 DOI: 10.1016/j.biocel.2024.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Protein crotonylation plays a role in regulating cellular metabolism, gene expression, and other biological processes. NDUFA9 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9) is closely associated with the activity and function of mitochondrial respiratory chain complex I. Mitochondrial function and respiratory chain are closely related to browning of white adipocytes, it's speculated that NDUFA9 and its crotonylation are associated with browning of white adipocytes. Firstly, the effect of NDUFA9 on white adipose tissue was verified in white fat browning model mice, and it was found that NDUFA9 promoted mitochondrial respiration, thermogenesis, and browning of white adipose tissue. Secondly, in cellular studies, it was discovered that NDUFA9 facilitated browning of white adipocytes by enhancing mitochondrial function, mitochondrial complex I activity, ATP synthesis, and mitochondrial respiration. Again, the level of NDUFA9 crotonylation was increased by treating cells with vorinostat (SAHA)+sodium crotonate (NaCr) and overexpressing NDUFA9, it was found that NDUFA9 crotonylation promoted browning of white adipocytes. Meanwhile, the acetylation level of NDUFA9 was increased by treating cells with SAHA+sodium acetate (NaAc) and overexpressing NDUFA9, the assay revealed that NDUFA9 acetylation inhibited white adipocytes browning. Finally, combined with the competitive relationship between acetylation and crotonylation, it was also demonstrated that NDUFA9 crotonylation promoted browning of white adipocytes. Above results indicate that NDUFA9 and its crotonylation modification promote mitochondrial function, which in turn promotes browning of white adipocytes. This study establishes a theoretical foundation for the management and intervention of obesity, which is crucial in addressing obesity and related medical conditions in the future.
Collapse
Affiliation(s)
- Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zeyu Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiannan Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinhao Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialu Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guiping Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Prickett TCR, Espiner EA, Pearson JF. Association of natriuretic peptides and receptor activity with cardio-metabolic health at middle age. Sci Rep 2024; 14:9919. [PMID: 38689031 PMCID: PMC11061163 DOI: 10.1038/s41598-024-60677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Natriuretic peptides (NP) have multiple actions benefitting cardiovascular and metabolic health. Although many of these are mediated by Guanylyl Cyclase (GC) receptors NPR1 and NPR2, their role and relative importance in vivo is unclear. The intracellular mediator of NPR1 and NPR2, cGMP, circulates in plasma and can be used to examine relationships between receptor activity and tissue responses targeted by NPs. Plasma cGMP was measured in 348 participants previously recruited in a multidisciplinary community study (CHALICE) at age 50 years at a single centre. Associations between bio-active NPs and bio-inactive aminoterminal products with cGMP, and of cGMP with tissue response, were analysed using linear regression. Mediation of associations by NPs was assessed by Causal Mediation Analysis (CMA). ANP's contribution to cGMP far exceed those of other NPs. Modelling across three components (demographics, NPs and cardiovascular function) shows that ANP and CNP are independent and positive predictors of cGMP. Counter intuitively, findings from CMA imply that in specific tissues, NPR1 responds more to BNP stimulation than ANP. Collectively these findings align with longer tissue half-life of BNP, and direct further therapeutic interventions towards extending tissue activity of ANP and CNP.
Collapse
Affiliation(s)
- Timothy C R Prickett
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Eric A Espiner
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - John F Pearson
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| |
Collapse
|
8
|
Ludzki AC, Hansen M, Zareifi D, Jalkanen J, Huang Z, Omar-Hmeadi M, Renzi G, Klingelhuber F, Boland S, Ambaw YA, Wang N, Damdimopoulos A, Liu J, Jernberg T, Petrus P, Arner P, Krahmer N, Fan R, Treuter E, Gao H, Rydén M, Mejhert N. Transcriptional determinants of lipid mobilization in human adipocytes. SCIENCE ADVANCES 2024; 10:eadi2689. [PMID: 38170777 PMCID: PMC10776019 DOI: 10.1126/sciadv.adi2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Defects in adipocyte lipolysis drive multiple aspects of cardiometabolic disease, but the transcriptional framework controlling this process has not been established. To address this, we performed a targeted perturbation screen in primary human adipocytes. Our analyses identified 37 transcriptional regulators of lipid mobilization, which we classified as (i) transcription factors, (ii) histone chaperones, and (iii) mRNA processing proteins. On the basis of its strong relationship with multiple readouts of lipolysis in patient samples, we performed mechanistic studies on one hit, ZNF189, which encodes the zinc finger protein 189. Using mass spectrometry and chromatin profiling techniques, we show that ZNF189 interacts with the tripartite motif family member TRIM28 and represses the transcription of an adipocyte-specific isoform of phosphodiesterase 1B (PDE1B2). The regulation of lipid mobilization by ZNF189 requires PDE1B2, and the overexpression of PDE1B2 is sufficient to attenuate hormone-stimulated lipolysis. Thus, our work identifies the ZNF189-PDE1B2 axis as a determinant of human adipocyte lipolysis and highlights a link between chromatin architecture and lipid mobilization.
Collapse
Affiliation(s)
- Alison C. Ludzki
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Mattias Hansen
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Danae Zareifi
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Jutta Jalkanen
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Gianluca Renzi
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Felix Klingelhuber
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Boland
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes A. Ambaw
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Na Wang
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Anastasios Damdimopoulos
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, SE-182 88 Stockholm, Sweden
| | - Paul Petrus
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
9
|
Park KC, Crump NT, Louwman N, Krywawych S, Cheong YJ, Vendrell I, Gill EK, Gunadasa-Rohling M, Ford KL, Hauton D, Fournier M, Pires E, Watson L, Roseman G, Holder J, Koschinski A, Carnicer R, Curtis MK, Zaccolo M, Hulikova A, Fischer R, Kramer HB, McCullagh JSO, Trefely S, Milne TA, Swietach P. Disrupted propionate metabolism evokes transcriptional changes in the heart by increasing histone acetylation and propionylation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1221-1245. [PMID: 38500966 PMCID: PMC7615744 DOI: 10.1038/s44161-023-00365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/15/2023] [Indexed: 03/20/2024]
Abstract
Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with β-alanine buildup. Raising β-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Nicholas T. Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Present Address: Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Niamh Louwman
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Yuen Jian Cheong
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Iolanda Vendrell
- Nuffield Department of Medicine, Target Discovery Institute, Oxford, UK
- Nuffield Department of Medicine, Chinese Academy for Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Eleanor K. Gill
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | | | - Kerrie L. Ford
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - David Hauton
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | - Lydia Watson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Gerald Roseman
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - James Holder
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M. Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, Oxford, UK
- Nuffield Department of Medicine, Chinese Academy for Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Holger B. Kramer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Sophie Trefely
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Thomas A. Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Zheng L, Zhou ZZ. An overview of phosphodiesterase 9 inhibitors: Insights from skeletal structure, pharmacophores, and therapeutic potential. Eur J Med Chem 2023; 259:115682. [PMID: 37536210 DOI: 10.1016/j.ejmech.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Cyclic nucleotide phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterases family, plays a critical role in many biological processes. Consequently, the development of PDE9 inhibitors has received increasing attention in recent years, with several compounds undergoing clinical trials for the treatment of central nervous system (CNS) diseases such as Alzheimer's disease, schizophrenia, and psychotic disorders, as well as heart failure and sickle cell disease. This review analyzes the recent primary literatures and patents published from 2004 to 2023, focusing on the structure, pharmacophores, selectivity, and therapeutic potential of PDE9 inhibitors. It hoped to provide a comprehensive overview of the field's current state to inform the development of novel PDE9 inhibitors.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Montoya-Durango D, Walter MN, Rodriguez W, Wang Y, Chariker JH, Rouchka EC, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Dysregulated Cyclic Nucleotide Metabolism in Alcohol-Associated Steatohepatitis: Implications for Novel Targeted Therapies. BIOLOGY 2023; 12:1321. [PMID: 37887031 PMCID: PMC10604143 DOI: 10.3390/biology12101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Cyclic nucleotides are second messengers, which play significant roles in numerous biological processes. Previous work has shown that cAMP and cGMP signaling regulates various pathways in liver cells, including Kupffer cells, hepatocytes, hepatic stellate cells, and cellular components of hepatic sinusoids. Importantly, it has been shown that cAMP levels and enzymes involved in cAMP homeostasis are affected by alcohol. Although the role of cyclic nucleotide signaling is strongly implicated in several pathological pathways in liver diseases, studies describing the changes in genes regulating cyclic nucleotide metabolism in ALD are lacking. METHODS Male C57B/6 mice were used in an intragastric model of alcohol-associated steatohepatitis (ASH). Liver injury, inflammation, and fibrogenesis were evaluated by measuring plasma levels of injury markers, liver tissue cytokines, and gene expression analyses. Liver transcriptome analysis was performed to examine the effects of alcohol on regulators of cyclic AMP and GMP levels and signaling. cAMP and cGMP levels were measured in mouse livers as well as in livers from healthy human donors and patients with alcohol-associated hepatitis (AH). RESULTS Our results show significant changes in several phosphodiesterases (PDEs) with specificity to degrade cAMP (Pde4a, Pde4d, and Pde8a) and cGMP (Pde5a, Pde6d, and Pde9a), as well as dual-specificity PDEs (Pde1a and Pde10a) in ASH mouse livers. Adenylyl cyclases (ACs) 7 and 9, which are responsible for cAMP generation, were also affected by alcohol. Importantly, adenosine receptor 1, which has been implicated in the pathogenesis of liver diseases, was significantly increased by alcohol. Adrenoceptors 1 and 3 (Adrb), which couple with stimulatory G protein to regulate cAMP and cGMP signaling, were significantly decreased. Additionally, beta arrestin 2, which interacts with cAMP-specific PDE4D to desensitize G-protein-coupled receptor to generate cAMP, was significantly increased by alcohol. Notably, we observed that cAMP levels are much higher than cGMP levels in the livers of humans and mice; however, alcohol affected them differently. Specifically, cGMP levels were higher in patients with AH and ASH mice livers compared with controls. As expected, these changes in liver cyclic nucleotide signaling were associated with increased inflammation, steatosis, apoptosis, and fibrogenesis. CONCLUSIONS These data strongly implicate dysregulated cAMP and cGMP signaling in the pathogenesis of ASH. Future studies to identify changes in these regulators in a cell-specific manner could lead to the development of novel targeted therapies for ASH.
Collapse
Affiliation(s)
- Diego Montoya-Durango
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Mary Nancy Walter
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Walter Rodriguez
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Yali Wang
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40290, USA;
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40290, USA;
| | - Eric C. Rouchka
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40290, USA;
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Shirish Barve
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
| | - Craig J. McClain
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
- Robley Rex VA Medical Center, Louisville, KY 40206, USA
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40290, USA
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
| |
Collapse
|
12
|
Gaido OER, Pavlaki N, Granger JM, Mesubi OO, Liu B, Lin BL, Long A, Walker D, Mayourian J, Schole KL, Terrillion CE, Nkashama LJ, Hulsurkar MM, Dorn LE, Ferrero KM, Huganir RL, Müller FU, Wehrens XHT, Liu JO, Luczak ED, Bezzerides VJ, Anderson ME. An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor. Sci Transl Med 2023; 15:eabq7839. [PMID: 37343080 PMCID: PMC11022683 DOI: 10.1126/scitranslmed.abq7839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.
Collapse
Affiliation(s)
- Oscar E. Reyes Gaido
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikoleta Pavlaki
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. Granger
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olurotimi O. Mesubi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian L. Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alan Long
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Walker
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kate L. Schole
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chantelle E. Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lubika J. Nkashama
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohit M. Hulsurkar
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimberly M. Ferrero
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Frank U. Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster 48149, Germany
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Medicine, Neuroscience, and Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth D. Luczak
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vassilios J. Bezzerides
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark E. Anderson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Biological Sciences and the Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Mishra S, Ma J, McKoy D, Sasaki M, Farinelli F, Page RC, Ranek MJ, Zachara N, Kass DA. Transient receptor potential canonical type 6 (TRPC6) O-GlcNAcylation at Threonine-221 plays potent role in channel regulation. iScience 2023; 26:106294. [PMID: 36936781 PMCID: PMC10014292 DOI: 10.1016/j.isci.2023.106294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Transient receptor potential canonical type 6 (TRPC6) is a non-voltage-gated channel that principally conducts calcium. Elevated channel activation contributes to fibrosis, hypertrophy, and proteinuria, often coupled to stimulation of nuclear factor of activated T-cells (NFAT). TRPC6 is post-translationally regulated, but a role for O-linked β-N-acetyl glucosamine (O-GlcNAcylation) as elevated by diabetes, is unknown. Here we show TRPC6 is constitutively O-GlcNAcylated at Ser14, Thr70, and Thr221 in the N-terminus ankryn-4 (AR4) and linker (LH1) domains. Mutagenesis to alanine reveals T221 as a critical controller of resting TRPC6 conductance, and associated NFAT activity and pro-hypertrophic signaling. T→A mutations at sites homologous in closely related TRPC3 and TRPC7 also increases their activity. Molecular modeling predicts interactions between Thr221-O-GlcNAc and Ser199, Glu200, and Glu246, and combined alanine substitutions of the latter similarly elevates resting NFAT activity. Thus, O-GlcNAcylated T221 and interactions with coordinating residues is required for normal TRPC6 channel conductance and NFAT activation.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Desirae McKoy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Masayuki Sasaki
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Federica Farinelli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Mark J. Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natasha Zachara
- Department of Biological Chemistry, Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - David A. Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Corresponding author
| |
Collapse
|
14
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
15
|
Yang X, Xu Z, Hu S, Shen J. Perspectives of PDE inhibitor on treating idiopathic pulmonary fibrosis. Front Pharmacol 2023; 14:1111393. [PMID: 36865908 PMCID: PMC9973527 DOI: 10.3389/fphar.2023.1111393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) without an identifiable cause. If not treated after diagnosis, the average life expectancy is 3-5 years. Currently approved drugs for the treatment of IPF are Pirfenidone and Nintedanib, as antifibrotic drugs, which can reduce the decline rate of forced vital capacity (FVC) and reduce the risk of acute exacerbation of IPF. However these drugs can not relieve the symptoms associated with IPF, nor improve the overall survival rate of IPF patients. We need to develop new, safe and effective drugs to treat pulmonary fibrosis. Previous studies have shown that cyclic nucleotides participate in the pathway and play an essential role in the process of pulmonary fibrosis. Phosphodiesterase (PDEs) is involved in cyclic nucleotide metabolism, so PDE inhibitors are candidates for pulmonary fibrosis. This paper reviews the research progress of PDE inhibitors related to pulmonary fibrosis, so as to provide ideas for the development of anti-pulmonary fibrosis drugs.
Collapse
Affiliation(s)
- Xudan Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | - Songhua Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Juan Shen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
16
|
Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res 2023; 118:3434-3450. [PMID: 35880317 PMCID: PMC10202444 DOI: 10.1093/cvr/cvac120] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity and heart failure with preserved ejection fraction (HFpEF) represent two intermingling epidemics driving perhaps the greatest unmet health problem in cardiovascular medicine in the 21st century. Many patients with HFpEF are either overweight or obese, and recent data have shown that increased body fat and its attendant metabolic sequelae have widespread, protean effects systemically and on the cardiovascular system leading to symptomatic HFpEF. The paucity of effective therapies in HFpEF underscores the importance of understanding the distinct pathophysiological mechanisms of obese HFpEF to develop novel therapies. In this review, we summarize the current understanding of the cardiovascular and non-cardiovascular features of the obese phenotype of HFpEF, how increased adiposity might pathophysiologically contribute to the phenotype, and how these processes might be targeted therapeutically.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Dalane W Kitzman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Meibom D, Micus S, Andreevski AL, Anlauf S, Bogner P, von Buehler CJ, Dieskau AP, Dreher J, Eitner F, Fliegner D, Follmann M, Gericke KM, Maassen S, Meyer J, Schlemmer KH, Steuber H, Tersteegen A, Wunder F. BAY-7081: A Potent, Selective, and Orally Bioavailable Cyanopyridone-Based PDE9A Inhibitor. J Med Chem 2022; 65:16420-16431. [PMID: 36475653 PMCID: PMC9791655 DOI: 10.1021/acs.jmedchem.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite advances in the treatment of heart failure in recent years, options for patients are still limited and the disease is associated with considerable morbidity and mortality. Modulating cyclic guanosine monophosphate levels within the natriuretic peptide signaling pathway by inhibiting PDE9A has been associated with beneficial effects in preclinical heart failure models. We herein report the identification of BAY-7081, a potent, selective, and orally bioavailable PDE9A inhibitor with very good aqueous solubility starting from a high-throughput screening hit. Key aspect of the optimization was a switch in metabolism of our lead structures from glucuronidation to oxidation. The switch proved being essential for the identification of compounds with improved pharmacokinetic profiles. By studying a tool compound in a transverse aortic constriction mouse model, we were able to substantiate the relevance of PDE9A inhibition in heart diseases.
Collapse
|
18
|
Benkner A, Rüdebusch J, Nath N, Hammer E, Grube K, Gross S, Dhople VM, Eckstein G, Meitinger T, Kaderali L, Völker U, Fielitz J, Felix SB. Riociguat attenuates left ventricular proteome and microRNA profile changes after experimental aortic stenosis in mice. Br J Pharmacol 2022; 179:4575-4592. [PMID: 35751875 DOI: 10.1111/bph.15910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Development and progression of heart failure (HF) involve endothelial and myocardial dysfunction as well as a dysregulation of the nitric oxide - soluble guanylyl cyclase - cyclic guanosine monophosphate (NO-sGC-cGMP) signalling pathway. Recently, we reported that the sGC stimulator riociguat (RIO) has beneficial effects on cardiac remodelling and progression of HF in response to chronic pressure overload. Here, we examined if these favourable RIO effects are also reflected in alterations of the myocardial proteome and microRNA profiles. EXPERIMENTAL APPROACH Male C57BL/6N mice underwent transverse aortic constriction (TAC) and sham operated mice served as controls. TAC and sham animals were randomised and treated with either RIO or vehicle for five weeks, starting three weeks post-surgery when cardiac hypertrophy was established. Afterwards we performed mass spectrometric proteome analyses and microRNA sequencing of proteins and RNAs, respectively, isolated from left ventricles (LV). KEY RESULTS TAC-induced changes of the LV proteome were significantly reduced by RIO treatment. Bioinformatics analyses revealed that RIO improved TAC-induced cardiovascular disease related pathways, metabolism and energy production, e.g. reversed alterations in the levels of myosin heavy chain 7 (MYH7), cardiac phospholamban (PLN), and ankyrin repeat domain-containing protein 1 (ANKRD1). RIO also attenuated TAC-induced changes of microRNA levels in the LV. CONCLUSION AND IMPLICATIONS The sGC stimulator RIO has beneficial effects on cardiac structure and function during pressure overload, which is accompanied by a reversal of TAC-induced changes of the cardiac proteome and microRNA profile. Our data support the potential of RIO as a novel HF therapeutic.
Collapse
Affiliation(s)
- Alexander Benkner
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Julia Rüdebusch
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Neetika Nath
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karina Grube
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Gross
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu M Dhople
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Gertrud Eckstein
- Institute of Human Genetics, Helmholtz Centre Munich, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Centre Munich, Neuherberg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lars Kaderali
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jens Fielitz
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Calamera G, Moltzau LR, Levy FO, Andressen KW. Phosphodiesterases and Compartmentation of cAMP and cGMP Signaling in Regulation of Cardiac Contractility in Normal and Failing Hearts. Int J Mol Sci 2022; 23:2145. [PMID: 35216259 PMCID: PMC8880502 DOI: 10.3390/ijms23042145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through β-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic nucleotides regulate cardiac contractility through several mechanisms. Phosphodiesterases (PDEs) are enzymes that degrade cAMP and cGMP and therefore determine the dynamics of their downstream effects. In addition, the intracellular localization of the different PDEs may contribute to regulation of compartmented signaling of cAMP and cGMP. In this review, we will focus on the role of PDEs in regulating contractility and evaluate changes in heart failure.
Collapse
Affiliation(s)
| | | | | | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, P.O. Box 1057 Blindern, 0316 Oslo, Norway; (G.C.); (L.R.M.); (F.O.L.)
| |
Collapse
|
20
|
Ceddia RP, Liu D, Shi F, Crowder MK, Mishra S, Kass DA, Collins S. Increased Energy Expenditure and Protection From Diet-Induced Obesity in Mice Lacking the cGMP-Specific Phosphodiesterase PDE9. Diabetes 2021; 70:2823-2836. [PMID: 34620617 PMCID: PMC8660992 DOI: 10.2337/db21-0100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022]
Abstract
Cyclic nucleotides cAMP and cGMP are important second messengers for the regulation of adaptive thermogenesis. Their levels are controlled not only by their synthesis, but also their degradation. Since pharmacological inhibitors of cGMP-specific phosphodiesterase 9 (PDE9) can increase cGMP-dependent protein kinase signaling and uncoupling protein 1 expression in adipocytes, we sought to elucidate the role of PDE9 on energy balance and glucose homeostasis in vivo. Mice with targeted disruption of the PDE9 gene, Pde9a, were fed nutrient-matched high-fat (HFD) or low-fat diets. Pde9a -/- mice were resistant to HFD-induced obesity, exhibiting a global increase in energy expenditure, while brown adipose tissue (AT) had increased respiratory capacity and elevated expression of Ucp1 and other thermogenic genes. Reduced adiposity of HFD-fed Pde9a -/- mice was associated with improvements in glucose handling and hepatic steatosis. Cold exposure or treatment with β-adrenergic receptor agonists markedly decreased Pde9a expression in brown AT and cultured brown adipocytes, while Pde9a -/- mice exhibited a greater increase in AT browning, together suggesting that the PDE9-cGMP pathway augments classical cold-induced β-adrenergic/cAMP AT browning and energy expenditure. These findings suggest PDE9 is a previously unrecognized regulator of energy metabolism and that its inhibition may be a valuable avenue to explore for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Mark K Crowder
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins University and School of Medicine, Baltimore, MD
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University and School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University and School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University and School of Medicine, Baltimore, MD
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|