1
|
Wang H, Lin F, Zhang Y, Lin Y, Gao B, Kang D. Biomaterial-based vascularization strategies for enhanced treatment of peripheral arterial disease. J Nanobiotechnology 2025; 23:103. [PMID: 39940018 PMCID: PMC11823048 DOI: 10.1186/s12951-025-03140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025] Open
Abstract
Peripheral arterial disease (PAD) poses a global health challenge, particularly in its advanced stages known as critical limb ischemia (CLI). Conventional treatments often fail to achieve satisfactory outcomes. Patients with CLI face high rates of morbidity and mortality, underscoring the urgent need for innovative therapeutic strategies. Recent advancements in biomaterials and biotechnology have positioned biomaterial-based vascularization strategies as promising approaches to improve blood perfusion and ameliorate ischemic conditions in affected tissues. These materials have shown potential to enhance therapeutic outcomes while mitigating toxicity concerns. This work summarizes the current status of PAD and highlights emerging biomaterial-based strategies for its treatment, focusing on functional genes, cells, proteins, and metal ions, as well as their delivery and controlled release systems. Additionally, the limitations associated with these approaches are discussed. This review provides a framework for designing therapeutic biomaterials and offers insights into their potential for clinical translation, contributing to the advancement of PAD treatments.
Collapse
Affiliation(s)
- Haojie Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Fuxin Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yibin Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
2
|
Bishop A, Romero JC, Tonapi S, Parihar M, Loranc E, Miller H, Lawrence L, Bassani N, Robledo D, Cao L, Nie J, Kanda K, Stoja A, Garcia N, Gorthi A, Stoveken B, Lane A, Fan T, Cassel T, Zha S, Musi N. ATM phosphorylation of CD98HC increases antiporter membrane localization and prevents chronic toxic glutamate accumulation in Ataxia telangiectasia. RESEARCH SQUARE 2024:rs.3.rs-4947457. [PMID: 39281865 PMCID: PMC11398575 DOI: 10.21203/rs.3.rs-4947457/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Ataxia telangiectasia (A-T) is a rare genetic disorder characterized by neurological defects, immunodeficiency, cancer predisposition, radiosensitivity, decreased blood vessel integrity, and diabetes. ATM, the protein mutated in A-T, responds to DNA damage and oxidative stress, but its functional relationship to the progressive clinical manifestation of A-T is not understood. CD98HC chaperones cystine/glutamate (x c - ) and cationic/neutral amino acid (y + L) antiporters to the cell membrane, and CD98HC phosphorylation by ATM accelerates membrane localization to acutely increase amino acid transport. Loss of ATM impacts tissues reliant on SLC family antiporters relevant to A-T phenotypes, such as endothelial cells (telangiectasia) and pancreatic α-cells (fatty liver and diabetes) with toxic glutamate accumulation. Bypassing the antiporters restores intracellular metabolic balance both in ATM-deficient cells and mouse models. These findings provide new insight into the long-known benefits of N-acetyl cysteine to A-T cells beyond oxidative stress through removing excess glutamate by production of glutathione.
Collapse
|
3
|
Villa-Martínez E, Rios A, Gutiérrez-Vidal R, Escalante B. Potentiation of anti-angiogenic eNOS-siRNA transfection by ultrasound-mediated microbubble destruction in ex vivo rat aortic rings. PLoS One 2024; 19:e0308075. [PMID: 39088581 PMCID: PMC11293687 DOI: 10.1371/journal.pone.0308075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
Nitric oxide (NO) regulates vascular homeostasis and plays a key role in revascularization and angiogenesis. The endothelial nitric oxide synthase (eNOS) enzyme catalyzes NO production in endothelial cells. Overexpression of the eNOS gene has been implicated in pathologies with dysfunctional angiogenic processes, such as cancer. Therefore, modulating eNOS gene expression using small interfering RNAs (siRNAs) represents a viable strategy for antitumor therapy. siRNAs are highly specific to the target gene, thus reducing off-target effects. Given the widespread distribution of endothelium and the crucial physiological role of eNOS, localized delivery of nucleic acid to the affected area is essential. Therefore, the development of an efficient eNOS-siRNA delivery carrier capable of controlled release is imperative for targeting specific vascular regions, particularly those associated with tumor vascular growth. Thus, this study aims to utilize ultrasound-mediated microbubble destruction (UMMD) technology with cationic microbubbles loaded with eNOS-siRNA to enhance transfection efficiency and improve siRNA delivery, thereby preventing sprouting angiogenesis. The efficiency of eNOS-siRNA transfection facilitated by UMMD was assessed using bEnd.3 cells. Synthesis of nitric oxide and eNOS protein expression were also evaluated. The silencing of eNOS gene in a model of angiogenesis was assayed using the rat aortic ring assay. The results showed that from 6 to 24 h, the transfection of fluorescent siRNA with UMMD was twice as high as that of lipofection. Moreover, transfection of eNOS-siRNA with UMMD enhanced the knockdown level (65.40 ± 4.50%) compared to lipofectamine (40 ± 1.70%). Silencing of eNOS gene with UMMD required less amount of eNOS-siRNA (42 ng) to decrease the level of eNOS protein expression (52.30 ± 0.08%) to the same extent as 79 ng of eNOS-siRNA using lipofectamine (56.30 ± 0.10%). NO production assisted by UMMD was reduced by 81% compared to 67% reduction transfecting with lipofectamine. This diminished NO production led to higher attenuation of aortic ring outgrowth. Three-fold reduction compared to lipofectamine transfection. In conclusion, we propose the combination of eNOS-siRNA and UMMD as an efficient, safe, non-viral nucleic acid transfection strategy for inhibition of tumor progression.
Collapse
Affiliation(s)
- Elisa Villa-Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Amelia Rios
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Roxana Gutiérrez-Vidal
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
- Programa de Investigadoras e Investigadores por México, CONAHCyT/Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| |
Collapse
|
4
|
González Arbeláez LF, Ciocci Pardo A, Burgos JI, Vila Petroff MG, Godoy Coto J, Ennis IL, Mosca SM, Fantinelli JC. New advances in the protective mechanisms of acidic pH after ischemia: Participation of NO. Arch Biochem Biophys 2024; 758:110059. [PMID: 38936683 DOI: 10.1016/j.abb.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND It has been previously demonstrated that the maintenance of ischemic acidic pH or the delay of intracellular pH recovery at the onset of reperfusion decreases ischemic-induced cardiomyocyte death. OBJECTIVE To examine the role played by nitric oxide synthase (NOS)/NO-dependent pathways in the effects of acidic reperfusion in a regional ischemia model. METHODS Isolated rat hearts perfused by Langendorff technique were submitted to 40 min of left coronary artery occlusion followed by 60 min of reperfusion (IC). A group of hearts received an acid solution (pH = 6.4) during the first 2 min of reperfusion (AR) in absence or in presence of l-NAME (NOS inhibitor). Infarct size (IS) and myocardial function were determined. In cardiac homogenates, the expression of P-Akt, P-endothelial and inducible isoforms of NOS (P-eNOS and iNOS) and the level of 3-nitrotyrosine were measured. In isolated cardiomyocytes, the intracellular NO production was assessed by confocal microscopy, under control and acidic conditions. Mitochondrial swelling after Ca2+ addition and mitochondrial membrane potential (Δψ) were also determined under control and acidosis. RESULTS AR decreased IS, improved postischemic myocardial function recovery, increased P-Akt and P-eNOS, and decreased iNOS and 3-nitrotyrosine. NO production increased while mitochondrial swelling and Δψ decreased in acidic conditions. l-NAME prevented the beneficial effects of AR. CONCLUSIONS Our data strongly supports that a brief acidic reperfusion protects the myocardium against the ischemia-reperfusion injury through eNOS/NO-dependent pathways.
Collapse
Affiliation(s)
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Martín Gerardo Vila Petroff
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana María Mosca
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juliana Catalina Fantinelli
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Agarwal S, Srivastava VK, Arshad Z, Sharma P, Prakash R. Effect of Dopamine as a Vascular Endothelial Growth Factor Antagonist on the Development of Acute Lung Injury in Sepsis Patients. Cureus 2024; 16:e64102. [PMID: 39114208 PMCID: PMC11305694 DOI: 10.7759/cureus.64102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Sepsis is a dysregulated host immune response stemming from a systemic inflammatory response to microbial invasion, encompassing bacteria, viruses, and other pathogens. The vascular endothelial growth factor (VEGF) was initially identified for its potent induction of endothelial permeability. Studies have proposed a therapeutic role of dopamine in mitigating VEGF-induced permeability, shedding light on its potential in acute respiratory distress syndrome (ARDS) management. MAIN OBJECTIVE To determine the effect of dopamine as an inhibitor of VEGF and to prevent the progression of sepsis to acute lung injury (ALI) and ARDS. METHODS A total of 154 critical care unit patients with a diagnosis of sepsis were randomized into two groups: Group I (control group) and Group II (Study group). Both received standard treatment, as per ICU protocol. In addition, the study group (Group II) received a dopamine infusion of 2 micrograms/kg/min. Baseline routine investigation, procalcitonin, and chest X-ray were done. Day one and day seven blood samples were stored for analysis of VEGF levels. Murray's score and sequential organ failure assessment (SOFA) score (organ dysfunction) were calculated from day one to day seven. RESULTS VEGF levels on day seven were significantly lower in the study group compared to the control group (p<0.05). The PaO2/FiO2 ratio at day seven was significantly increased in the study group than in the control group, indicating an improvement in oxygenation status in the study group. There was a mean ICU stay of 9.3 days in the study group versus 11.6 days in the control group (p<0.05). The SOFA score showed a significant improvement in the study group from day five onwards, indicating a therapeutic effect of dopamine on organ dysfunction in sepsis. CONCLUSION Dopamine reduces VEGF and lung injury mediated by increased endothelial permeability.
Collapse
Affiliation(s)
- Shivam Agarwal
- Anesthesiology and Critical Care, King George's Medical University, Lucknow, IND
| | - Vinod K Srivastava
- Anesthesiology and Critical Care, King George's Medical University, Lucknow, IND
| | - Zia Arshad
- Anesthesiology and Critical Care, King George's Medical University, Lucknow, IND
| | - Pallavi Sharma
- Anesthesiology and Critical Care, King George's Medical University, Lucknow, IND
| | - Ravi Prakash
- Anesthesiology and Critical Care, King George's Medical University, Lucknow, IND
| |
Collapse
|
6
|
Wydorski PJ, Zmijewska A, Franczak A. The Extremely-Low-Frequency Electromagnetic Field Affects Apoptosis and Oxidative-Stress-Related Genes and Proteins in the Porcine Endometrium-An In Vitro Study. Int J Mol Sci 2024; 25:6931. [PMID: 39000040 PMCID: PMC11241303 DOI: 10.3390/ijms25136931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Nowadays, the extremely-low-frequency electromagnetic field (ELF-EMF) is recognized as environmental pollution. The data indicate that the ELF-EMF may affect factors related to epigenetic regulation and alter important biological processes in the uterus. The impact of the ELF-EMF on apoptosis and oxidative-stress-related genes has not been documented in porcine endometrium. This raises the question of whether the exposure to the ELF-EMF can induce apoptosis and/or oxidative stress in the endometrium of pigs during the peri-implantation period. Porcine endometrial slices (100 ± 5 mg) collected (n = 5) during the peri-implantation period were treated in vitro with ELF-EMF at a frequency of 50 Hz and flux density of 8 × 104 mG for 2 h. To determine the effect of ELF-EMF on apoptosis and oxidative stress in the endometrium, CASP3, CASP7, CIDEB, GADD45G, NOS1, NOS2, NOS3, and TP53I3 mRNA transcript were analyzed using real-time PCR, and protein abundance of CASP3, CASP7 using Western blot, and eNOS using ELISA were determined. Moreover, CASP3/7 and NOS activity was analyzed using flow cytometry and colorimetry, respectively. The decreased CASP7 and increased NOS3 mRNA transcript and protein abundance in ELF-EMF-treated endometrium were observed. Moreover, CIDEB, GADD45G, and TP53I3 mRNA transcript abundance was increased. Only p ≤ 0.05 was considered a statistically significant difference. The documented alterations indicate the potential of the ELF-EMF to affect apoptosis and generate oxidative stress in the endometrium. The insight into observed consequences documents for the first time the fact that the ELF-EMF may influence endometrial cell proliferation, angiogenesis, and/or tissue receptivity during peri-implantation.
Collapse
Affiliation(s)
| | | | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (P.J.W.); (A.Z.)
| |
Collapse
|
7
|
Lee KH, Song MY, Lee S, Park J, Kang JH, Cho H, Kim KB, Son SJ, Cheng XW, Lee YJ, Lee GJ, Shin JH, Kim W. Nitric oxide releasing nanofiber stimulates revascularization in response to ischemia via cGMP-dependent protein kinase. PLoS One 2024; 19:e0303758. [PMID: 38768136 PMCID: PMC11104631 DOI: 10.1371/journal.pone.0303758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Nitric oxide (NO) promotes angiogenesis via various mechanisms; however, the effective transmission of NO in ischemic diseases is unclear. Herein, we tested whether NO-releasing nanofibers modulate therapeutic angiogenesis in an animal hindlimb ischemia model. Male wild-type C57BL/6 mice with surgically-induced hindlimb ischemia were treated with NO-releasing 3-methylaminopropyltrimethoxysilane (MAP3)-derived or control (i.e., non-NO-releasing) nanofibers, by applying them to the wound for 20 min, three times every two days. The amount of NO from the nanofiber into tissues was assessed by NO fluorometric assay. The activity of cGMP-dependent protein kinase (PKG) was determined by western blot analysis. Perfusion ratios were measured 2, 4, and 14 days after inducing ischemia using laser doppler imaging. On day 4, Immunohistochemistry (IHC) with F4/80 and gelatin zymography were performed. IHC with CD31 was performed on day 14. To determine the angiogenic potential of NO-releasing nanofibers, aorta-ring explants were treated with MAP3 or control fiber for 20 min, and the sprout lengths were examined after 6 days. As per either LDPI (Laser doppler perfusion image) ratio or CD31 capillary density measurement, angiogenesis in the ischemic hindlimb was improved in the MAP3 nanofiber group; further, the total nitrate/nitrite concentration in the adduct muscle increased. The number of macrophage infiltrations and matrix metalloproteinase-9 (MMP-9) activity decreased. Vasodilator-stimulated phosphoprotein (VASP), one of the major substrates for PKG, increased phosphorylation in the MAP3 group. MAP3 nanofiber or NO donor SNAP (s-nitroso-n-acetyl penicillamine)-treated aortic explants showed enhanced sprouting in an ex vivo aortic ring assay, which was partially abrogated by KT5823, a potent inhibitor of PKG. These findings suggest that the novel NO-releasing nanofiber, MAP3 activates PKG and promotes therapeutic angiogenesis in response to hindlimb ischemia.
Collapse
Affiliation(s)
- Kyung Hye Lee
- Department of Internal Medicine, Division of Cardiovascular, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
- Department of Biotechnology, Cha University, Pocheon, Korea
| | - Min-Young Song
- Department of Internal Medicine, Division of Cardiovascular, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
| | - Sora Lee
- Department of Internal Medicine, Division of Cardiovascular, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
| | - JinSun Park
- Department of Internal Medicine, Division of Cardiovascular, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Hee Kang
- Department of Internal Medicine, Division of Cardiovascular, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
| | - Haneul Cho
- Department of Internal Medicine, Division of Cardiovascular, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
| | - Ki-Bum Kim
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Soo Ji Son
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Xian Wu Cheng
- Department of Internal Medicine, Division of Cardiovascular, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Diseas, Yanbian University Hospital, Yanji, China
| | - Young Ju Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Weon Kim
- Department of Internal Medicine, Division of Cardiovascular, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
| |
Collapse
|
8
|
Che Y, Shimizu Y, Hayashi T, Suzuki J, Pu Z, Tsuzuki K, Narita S, Shibata R, Murohara T. Chronic circadian rhythm disorder induces heart failure with preserved ejection fraction-like phenotype through the Clock-sGC-cGMP-PKG1 signaling pathway. Sci Rep 2024; 14:10777. [PMID: 38734687 PMCID: PMC11088651 DOI: 10.1038/s41598-024-61710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.
Collapse
Affiliation(s)
- Yiyang Che
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takumi Hayashi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Junya Suzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Zhongyue Pu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhito Tsuzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Narita
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric Oxide Releasing Nanomaterials for Cardiovascular Applications. JACC Basic Transl Sci 2024; 9:691-709. [PMID: 38984042 PMCID: PMC11228123 DOI: 10.1016/j.jacbts.2023.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/11/2024]
Abstract
A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action. However, safe, and therapeutic levels of NO require delivery of the right amount to a precise location at the right time. To achieve these aims, several recent strategies aimed at therapeutically generating or releasing NO in living systems have shown that polymeric and inorganic (silica, gold) nanoparticles and nanoscale metal-organic frameworks could either generate NO endogenously by the catalytic decomposition of endogenous NO substrates or can store and release therapeutically relevant amounts of NO gas. NO-releasing nanomaterials have been developed for vascular implants (such as stents and grafts) to target atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and cardiac tissue engineering. In this review, we discuss the advances in design and development of novel NO-releasing nanomaterials for cardiovascular therapeutics and critically examine the therapeutic potential of these nanoplatforms to modulate cellular metabolism, to regulate vascular tone, inhibit platelet aggregation, and limit proliferation of vascular smooth muscle with minimal toxic effects.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Mark J. Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- Department of Biochemical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Helen E. Townley
- Nuffield Department of Women’s and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Paul G. Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Yi B, Zhao Y, Yan H, Li Z, Zhang P, Fang Z, Zhao Y, Yang H, Guo N. Targeted arginine metabolomics combined with metagenomics revealed the potential mechanism of Pueraria lobata extract in treating myocardial infarction. J Chromatogr A 2024; 1719:464732. [PMID: 38387153 DOI: 10.1016/j.chroma.2024.464732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
The extraction methods for traditional Chinese medicine (TCM) may have varying therapeutic effects on diseases. Currently, Pueraria lobata (PL) is mostly extracted with ethanol, but decoction, as a TCM extraction method, is not widely adopted. In this study, we present a strategy that integrates targeted metabolomics, 16 s rDNA sequencing technology and metagenomics for exploring the potential mechanism of the water extract of PL (PLE) in treating myocardial infarction (MI). Using advanced analytical techniques like ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we comprehensively characterized PLE's chemical composition. Further, we tested its efficacy in a rat model of MI induced by ligation of the left anterior descending branch of the coronary artery (LAD). We assessed cardiac enzyme levels and conducted echocardiograms. UPLC-MS/MS was used to compare amino acid differences in serum. Furthermore, we investigated fecal samples using 16S rDNA sequencing and metagenomic sequencing to study intestinal flora diversity and function. This study demonstrated PLE's effectiveness in reducing cardiac injury in LAD-ligated rats. Amino acid metabolomics revealed significant improvements in serum levels of arginine, citrulline, proline, ornithine, creatine, creatinine, and sarcosine in MI rats, which are key compounds in the arginine metabolism pathway. Enzyme-linked immunosorbent assay (ELISA) results showed that PLE significantly improved arginase (Arg), nitric oxide synthase (NOS), and creatine kinase (CK) contents in the liver tissue of MI rats. 16 s rDNA and metagenome sequencing revealed that PLE significantly improved intestinal flora imbalance in MI rats, particularly in taxa such as Tuzzerella, Desulfovibrio, Fournierella, Oscillibater, Harryflintia, and Holdemania. PLE also improved the arginine metabolic pathway in the intestinal microorganisms of MI rats. The findings indicate that PLE effectively modulates MI-induced arginine levels and restores intestinal flora balance. This study, the first to explore the mechanism of action of PLE in MI treatment considering amino acid metabolism and intestinal flora, expands our understanding of the potential of PL in MI treatment. It offers fresh insights into the mechanisms of PL, guiding further research and development of PL-based medicines.
Collapse
Affiliation(s)
- Bojiao Yi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yurou Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeyu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pin Zhang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuping Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Hu Y, Zhang F, Ikonomovic M, Yang T. The Role of NRF2 in Cerebrovascular Protection: Implications for Vascular Cognitive Impairment and Dementia (VCID). Int J Mol Sci 2024; 25:3833. [PMID: 38612642 PMCID: PMC11012233 DOI: 10.3390/ijms25073833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.
Collapse
Affiliation(s)
- Yizhou Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) McKeesport, McKeesport, PA 15132, USA
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Milos Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15216, USA
| |
Collapse
|
12
|
Islam P, Schaly S, Abosalha AK, Boyajian J, Thareja R, Ahmad W, Shum-Tim D, Prakash S. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1941. [PMID: 38528392 DOI: 10.1002/wnan.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Coronary stents have saved millions of lives in the last three decades by treating atherosclerosis especially, by preventing plaque protrusion and subsequent aneurysms. They attenuate the vascular SMC proliferation and promote reconstruction of the endothelial bed to ensure superior revascularization. With the evolution of modern stent types, nanotechnology has become an integral part of stent technology. Nanocoating and nanosurface fabrication on metallic and polymeric stents have improved their drug loading capacity as well as other mechanical, physico-chemical, and biological properties. Nanofeatures can mimic the natural nanofeatures of vascular tissue and control drug-delivery. This review will highlight the role of nanotechnology in addressing the challenges of coronary stents and the recent advancements in the field of related medical devices. Different generations of stents carrying nanoparticle-based formulations like liposomes, lipid-polymer hybrid NPs, polymeric micelles, and dendrimers are discussed highlighting their roles in local drug delivery and anti-restenotic properties. Drug nanoparticles like Paclitaxel embedded in metal stents are discussed as a feature of first-generation drug-eluting stents. Customized precision stents ensure safe delivery of nanoparticle-mediated genes or concerted transfer of gene, drug, and/or bioactive molecules like antibodies, gene mimics via nanofabricated stents. Nanotechnology can aid such therapies for drug delivery successfully due to its easy scale-up possibilities. However, limitations of this technology such as their potential cytotoxic effects associated with nanoparticle delivery that can trigger hypersensitivity reactions have also been discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Royal Victoria Hospital, McGill University Health Centre, McGill University, Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Wang X, Wang P. Effect of a protein kinase B (Akt) inhibitor on the angiogenesis of HUVECs and corneal neovascularization. Wien Klin Wochenschr 2024; 136:154-162. [PMID: 37261487 DOI: 10.1007/s00508-023-02208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Corneal neovascularization (CNV) is a vision-threatening disease and an increasing public health concern. It was found that administering an Akt inhibitor in the second phase of retinopathy significantly decreased retinal neovascularization. METHODS This study investigated the effect of an Akt inhibitor on the angiogenesis of human umbilical vein endothelial cells (HUVECs) and its impacts on the degree of CNV and corneal opacity in a rat keratoplasty model. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays, tube formation assays, cell scratch experiments, and a fully allogeneic corneal transplant model were performed. RESULTS It was found that an Akt inhibitor inhibited the proliferation, angiogenesis, and migration of HUVECs induced by vascular endothelial growth factor (VEGF). The results showed that both CNV and corneal opacity were decreased in rats after Akt inhibitor administration. CONCLUSION The research illustrates the vital role of Akt inhibitors in mediating CNV. The analysis shows that the Akt inhibitor may provide a novel and feasible therapeutic approach to prevent CNV, but its mechanism needs further investigation.
Collapse
Affiliation(s)
- Xing Wang
- Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, 400016, Chongqing, China
| | - Peng Wang
- Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
14
|
Luo M, Mo D, Liu L, Li J, Lin J, Liang J, Ye F, Wu X, Li X, Li J, Sheng W. Loss of Gucy1a3 causes poor post-stroke recovery by reducing angiogenesis via the HIF-1α/VEGFA signaling pathway in mice. J Stroke Cerebrovasc Dis 2024; 33:107484. [PMID: 38064974 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVES Ischemic stroke is a common and debilitating disease that can cause permanent neurological damage. Gucy1a3, which encodes the α1 subunit of soluble guanylyl cyclase, has been reported to be associated with functional recovery after ischemic stroke. However, the mechanism is still not well understood. In the present study, we investigated the effects of Gucy1a3 on (i) post-stroke recovery; (ii) vascular endothelial growth factor A (VEGFA) and hypoxia inducible factor 1 alpha (HIF-1α) expression; and (iii) angiogenesis after ischemic stroke. MATERIALS AND METHODS Wild-type and Gucy1a3 knockout C57BL/6J male mice were respectively used to establish the models of permanent middle cerebral artery occlusion (pMCAO). Neurological deficit scores were evaluated at 24 h and 96 h after pMCAO. Cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. For determining microvessel density, immunohistochemical analysis was performed with CD31. The expression of VEGFA and HIF-1α was detected by western blotting. RESULTS Our results suggest that loss of Gucy1a3 increased the infarct volume and aggravated neurological deficits after pMCAO. In addition, the Gucy1a3 knockout brains exhibited significantly lower microvessel densities and VEGFA and HIF-1α expression levels than the wild-type brains at 96 h post-pMCAO. CONCLUSIONS Our study indicates that GUCY1A3 might be involved in angiogenesis after ischemic stroke. Further investigation of GUCY1A3 will provide a new therapeutic target for stroke.
Collapse
Affiliation(s)
- Man Luo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongcan Mo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - LiuYu Liu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianli Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Lin
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoju Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoling Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Hricisák L, Pál É, Nagy D, Delank M, Polycarpou A, Fülöp Á, Sándor P, Sótonyi P, Ungvári Z, Benyó Z. NO Deficiency Compromises Inter- and Intrahemispheric Blood Flow Adaptation to Unilateral Carotid Artery Occlusion. Int J Mol Sci 2024; 25:697. [PMID: 38255769 PMCID: PMC10815552 DOI: 10.3390/ijms25020697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Carotid artery stenosis (CAS) affects approximately 5-7.5% of older adults and is recognized as a significant risk factor for vascular cognitive impairment (VCI). The impact of CAS on cerebral blood flow (CBF) within the ipsilateral hemisphere relies on the adaptive capabilities of the cerebral microcirculation. In this study, we aimed to test the hypothesis that the impaired availability of nitric oxide (NO) compromises CBF homeostasis after unilateral carotid artery occlusion (CAO). To investigate this, three mouse models exhibiting compromised production of NO were tested: NOS1 knockout, NOS1/3 double knockout, and mice treated with the NO synthesis inhibitor L-NAME. Regional CBF changes following CAO were evaluated using laser-speckle contrast imaging (LSCI). Our findings demonstrated that NOS1 knockout, NOS1/3 double knockout, and L-NAME-treated mice exhibited impaired CBF adaptation to CAO. Furthermore, genetic deficiency of one or two NO synthase isoforms increased the tortuosity of pial collaterals connecting the frontoparietal and temporal regions. In conclusion, our study highlights the significant contribution of NO production to the functional adaptation of cerebrocortical microcirculation to unilateral CAO. We propose that impaired bioavailability of NO contributes to the impaired CBF homeostasis by altering inter- and intrahemispheric blood flow redistribution after unilateral disruption of carotid artery flow.
Collapse
Affiliation(s)
- László Hricisák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Dorina Nagy
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Max Delank
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
| | - Andreas Polycarpou
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- Mayo Clinic, College of Medicine and Science, Rochester, MN 55905, USA
- Division of Cardiothoracic Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Péter Sándor
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, 1122 Budapest, Hungary;
| | - Zoltán Ungvári
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| |
Collapse
|
16
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Shimizu M, Yoshimatsu G, Morita Y, Tanaka T, Sakata N, Tagashira H, Wada H, Kodama S. Rescue of murine hind limb ischemia via angiogenesis and lymphangiogenesis promoted by cellular communication network factor 2. Sci Rep 2023; 13:20029. [PMID: 37973852 PMCID: PMC10654495 DOI: 10.1038/s41598-023-47485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Critical limb ischemia (CLI) is caused by severe arterial blockage with reduction of blood flow. The aim of this study was to determine whether therapeutic angiogenesis using cellular communication network factor 2 (CCN2) would be useful for treating CLI in an animal model. Recombinant CCN2 was administered intramuscularly to male C57BL/6J mice with hind limb ischemia. The therapeutic effect was evaluated by monitoring blood flow in the ischemic hind limb. In an in vivo assay, CCN2 restored blood flow in the ischemic hind limb by promoting both angiogenesis and lymphangiogenesis. VEGF-A and VEGF-C expression levels increased in the ischemic limb after treatment with CCN2. In an in vitro assay, CCN2 promoted proliferation of vascular and lymphatic endothelial cells, and it upregulated expression of Tgfb1 followed by expression of Vegfc and Vegfr3 in lymphatic endothelial cells under hypoxia. Suppression of Tgfb1 did not affect the activity of CCN2, activation of the TGF-β/SMAD signaling pathway, or expression of Vegfr3 in lymphatic endothelial cells. In summary, treatment using recombinant CCN2 could be a promising therapeutic strategy for CLI.
Collapse
Affiliation(s)
- Masayuki Shimizu
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.
| | - Yuichi Morita
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Hideaki Tagashira
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Hideichi Wada
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.
| |
Collapse
|
18
|
Silva M, Faustino P. From Stress to Sick(le) and Back Again-Oxidative/Antioxidant Mechanisms, Genetic Modulation, and Cerebrovascular Disease in Children with Sickle Cell Anemia. Antioxidants (Basel) 2023; 12:1977. [PMID: 38001830 PMCID: PMC10669666 DOI: 10.3390/antiox12111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Sickle cell anemia (SCA) is a genetic disease caused by the homozygosity of the HBB:c.20A>T mutation, which results in the production of hemoglobin S (HbS). In hypoxic conditions, HbS suffers autoxidation and polymerizes inside red blood cells, altering their morphology into a sickle shape, with increased rigidity and fragility. This triggers complex pathophysiological mechanisms, including inflammation, cell adhesion, oxidative stress, and vaso-occlusion, along with metabolic alterations and endocrine complications. SCA is phenotypically heterogeneous due to the modulation of both environmental and genetic factors. Pediatric cerebrovascular disease (CVD), namely ischemic stroke and silent cerebral infarctions, is one of the most impactful manifestations. In this review, we highlight the role of oxidative stress in the pathophysiology of pediatric CVD. Since oxidative stress is an interdependent mechanism in vasculopathy, occurring alongside (or as result of) endothelial dysfunction, cell adhesion, inflammation, chronic hemolysis, ischemia-reperfusion injury, and vaso-occlusion, a brief overview of the main mechanisms involved is included. Moreover, the genetic modulation of CVD in SCA is discussed. The knowledge of the intricate network of altered mechanisms in SCA, and how it is affected by different genetic factors, is fundamental for the identification of potential therapeutic targets, drug development, and patient-specific treatment alternatives.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
19
|
López-Rodulfo IM, Villa-Martínez E, Rios A, Escalante B. Caveolin Delivered by Ultrasound-Mediated Microbubble Destruction Prevents Endothelial Cell Proliferation. Cell Mol Bioeng 2023; 16:219-229. [PMID: 37456788 PMCID: PMC10338419 DOI: 10.1007/s12195-023-00763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/29/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The nitric oxide synthase (eNOS) is an important regulator of vascular homeostasis. eNOS is modulated by intracellular mechanisms that include protein-protein interaction with Caveolin-1 (Cav). Cav binds to and impairs eNOS activation reducing vascular permeability and angiogenesis. Blocking of eNOS by Cav has been proposed as therapeutic antiangiogenic approach. However, the efficient and controlled delivery of the peptide requires to be solved. Methods The effect of antennapedia (AP)-Cav loaded into microbubbles (MBs) and delivered by ultrasound-mediated microbubble destruction (UMMD) into brain endothelial cells (bEnd.3 cells) was evaluated on NO production using DAF2-DA, cell migration assessed by the wound healing assay, cell proliferation with BrdU, and ex-vivo angiogenesis in rat aortic rings. Results An enhanced inhibitory effect of AP-Cav was observed on cells treated with UMMD. MBs and ultrasound disruption delivery of AP-Cav increased acetylcholine-induced NO release, wound healing, cell proliferation, and angiogenesis inhibition on bEnd.3 cells, compared to free AP-Cav administration. Conclusion We demonstrated that the delivery of Cav via AP-Cav-loaded MBs and UMMD may be an administration method for Cav that would increase its therapeutic potential by enhancing efficacy and cellular specificity.
Collapse
Affiliation(s)
- Iván M. López-Rodulfo
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
- Present Address: Aarhus Universitet, Nordre Ringgade 1, 8000 Aarhus C, Denmark
| | - Elisa Villa-Martínez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| | - Amelia Rios
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| |
Collapse
|
20
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
21
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 342] [Impact Index Per Article: 171.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
22
|
Dhahri W, Dussault S, Raguema N, Desjarlais M, Rivard A. Stimulation of soluble guanylate cyclase activity with riociguat promotes angiogenesis and improves neovascularization after limb ischemia. Atherosclerosis 2023; 372:32-40. [PMID: 37023506 DOI: 10.1016/j.atherosclerosis.2023.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND AND AIMS The NO-cGMP pathway is essential for angiogenesis, vasculogenesis and post-natal neovascularization. The key enzyme responsible for the synthesis of cGMP following binding of NO is soluble guanylate cyclase (sGC). Riociguat is the first member of a novel class of compounds known as sGC stimulators. We tested the hypothesis that stimulation of sGC with riociguat might improve neovascularization in response to ischemia. METHODS In vitro, the angiogenic effect of riociguat was tested in human umbilical vein endothelial cells (HUVECs). In vivo, neovascularization was investigated in a mouse model of limb ischemia. C57Bl/6 mice were treated by gavage with 3 mg/kg/day of riociguat for a total of 28 days. After two weeks of treatment, hindlimb ischemia was surgically induced by femoral artery removal. RESULTS In a matrigel assay in vitro, riociguat dose-dependently stimulates tubule formation in HUVECs. Cell migration (scratch assay) is also increased in HUVECs treated with riociguat. At the molecular level, riociguat treatment leads to rapid activation of the p44/p42 MAP kinase pathway in HUVECs. Inhibition of protein kinase G (PKG) activity supresses both p44/p42 MAP kinase activation and angiogenesis in HUVECs treated with riociguat. In vivo, treatment with riociguat improves blood flow recovery after ischemia (Laser Doppler imaging), and increases capillary density in ischemic muscles (CD31 immunostaining). Clinically, this is associated with a significant decrease of ambulatory impairment and ischemic damages. Interestingly, mice treated with riociguat also show a 94% increase in the number of bone marrow-derived pro-angiogenic cells (PACs) compared to control mice. Moreover, riociguat treatment is associated with a significant improvement of PAC functions including migratory capacity, adhesion to an endothelial monolayer, and integration into endothelial tubular networks. CONCLUSIONS The sGC stimulator riociguat promotes angiogenesis and improves neovascularization after ischemia. The mechanism involves PKG-dependent activation of p44/p42 MAP kinase pathway, together with an improvement of PAC number and functions. sGC stimulation could constitute a novel therapeutic strategy to reduce tissue ischemia in patients with severe atherosclerotic diseases.
Collapse
Affiliation(s)
- Wahiba Dhahri
- Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Sylvie Dussault
- Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Nozha Raguema
- Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Michel Desjarlais
- Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Alain Rivard
- Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada.
| |
Collapse
|
23
|
Tsigkou V, Oikonomou E, Anastasiou A, Lampsas S, Zakynthinos GE, Kalogeras K, Katsioupa M, Kapsali M, Kourampi I, Pesiridis T, Marinos G, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int J Mol Sci 2023; 24:ijms24054321. [PMID: 36901752 PMCID: PMC10001590 DOI: 10.3390/ijms24054321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Heart failure is a complex medical syndrome that is attributed to a number of risk factors; nevertheless, its clinical presentation is quite similar among the different etiologies. Heart failure displays a rapidly increasing prevalence due to the aging of the population and the success of medical treatment and devices. The pathophysiology of heart failure comprises several mechanisms, such as activation of neurohormonal systems, oxidative stress, dysfunctional calcium handling, impaired energy utilization, mitochondrial dysfunction, and inflammation, which are also implicated in the development of endothelial dysfunction. Heart failure with reduced ejection fraction is usually the result of myocardial loss, which progressively ends in myocardial remodeling. On the other hand, heart failure with preserved ejection fraction is common in patients with comorbidities such as diabetes mellitus, obesity, and hypertension, which trigger the creation of a micro-environment of chronic, ongoing inflammation. Interestingly, endothelial dysfunction of both peripheral vessels and coronary epicardial vessels and microcirculation is a common characteristic of both categories of heart failure and has been associated with worse cardiovascular outcomes. Indeed, exercise training and several heart failure drug categories display favorable effects against endothelial dysfunction apart from their established direct myocardial benefit.
Collapse
Affiliation(s)
- Vasiliki Tsigkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-69-4770-1299
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - George E. Zakynthinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Kapsali
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Islam Kourampi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Zhu YX, Li Y, Ma Y, Zhang X, Du X, Gao J, Ding NH, Wang L, Chen N, Luo M, Wu J, Li R. Liraglutide Accelerates Ischemia-Induced Angiogenesis in a Murine Diabetic Model. J Am Heart Assoc 2023; 12:e026586. [PMID: 36789853 PMCID: PMC10111486 DOI: 10.1161/jaha.122.026586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Severe hindlimb ischemia is a chronic disease with poor prognosis that can lead to amputation or even death. This study aimed to assess the therapeutic effect of liraglutide on hind-limb ischemia in type 2 diabetic mice and to elucidate the underlying mechanism. Methods and Results Blood flow reperfusion and capillary densities after treatment with liraglutide or vehicle were evaluated in a mouse model of lower-limb ischemia in a normal background or a background of streptozotocin-induced diabetes. The proliferation, migration, and tube formation of human umbilical vein endothelial cells were analyzed in vitro upon treatment with liraglutide under normal-glucose and high-glucose conditions. Levels of phospho-Akt, phospho-endothelial nitric oxide synthase, and phospho-extracellular signal-related kinases 1 and 2 under different conditions in human umbilical vein endothelial cells and in ischemic muscle were determined by western blotting. Liraglutide significantly improved perfusion recovery and capillary density in both nondiabetic and diabetic mice. Liraglutide also promoted, in a concentration-dependent manner, the proliferation, migration, and tube formation of normal glucose- and high glucose-treated human umbilical vein endothelial cells, as well as the phosphorylation of Akt, endothelial nitric oxide synthase, and extracellular signal-related kinases 1 and 2 both in vitro and in vivo. The liraglutide antagonist exendin (9-39) reversed the promoting effects of liraglutide on human umbilical vein endothelial cell functions. Furthermore, exendin (9-39), LY294002, and PD98059 blocked the liraglutide-induced activation of Akt/endothelial nitric oxide synthase and extracellular signal-related kinases 1 and 2 signaling pathways. Conclusions These studies identified a novel role of liraglutide in modulating ischemia-induced angiogenesis, possibly through effects on endothelial cell function and activation of Akt/endothelial nitric oxide synthase and extracellular signal-related kinases 1 and 2 signaling, and suggested the glucagon-like peptide-1 receptor may be an important therapeutic target in diabetic hind-limb ischemia.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Yi Li
- Department of Endocrinology The Affiliated Hospital of Southwest Medical University, Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Yu Ma
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Xiao Zhang
- School of Basic Medicine Southwest Medical University Luzhou Sichuan China
| | - Xingrong Du
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Jiali Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China.,Nucleic Acid Medicine of Luzhou Key Laboratory Southwest Medical University Luzhou Sichuan China
| | - Nian Hui Ding
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China.,Nucleic Acid Medicine of Luzhou Key Laboratory Southwest Medical University Luzhou Sichuan China
| | - Liqun Wang
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Ni Chen
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Mao Luo
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Jianbo Wu
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Rong Li
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China.,Nucleic Acid Medicine of Luzhou Key Laboratory Southwest Medical University Luzhou Sichuan China
| |
Collapse
|
25
|
Sun J, Ge Y, Chao T, Bai R, Wang C. The Role of miRNA in the Regulation of Angiogenesis in Ischemic Heart Disease. Curr Probl Cardiol 2023; 48:101637. [PMID: 36773949 DOI: 10.1016/j.cpcardiol.2023.101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Despite continued improvements in primary prevention and treatment, ischemic heart disease (IHD) is the most common cause of mortality in both developing and developed countries. Promoting angiogenesis and reconstructing vascular network in ischemic myocardium are critical process of postischemic tissue repair. Effective strategies to promote survival and avoid apoptosis of endothelial cells in the ischemic myocardium can help to achieve long-term cardiac angiogenesis. Therefore, it is of great importance to investigate the molecular pathophysiology of angiogenesis in-depth and to find the key targets that promote angiogenesis. Recently years, many studies have found that microRNAs play important regulatory roles in almost all process of angiogenesis, including vascular sprouting, proliferation, survival and migration of vascular endothelial cells, recruitment of vascular progenitor cells, and control of angiopoietin expression. This review presents detailed information about the regulatory role of miRNAs in the angiogenesis of IHD in recent years, and provides new therapeutic ideas for the treatment of IHD.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Morita M, Suyama Y, Notsu T, Fukuoka K, Ikuta K, Kanayama H, Umeda R, Teraoka S, Minato H, Ninomiya H, Tsuneto M, Shirayoshi Y, Hisatome I, Yagi S. Effects of Conditioned Medium of Adipose-Derived Stem Cells Exposed to Platelet-Rich Plasma on the Expression of Endothelial Nitric Oxide Synthase and Angiogenesis by Endothelial Cells. Ann Plast Surg 2023; 90:171-179. [PMID: 36688861 PMCID: PMC9869946 DOI: 10.1097/sap.0000000000003368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 01/24/2023]
Abstract
ABSTRACT Platelet-rich plasma (PRP) and adipose-derived stem cells (ADSCs) are known to secrete angiogenic factors that contribute to the treatment of intractable ulcers. The combination of PRP and ADSCs may enhance their angiogenic effects. However, it remains unclear whether treatment of ADSCs with PRP influences angiogenesis. We studied whether the conditioned medium from PRP-treated ADSCs under hypoxic conditions exerts angiogenic effects. Although PRP stimulated the proliferation of ADSCs obtained from rats, it decreased the mRNA levels of vascular endothelial growth factor, hepatocyte growth factor, and TGF-β1, but not of basic fibroblast growth factor, under hypoxia. The conditioned medium of PRP-treated ADSCs inhibited endothelial nitric oxide synthase phosphorylation, decreased NO production, and suppressed tube formation in human umbilical vein endothelial cells. Transplantation of ADSCs alone increased both blood flow and capillary density of the ischemic limb; however, its combination with PRP did not further improve blood flow or capillary density. This suggests that both conditioned medium of ADSCs treated with PRP and combination of PRP with ADSCs transplantation may attenuate the phosphorylation of endothelial nitric oxide synthase and angiogenesis.
Collapse
Affiliation(s)
- Maki Morita
- From the Departments of Plastic and Reconstructive Surgery
| | - Yoshiko Suyama
- From the Departments of Plastic and Reconstructive Surgery
| | | | - Kohei Fukuoka
- From the Departments of Plastic and Reconstructive Surgery
| | - Kento Ikuta
- From the Departments of Plastic and Reconstructive Surgery
| | | | | | | | | | | | | | | | - Ichiro Hisatome
- Genomic Medicine and Regenerative Therapy
- Department of Cardiology, Yonago Medical Center, Yonago, Japan
| | - Shunjiro Yagi
- From the Departments of Plastic and Reconstructive Surgery
| |
Collapse
|
27
|
Nikfarjam S, Singh KK. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med 2023; 12:4380-4404. [PMID: 36156462 PMCID: PMC9972122 DOI: 10.1002/cam4.5274] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
DNA damage response (DDR) signaling ensures genomic and proteomic homeostasis to maintain a healthy genome. Dysregulation either in the form of down- or upregulation in the DDR pathways correlates with various pathophysiological states, including cancer and cardiovascular diseases (CVDs). Impaired DDR is studied as a signature mechanism for cancer; however, it also plays a role in ischemia-reperfusion injury (IRI), inflammation, cardiovascular function, and aging, demonstrating a complex and intriguing relationship between cancer and pathophysiology of CVDs. Accordingly, there are increasing number of reports indicating higher incidences of CVDs in cancer patients. In the present review, we thoroughly discuss (1) different DDR pathways, (2) the functional cross talk among different DDR mechanisms, (3) the role of DDR in cancer, (4) the commonalities and differences of DDR between cancer and CVDs, (5) the role of DDR in pathophysiology of CVDs, (6) interventional strategies for targeting genomic instability in CVDs, and (7) future perspective.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Krishna K Singh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
28
|
Liraglutide Improves the Angiogenic Capability of EPC and Promotes Ischemic Angiogenesis in Mice under Diabetic Conditions through an Nrf2-Dependent Mechanism. Cells 2022; 11:cells11233821. [PMID: 36497087 PMCID: PMC9736458 DOI: 10.3390/cells11233821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The impairment in endothelial progenitor cell (EPC) functions results in dysregulation of vascular homeostasis and dysfunction of the endothelium under diabetic conditions. Improving EPC function has been considered as a promising strategy for ameliorating diabetic vascular complications. Liraglutide has been widely used as a therapeutic agent for diabetes. However, the effects and mechanisms of liraglutide on EPC dysfunction remain unclear. The capability of liraglutide in promoting blood perfusion and angiogenesis under diabetic conditions was evaluated in the hind limb ischemia model of diabetic mice. The effect of liraglutide on the angiogenic function of EPC was evaluated by cell scratch recovery assay, tube formation assay, and nitric oxide production. RNA sequencing was performed to assess the underlying mechanisms. Liraglutide enhanced blood perfusion and angiogenesis in the ischemic hindlimb of db/db mice and streptozotocin-induced type 1 diabetic mice. Additionally, liraglutide improved tube formation, cell migration, and nitric oxide production of high glucose (HG)-treated EPC. Assessment of liraglutide target pathways revealed a network of genes involved in antioxidant activity. Further mechanism study showed that liraglutide decreased the production of reactive oxygen species and increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 deficiency attenuated the beneficial effects of liraglutide on improving EPC function and promoting ischemic angiogenesis under diabetic conditions. Moreover, liraglutide activates Nrf2 through an AKT/GSK3β/Fyn pathway, and inhibiting this pathway abolished liraglutide-induced Nrf2 activation and EPC function improvement. Overall, these results suggest that Liraglutide represents therapeutic potential in promoting EPC function and ameliorating ischemic angiogenesis under diabetic conditions, and these beneficial effects relied on Nrf2 activation.
Collapse
|
29
|
Salyers ZR, Coleman M, Le D, Ryan TE. AAV-mediated expression of PFKFB3 in myofibers, but not endothelial cells, improves ischemic muscle function in mice with critical limb ischemia. Am J Physiol Heart Circ Physiol 2022; 323:H424-H436. [PMID: 35867710 PMCID: PMC11834898 DOI: 10.1152/ajpheart.00121.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is a powerful driver of angiogenesis through its modulation of glycolytic metabolism within endothelial cells. Recent work has demonstrated that PFKFB3 modulates the response to muscle ischemia, however the cell specificity of these effects is not fully understood. In this study, we tested the impact of viral mediated expression of PFKFB3, driven by gene promoters specific for myofibers or endothelial cells, on ischemic hindlimb revascularization and muscle function. We hypothesized that both endothelium- and muscle-specific expression of PFKFB3 would attenuate limb pathology following femoral artery ligation. Male and female BALB/cJ mice were injected with adeno-associated virus encoding the either a green fluorescent protein (GFP) or PFKFB3 driven by either the human skeletal actin (ACTA1) or cadherin-5 (Cdh5) promoters. Four weeks after AAV treatment, mice were subjected to unilateral femoral artery ligation and limb perfusion and muscle function were assessed. Both endothelium- and muscle-specific PFKFB3 expression resulted in significantly more perfused capillaries within the ischemic limb muscle, but neither changed myofiber size/area. Muscle-specific, but not endothelium-specific, PFKFB3 expression significantly improved maximal force production in ischemic muscle (P = 0.0005). Notably, there was a significant effect of sex on maximal force levels in both cohorts of mice (P = 0.0075 and P = 0.0481), indicating that female mice had higher ischemic muscle strength compared with male mice, regardless of treatment group. Taken together, these data demonstrate that although both muscle- and endothelium-specific expression of PFKFB3 enhanced ischemic revascularization, only muscle-specific PFKFB3 expression improved muscle function.NEW & NOTEWORTHY Critical limb ischemia (CLI) carries a significant risk for limb amputation, and treatment options remain limited. We tested the impact of expression of PFKFB3 in myofibers or endothelial cells on limb pathology in mice with CLI. Although both muscle and endothelium-specific PFKFB3 expression increased perfused capillary density, only muscle-specific PFKFB3 expression improve contractile function. Regardless of treatment, female mice demonstrated better recovery from limb ischemic compared with male mice.
Collapse
Affiliation(s)
- Zachary R. Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Madeline Coleman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Dennis Le
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
- Center for Exercise Science, University of Florida, Gainesville, FL
- Myology Institute, University of Florida, Gainesville, FL
| |
Collapse
|
30
|
Coon BG, Timalsina S, Astone M, Zhuang ZW, Fang J, Han J, Themen J, Chung M, Yang-Klingler YJ, Jain M, Hirschi KK, Yamamato A, Trudeau LE, Santoro M, Schwartz MA. A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. J Cell Biol 2022; 221:e202109144. [PMID: 35695893 PMCID: PMC9198948 DOI: 10.1083/jcb.202109144] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.
Collapse
Affiliation(s)
- Brian G. Coon
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Matteo Astone
- Department of Biology, University of Padua, Padua, Italy
| | - Zhen W. Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jennifer Fang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jinah Han
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jurgen Themen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | | | - Mukesh Jain
- Department of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH
| | - Karen K. Hirschi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Ai Yamamato
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, CNS Research Group, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
- Department of Cell Biology, Yale University, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT
| |
Collapse
|
31
|
Wu Y, Lin X, Hong H, Fung YL, Cao X, Tse JKY, Li TH, Chan TF, Tian XY. Endothelium-targeted delivery of PPARδ by adeno-associated virus serotype 1 ameliorates vascular injury induced by hindlimb ischemia in obese mice. Biomed Pharmacother 2022; 151:113172. [PMID: 35644115 DOI: 10.1016/j.biopha.2022.113172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic vasculopathy is a major health problem worldwide. Peripheral arterial disease (PAD), and in its severe form, critical limb ischemia is a major form of diabetic vasculopathy with limited treatment options. Existing literature suggested an important role of PPARδ in vascular homeostasis. It remains elusive for using PPARδ as a potential therapeutic target due to mostly the side effects of PPARδ agonists. To explore the roles of PPARδ in endothelial homeostasis, endothelial cell (EC) selective Ppard knockout and controlled mice were subjected to hindlimb ischemia (HLI) injury. The muscle ECs were sorted for single-cell RNA sequencing (scRNA-seq) analysis. HLI was also performed in high fat diet (HFD)-induced obese mice to examine the function of PPARδ in obese mice with delayed vascular repair. Adeno-associated virus type 1 (AAV1) carrying ICAM2 promoter to target endothelium for overexpressing PPARδ was injected into the injured muscles of normal chow- and HFD-fed obese mice before HLI surgery was performed. scRNA-seq analysis of ECs in ischemic muscles revealed a pivotal role of PPARδ in endothelial homeostasis. PPARδ expression was diminished both after HLI injury, and also in obese mice, which showed further delayed vascular repair. Endothelium-targeted delivery of PPARδ by AAV1 improved perfusion recovery, increased capillary density, restored endothelial integrity, suppressed vascular inflammation, and promoted muscle regeneration in ischemic hindlimbs of both lean and obese mice. Our study indicated the effectiveness of endothelium-targeted PPARδ overexpression for restoring functional vasculature after ischemic injury, which might be a promising option of gene therapy to treat PAD and CLI.
Collapse
Affiliation(s)
- Yalan Wu
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Lin
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Huiling Hong
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Yee Lok Fung
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyun Cao
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Joyce Ka Yu Tse
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Ho Li
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China; School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
32
|
Choi YK, Kim YM. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int J Mol Sci 2022; 23:ijms23137041. [PMID: 35806040 PMCID: PMC9266949 DOI: 10.3390/ijms23137041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO) has both beneficial and detrimental effects via its metabolites, including carbon monoxide (CO), biliverdin or bilirubin, and ferrous iron. HO-1 is an inducible form of HO that is upregulated by oxidative stress, nitric oxide, CO, and hypoxia, whereas HO-2 is a constitutive form that regulates vascular tone and homeostasis. In brains injured by trauma, ischemia-reperfusion, or Alzheimer’s disease (AD), the long-term expression of HO-1 can be detected, which can lead to cytotoxic ferroptosis via iron accumulation. In contrast, the transient induction of HO-1 in the peri-injured region may have regenerative potential (e.g., angiogenesis, neurogenesis, and mitochondrial biogenesis) and neurovascular protective effects through the CO-mediated signaling pathway, the antioxidant properties of bilirubin, and the iron-mediated ferritin synthesis. In this review, we discuss the dual roles of HO-1 and its metabolites in various neurovascular diseases, including age-related macular degeneration, ischemia-reperfusion injury, traumatic brain injury, Gilbert’s syndrome, and AD.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| |
Collapse
|
33
|
Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci 2022; 79:349. [PMID: 35672585 PMCID: PMC10171722 DOI: 10.1007/s00018-022-04348-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
34
|
Sildenafil-Induced Revascularization of Rat Hindlimb Involves Arteriogenesis through PI3K/AKT and eNOS Activation. Int J Mol Sci 2022; 23:ijms23105542. [PMID: 35628350 PMCID: PMC9143320 DOI: 10.3390/ijms23105542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Hypoxia and inflammation play a major role in revascularization following ischemia. Sildenafil inhibits phosphodiesterase-5, increases intracellular cGMP and induces revascularization through a pathway which remains incompletely understood. Thus, we investigated the effect of sildenafil on post-ischemic revascularization. The left femoral artery was ligated in control and sildenafil-treated (25 mg/kg per day) rats. Vascular density was evaluated and expressed as the left/right leg (L/R) ratio. In control rats, L/R ratio was 33 ± 2% and 54 ± 9%, at 7- and 21-days post-ligation, respectively, and was significantly increased in sildenafil-treated rats to 47 ± 4% and 128 ± 11%, respectively. A neutralizing anti-VEGF antibody significantly decreased vascular density (by 0.48-fold) in control without effect in sildenafil-treated animals. Blood flow and arteriolar density followed the same pattern. In the ischemic leg, HIF-1α and VEGF expression levels increased in control, but not in sildenafil–treated rats, suggesting that sildenafil did not induce angiogenesis. PI3-kinase, Akt and eNOS increased after 7 days, with down-regulation after 21 days. Sildenafil induced outward remodeling or arteriogenesis in mesenteric resistance arteries in association with eNOS protein activation. We conclude that sildenafil treatment increased tissue blood flow and arteriogenesis independently of VEGF, but in association with PI3-kinase, Akt and eNOS activation.
Collapse
|
35
|
Zhang XZ, Fu L, Zou XY, Li S, Ma XD, Xie L, Pang B, Ma JB, Wang YJ, Du YR, Guo SC. Lung transcriptome analysis for the identification of genes involved in the hypoxic adaptation of plateau pika (Ochotona curzoniae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100943. [PMID: 34861554 DOI: 10.1016/j.cbd.2021.100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The plateau pika, a typical hypoxia-tolerant mammal lives 3000-5000 m above sea level on the Qinghai-Tibet Plateau, has acquired many physiological and morphological characteristics and strategies in its adaptation to sustained, high-altitude hypoxia. Blunted hypoxic pulmonary vasoconstriction is one such strategy, but the genes involved in this strategy have not been elucidated. Here, we investigated the genes involved and their expression profiles in the lung transcriptome of plateau pikas subjected to different hypoxic conditions (using low-pressure oxygen cabins). A slight, right ventricular hypertrophy was observed in pikas of the control group (altitude: 3200 m) vs. those exposed to 5000 m altitude conditions for one week. Our assembly identified 67,774 genes; compared with their expression in the control animals, 866 and 8364 genes were co-upregulated and co-downregulated, respectively, in pikas subjected to 5000 m altitude conditions for 1 and 4 w. We elucidated pathways that were associated with pulmonary vascular arterial pressure, including vascular smooth muscle contraction, HIF-1 signalling, calcium signalling, cGMP-PKG signalling, and PI3K-Akt signalling based on the differentially expressed genes; the top-100 pathway enrichments were found between the control group and the group exposed to 5000 m altitude conditions for 4 w. The mRNA levels of 18 candidate gene showed that more than 83% of genes were expressed and the number of transcriptome The up-regulated genes were EPAS1, Hbα, iNOS, CX40, CD31, PPM1B, HIF-1α, MYLK, Pcdh12, Surfactant protein B, the down-regulated genes were RYR2, vWF, RASA1, CLASRP, HIF-3α. Our transcriptome data are a valuable resource for future genomic studies on plateau pika.
Collapse
Affiliation(s)
- Xu-Ze Zhang
- School of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Lin Fu
- School of Life Science, Yunnan University, Yunnan 650091, China; Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xiao-Yan Zou
- School of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Li
- Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xiao-Dong Ma
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Ling Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Bo Pang
- College of food science and biology, Hebei university of science and technology, Shijiazhuang 050018, China
| | - Jian-Bin Ma
- Key Laboratory of Biodiversity Formation Mechanism, Qinghai Normal University, Xining 810008, China
| | - Yu-Jun Wang
- Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Yu-Rong Du
- Key Laboratory of Biodiversity Formation Mechanism, Qinghai Normal University, Xining 810008, China.
| | - Song-Chang Guo
- School of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
36
|
Bartoli F, Debant M, Chuntharpursat-Bon E, Evans EL, Musialowski KE, Parsonage G, Morley LC, Futers TS, Sukumar P, Bowen TS, Kearney MT, Lichtenstein L, Roberts LD, Beech DJ. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J Clin Invest 2022; 132:141775. [PMID: 35025768 PMCID: PMC8884896 DOI: 10.1172/jci141775] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Piezo1 forms mechanically activated nonselective cation channels that contribute to endothelial response to fluid flow. Here we reveal an important role in the control of capillary density. Conditional endothelial cell-specific deletion of Piezo1 in adult mice depressed physical performance. Muscle microvascular endothelial cell apoptosis and capillary rarefaction were evident and sufficient to account for the effect on performance. There was selective upregulation of thrombospondin-2 (TSP2), an inducer of endothelial cell apoptosis, with no effect on TSP1, a related important player in muscle physiology. TSP2 was poorly expressed in muscle endothelial cells but robustly expressed in muscle pericytes, in which nitric oxide (NO) repressed the Tsp2 gene without an effect on Tsp1. In endothelial cells, Piezo1 was required for normal expression of endothelial NO synthase. The data suggest an endothelial cell-pericyte partnership of muscle in which endothelial Piezo1 senses blood flow to sustain capillary density and thereby maintain physical capability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - T. Scott Bowen
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Guan Y, Liu J, Gu Y, Ji X. Effects of Hypoxia on Cerebral Microvascular Angiogenesis: Benefits or Damages? Aging Dis 2022; 14:370-385. [PMID: 37008044 PMCID: PMC10017152 DOI: 10.14336/ad.2022.0902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebrovascular microcirculation is essential for maintaining the physiological functions of the brain. The brain can be protected from stress injury by remodeling the microcirculation network. Angiogenesis is a type of cerebral vascular remodeling. It is an effective approach to improve the blood flow of the cerebral microcirculation, which is necessary for preventing and treating various neurological disorders. Hypoxia is one of the most important regulators of angiogenesis, affecting the sprouting, proliferation, and maturation stages of angiogenesis. Moreover, hypoxia negatively affects cerebral vascular tissue by impairing the structural and functional integrity of the blood-brain barrier and vascular-nerve decoupling. Therefore, hypoxia has a dual effect on blood vessels and is affected by confounding factors including oxygen concentration, hypoxia duration, and hypoxia frequency and extent. Establishing an optimal model that promotes cerebral microvasculogenesis without causing vascular injury is essential. In this review, we first elaborate on the effects of hypoxia on blood vessels from two different perspectives: (1) the promotion of angiogenesis and (2) cerebral microcirculation damage. We further discuss the factors influencing the dual role of hypoxia and emphasize the benefits of moderate hypoxic irritation and its potential application as an easy, safe, and effective treatment for multiple nervous system disorders.
Collapse
Affiliation(s)
- Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to: Dr. Prof. Xunming Ji; Beijing Institute of Brain Disorders, Capital Medical University, 10 Xi Tou Tiao, You Anmen, Beijing 100069, China. E-mail: .
| |
Collapse
|
38
|
Kato T, Kato K, Shimizu Y, Takefuji M, Murohara T. Treatment with adipose-derived regenerative cells enhances ischemia-induced angiogenesis via exosomal microRNA delivery in mice. NAGOYA JOURNAL OF MEDICAL SCIENCE 2021; 83:465-476. [PMID: 34552283 PMCID: PMC8438007 DOI: 10.18999/nagjms.83.3.465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023]
Abstract
Adipose-derived regenerative cells (ADRCs), mesenchymal stem/progenitor cells from subcutaneous adipose tissue, have been shown to stimulate angiogenesis in hind limb ischemia, an effect attributed to paracrine action on endothelial cells (ECs) in mice. Despite promising therapeutic effects, the relevant molecules promoting neovascularization in this setting have not been fully elucidated. Extracellular vesicles, crucial mediators of intercellular communication, are recognized as a new therapeutic modality for regenerative medicine. Here, we found that GW4869, an exosome biogenesis inhibitor targeting neutral sphingomyelinase, impaired ADRCs-mediated angiogenesis and improvement of blood perfusion in a murine hind limb ischemia model. In addition, while the supernatant of ADRCs induced murine EC migration, this effect was attenuated by pre-treatment with GW4869. RNA analysis revealed that treatment of ADRCs with GW4869 reduced the expression of microRNA-21 (miR-21), miR-27b, miR-322, and let-7i in ADRCs-derived exosomes. Furthermore, the exosomes derived from GW4869-treated ADRCs induced the expression of the miR-21 targets Smad7 and Pten, and the miR-322 target Cul2, in ECs. These findings suggest that several miRNAs in ADRCs-derived exosomes contribute to angiogenesis and improvement of blood perfusion in a murine hind limb ischemia model.
Collapse
Affiliation(s)
- Tomohiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| |
Collapse
|
39
|
Das M, Devi KP, Belwal T, Devkota HP, Tewari D, Sahebnasagh A, Nabavi SF, Khayat Kashani HR, Rasekhian M, Xu S, Amirizadeh M, Amini K, Banach M, Xiao J, Aghaabdollahian S, Nabavi SM. Harnessing polyphenol power by targeting eNOS for vascular diseases. Crit Rev Food Sci Nutr 2021; 63:2093-2118. [PMID: 34553653 DOI: 10.1080/10408398.2021.1971153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kiumarth Amini
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Poland
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Safieh Aghaabdollahian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
41
|
|
42
|
Abstract
The prevalence of peripheral arterial disease (PAD) in the United States exceeds 10 million people, and PAD is a significant cause of morbidity and mortality across the globe. PAD is typically caused by atherosclerotic obstructions in the large arteries to the leg(s). The most common clinical consequences of PAD include pain on walking (claudication), impaired functional capacity, pain at rest, and loss of tissue integrity in the distal limbs that may lead to lower extremity amputation. Patients with PAD also have higher than expected rates of myocardial infarction, stroke, and cardiovascular death. Despite advances in surgical and endovascular procedures, revascularization procedures may be suboptimal in relieving symptoms, and some patients with PAD cannot be treated because of comorbid conditions. In some cases, relieving obstructive disease in the large conduit arteries does not assure complete limb salvage because of severe microvascular disease. Despite several decades of investigational efforts, medical therapies to improve perfusion to the distal limb are of limited benefit. Whereas recent studies of anticoagulant (eg, rivaroxaban) and intensive lipid lowering (such as PCSK9 [proprotein convertase subtilisin/kexin type 9] inhibitors) have reduced major cardiovascular and limb events in PAD populations, chronic ischemia of the limb remains largely resistant to medical therapy. Experimental approaches to improve limb outcomes have included the administration of angiogenic cytokines (either as recombinant protein or as gene therapy) as well as cell therapy. Although early angiogenesis and cell therapy studies were promising, these studies lacked sufficient control groups and larger randomized clinical trials have yet to achieve significant benefit. This review will focus on what has been learned to advance medical revascularization for PAD and how that information might lead to novel approaches for therapeutic angiogenesis and arteriogenesis for PAD.
Collapse
Affiliation(s)
- Brian H Annex
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Augusta University (B.H.A.)
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.)
| |
Collapse
|
43
|
An L, Shen Y, Chopp M, Zacharek A, Venkat P, Chen Z, Li W, Qian Y, Landschoot-Ward J, Chen J. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging Dis 2021; 12:732-746. [PMID: 34094639 PMCID: PMC8139201 DOI: 10.14336/ad.2020.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular Dementia (VaD) accounts for nearly 20% of all cases of dementia. eNOS plays an important role in neurovascular remodeling, anti-inflammation, and cognitive functional recovery after stroke. In this study, we investigated whether eNOS regulates brain damage, cognitive function in mouse model of bilateral common carotid artery stenosis (BCAS) induced VaD. Late-adult (6-8 months) C57BL/6J and eNOS knockout (eNOS-/-) mice were subjected to BCAS (n=12/group) or sham group (n=8/group). BCAS was performed by applying microcoils to both common carotid arteries. Cerebral blood flow (CBF) and blood pressure were measured. A battery of cognitive functional tests was performed, and mice were sacrificed 30 days after BCAS. Compared to corresponding sham mice, BCAS in wild-type (WT) and eNOS-/- mice significantly: 1) induces short term, long term memory loss, spatial learning and memory deficits; 2) decreases CBF, increases ischemic cell damage, including apoptosis, white matter (WM) and axonal damage; 3) increases blood brain barrier (BBB) leakage, decreases aquaporin-4 (AQP4) expression and vessel density; 4) increases microglial, astrocyte activation and oxidative stress in the brain; 5) increases inflammatory factor interleukin-1 receptor-associated kinase-1(IRAK-1) and amyloid beta (Aβ) expression in brain; 6) increases IL-6 and IRAK4 expression in brain. eNOS-/-sham mice exhibit increased blood pressure, decreased iNOS and nNOS in brain compared to WT-sham mice. Compared to WT-BCAS mice, eNOS-/-BCAS mice exhibit worse vascular and WM/axonal damage, increased BBB leakage and inflammatory response, increased cognitive deficit, decreased iNOS, nNOS in brain. eNOS deficit exacerbates BCAS induced brain damage and cognitive deficit.
Collapse
Affiliation(s)
- Lulu An
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yi Shen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,2Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (Current address)
| | - Michael Chopp
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,3Department of Physics, Oakland University, Rochester, MI-48309, USA
| | - Alex Zacharek
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Poornima Venkat
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Zhili Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Wei Li
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yu Qian
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | | | - Jieli Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| |
Collapse
|
44
|
Yamada H, Sakata N, Nishimura M, Tanaka T, Shimizu M, Yoshimatsu G, Kawakami R, Wada H, Sawamoto O, Matsumoto S, Kodama S. Xenotransplantation of neonatal porcine bone marrow-derived mesenchymal stem cells improves murine hind limb ischemia through lymphangiogenesis and angiogenesis. Xenotransplantation 2021; 28:e12693. [PMID: 33960029 DOI: 10.1111/xen.12693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The clinical utility of stem cell therapy for peripheral artery disease has not been fully discussed, and one obstacle is limited donor supplies. In this study, we attempted to rescue mouse ischemic hind limb by xenotransplantation of neonatal porcine bone marrow-derived mesenchymal stem cells (npBM-MSCs). METHODS Neonatal porcine bone marrow-derived mesenchymal stem cells were transplanted to ischemic hind limbs of male C57BL/6J mice (npBM-MSCs group). Mice with syngeneic transplantation of mouse BM-MSCs (mBM-MSCs group) were also prepared for comparison. The angiogenic effects were evaluated by recovery of blood flow on laser Doppler imaging, histologic findings, and genetic and protein levels of angiogenic factors. RESULTS Regarding laser Doppler assessments, blood flow in the hind limb was rapidly recovered in the npBM-MSCs group, compared with that in the mBM-MSCs group (P = .016). Compared with the mBM-MSCs group, the npBM-MSCs group had early and prominent lymphangiogenesis [P < .05 on both post-operative days (PODs) 3 and 7] but had similar angiogenesis. Regarding genomic assessments, xenotransplantation of npBM-MSCs enhanced the expressions of both porcine and murine Vegfc in the hind limbs by POD 3. Interestingly, the level of murine Vegfc expression was significantly higher in the npBM-MSCs group than in the mBM-MSCs group on PODs 3 and 7 (P < .001 for both). Furthermore, the secreted VEGFC protein level was higher from npBM-MSCs than from mBM-MSCs (P < .001). CONCLUSION Xenotransplantation of npBM-MSCs contributed to the improvement of hind limb ischemia by both angiogenesis and lymphangiogenesis, especially promotion of the latter. npBM-MSCs may provide an alternative to autologous and allogeneic MSCs for stem cell therapy of critical limb ischemia.
Collapse
Affiliation(s)
- Hideaki Yamada
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masayuki Shimizu
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Hideichi Wada
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Osamu Sawamoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
45
|
Higashi Y, Yusoff FM, Kishimoto S, Maruhashi T. Regenerative medicine for radiation emergencies. JOURNAL OF RADIATION RESEARCH 2021; 62:i21-i29. [PMID: 33978185 PMCID: PMC8114226 DOI: 10.1093/jrr/rraa091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 05/12/2023]
Abstract
Hiroshima University is a 'medical institution for tertiary radiation emergencies' and a 'medical support organization as a part of the International Atomic Emergency Agency Emergency Preparedness Response-Response and Assistance Network (IAEA EPR-RANET)'. To establish a system of regenerative medicine for radiation emergencies with treatment by implantation of various types of cells derived from induced pluripotent stem (iPS) cells, it is necessary to establish methods of defense against and treatment for radiation-induced damage from nuclear power plant accidents and nuclear terrorism. It is also necessary to develop cell therapy, cellular repair technology and regenerative biotechnology as regenerative medicine for radiation emergencies. Such applications have not been established yet. To develop a regenerative medical system, by using the existing one, for radiation emergencies, we will attempt to manage the cell-processing center to establish a safe and secured iPS cell bank for radiation medicine. By using this iPS cell bank as the central leverage, we will develop an education program for radiation emergency medicine and construct a network of regenerative medicine for radiation emergency medicine.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Japan
- Corresponding author. Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan. Tel: +81-82-257-5831; Fax: +81-82-257-5831;
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| |
Collapse
|
46
|
Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021; 21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) has a wide array of biological functions including the regulation of vascular tone, neurotransmission, immunomodulation, stimulation of proinflammatory cytokine expression and antimicrobial action. These functions may depend on the type of isoform that is responsible for the synthesis of NO. NO is found in various ocular tissues playing a pivotal role in physiological mechanisms, namely regulating vascular tone in the uvea, retinal blood circulation, aqueous humor dynamics, neurotransmission and phototransduction in retinal layers. Unregulated production of NO in ocular tissues may result in production of toxic superoxide free radicals that participate in ocular diseases such as endotoxin-induced uveitis, ischemic proliferative retinopathy and neurotoxicity of optic nerve head in glaucoma. However, the role of NO on the ocular surface in mediating physiology and pathophysiological processes is not fully understood. Moreover, methods used to measure levels of NO in the biological samples of the ocular surface are not well established due to its rapid oxidation. The purpose of this review is to highlight the role of NO in the physiology and pathophysiology of ocular surface and propose suitable techniques to measure NO levels in ocular surface tissues and tears. This will improve the understanding of NO's role in ocular surface biology and the development of new NO-based therapies to treat various ocular surface diseases. Further, this review summarizes the biochemistry underpinning NO's antimicrobial action.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- School of Optometry & Vision Science, University of New South Wales, Australia; School of Chemistry, University of New South Wales, Australia
| | - Jia Hao Yeo
- The University of Sydney, School of Chemistry, NSW, 2006, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | - Mark D P Willcox
- School of Optometry & Vision Science, University of New South Wales, Australia
| |
Collapse
|
47
|
Bernatchez PN, Tao B, Bradshaw RA, Eveleth D, Sessa WC. Characterization of a Novel Caveolin Modulator That Reduces Vascular Permeability and Ocular Inflammation. Transl Vis Sci Technol 2021; 10:21. [PMID: 34111267 PMCID: PMC8132009 DOI: 10.1167/tvst.10.6.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Caveolin (Cav) regulates various aspect of endothelial cell signaling and cell-permeable peptides (CPPs) fused to domains of Cav can reduce retinal damage and inflammation in vivo. Thus, the goal of the present study was to identify a novel CPP that improves delivery of a truncated Cav modulator in vitro and in vivo. Methods Phage display technology was used to identify a small peptide (RRPPR) that was internalized into endothelial cells. Fusions of Cav with the peptide were compared to existing molecules in three distinct assays, vascular endothelial growth factor-A (VEGF) induced nitric oxide (NO) release, VEGF induced vascular leakage, and in a model of immune mediated uveitis. Results RRPPR was internalized efficiently and was potent in blocking NO release. Fusing RRPPR with a minimal Cav inhibitory domain (CVX51401) dose-dependently blocked NO release, VEGF induced permeability, and retinal damage in a model of uveitis. Conclusions CVX51401 is a novel Cav modulator that reduces VEGF and immune mediated inflammation. Translational Relevance CVX51401 is an optimized Cav modulator that reduces vascular permeability and ocular inflammation that is poised for clinical development.
Collapse
Affiliation(s)
- Pascal N. Bernatchez
- Vascular Biology and Therapeutics Program and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Tao
- Vascular Biology and Therapeutics Program and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - William C. Sessa
- Vascular Biology and Therapeutics Program and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
48
|
Abstract
Aim: Tumor cells adapt to hypoxic microenvironments by releasing the key transcription factor HIF-1α, which promotes angiogenesis, glycolytic phenotype, metastasis and erythropoiesis, allowing proliferation amid low oxygen levels. Therefore, therapeutic targeting of HIF-1α represents a viable strategy for cancer therapy. Methods & Results: The authors synthesized a series of novel tetrahydroquinazoline derivatives in six steps and demonstrated that their development had a unique ability to suppress HIF-1α expression through proteasomal degradation. Conclusion: Among these compounds, CDMP-TQZ (8bf) exhibited the highest antiproliferative potency in human cancer cells, in part through downregulation of HIF-1α.
Collapse
|
49
|
Nitric oxide and the brain. Part 2: Effects following neonatal brain injury-friend or foe? Pediatr Res 2021; 89:746-752. [PMID: 32563184 DOI: 10.1038/s41390-020-1021-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) has critical roles in a wide variety of key biologic functions and has intricate transport mechanisms for delivery to key distal tissues under normal conditions. However, NO also plays important roles during disease processes, such as hypoxia-ischemia, asphyxia, neuro-inflammation, and retinopathy of prematurity. The effects of exogenous NO on the developing neonatal brain remain controversial. Inhaled NO (iNO) can be neuroprotective or toxic depending on a variety of factors, including cellular redox state, underlying disease processes, duration of treatment, and dose. This review identifies key gaps in knowledge that should prompt further investigation into the possible role of iNO as a therapeutic agent after injury to the brain. IMPACT: NO is a key signal mediator in the neonatal brain with neuroprotective and neurotoxic properties. iNO, a commonly used medication, has significant effects on the neonatal brain. Dosing, duration, and timing of administration of iNO can affect the developing brain. This review article summarizes the roles of NO in association with various disease processes that impact neonates, such as brain hypoxia-ischemia, asphyxia, retinopathy of prematurity, and neuroinflammation. The impact of this review is that it clearly describes gaps in knowledge, and makes the case for further, targeted studies in each of the identified areas.
Collapse
|
50
|
Huang NC, Dai LG, Kang LY, Huang NC, Fu KY, Hsieh PS, Dai NT. Beneficial Effects of Astragaloside IV-Treated and 3-Dimensional-Cultured Endothelial Progenitor Cells on Angiogenesis and Wound Healing. Ann Plast Surg 2021; 86:S3-S12. [PMID: 33438949 DOI: 10.1097/sap.0000000000002655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Astragaloside IV (AS-IV) is a natural herb extract and a popular compound used in traditional Chinese medicine because of its effect on multiple biological processes, such as promotion of cell proliferation, improvement in cardiopulmonary and vascular function, and promotion of angiogenesis around wounds, leading to accelerated wound healing. Vascular regeneration primarily results from the differentiation of endothelial progenitor cells (EPCs). Biomedical acceleration of angiogenesis and differentiation of EPCs around the wound remain challenging. MATERIALS AND METHODS In this study, we treated human umbilical cord blood-derived EPCs with AS-IV and cultured them on 2-dimensional (tissue culture polystyrene) and 3-dimensional culture plates (3DPs). These cultured cells were then combined with human blood plasma gel and applied on the skin of nude mice in an attempt to repair full-thickness skin defects. RESULTS The results show that using 3DP culture could increase vascular-related gene expression in EPCs. Furthermore, 12.5 μg/mL AS-IV-treaded EPCs were combined with plasma gels (P-3DP-EPC12.5) and showed enhanced vascular-related protein expression levels after 3 days of culture. Finally, P-3DP-EPC12.5s were used to repair full-thickness skin defects in nude mice, and we could register a wound healing rate greater than 90% by day 14. CONCLUSIONS Based on these results, we concluded that we have developed a potential therapeutic approach for wound healing using plasma gel containing 3-dimensional surface-cultured AS-IV-treated EPCs.
Collapse
Affiliation(s)
| | | | - Lan-Ya Kang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nien-Chi Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Keng-Yen Fu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|