1
|
Yang M, Wei Y, Wang Y, Liu J, Wang G. TSH is independently associated with remnant cholesterol in euthyroid adults: a cross-sectional study based on 29,708 individuals. Hormones (Athens) 2024:10.1007/s42000-024-00596-1. [PMID: 39215946 DOI: 10.1007/s42000-024-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The study aims to investigate the relationship between thyroid-stimulating hormone (TSH) and remnant cholesterol (RC) in euthyroid adults. METHODS The adults who were recruited for the study had undergone physical examination at Beijing Chao-Yang Hospital. High RC levels were defined as the upper quartile of RC levels in males and females, respectively. The relationship between TSH and RC was assessed using the logistic and linear regression models. RESULTS A total of 29,708 adults (14,347 males and 15,361 females) were enrolled in this study. RC ≥ 0.77 mmol/L in males and RC ≥ 0.60 mmol/L in females were defined as high RC levels. With increasing serum TSH levels, the percentage of adults with high RC levels increased. The odds ratios (ORs (95% confidence intervals (CIs)) for high RC levels increased as TSH quartiles (Q) rose after full adjustments [males: Q2 1.11 (1.00-1.24), P < 0.05; Q3 1.03 (0.92-1.15), P > 0.05; Q4 1.25 (1.12-1.40), P < 0.001; and females: Q2 1.07 (0.96-1.20), P > 0.05; Q3 1.17 (1.05-1.31), P < 0.01, Q4 1.33 (1.20-1.48), P < 0.001, all P for trend < 0.001], using Q1 as the reference. CONCLUSION Higher TSH levels were independently associated with higher RC levels in euthyroid adults, this underscoring the significance of regulating TSH levels appropriately.
Collapse
Affiliation(s)
- Mengge Yang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Wei
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Wang
- Physical Examination Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
2
|
Sarkar R, Bolel P, Kapoor A, Eliseeva E, Dulcey AE, Templin JS, Wang AQ, Xu X, Southall N, Klubo-Gwiezdzinska J, Neumann S, Marugan JJ, Gershengorn MC. An Orally Efficacious Thyrotropin Receptor Ligand Inhibits Growth and Metastatic Activity of Thyroid Cancers. J Clin Endocrinol Metab 2024; 109:2306-2316. [PMID: 38421044 PMCID: PMC11318999 DOI: 10.1210/clinem/dgae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
CONTEXT Thyroid-stimulating hormone (or thyrotropin) receptor (TSHR) could be a selective target for small molecule ligands to treat thyroid cancer (TC). OBJECTIVE We report a novel, orally efficacious ligand for TSHR that exhibits proliferation inhibitory activity against human TC in vitro and in vivo, and inhibition of metastasis in vivo. METHODS A35 (NCATS-SM4420; NCGC00241808) was selected from a sublibrary of >200 TSHR ligands. Cell proliferation assays including BrdU incorporation and WST-1, along with molecular docking studies were done. In vivo activity of A35 was assessed in TC cell-derived xenograft (CDX) models with immunocompromised (NSG) mice. Formalin-fixed, paraffin-embedded sections of tumor and lung tissues were observed for the extent of cell death and metastasis. RESULTS A35 was shown to stimulate cAMP production in some cell types by activating TSHR but not in TC cells, MDA-T32, and MDA-T85. A35 inhibited proliferation of MDA-T32 and MDA-T85 in vitro and in vivo, and pulmonary metastasis of MDA-T85F1 in mice. In vitro, A35 inhibition of proliferation was reduced by a selective TSHR antagonist. Inhibition of CDX tumor growth without decreases in mouse weights and liver function showed A35 to be efficacious without apparent toxicity. Lastly, A35 reduced levels of Ki67 in the tumors and metastatic markers in lung tissues. CONCLUSION We conclude that A35 is a TSHR-selective inhibitor of TC cell proliferation and metastasis, and suggest that A35 may be a promising lead drug candidate for the treatment of differentiated TC in humans.
Collapse
Affiliation(s)
- Rhitajit Sarkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priyanka Bolel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abhijeet Kapoor
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Elena Eliseeva
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrés E Dulcey
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Jay S Templin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Joanna Klubo-Gwiezdzinska
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susanne Neumann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Marvin C Gershengorn
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Bao S, Li F, Duan L, Li J, Jiang X. Thyroid-stimulating hormone may participate in insulin resistance by activating toll-like receptor 4 in liver tissues of subclinical hypothyroid rats. Mol Biol Rep 2023; 50:10637-10650. [PMID: 37884783 DOI: 10.1007/s11033-023-08834-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Thyroid-stimulating hormone (TSH) is an independent risk factor of and closely associated with metabolic disorders. In the present study, we explored the potential mechanism and adverse effects of TSH on insulin resistance in the liver of subclinical hypothyroidism models in vivo. METHODS The mean glucose infusion rate (GIR), free fatty acids (FFAs), the homeostatic model assessment for insulin resistance (HOMA-IR), fasting plasma insulin (FINS), the TLR4 signal pathway and its intracellular negative regulator-toll-interacting protein (Tollip), and the modulators of insulin signaling were evaluated. RESULTS Compared to the normal control group (NC group), the subclinical hypothyroidism rat group (SCH group) showed decreases in GIR and increases in FFAs, FINS, and HOMA-IR. The levels of TLR4 and of its downstream molecules like p-NF-κB, p-IRAK-1, IL-6 and TNF-α were evidently higher in the SCH group than in the NC group. Conversely, the level of Tollip was significantly lower in the SCH group than in the NC group. Compared to the NC group, the levels of phosphorylated IRS-1-Tyr and GLUT2 were decreased in the SCH group. Macrophage infiltration was higher in the SCH group than in the NC group. CONCLUSION TSH may participate in aggravating inflammation by increasing macrophage infiltration; furthermore, it may activate the TLR4-associated inflammatory signaling pathway, thus interfering with insulin signals in liver tissues. Targeting TSH may have therapeutic benefits against metabolic disorders.
Collapse
Affiliation(s)
- Suqing Bao
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Nankai District, Tianjin, 300192, China.
| | - Fengbo Li
- Department of Orthopedics, Tianjin Hospital, No. 406 Jie fang South Road, Hexi District, Tianjin, 300211, China
| | - Lijun Duan
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Nankai District, Tianjin, 300192, China
| | - Junfeng Li
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Nankai District, Tianjin, 300192, China
| | - Xia Jiang
- Department of Endocrinology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Nankai District, Tianjin, 300192, China
| |
Collapse
|
4
|
Zhang H, Dai J, Zhang W, Sun X, Sun Y, Wang L, Li H, Zhang J. Integration of clinical demographics and routine laboratory analysis parameters for early prediction of gestational diabetes mellitus in the Chinese population. Front Endocrinol (Lausanne) 2023; 14:1216832. [PMID: 37900122 PMCID: PMC10613106 DOI: 10.3389/fendo.2023.1216832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications in pregnancy, impairing both maternal and fetal health in short and long term. As early interventions are considered desirable to prevent GDM, this study aims to develop a simple-to-use nomogram based on multiple common risk factors from electronic medical health records (EMHRs). A total of 924 pregnant women whose EMHRs were available at Peking University International Hospital from January 2022 to October 2022 were included. Clinical demographics and routine laboratory analysis parameters at 8-12 weeks of gestation were collected. A novel nomogram was established based on the outcomes of multivariate logistic regression. The nomogram demonstrated powerful discrimination (the area under the receiver operating characteristic curve = 0.7542), acceptable agreement (Hosmer-Lemeshow test, P = 0.3214) and favorable clinical utility. The C-statistics of 10-Fold cross validation, Leave one out cross validation and Bootstrap were 0.7411, 0.7357 and 0.7318, respectively, indicating the stability of the nomogram. A novel nomogram based on easily-accessible parameters was developed to predict GDM in early pregnancy, which may provide a paradigm for repurposing clinical data and benefit the clinical management of GDM. There is a need for prospective multi-center studies to validate the nomogram before employing the nomogram in real-world clinical practice.
Collapse
Affiliation(s)
- Hesong Zhang
- Department of Clinical Laboratory, Peking University International Hospital, Beijing, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Juhua Dai
- Department of Clinical Laboratory, Peking University International Hospital, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xinping Sun
- Department of Clinical Laboratory, Peking University International Hospital, Beijing, China
| | - Yujing Sun
- Department of Clinical Laboratory, Peking University International Hospital, Beijing, China
| | - Lu Wang
- Department of Clinical Laboratory, Peking University International Hospital, Beijing, China
| | - Hongwei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jie Zhang
- Department of Clinical Laboratory, Peking University International Hospital, Beijing, China
| |
Collapse
|
5
|
Macvanin MT, Gluvic ZM, Zaric BL, Essack M, Gao X, Isenovic ER. New biomarkers: prospect for diagnosis and monitoring of thyroid disease. Front Endocrinol (Lausanne) 2023; 14:1218320. [PMID: 37547301 PMCID: PMC10401601 DOI: 10.3389/fendo.2023.1218320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
After the metabolic syndrome and its components, thyroid disorders represent the most common endocrine disorders, with increasing prevalence in the last two decades. Thyroid dysfunctions are distinguished by hyperthyroidism, hypothyroidism, or inflammation (thyroiditis) of the thyroid gland, in addition to the presence of thyroid nodules that can be benign or malignant. Thyroid cancer is typically detected via an ultrasound (US)-guided fine-needle aspiration biopsy (FNAB) and cytological examination of the specimen. This approach has significant limitations due to the small sample size and inability to characterize follicular lesions adequately. Due to the rapid advancement of high-throughput molecular biology techniques, it is now possible to identify new biomarkers for thyroid neoplasms that can supplement traditional imaging modalities in postoperative surveillance and aid in the preoperative cytology examination of indeterminate or follicular lesions. Here, we review current knowledge regarding biomarkers that have been reliable in detecting thyroid neoplasms, making them valuable tools for assessing the efficacy of surgical procedures or adjunctive treatment after surgery. We are particularly interested in providing an up-to-date and systematic review of emerging biomarkers, such as mRNA and non-coding RNAs, that can potentially detect thyroid neoplasms in clinical settings. We discuss evidence for miRNA, lncRNA and circRNA dysregulation in several thyroid neoplasms and assess their potential for use as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M. Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Kim SM, Sultana F, Korkmaz F, Lizneva D, Yuen T, Zaidi M. Independent Skeletal Actions of Pituitary Hormones. Endocrinol Metab (Seoul) 2022; 37:719-731. [PMID: 36168775 PMCID: PMC9633224 DOI: 10.3803/enm.2022.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/30/2022] Open
Abstract
Over the past years, pituitary hormones and their receptors have been shown to have non-traditional actions that allow them to bypass the hypothalamus-pituitary-effector glands axis. Bone cells-osteoblasts and osteoclasts-express receptors for growth hormone, follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin, and vasopressin. Independent skeletal actions of pituitary hormones on bone have been studied using genetically modified mice with haploinsufficiency and by activating or inactivating the receptors pharmacologically, without altering systemic effector hormone levels. On another front, the discovery of a TSH variant (TSH-βv) in immune cells in the bone marrow and skeletal action of FSHβ through tumor necrosis factor α provides new insights underscoring the integrated physiology of bone-immune-endocrine axis. Here we discuss the interaction of each pituitary hormone with bone and the potential it holds in understanding bone physiology and as a therapeutic target.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corresponding authors: Se-Min Kim. The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, PO Box 1055, New York, NY 10029, USA Tel: +1-212-241-8797, Fax: +1-212-426-8312 E-mail:
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mone Zaidi. The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, PO Box 1055, New York, NY 10029, USA Tel: +1-212-241-8797, Fax: +1-212-426-8312, E-mail:
| |
Collapse
|
7
|
Suzuki N, Inoue K, Yoshimura R, Kinoshita A, Suzuki A, Fukushita M, Matsumoto M, Yoshihara A, Watanabe N, Noh JY, Katoh R, Sugino K, Ito K. The Mediation Role of Thyrotropin Receptor Antibody in the Relationship Between Age and Severity of Hyperthyroidism in Graves' Disease. Thyroid 2022; 32:1243-1248. [PMID: 36074931 DOI: 10.1089/thy.2022.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: The severity of hyperthyroidism in Graves' disease (GD) has been reported to be worse in younger patients and to gradually improve with advancing age, accompanied by declining thyrotropin (TSH) receptor antibody (TRAb) values. This study was conducted to explore the extent to which the declining TRAb production may contribute to a decrease in severe hyperthyroidism with advancing age in patients with GD. Methods: This study was a cross-sectional analysis of retrospectively reviewed data. The medical records of patients newly diagnosed with GD at Ito Hospital, between January 2005 and June 2019, were examined. Patients were divided into age-stratified groups for evaluation. Multivariable logistic regression was performed to estimate the odds ratio (OR) of severe hyperthyroidism by increasing age. Mediation analyses were also conducted to quantify the association between age and declining severity of hyperthyroidism mediated through decreased TRAb productivity. Results: A total of 21,018 patients with newly diagnosed GD (3848 male and 17,170 female) were included. A correlation was observed between TRAb value and thyroid hormone values in each age-stratified group, which became weaker with an increase in age. Patients aged <40 years had a higher risk of severe hyperthyroidism (free thyroxine [fT4] level >7.0 ng/dL [n = 5616], OR [confidence interval, CI] = 1.80 [1.68-1.92]; free triiodothyronine [fT3] level >25 pg/mL [n = 4501], OR [CI] = 2.06 [1.92-2.23]) than those aged ≧40 years. In examining the relationship between age and severe hyperthyroidism, the proportion mediated through TRAb productivity was 8.5% and 8.4% using fT4 and fT3 as an outcome index, respectively. Conclusions: Declining TRAb value mediated only 8.5% of the negative association between age and severity of hyperthyroidism. The presence of other underlying mechanisms, such as the decline in the reactivity of thyrocytes to TSH stimulation, requires further investigation.
Collapse
Affiliation(s)
- Nami Suzuki
- Department of Internal Medicine, Ito Hospital, Shibuya, Japan
| | - Kosuke Inoue
- Department of Internal Medicine, Ito Hospital, Shibuya, Japan
- Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ran Yoshimura
- Department of Internal Medicine, Ito Hospital, Shibuya, Japan
| | - Aya Kinoshita
- Department of Internal Medicine, Ito Hospital, Shibuya, Japan
| | - Ai Suzuki
- Department of Internal Medicine, Ito Hospital, Shibuya, Japan
| | - Miho Fukushita
- Department of Internal Medicine, Ito Hospital, Shibuya, Japan
| | | | - Ai Yoshihara
- Department of Internal Medicine, Ito Hospital, Shibuya, Japan
| | | | | | - Ryohei Katoh
- Department of Pathology, Ito Hospital, Shibuya, Japan
| | | | - Koichi Ito
- Department of Surgery, Ito Hospital, Shibuya, Japan
| |
Collapse
|
8
|
Liu Y, Huang Y, Mo G, Zhou T, Hou Q, Shi C, Yu J, Lv Y. Combined prognostic value of preoperative serum thyrotrophin and thyroid hormone concentration in papillary thyroid cancer. J Clin Lab Anal 2022; 36:e24503. [PMID: 35666615 PMCID: PMC9279971 DOI: 10.1002/jcla.24503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Background A growing number of studies have found a close association between thyroid hormones and thyrotrophin (TSH), and they also have prognostic significance in some cancer types; this study aimed to investigate the prognostic value of free triiodothyronine (fT3), free thyroxine (fT4), fT3/fT4, TSH, and their combination in patients with papillary thyroid carcinoma (PTC). Methods This study retrospectively analyzed the relevant data of 726 newly diagnosed PTC patients. Both univariate and multivariate analyses were used to predict the recurrence rate, and a risk score was established. In addition, with the use of a random survival forest, a random forest (RF) score was constructed. After calculating the area under the curve (AUC), the diagnostic efficacy of risk score, RF score, and four indicators was compared. Results fT3, fT4, fT3/fT4, and TSH were strongly associated with some invasive clinicopathological features and postoperative recurrence. Patients with high expression of fT4 and TSH have a high risk of recurrence. By contrast, patients with high expression of fT3 and fT3/fT4 have a low risk of recurrence. At the same time, the combined use of various indicators is more helpful for establishing an accurate diagnosis. By comparison, we found that the RF score was better than the risk score in terms of predicting the recurrence of PTC. Conclusion The diagnostic accuracy of a combination of fT3, fT4, fT3/fT4, and TSH can help improve our clinical estimate of the risk of recurrent PTC, thus allowing the development of a more effective treatment plan for patients.
Collapse
Affiliation(s)
- Yushu Liu
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,The second clinical medicine college, Medical Department, Nanchang University, Nanchang, China
| | - Yanyi Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,The second clinical medicine college, Medical Department, Nanchang University, Nanchang, China
| | - Guoheng Mo
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,The Queen of Mary college, Medical Department, Nanchang University, Nanchang, China
| | - Tao Zhou
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Hou
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoqun Shi
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jichun Yu
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunxia Lv
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Davies TF, Latif R, Sachidanandam R, Ma R. The Transient Human Thyroid Progenitor Cell: Examining the Thyroid Continuum from Stem Cell to Follicular Cell. Thyroid 2021; 31:1151-1159. [PMID: 33678005 PMCID: PMC8377509 DOI: 10.1089/thy.2020.0930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: The development of the thyroid follicular cell has been well characterized as it progresses from the original stem cell, either embryonic or adult, through a series of transitions to form a differentiated and functional thyroid cell. Summary: In this review, we briefly outline what is known about this transitional process with emphasis on characterizing the thyroid progenitor stem cell by using data obtained from both in vitro and in vivo studies and both mouse and human cells. It is of particular importance to note the influence of independent factors that guide the transcriptional control of the developing thyroid cell as it is subjected to extracellular signals, often working via epigenetic changes, and initiating intrinsic transcriptional changes leading to a functional cell. Conclusion: Thyroid stem cells fall into the category of dispositional stem cells and are greatly influenced by their environment.
Collapse
Affiliation(s)
- Terry F. Davies
- Thyroid Research Unit, Department of Medicine and Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, New York, New York, USA
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine and Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, New York, New York, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, New York, New York, USA
| | - Risheng Ma
- Thyroid Research Unit, Department of Medicine and Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, New York, New York, USA
- Address correspondence to: Risheng Ma, MD, PhD, Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, Dr. R. Ma, Room 4-23, 1 Gustave L. Levy Place, Box #1055, New York, NY 10029-5674, USA
| |
Collapse
|
10
|
Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA. Landscape of GPCR expression along the mouse nephron. Am J Physiol Renal Physiol 2021; 321:F50-F68. [PMID: 34029142 PMCID: PMC8321805 DOI: 10.1152/ajprenal.00077.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney transport and other renal functions are regulated by multiple G protein-coupled receptors (GPCRs) expressed along the renal tubule. The rapid, recent appearance of comprehensive unbiased gene expression data in the various renal tubule segments, chiefly RNA sequencing and protein mass spectrometry data, has provided a means of identifying patterns of GPCR expression along the renal tubule. To allow for comprehensive mapping, we first curated a comprehensive list of GPCRs in the genomes of mice, rats, and humans (https://hpcwebapps.cit.nih.gov/ESBL/Database/GPCRs/) using multiple online data sources. We used this list to mine segment-specific and cell type-specific expression data from RNA-sequencing studies in microdissected mouse tubule segments to identify GPCRs that are selectively expressed in discrete tubule segments. Comparisons of these mapped mouse GPCRs with other omics datasets as well as functional data from isolated perfused tubule and micropuncture studies confirmed patterns of expression for well-known receptors and identified poorly studied GPCRs that are likely to play roles in the regulation of renal tubule function. Thus, we provide data resources for GPCR expression across the renal tubule, highlighting both well-known GPCRs and understudied receptors to provide guidance for future studies.
Collapse
Affiliation(s)
- Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Ramírez-Moya J, Santisteban P. A Positive Feedback Loop Between DICER1 and Differentiation Transcription Factors Is Important for Thyroid Tumorigenesis. Thyroid 2021; 31:912-921. [PMID: 33176626 PMCID: PMC8215414 DOI: 10.1089/thy.2020.0297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: DICER1 plays a central role in microRNA biogenesis and functions as a tumor suppressor in thyroid cancer, which is the most frequent endocrine malignancy with a rapidly increasing incidence. Thyroid cancer progression is associated with loss of cell differentiation and reduced expression of thyroid differentiation genes and response to thyrotropin (TSH). Here we investigated whether a molecular link exists between DICER1 and thyroid differentiation pathways. Methods: We used bioinformatic tools to search for transcription factor binding sites in the DICER1 promoter. DICER1, NKX2-1, PAX8, and CREB expression levels were evaluated by gene and protein expression in vitro and by interrogation of The Cancer Genome Atlas (TCGA) thyroid cancer data. Transcription factor binding and activity were assayed by chromatin immunoprecipitation, band-shift analysis, and promoter-reporter gene activity. Gene-silencing and overexpression approaches were used to elucidate the functional link between DICER1 and differentiation. Results: We identified binding sites for NKX2-1 and CREB within the DICER1 promoter and found that both transcription factors are functional in thyroid cells. TSH induced DICER1 expression in differentiated thyroid cells, at least in part, through the cAMP/PKA/CREB pathway. TCGA analysis revealed a significant positive correlation between CREB and DICER1 expression in human thyroid tumors. NKX2-1 overexpression increased DICER1 promoter activity and expression in vitro, and this was significantly greater in the presence of CREB and/or PAX8. Gain- and loss-of-function assays revealed that DICER1 regulates NKX2-1 expression in thyroid tumor cells and vice versa, thus establishing a positive feedback loop between both proteins. We also found a positive correlation between NKX2-1 and DICER1 expression in human thyroid tumors. DICER1 silencing decreased PAX8 expression and, importantly, the expression and activity of the sodium iodide symporter, which is essential for the diagnostic and therapeutic use of radioiodine in thyroid cancer. Conclusions: The differentiation transcription factors NKX2.1, PAX8, and CREB act in a positive feedback loop with DICER1. As the expression of these transcription factors is markedly diminished in thyroid cancer, our findings suggest that DICER1 downregulation in this cancer is mediated, at least partly, through impairment of its transcription.
Collapse
Affiliation(s)
- Julia Ramírez-Moya
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Address correspondence to: Pilar Santisteban, PhD, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), C/Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
12
|
Venugopalan V, Al-Hashimi A, Weber J, Rehders M, Qatato M, Wirth EK, Schweizer U, Heuer H, Verrey F, Brix K. The Amino Acid Transporter Mct10/Tat1 Is Important to Maintain the TSH Receptor at Its Canonical Basolateral Localization and Assures Regular Turnover of Thyroid Follicle Cells in Male Mice. Int J Mol Sci 2021; 22:5776. [PMID: 34071318 PMCID: PMC8198332 DOI: 10.3390/ijms22115776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk-/-/Mct8-/y/Mct10-/- mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk-/- and Mct8-/y mice, whereas its localization is restricted to vesicles in Mct10-/- thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk-/-/Mct10-/- mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10-/- mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8-/y, Mct8-/y/Mct10-/-, and Ctsk-/-/Mct8-/y/Mct10-/- mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.
Collapse
Affiliation(s)
- Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Eva K. Wirth
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, D-10115 Berlin, Germany;
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Nußallee 11, D-53115 Bonn, Germany;
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Universitätsklinikum Essen, Hufelandstr. 55, D-45147 Essen, Germany;
| | - François Verrey
- Physiologisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland;
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| |
Collapse
|
13
|
Chuang TJ, Lin JD, Wu CZ, Ku HC, Liao CC, Yeh CJ, Pei D, Chen YL. The relationships between thyroid-stimulating hormone level and insulin resistance, glucose effectiveness, first- and second-phase insulin secretion in Chinese populations. Medicine (Baltimore) 2021; 100:e25707. [PMID: 34106595 PMCID: PMC8133064 DOI: 10.1097/md.0000000000025707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
Increased insulin resistance (IR); decreased glucose effectiveness (GE); and both first-and second phase of insulin secretion (FPIS, SPIS) have always been important factors for the development of type 2 diabetes. Therefore, in this study, we evaluated the relationships between thyroid-stimulating hormone (TSH) and these 4 factors in adult Chinese. We randomly enrolled 24,407 men and 24,889 women between 30 and 59 years old. IR, FPIS, SPIS and GE were measured with the equations built by our group. IR = log (1.439 + 0.018 × sex - 0.003 × age + 0.029 × BMI - 0.001 × SBP + 0.006 × DBP + 0.049 × TG - 0.046 × HDLC - 0.0116 × FPG) × 10 3.333. FPIS = 10 [1.477 - 0.119 × FPG + 0.079 × BMI - 0.523 × HDLC]. SPIS = 10 [-2.4 - 0.088 × FPG + 0.072 × BMI]. GE = (29.196 - 0.103 × age - 2.722 × TG - 0.592 × FPG) ×10 −3. The t test was performed to evaluate the differences between normal and diabetic groups. To evaluate the differences of the mean values of the 4 groups, from the highest to the lowest levels of TSH, we used a one-way analysis of variance. Age, high density lipoprotein-cholesterol and GE were higher in women. On the other hand, body mass index, blood pressure, low density lipoprotein-cholesterol, triglyceride, FPIS, SPIS and IR were higher in men. TSH was positively related to IR, FPIS, and SPIS and negatively related to GE. According to the r values, the tightest relationship was between TSH and IR, followed by GE, FPIS and SPIS. In conclusion, our data showed that IR, FPIS, and SPIS were positively related to the TSH level in middle-aged Chinese, whereas GE was negatively related. In both genders, IR had the tightest association followed by GE, FPIS, and SPIS.
Collapse
Affiliation(s)
- Tsung-Ju Chuang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, Chung Shan Medical University, Taichung
| | - Jiunn-Diann Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital
| | - Chung-Ze Wu
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital
- College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hui-Chun Ku
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City
| | - Chun-Cheng Liao
- Department of Family Medicine, Taichung Armed Forces General Hospital, Taichung, National Defense Medical Center, Taipei
| | - Chih-Jung Yeh
- School of Public Health, Chung Shan Medical University, Taichung
| | - Dee Pei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu-Jen Catholic Hospital, Fu Jen Catholic University, School of Medicine, New Taipei City
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, Fu Jen Catholic University, School of Medicine, New Taipei City, Taiwan, ROC
| |
Collapse
|
14
|
Eslami-Amirabadi M, Sajjadi SA. The relation between thyroid dysregulation and impaired cognition/behaviour: An integrative review. J Neuroendocrinol 2021; 33:e12948. [PMID: 33655583 PMCID: PMC8087167 DOI: 10.1111/jne.12948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/19/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
Despite decades of research on the relation between thyroid diseases and cognition, the nature of this relationship remains elusive. An increasing prevalence of cognitive impairment and thyroid dysfunction has been consistently observed with ageing. Also, there appears to be an association between thyroid disorders and cognitive decline. Given the increasing global burden of dementia, elucidating the relationship between thyroid disorders as a potentially modifiable risk factor of cognitive impairment was the main goal of this review. We summarise the current literature examining the relationship between thyroid hormonal dysregulation and cognition or behaviour. We present the available imaging and pathological findings related to structural and functional brain changes related to thyroid hormonal dysregulation. We also propose potential mechanisms of interaction between thyroid hormones, autoantibodies and cognition/behaviour. Effects of gender, ethnicity and environmental factors are also briefly discussed. This review highlights the need for long-term prospective studies to capture the course of brain functional changes associated with the incidence and progression of thyroid dysregulations along with the confounding effects of non-modifiable risk factors such as gender and ethnicity. Moreover, double-blind controlled clinical trials are necessary to devise appropriate treatment plans to prevent cognitive consequences of over or undertreatment of thyroid disorders.
Collapse
|
15
|
Abstract
Adiposity is caused by an imbalance between energy intake and consumption. Promotion of the browning of white fat increases energy expenditure and could combat adiposity. Thyroid-stimulating hormone (TSH) has been confirmed to positively correlate with adiposity. However, the putative connection between TSH and white adipose browning has never been explored. In this study, we sought to assess the effect of TSH on white adipose tissue browning and energy metabolism. Subclinical hypothyroidism mice, thyroid-specific Tshr-knockout mice injected with TSH, adipocyte-specific and global Tshr-knockout micewere subjected to morphological, physiological, genetic or protein expression analyses and metabolic cages to determine the role of TSH on the browning of white adipose tissue and metabolism. 3T3-L1 and primary SVF cells were used to verify the effects and mechanism of TSH on the browning of white adipocytes. We show that increased circulation TSH level decreases energy expenditure, promotes adiposity, impairs glucose and lipid metabolism. Knockout of Tshr decreases adiposity, increases energy expenditureand markedly promotes the development of beige adipocytesin both epididymal and inguinal subcutaneous white fat via a mechanism that likely involves AMPK/PRDM16/PGC1α. Our results reveal an important role of TSH in regulating energy balance and adiposity by inhibiting the browning of white fat.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
- Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University
| | - Huixiao Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| | - Fei Jing
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| |
Collapse
|
16
|
Ostróżka-Cieślik A, Dolińska B. The Role of Hormones and Trophic Factors as Components of Preservation Solutions in Protection of Renal Function before Transplantation: A Review of the Literature. Molecules 2020; 25:E2185. [PMID: 32392782 PMCID: PMC7248710 DOI: 10.3390/molecules25092185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Transplantation is currently a routine method for treating end-stage organ failure. In recent years, there has been some progress in the development of an optimal composition of organ preservation solutions, improving the vital functions of the organ and allowing to extend its storage period until implantation into the recipient. Optimizations are mostly based on commercial solutions, routinely used to store grafts intended for transplantation. The paper reviews hormones with a potential nephroprotective effect, which were used to modify the composition of renal perfusion and preservation solutions. Their effectiveness as ingredients of preservation solutions was analysed based on a literature review. Hormones and trophic factors are innovative preservation solution supplements. They have a pleiotropic effect and affect normal renal function. The expression of receptors for melatonin, prolactin, thyrotropin, corticotropin, prostaglandin E1 and trophic factors was confirmed in the kidneys, which suggests that they are a promising therapeutic target for renal IR (ischemia-reperfusion) injury. They can have anti-inflammatory, antioxidant and anti-apoptotic effects, limiting IR injury.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland
| |
Collapse
|
17
|
Furmaniak J, Sanders J, Clark J, Wilmot J, Sanders P, Li Y, Rees Smith B. Preclinical studies on the toxicology, pharmacokinetics and safety of K1-70 TM a human monoclonal autoantibody to the TSH receptor with TSH antagonist activity. AUTOIMMUNITY HIGHLIGHTS 2019; 10:11. [PMID: 32257067 PMCID: PMC7065368 DOI: 10.1186/s13317-019-0121-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
Background The human monoclonal autoantibody K1-70™ binds to the TSH receptor (TSHR) with high affinity and blocks TSHR cyclic AMP stimulation by TSH and thyroid stimulating autoantibodies. Methods The preclinical toxicology assessment following weekly intravenous (IV) or intramuscular (IM) administration of K1-70™ in rats and cynomolgus monkeys for 29 days was carried out. An assessment of delayed onset toxicity and/or reversibility of toxicity was made during a further 4 week treatment free period. The pharmacokinetic parameters of K1-70™ and the effects of different doses of K1-70™ on serum thyroid hormone levels in the study animals were determined in rats and primates after IV and IM administration. Results Low serum levels of T3 and T4 associated with markedly elevated levels of TSH were observed in the study animals following IV and IM administration of K1-70™. The toxicological findings were attributed to the pharmacology of K1-70™ and were consistent with the hypothyroid state. The no observable adverse effect level (NOAEL) could not be established in the rat study while in the primate study it was 100 mg/kg/dose for both males and females. Conclusions The toxicology, pharmacodynamic and pharmacokinetic data in this preclinical study were helpful in designing the first in human study with K1-70™ administered to subjects with Graves’ disease.
Collapse
Affiliation(s)
- Jadwiga Furmaniak
- AV7 Limited, FIRS Laboratories, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU UK
| | - Jane Sanders
- AV7 Limited, FIRS Laboratories, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU UK
| | - Jill Clark
- AV7 Limited, FIRS Laboratories, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU UK
| | - Jane Wilmot
- AV7 Limited, FIRS Laboratories, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU UK
| | - Paul Sanders
- AV7 Limited, FIRS Laboratories, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU UK
| | - Yang Li
- AV7 Limited, FIRS Laboratories, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU UK
| | - Bernard Rees Smith
- AV7 Limited, FIRS Laboratories, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU UK
| |
Collapse
|
18
|
Tahara K, Akahane T, Namisaki T, Moriya K, Kawaratani H, Kaji K, Takaya H, Sawada Y, Shimozato N, Sato S, Saikawa S, Nakanishi K, Kubo T, Fujinaga Y, Furukawa M, Kitagawa K, Ozutsumi T, Tsuji Y, Kaya D, Ogawa H, Takagi H, Ishida K, Mitoro A, Yoshiji H. Thyroid-stimulating hormone is an independent risk factor of non-alcoholic fatty liver disease. JGH OPEN 2019; 4:400-404. [PMID: 32514444 PMCID: PMC7273701 DOI: 10.1002/jgh3.12264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Background and Aim Hypothyroidism might play a crucial role in the pathogenesis of non‐alcoholic fatty liver disease (NAFLD). The association of subclinical hypothyroidism with NAFLD has been inconsistent. The relationship of NAFLD with thyroid function parameters and subclinical hypothyroidism was determined. Methods This cross‐sectional study included 70 patients with subclinical hypothyroidism and 70 controls with euthyroidism matched according to gender, age, and body mass index (BMI). NAFLD was diagnosed via abdominal ultrasonography. The association between NAFLD and subclinical hypothyroidism was analyzed. Results The prevalence of NAFLD was significantly higher in patients with subclinical hypothyroidism than in those with euthyroidism. Multivariate analysis showed that subclinical hypothyroidism was an independent risk factor of NAFLD adjusted by metabolic‐related factors, such as BMI, triglyceride, high‐density lipoprotein‐cholesterol, hypertension, and diabetes. Thyroid‐stimulating hormone (TSH) was an independent risk factor of NAFLD adjusted by the same metabolic‐related factors, but free thyroxine (FT4) was not a risk factor. The FIB‐4 index, a noninvasive marker of liver fibrosis was significantly higher in patients with subclinical hypothyroidism than in those with euthyroidism. Compared with patients with euthyroidism, the proportion of the FIB‐4 index ≥2.67 was significantly higher, and the proportion of the FIB‐4 index <1.30 was lower in patients with subclinical hypothyroidism. Conclusions TSH elevation even within the euthyroid range is an independent risk factor of NAFLD and may influence the progression of liver fibrosis, even with a normal FT4 level.
Collapse
Affiliation(s)
- Kazuki Tahara
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Takemi Akahane
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Kei Moriya
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Hiroaki Takaya
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Yasuhiko Sawada
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Naotaka Shimozato
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Shinya Sato
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Soichiro Saikawa
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Keisuke Nakanishi
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Takuya Kubo
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Yukihisa Fujinaga
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Masanori Furukawa
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Koh Kitagawa
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Takahiro Ozutsumi
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Yuuki Tsuji
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Daisuke Kaya
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Hiroyuki Ogawa
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Hirotetsu Takagi
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Koji Ishida
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Akira Mitoro
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine Nara Medical University Kashihara Japan
| |
Collapse
|
19
|
Naicker M, Abbai N, Naidoo S. Bipolar limbic expression of auto-immune thyroid targets: thyroglobulin and thyroid-stimulating hormone receptor. Metab Brain Dis 2019; 34:1281-1298. [PMID: 31197680 DOI: 10.1007/s11011-019-00437-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
The associations between thyroid auto-immunity and neuro-psychiatric disorders are well-documented. However, there exists limited literature specifically linking auto-immune thyroid disease (AITD) to bipolar disorder (BD). Thus, we investigated the likely association between Hashimoto's disease and BD through the extra-thyroidal localisation of thyroid-stimulating hormone receptor (TSH-R) and thyroglobulin (TG) in limbic regions of normal and bipolar human adult brain. Further, we hypothesised that changes in thyroid expression in bipolar limbic cortex may contribute to mood dysregulation associated with BD. Immuno-chemistry and in-situ PCR were used to localise TSH-R/TG within the amygdala, cingulate gyrus and frontal cortex of normal (n = 5) and bipolar (n = 5) brains. Reverse-transcriptase qPCR provided fold-change differences in TSH-R gene expression. The results demonstrated reduced thyroid protein expression in bipolar limbic regions; these novel results correlate with other neuro-imaging reports that describe reduced cortico-limbic tissue volumes and neuro-physiological activity during BD. We also demonstrated TG-like proteins exclusive to bipolar amygdala neurons, and which relates to previous neuro-imaging studies of amygdala hyperactivity and enhanced emotional sensitivity in BD. Indeed, reduced TSH-R/TG in limbic regions may predispose to, or bear relevance in the pathophysiology of mood dysregulation and symptoms of BD. Further, we attribute mood dysregulation in BD to limbic-derived TSH-R, which probably provides potential targets for thyroid auto-immune factors during Hashimoto's disease. Consequently, this may lead to inactivated and/or damaged neurons. The neuro-pathology of diminished neuronal functioning or neuronal atrophy suggests a novel neuro-degeneration mechanism in BD.
Collapse
Affiliation(s)
- Meleshni Naicker
- Therapeutics and Medicines Management, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private bag X7, Durban, 4001, South Africa.
| | - Nathlee Abbai
- School of Clinical Medicine Research Laboratory, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Strinivasen Naidoo
- Therapeutics and Medicines Management, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private bag X7, Durban, 4001, South Africa
| |
Collapse
|
20
|
Fernandez-Ruocco J, Gallego M, Rodriguez-de-Yurre A, Zayas-Arrabal J, Echeazarra L, Alquiza A, Fernández-López V, Rodriguez-Robledo JM, Brito O, Schleier Y, Sepulveda M, Oshiyama NF, Vila-Petroff M, Bassani RA, Medei EH, Casis O. High Thyrotropin Is Critical for Cardiac Electrical Remodeling and Arrhythmia Vulnerability in Hypothyroidism. Thyroid 2019; 29:934-945. [PMID: 31084419 PMCID: PMC6648210 DOI: 10.1089/thy.2018.0709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Hypothyroidism, the most common endocrine disease, induces cardiac electrical remodeling that creates a substrate for ventricular arrhythmias. Recent studies report that high thyrotropin (TSH) levels are related to cardiac electrical abnormalities and increased mortality rates. The aim of the present work was to investigate the direct effects of TSH on the heart and its possible causative role in the increased incidence of arrhythmia in hypothyroidism. Methods: A new rat model of central hypothyroidism (low TSH levels) was created and characterized together with the classical propylthiouracil-induced primary hypothyroidism model (high TSH levels). Electrocardiograms were recorded in vivo, and ionic currents were recorded from isolated ventricular myocytes in vitro by the patch-clamp technique. Protein and mRNA were measured by Western blot and quantitative reverse transcription polymerase chain reaction in rat and human cardiac myocytes. Adult human action potentials were simulated in silico to incorporate the experimentally observed changes. Results: Both primary and central hypothyroidism models increased the L-type Ca2+ current (ICa-L) and decreased the ultra-rapid delayed rectifier K+ current (IKur) densities. However, only primary but not central hypothyroidism showed electrocardiographic repolarization abnormalities and increased ventricular arrhythmia incidence during caffeine/dobutamine challenge. These changes were paralleled by a decrease in the density of the transient outward K+ current (Ito) in cardiomyocytes from animals with primary but not central hypothyroidism. In vitro treatment with TSH for 24 hours enhanced isoproterenol-induced spontaneous activity in control ventricular cells and diminished Ito density in cardiomyocytes from control and central but not primary hypothyroidism animals. In human myocytes, TSH decreased the expression of KCND3 and KCNQ1, Ito, and the delayed rectifier K+ current (IKs) encoding proteins in a protein kinase A-dependent way. Transposing the changes produced by hypothyroidism and TSH to a computer model of human ventricular action potential resulted in enhanced occurrence of early afterdepolarizations and arrhythmia mostly in primary hypothyroidism, especially under β-adrenergic stimulation. Conclusions: The results suggest that suppression of repolarizing K+ currents by TSH underlies most of the electrical remodeling observed in hypothyroidism. This work demonstrates that the activation of the TSH-receptor/protein kinase A pathway in the heart is responsible for the cardiac electrical remodeling and arrhythmia generation seen in hypothyroidism.
Collapse
Affiliation(s)
- Julieta Fernandez-Ruocco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janerio, Brazil
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Monica Gallego
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - Ainhoa Rodriguez-de-Yurre
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janerio, Brazil
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - Julian Zayas-Arrabal
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - Leyre Echeazarra
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - Amaia Alquiza
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - Victor Fernández-López
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - Juan M. Rodriguez-Robledo
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - Oscar Brito
- National Institute of Cardiology (INC), Rio de Janeiro, Brazil
| | - Ygor Schleier
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janerio, Brazil
| | - Marisa Sepulveda
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | | | - Martin Vila-Petroff
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Rosana A. Bassani
- Center for Biomedical Engineering, University of Campinas, Campinas, Brazil
| | - Emiliano H. Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janerio, Brazil
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| |
Collapse
|
21
|
Davies TF, Latif R. Editorial: TSH Receptor and Autoimmunity. Front Endocrinol (Lausanne) 2019; 10:19. [PMID: 30761086 PMCID: PMC6364331 DOI: 10.3389/fendo.2019.00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
|
22
|
Fischer J, Kleinau G, Rutz C, Zwanziger D, Khajavi N, Müller A, Rehders M, Brix K, Worth CL, Führer D, Krude H, Wiesner B, Schülein R, Biebermann H. Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level. Cell Mol Life Sci 2018; 75:2227-2239. [PMID: 29290039 PMCID: PMC11105501 DOI: 10.1007/s00018-017-2728-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of Gq/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.
Collapse
Affiliation(s)
- Jana Fischer
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Claudia Rutz
- Protein Trafficking Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Denise Zwanziger
- Division of Laboratory Research, Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany
| | - Noushafarin Khajavi
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Anne Müller
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Catherine L Worth
- Structural Bioinformatics and Protein Design Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | - Dagmar Führer
- Division of Laboratory Research, Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Burkhard Wiesner
- Protein Trafficking Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Cellular Imaging Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | - Ralf Schülein
- Protein Trafficking Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
23
|
Lyu J, Imachi H, Yoshimoto T, Fukunaga K, Sato S, Ibata T, Kobayashi T, Dong T, Yonezaki K, Yamaji N, Kikuchi F, Iwama H, Ishikawa R, Haba R, Sugiyama Y, Zhang H, Murao K. Thyroid stimulating hormone stimulates the expression of glucose transporter 2 via its receptor in pancreatic β cell line, INS-1 cells. Sci Rep 2018; 8:1986. [PMID: 29386586 PMCID: PMC5792451 DOI: 10.1038/s41598-018-20449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid stimulating hormone (TSH) stimulates the secretion of thyroid hormones by binding the TSH receptor (TSHR). TSHR is well-known to be expressed in thyroid tissue, excepting it, TSHR has also been expressed in many other tissues. In this study, we have examined the expression of TSHR in rat pancreatic islets and evaluated the role of TSH in regulating pancreas-specific gene expression. TSHR was confirmed to be expressed in rodent pancreatic islets and its cell line, INS-1 cells. TSH directly affected the glucose uptake in INS cells by up-regulating the expression of GLUT2, and furthermore this process was blocked by SB203580, the specific inhibitor of the p38 MAPK signaling pathway. Similarly, TSH stimulated GLUT2 promoter activity, while both a dominant-negative p38MAPK α isoform (p38MAPK α-DN) and the specific inhibitor for p38MAPK α abolished the stimulatory effect of TSH on GLUT2 promoter activity. Finally, INS-1 cells treated with TSH showed increased protein level of glucokinase and enhanced glucose-stimulated insulin secretion. Together, these results confirm that TSHR is expressed in INS-1 cells and rat pancreatic islets, and suggest that activation of the p38MAPK α might be required for TSH-induced GLUT2 gene transcription in pancreatic β cells.
Collapse
Affiliation(s)
- Jingya Lyu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.,Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takuo Yoshimoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tao Dong
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kazuko Yonezaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Nao Yamaji
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Fumi Kikuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Ryou Ishikawa
- Department of Diagnostic Pathology, Kagawa University Hospital, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Kagawa University Hospital, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Huanxiang Zhang
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China.
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
24
|
Zhu P, Liu X, Mao X. Thyroid-Stimulating Hormone Levels Are Positively Associated with Insulin Resistance. Med Sci Monit 2018; 24:342-347. [PMID: 29342130 PMCID: PMC5782835 DOI: 10.12659/msm.905774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND It has been reported that overt and mild thyroid dysfunctions are associated with insulin resistance (IR). We performed this retrospective study to evaluate the relationships between thyroid-stimulating hormone (TSH) levels within the reference range and IR. MATERIAL AND METHODS A total of 447 outpatients were enrolled in this study: 298 with type 2 diabetes mellitus and 149 nondiabetic individuals. Based on a cutoff HbA1c value of 7%, diabetic patients were additionally divided into 2 groups: a high-HbA1c group (n=240) and a low-HbA1c group (n=58). The relationships of TSH levels and HOMA-IR were computed using linear regression models. RESULTS TSH levels were positively and linearly associated with HOMA-IR in both the nondiabetic and diabetic groups (r=0.210, p=0.011 and r=0.451, p<0.001), as well as in the high- and low-HbA1c groups (r=0.507, p<0.001 and r=0.259, p=0.048). A better correlation between TSH levels and HOMA-IR was found in the diabetic group and in the high-HbA1c group when compared with the nondiabetic group and the low-HbA1c group, respectively. Linear regression analysis showed that TSH levels were independently associated with HOMA-IR (p=0.034, =0.049 and <0.001 in nondiabetic, low-, and high-HbA1c groups, respectively). CONCLUSIONS Our data suggest that TSH is independently associated with insulin resistance.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Endocrinology, Xuyi People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Xinliang Liu
- Department of Endocrinology, Xuyi People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Xiaoming Mao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
25
|
Liu T, Men Q, Su X, Chen W, Zou L, Li Q, Song M, Ouyang D, Chen Y, Li Z, Fu X, Yang A. Downregulated expression of TSHR is associated with distant metastasis in thyroid cancer. Oncol Lett 2017; 14:7506-7512. [PMID: 29344196 DOI: 10.3892/ol.2017.7122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
In differentiated thyroid cancer (DTC), the association between thyroid-stimulating hormone receptor (TSHR) and metastasis, and the underlying molecular mechanisms remain unclear. The role of TSHR in the epithelial-mesenchymal transition (EMT) has not yet been reported, to the best of our knowledge. In the present study, the role of TSHR in the distant metastasis of DTC was investigated. TSHR was significantly downregulated in well-differentiated thyroid cancer cells and tissues, and a lack of TSHR promoted thyroid cancer cell invasion and metastasis by inhibiting the EMT of thyroid cancer cells. In addition, the prognostic value of TSHR in thyroid cancer was analyzed. Immunohistochemical analysis of 172 DTC tissues revealed that a lack of expression of TSHR was associated with distant metastasis and a poor survival rate. Multivariate analyses demonstrated that TSHR expression was a significant prognostic factor for distant metastasis and survival time. The results from the present study demonstrated that TSHR inhibits metastasis through regulating EMT in vitro, and that a lack of expression of TSHR is a significant independent factor affecting distant metastasis and poor prognosis in DTC.
Collapse
Affiliation(s)
- Tianrun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Qianqian Men
- Graceland Medical Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xuan Su
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Weichao Chen
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Lan Zou
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Qiuli Li
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Ming Song
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dian Ouyang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yanfeng Chen
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Zhaoqu Li
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaoyan Fu
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Ankui Yang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
26
|
Baliram R, Latif R, Zaidi M, Davies TF. Expanding the Role of Thyroid-Stimulating Hormone in Skeletal Physiology. Front Endocrinol (Lausanne) 2017; 8:252. [PMID: 29042858 PMCID: PMC5632520 DOI: 10.3389/fendo.2017.00252] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The dogma that thyroid-stimulating hormone (TSH) solely regulates the production of thyroid hormone from the thyroid gland has hampered research on its wider physiological roles. The action of pituitary TSH on the skeleton has now been well described; in particular, its action on osteoblasts and osteoclasts. It has also been recently discovered that the bone marrow microenvironment acts as an endocrine circuit with bone marrow-resident macrophages capable of producing a novel TSH-β subunit variant (TSH-βv), which may modulate skeletal physiology. Interestingly, the production of this TSH-βv is positively regulated by T3 accentuating such modulation in the presence of thyroid overactivity. Furthermore, a number of small molecule ligands acting as TSH agonists, which allosterically modulate the TSH receptor have been identified and may have similar modulatory influences on bone cells suggesting therapeutic potential. This review summarizes our current understanding of the role of TSH, TSH-β, TSH-βv, and small molecule agonists in bone physiology.
Collapse
Affiliation(s)
- Ramkumarie Baliram
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
- *Correspondence: Ramkumarie Baliram,
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry F. Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Front Endocrinol (Lausanne) 2017; 8:86. [PMID: 28484426 PMCID: PMC5401882 DOI: 10.3389/fendo.2017.00086] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to understand the molecular activation mechanisms of this receptor comprehensively. Finally, limitations of current knowledge and lack of information are discussed highlighting the need for intensified efforts toward TSHR structure elucidation.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
- Group Protein X-Ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Annika Kreuchwig
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Patrick Scheerer
- Group Protein X-Ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- *Correspondence: Gerd Krause,
| |
Collapse
|
28
|
Guan M, Ma Y, Shah SR, Romano G. Thyroid malignant neoplasm-associated biomarkers as targets for oncolytic virotherapy. Oncolytic Virother 2016; 5:35-43. [PMID: 27579295 PMCID: PMC4996252 DOI: 10.2147/ov.s99856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biomarkers associated with thyroid malignant neoplasm (TMN) have been widely applied in clinical diagnosis and in research oncological programs. The identification of novel TMN biomarkers has greatly improved the efficacy of clinical diagnosis. A more accurate diagnosis may lead to better clinical outcomes and effective treatments. However, the major deficiency of conventional chemotherapy and radiotherapy is lack of specificity. Due to the macrokinetic interactions, adverse side effects will occur, including chemotherapy and radiotherapy resistance. Therefore, a new treatment is urgently needed. As an alternative approach, oncolytic virotherapy may represent an opportunity for treatment strategies that can more specifically target tumor cells. In most cases, viral entry requires the expression of specific receptors on the surface of the host cell. Currently, molecular virologists and gene therapists are working on engineering oncolytic viruses with altered tropism for the specific targeting of malignant cells. This review focuses on the strategy of biomarkers for the production of novel TMN oncolytic therapeutics, which may improve the specificity of targeting of tumor cells and limit adverse effects in patients.
Collapse
Affiliation(s)
- Mingxu Guan
- Virology, Research and Development, Zoetis Inc., Kalamazoo, MI, USA
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic China
| | - Sahil Rajesh Shah
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
29
|
Sorisky A. Subclinical Hypothyroidism - What is Responsible for its Association with Cardiovascular Disease? EUROPEAN ENDOCRINOLOGY 2016; 12:96-98. [PMID: 29632595 PMCID: PMC5813449 DOI: 10.17925/ee.2016.12.02.96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/07/2023]
Abstract
Subclinical hypothyroidism (SH) is a common condition, with prevalence estimates ranging from 4–20%, depending on the population demographics. Although epidemiological analysis associates it with an increased risk of cardiovascular disease, clinical practice guidelines express uncertainty about whether to monitor or to treat. As we await large-scale, well-designed randomised clinical trials regarding treatment of SH, a review of pathophysiological considerations may be informative to better understand this disorder.
Collapse
Affiliation(s)
- Alexander Sorisky
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Shin YW, Choi YM, Kim HS, Kim DJ, Jo HJ, O'Donnell BF, Jang EK, Kim TY, Shong YK, Hong JP, Kim WB. Diminished Quality of Life and Increased Brain Functional Connectivity in Patients with Hypothyroidism After Total Thyroidectomy. Thyroid 2016; 26:641-9. [PMID: 26976233 PMCID: PMC4939446 DOI: 10.1089/thy.2015.0452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute hypothyroidism induced by thyroid hormone withdrawal (THW) in patients with thyroid cancer after total thyroidectomy can affect mood and quality of life (QoL). While loss or dysregulation of thyroid hormone (TH) has these well-known behavioral consequences, the effects of TH alterations on brain function are not well understood. Resting state functional connectivity (FC) measured by functional magnetic resonance imaging (fMRI) allows non-invasive evaluation of human brain function. This study therefore examined whether THW affects resting state FC and whether changes in FC correlate with the mood or QoL of the patients with THW status. METHODS Twenty-one patients who had undergone total thyroidectomy for thyroid cancer were recruited. Resting state fMRI scanning of the brain, thyroid function tests, and administration of the 12-Item Short Form Health Survey (SF-12) and the Patient Health Questionnaire-9 (PHQ-9) were performed before and after two weeks of THW. Regional homogeneity (ReHo), one of the measures of resting state FC, was calculated, and each voxel was compared between before and after THW in 19 patients. The ReHo values were extracted from the regions of interest showing within-group differences in ReHo values after THW, and correlations of ReHo values with thyrotropin (TSH) levels, total score of the PHQ-9, and composite scores of the SF-12 were statistically evaluated. RESULTS Higher ReHo was observed after THW in the brain cortical regions across primary motor and sensory, visual, and association cortices. Among the regions, the ReHo values in the bilateral pre- and postcentral gyri, bilateral middle occipito-temporal cortices, the left precuneus, and the left lingual gyrus showed positive correlations with serum TSH levels after THW. Higher ReHo values in the bilateral pre- and postcentral gyri, the left middle temporo-occipital cortices, and the left ligual gyrus correlated with the lower mental component summary score from the SF-12, while higher ReHo values in the bilateral pre- and postcentral gyri correlated with higher total scores in the PHQ-9. CONCLUSIONS Local brain FC is increased in the acute hypothyroid state. Higher FC correlates with a poorer mental QoL and increased depression in the hypothyroid state.
Collapse
Affiliation(s)
- Yong-Wook Shin
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun Mi Choi
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ho Sung Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Hang Joon Jo
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Brian F. O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Eun Kyung Jang
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae Yong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Kee Shong
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Pyo Hong
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won Bae Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Bagnato GL, Roberts WN, Fiorenza A, Arcuri C, Certo R, Trimarchi F, Ruggeri RM, Bagnato GF. Skin fibrosis correlates with circulating thyrotropin levels in systemic sclerosis: translational association with Hashimoto's thyroiditis. Endocrine 2016; 51:291-7. [PMID: 25994300 DOI: 10.1007/s12020-015-0600-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/05/2015] [Indexed: 01/01/2023]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease, characterized by cutaneous and multi-organ fibrosis, and vascular abnormalities. Skin thickening is a characteristic feature of SSc and resembles myxedematous skin. Our aim was to correlate the degree of skin involvement in SSc patients with serum TSH levels, since TSH receptors are widely expressed in human tissues, including the skin. In this cross-sectional study, we enrolled 70 SSc patients, all females with a mean age of 47 ± 11 year. Thirty-five age- and sex-matched HT patients were recruited, as controls. Subjects under L-thyroxine therapy and/or with positive anti-TSH receptor antibodies were excluded. In all subjects, we measured serum TSH, FT4, and free tri-iodothyronine (FT3) levels. Skin thickness was evaluated using the modified Rodnan total skin score (mRSS). mRSS averaged 14 ± 9 for SSc and 4 ± 6 for HT patients. TSH levels positively correlated with skin scores in both SSc and HT patients groups. In SSc patients, FT3 and FT4 showed an inverse correlation with mRSS, while in HT only FT4 levels showed this inverse significance. When divided by cutaneous extent, SSc patients with diffuse disease form had higher TSH serum levels compared to those with the limited form; additionally, the correlations between TSH, FT4, and mRSS reached statistical significance. Our preliminary data clearly indicate that serum TSH is higher in SSc patients with more severe skin disease, and significantly correlate with the mRSS. Therefore, TSH could play a role in the development of cutaneous changes in SSc patients.
Collapse
Affiliation(s)
- Gian Luca Bagnato
- Unit of Rheumatology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - William Neal Roberts
- Unit of Rheumatology, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Alessia Fiorenza
- Unit of Rheumatology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Chiara Arcuri
- Unit of Rheumatology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosaria Certo
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Trimarchi
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosaria Maddalena Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Gian Filippo Bagnato
- Unit of Rheumatology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
32
|
Latif R, Realubit RB, Karan C, Mezei M, Davies TF. TSH Receptor Signaling Abrogation by a Novel Small Molecule. Front Endocrinol (Lausanne) 2016; 7:130. [PMID: 27729899 PMCID: PMC5037132 DOI: 10.3389/fendo.2016.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves' disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3-0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin - a post receptor activator of adenylyl cyclase - confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has the potential to be developed as a therapeutic antagonist for abrogation of TSHR signaling by TSHR autoantibodies in GD.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- *Correspondence: Rauf Latif,
| | - Ronald B. Realubit
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terry F. Davies
- Thyroid Research Unit, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Latif R, Lau Z, Cheung P, Felsenfeld DP, Davies TF. The "TSH Receptor Glo Assay" - A High-Throughput Detection System for Thyroid Stimulation. Front Endocrinol (Lausanne) 2016; 7:3. [PMID: 26858688 PMCID: PMC4729884 DOI: 10.3389/fendo.2016.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To identify novel small molecules against the TSH receptor, we developed a sensitive transcription-based luciferase high-throughput screening (HTS) system named the TSHR-Glo Assay (TSHR-Glo). METHODS This assay uses double-transfected Chinese hamster ovary cells stably expressing the human TSHR and a cAMP-response element (CRE) construct fused to an improved luciferase reporter gene. RESULTS The assay was highly responsive toward TSH in a dose-dependent manner with a TSH sensitivity of 10(-10)M (10 ± 1.12 μU/ml) and thyroid-stimulating antibodies, a hallmark of Graves' disease, could also be detected. The assay was validated against the standard indicator of HTS performance - the Z-factor (Z') - producing a score of 0.895. Using the TSHR-Glo assay, we screened 48,224 compounds from a diverse chemical library in duplicate plates at a fixed dose of 17 μM. Twenty molecules with the greatest activity out of 62 molecules that were identified by this technique were subsequently screened against the parent luciferase stable cell line in order to eliminate false positive stimulators. CONCLUSION Using this approach, we were able to identify specific agonists against the TSH receptor leading to the characterization of several TSH agonist molecules. Hence, the TSHR-Glo assay was a one-step cell-based HTS assay, which was successful in the discovery of novel small molecular agonists and for the detection of stimulating antibodies to the TSH receptor.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, USA
- *Correspondence: Rauf Latif,
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Cheung
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan P. Felsenfeld
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
34
|
Davies TF, Latif R. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies. Expert Opin Ther Targets 2015; 19:835-47. [PMID: 25768836 DOI: 10.1517/14728222.2015.1018181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves' disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. AREAS COVERED We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. EXPERT OPINION Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues.
Collapse
Affiliation(s)
- Terry F Davies
- Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, Thyroid Research Unit , 1 Gustave L Levy Place, New York, NY 10029 , USA +1 212 241 7975 ; +1 212 428 6748 ;
| | | |
Collapse
|
35
|
Dhali TK, Chahar M. Thyroid dermopathy-a diagnostic clue of hidden hyperthyroidism. DERMATO-ENDOCRINOLOGY 2015; 6:e981078. [PMID: 26413185 PMCID: PMC4580047 DOI: 10.4161/19381980.2014.981078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/14/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022]
Abstract
Thyroid dermopathy is an uncommon manifestation of autoimmune thyroid disease. About 0.5%–4.3% of patients with history of thyrotoxicosis and 15% of patients with severe Graves’ ophthalmopathy have this cutaneous manifestation. However thyroid dermopathy is almost always associated with ophthalmopathy (96%) and sign and symptoms of hyperth-yroidism. The diagnosis of thyroid dermopathy is based on clinical sign and symptoms, serological thyroid hormone abnormalities supported by skin pathology. Isolated dermopathy is an uncommon manifestation of hyperthyroidism. A 35-year-old male presented with 7 months history of asymptomatic, multiple skin colored nodulo-tumorous growth over anterior aspect of both leg and one erythematous plaque with mild central atrophy on left leg. On examination most of the nodulo-tumorous growth (1 cm × 1 cm to 4 cm × 4 cm) and plaque (3 cm × 4 cm) showed ‘peau d’ orange’ appearance and were firm in consistency, indurated, non-tender with no rise of local temperature. Complete systemic and ophthalmological examination revealed no abnormalities. Abnormal thyroid function test and cutaneous deposition of mucin on histopathology suggested the diagnosis.The case is reported for its uncommon manifestation. Clinical sign should be documented and analysis of skin histopathology should be carried out in patients with suspected thyroid dermopathy.
Collapse
Affiliation(s)
- Tapan Kumar Dhali
- Department of Dermatology; Employees' State Insurance Post Graduate Institute of Medical Science and Research ; New Delhi, India
| | - Monica Chahar
- Department of Dermatology; Employees' State Insurance Post Graduate Institute of Medical Science and Research ; New Delhi, India
| |
Collapse
|
36
|
Latif R, Ali MR, Ma R, David M, Morshed SA, Ohlmeyer M, Felsenfeld DP, Lau Z, Mezei M, Davies TF. New small molecule agonists to the thyrotropin receptor. Thyroid 2015; 25:51-62. [PMID: 25333622 PMCID: PMC4291085 DOI: 10.1089/thy.2014.0119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. METHODS To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. RESULTS We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor-expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10(-8) M, and molecule MS438 had an EC50 of 5.3×10(-8) M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of thyroglobulin (Tg), sodium iodine symporter (NIS), and TSHR gene expression. CONCLUSIONS Pharmacokinetic analysis of MS437 and MS438 indicated their pharmacotherapeutic potential, and their intraperitoneal administration to normal female mice resulted in significantly increased serum thyroxine levels, which could be maintained by repeated treatments. These molecules can therefore serve as lead molecules for further development of powerful TSH agonists.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - M. Rejwan Ali
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Risheng Ma
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Martine David
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Syed A. Morshed
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Michael Ohlmeyer
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dan P. Felsenfeld
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mihaly Mezei
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| |
Collapse
|
37
|
Wang Y, Sun ZH, Zhou L, Li Z, Gui JF. Grouper tshβ promoter-driven transgenic zebrafish marks proximal kidney tubule development. PLoS One 2014; 9:e97806. [PMID: 24905828 PMCID: PMC4048157 DOI: 10.1371/journal.pone.0097806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/24/2014] [Indexed: 01/09/2023] Open
Abstract
Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
38
|
Affiliation(s)
- Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mt Sinai and the James J. Peters Veterans Affairs Medical Center, New York, New York
| | | | | |
Collapse
|
39
|
Rentziou G, Saltiki K, Manios E, Stamatelopoulos K, Koroboki E, Vemmou A, Mantzou E, Zakopoulos N, Alevizaki M. Effects of recombinant human thyrotropin administration on 24-hour arterial pressure in female undergoing evaluation for differentiated thyroid cancer. Int J Endocrinol 2014; 2014:270213. [PMID: 25202327 PMCID: PMC4151490 DOI: 10.1155/2014/270213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022] Open
Abstract
Objective. Thyroid-stimulating-hormone (TSH) receptors are expressed in endothelial cells. We investigated whether elevated TSH levels after acute recombinant TSH (rhTSH) administration may result in alterations in blood pressure (BP) in premenopausal women with well-differentiated thyroid carcinoma (DTC). Designs. Thirty euthyroid DTC female patients were evaluated by rhTSH stimulation test (mean age 40.4 ± 8.6 years). A 24 h ambulatory systolic and diastolic blood pressure (SBP, DBP) monitoring (24 hr ABPM) was performed on days 2-3(D2-3). TSH was measured on day 1(D1), day 3(D3), and day 5(D5). Central blood pressure was evaluated on D3. Twenty-three patients were studied 1-4 weeks earlier (basal measurements). Results. TSH levels were D1: median 0.2 mU/L, D3: median 115.0 mU/L, and D5: median 14.6 mU/L. There were no significant associations between TSH on D1 and D3 and any BP measurements. Median D5 office-SBP and 24 h SBP, DBP, and central SBP were correlated with D5-TSH (P < 0.04). In those where a basal 24 h ABPM had been performed median pulse pressure was higher after rhTSH-test (P = 0.02). Conclusions. TSH, when acutely elevated, may slightly increase SBP, DBP, and central SBP. This agrees with previous reports showing positive associations of BP with TSH.
Collapse
Affiliation(s)
- Gianna Rentziou
- Endocrine Unit, Department Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, 11528 Athens, Greece
| | - Katerina Saltiki
- Endocrine Unit, Department Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, 11528 Athens, Greece
- Endocrine Unit, Evgenidion Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, Athens, Greece
- *Katerina Saltiki:
| | - Efstathios Manios
- Hypertension Unit, Department of Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, 11528 Athens, Greece
| | - Kimon Stamatelopoulos
- Vascular Laboratory, Department of Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, 11528 Athens, Greece
| | - Eleni Koroboki
- Hypertension Unit, Department of Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, 11528 Athens, Greece
| | - Anastasia Vemmou
- Vascular Laboratory, Department of Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, 11528 Athens, Greece
| | - Emily Mantzou
- Endocrine Unit, Evgenidion Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, Athens, Greece
| | - Nikolaos Zakopoulos
- Hypertension Unit, Department of Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, 11528 Athens, Greece
| | - Maria Alevizaki
- Endocrine Unit, Department Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, 11528 Athens, Greece
- Endocrine Unit, Evgenidion Hospital, Athens University School of Medicine, 80 Vass Sofias Avenue, Athens, Greece
| |
Collapse
|
40
|
Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34:691-724. [PMID: 23645907 PMCID: PMC3785642 DOI: 10.1210/er.2012-1072] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Ostring 3, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
41
|
Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists. Biochem Soc Trans 2013; 41:213-7. [PMID: 23356285 PMCID: PMC3561627 DOI: 10.1042/bst20120319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The TSHR (thyrotropin receptor) is activated endogenously by the large hormone thyrotropin and activated pathologically by auto-antibodies. Both activate and bind at the extracellular domain. Recently, SMLs (small-molecule ligands) have been identified, which bind in an allosteric binding pocket within the transmembrane domain. Modelling driven site-directed mutagenesis of amino acids lining this pocket led to the delineation of activation and inactivation sensitive residues. Modified residues showing CAMs (constitutively activating mutations) indicate signalling-sensitive positions and mark potential trigger points for agonists. Silencing mutations lead to an impairment of basal activity and mark contact points for antagonists. Mapping these residues on to a structural model of TSHR indicates locations where an SML may switch the receptor to an inactive or active conformation. In the present article, we report the effects of SMLs on these signalling-sensitive amino acids at the TSHR. Surprisingly, the antagonistic effect of SML compound 52 was reversed to an agonistic effect, when tested at the CAM Y667A. Switching agonism to antagonism and the reverse by changing either SMLs or residues covering the binding pocket provides detailed knowledge about discriminative pharmacophores. It prepares the basis for rational optimization of new high-affinity antagonists to interfere with the pathogenic activation of the TSHR.
Collapse
|
42
|
Ohn JH, Han SK, Park DJ, Park KS, Park YJ. Expression of Thyroid Stimulating Hormone Receptor mRNA in Mouse C2C12 Skeletal Muscle Cells. Endocrinol Metab (Seoul) 2013; 28:119-24. [PMID: 24396665 PMCID: PMC3811717 DOI: 10.3803/enm.2013.28.2.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/08/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We analyzed whether thyroid stimulating hormone receptor (TSH-R) is expressed in a skeletal muscle cell line and if TSH has influence on the differentiation of muscle cells or on the determination of muscle fiber types. METHODS TSH-R gene expression was detected with nested real-time polymerase chain reaction (RT-PCR) in C2C12, a mouse skeletal muscle cell line. The effect of TSH on myotube differentiation was assessed by microscopic examination of myotube formation and through the measurement of expression of muscle differentiation markers, i.e., myogenin and myoD, and muscle type-specific genes, i.e., MyHC1, MyHC2a, and MyHC2b, with quantitative RT-PCR before and after incubation of C2C12 myotube with TSH. RESULTS TSH-R was expressed in the mouse skeletal muscle cell line. However, treatment with TSH had little effect on the differentiation of muscle cells, although the expression of the muscle differention marker myogenin was significantly increased after TSH treatment. Treatment of TSH did not affect the expression of muscle type-specific genes. CONCLUSION TSH-R is expressed in a mouse skeletal muscle cell line, but the role of TSH receptor signaling in skeletal muscle needs further investigation.
Collapse
Affiliation(s)
- Jung Hun Ohn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Kyoung Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Do Joon Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyong Soo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Joo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
G N, P V A, A R S, R R, M S, R S. Role of TSH on Urinary Calcium Excretion In Post Menopausal Women of South Indian Population. J Clin Diagn Res 2013; 7:1099-101. [PMID: 23905112 DOI: 10.7860/jcdr/2013/5290.3056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 03/27/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Unforeseen aberrations in the hormonal status during the early postmenopausal period are responsible for several complications including osteoporosis. Thyroid Stimulating Hormone (TSH) receptors are isolated from various tissues including the bone. A low serum TSH level is known to stimulate osteoclastic activity in bone and accelerate bone resorption. Urinary calcium/creatinine (UCa/Cr) excretion ratio could be an indirect and an early indicator of loss of Bone Mineral Density (BMD). With this background, this study was planned to explore the association of serum TSH levels with the UCa/Cr excretion ratio. METHODS Forty eight women in the postmenopausal age group, with their menopausal age not more than seven years of duration were included in this study. Based on their TSH values, these subjects were divided into two groups A (TSH<0.5 mIU/L) and B (TSH>0.5mIU/L). Urinary calcium, UCa/Cr excretion ratio, serum phosphorous, calcium and calcium phosphorous multiplication products were estimated and compared between the two groups. RESULTS Twenty two (46%) women were biochemically asymptomatic hyperthyroid cases and Twenty six (54%) were euthyroid. This study documents high UCa/Cr in Group A compared to that of Group B (p<0.05). We also observed significant negative correlation of TSH with UCa/Cr excretion ratio (p=0.041, r = -0.43). CONCLUSION Low serum TSH levels were associated with increased UCa/Cr excretion ratio in postmenopausal women of South Indian population.
Collapse
Affiliation(s)
- Niranjan G
- Assistant Professor, Department of Biochemistry
| | | | | | | | | | | |
Collapse
|
44
|
FSH and TSH in the regulation of bone mass: the pituitary/immune/bone axis. Clin Dev Immunol 2013; 2013:382698. [PMID: 23818914 PMCID: PMC3683445 DOI: 10.1155/2013/382698] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 11/21/2022]
Abstract
Recent evidences have highlighted that the pituitary hormones have profound effects on bone, so that the pituitary-bone axis is now becoming an important issue in the skeletal biology. Here, we discuss the topical evidence about the dysfunction of the pituitary-bone axis that leads to osteoporotic bone loss. We will explore the context of FSH and TSH hormones arguing their direct or indirect role in bone loss. In addition, we will focus on the knowledge that both FSH and TSH have influence on proinflammatory and proosteoclastogenic cytokine expression, such as TNFα and IL-1, underlining the correlation of pituitary-bone axis to the immune system.
Collapse
|
45
|
Thyroid autoantibodies in pregnancy: their role, regulation and clinical relevance. J Thyroid Res 2013; 2013:182472. [PMID: 23691429 PMCID: PMC3652173 DOI: 10.1155/2013/182472] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 12/21/2022] Open
Abstract
Autoantibodies to thyroglobulin and thyroid peroxidase are common in the euthyroid population and are considered secondary responses and indicative of thyroid inflammation. By contrast, autoantibodies to the TSH receptor are unique to patients with Graves' disease and to some patients with Hashimoto's thyroiditis. Both types of thyroid antibodies are useful clinical markers of autoimmune thyroid disease and are profoundly influenced by the immune suppression of pregnancy and the resulting loss of such suppression in the postpartum period. Here, we review these three types of thyroid antibodies and their antigens and how they relate to pregnancy itself, obstetric and neonatal outcomes, and the postpartum.
Collapse
|
46
|
Gorka J, Taylor-Gjevre RM, Arnason T. Metabolic and clinical consequences of hyperthyroidism on bone density. Int J Endocrinol 2013; 2013:638727. [PMID: 23970897 PMCID: PMC3736466 DOI: 10.1155/2013/638727] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/25/2013] [Indexed: 11/23/2022] Open
Abstract
In 1891, Von Recklinghausen first established the association between the development of osteoporosis in the presence of overt hyperthyroidism. Subsequent reports have demonstrated that BMD loss is common in frank hyperthyroidism, and, to a lesser extent, in subclinical presentations. With the introduction of antithyroid medication in the 1940s to control biochemical hyperthyroidism, the accompanying bone disease became less clinically apparent as hyperthyroidism was more successfully treated medically. Consequently, the impact of the above normal thyroid hormones in the pathogenesis of osteoporosis may be presently underrecognized due to the widespread effective treatments. This review aims to present the current knowledge of the consequences of hyperthyroidism on bone metabolism. The vast number of recent papers touching on this topic highlights the recognized impact of this common medical condition on bone health. Our focus in this review was to search for answers to the following questions. What is the mechanisms of action of thyroid hormones on bone metabolism? What are the clinical consequences of hyperthyroidism on BMD and fracture risk? What differences are there between men and women with thyroid disease and how does menopause change the clinical outcomes? Lastly, we report how different treatments for hyperthyroidism benefit thyroid hormone-induced osteoporosis.
Collapse
Affiliation(s)
- Jagoda Gorka
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 0W8
| | - Regina M. Taylor-Gjevre
- Division of Rheumatology, Department of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 0W8
| | - Terra Arnason
- Division of Endocrinology and Metabolism, Department of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 0W8
- *Terra Arnason:
| |
Collapse
|
47
|
Antibody protection reveals extended epitopes on the human TSH receptor. PLoS One 2012; 7:e44669. [PMID: 22957097 PMCID: PMC3434159 DOI: 10.1371/journal.pone.0044669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/06/2012] [Indexed: 11/19/2022] Open
Abstract
Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.
Collapse
|
48
|
Endo T, Kobayashi T. Dominant negative effect of mutated thyroid stimulating hormone receptor (P556L) causes hypothyroidism in C.RF-Tshr(hyt/wild) mice. PLoS One 2012; 7:e42358. [PMID: 22916127 PMCID: PMC3420880 DOI: 10.1371/journal.pone.0042358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022] Open
Abstract
C.RF-Tshr(hyt/hyt) mice have a mutated thyroid stimulating hormone receptor (P556L-TSHR) and these mice develop severe hypothyroidism. We found that C.RF-Tshr(hyt/wild) heterozygous mice are also in a hypothyroid state. Thyroid glands from C.RF-Tshr(hyt/wild) mice are smaller than those from wild-type mice, and (125)I uptake activities of the former are significantly lower than those in the latter. When TSHR (TSHR(W)) and P556L-TSHR (TSHR(M)) cDNAs were cloned and co-transfected into HEK 293 cells, the cells retained (125)I-TSH binding activity, but cAMP response to TSH was decreased to about 20% of HEK 293 cells transfected with TSHR(W) cDNA. When TSHR(W) and TSHR(M) were tagged with eCFP or eYFP, we observed fluorescence resonance energy transfer (FRET) in HEK 293 cells expressing TSHR(W)-eCFP and TSHR(W)-eYFP in the absence of TSH, but not in the presence of TSH. In contrast, we obtained FRET in HEK 293 cells expressing TSHR(W)-eCFP and TSHR (M)-eYFP, regardless of the presence or absence of TSH. These results suggest that P556L TSHR has a dominant negative effect on TSHR(W) by impairing polymer to monomer dissociation, which decreases TSH responsiveness and induces hypothyroidism in C.RF-Tshr(hyt/wild) mice.
Collapse
Affiliation(s)
- Toyoshi Endo
- The Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo City, Yamanashi, Japan.
| | | |
Collapse
|
49
|
Stavreus Evers A. Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility. Front Endocrinol (Lausanne) 2012; 3:50. [PMID: 22649421 PMCID: PMC3355884 DOI: 10.3389/fendo.2012.00050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
Thyroid disease often causes menstrual disturbances and infertility problems. Thyroid hormone (TH) acts through its receptors, transcription factors present in most cell types in the body. Thyroid stimulating hormone (TSH) stimulates TH synthesis in the thyroid gland, but seems to have other functions as well in the female reproductive tract. The receptors of both TH and TSH increase in the receptive endometrium, suggesting that they are important for implantation, possible by influencing inflammatory mediators such as leukemia inhibitory factor. The roles of these receptors in the ovary need further studies. However, it is likely that the thyroid system is important for both follicular and embryo development. The association between thyroid disease and infertility indicate that TH and TSH affect the endometrium and ovary on the paracrine level.
Collapse
|
50
|
Thyroid-stimulating hormone induces a Wnt-dependent, feed-forward loop for osteoblastogenesis in embryonic stem cell cultures. Proc Natl Acad Sci U S A 2011; 108:16277-82. [PMID: 21911383 DOI: 10.1073/pnas.1110286108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown that the anterior pituitary hormone, thyroid-stimulating hormone (TSH), can bypass the thyroid to exert a direct protective effect on the skeleton. Thus, we have suggested that a low TSH level may contribute to the bone loss of hyperthyroidism that has been attributed traditionally to high thyroid hormone levels. Earlier mouse genetic, cell-based, and clinical studies together have established that TSH inhibits osteoclastic bone resorption. However, the direct influence of TSH on the osteoblast has remained unclear. Here, we have used a model system developed from murine ES cells, induced to form mature mineralizing osteoblasts, and show that TSH stimulates osteoblast differentiation primarily through the activation of protein kinase Cδ and the up-regulation of the noncanonical Wnt components frizzled and Wnt5a. We predict that a TSH-induced, fast-forward short loop in bone marrow permits Wnt5a production, which, in addition to enhancing osteoblast differentiation, also stimulates osteoprotegerin secretion to attenuate bone resorption by neighboring osteoclasts. We surmise that this loop should uncouple bone formation from bone resorption with a net increase in bone mass, which is what has been observed upon injecting TSH.
Collapse
|