1
|
Yvan-Charvet L, Barouillet T, Borowczyk C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01108-9. [PMID: 39743562 DOI: 10.1038/s41569-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of 'haematometabolism' (metabolic-dependent haematopoietic stem cell skewing) and 'efferotabolism' (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
2
|
Supriami K, Urbut SM, Tello-Ayala JR, Unlu O, Friedman SF, Abou-Karam R, Koyama S, Uddin MM, Pomerantsev E, Lu MT, Honigberg MC, Aragam KG, Doshi-Velez F, Patel AP, Natarajan P, Ellinor PT, Fahed AC. Genomic Drivers of Coronary Artery Disease and Risk of Future Outcomes After Coronary Angiography. JAMA Netw Open 2025; 8:e2455368. [PMID: 39836422 DOI: 10.1001/jamanetworkopen.2024.55368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Importance Disease characteristics of genetically mediated coronary artery disease (CAD) on coronary angiography and the association of genomic risk with outcomes after coronary angiography are not well understood. Objective To assess the angiographic characteristics and risk of post-coronary angiography outcomes of patients with genomic drivers of CAD: familial hypercholesterolemia (FH), high polygenic risk score (PRS), and clonal hematopoiesis of indeterminate potential (CHIP). Design, Setting, and Participants A retrospective cohort study of 3518 Mass General Brigham Biobank participants with genomic information who underwent coronary angiography was conducted between July 18, 2000, and August 1, 2023. Exposures The presence of a genomic risk factor of CAD, defined as FH variant, high CAD PRS, or CHIP driver variation. Main Outcomes and Measures Coronary artery disease presentation (stable or acute), angiographic CAD characteristics (severity and burden), angiographic outcomes (repeat angiogram, revascularization, and in-stent restenosis), and clinical outcomes (heart failure and all-cause mortality). Results Among 3518 participants (2467 [70.1%] male; median age, 64.0 [IQR, 55.0-72.0] years), 1509 (42.9%) had at least 1 genomic driver of CAD (26 FH, 1191 high CAD PRS, and 466 CHIP) that was associated with the presentation of acute coronary syndromes (adjusted odds ratio, 2.67; 95% CI, 2.19-3.26) and with the presence, burden, and severity of angiographic CAD. This association was driven by FH and CAD PRS. One SD of CAD PRS was associated with a 12.51-point higher Gensini score. During 9 years of follow-up, there was an increased risk among FH carriers for a repeat angiogram (adjusted hazard ratio [AHR], 1.70; 95% CI, 1.02-2.83), and revascularization (AHR, 1.97; 95% CI, 1.02-3.80), and among people with high CAD PRS (repeat angiogram: AHR, 1.79; 95% CI, 1.45-2.22; revascularization: AHR, 1.85; 95% CI, 1.37-2.50; and in-stent restenosis: AHR, 3.89; 95% CI, 2.16-7.01). CHIP carriers had no significant increase in angiographic outcomes but were at higher risk of heart failure (AHR, 1.58; 95% CI, 1.04-2.40) and all-cause mortality (AHR, 1.78; 95% CI, 1.47-2.16). Conclusions and Relevance The findings of this study suggest that germline monogenic and polygenic risk are associated with acute coronary syndromes presentation, severity and burden of atherosclerosis, and risk of repeat angiogram, revascularization, and in-stent restenosis. CHIP variant status is associated with incident heart failure and mortality after coronary angiography.
Collapse
Affiliation(s)
- Kelvin Supriami
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Sarah M Urbut
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - José R Tello-Ayala
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Ozan Unlu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Samuel F Friedman
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Roukoz Abou-Karam
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Satoshi Koyama
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Md Mesbah Uddin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Eugene Pomerantsev
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Michael T Lu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston
| | - Michael C Honigberg
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Krishna G Aragam
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Finale Doshi-Velez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Aniruddh P Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Pradeep Natarajan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Personalized Medicine, Mass General Brigham, Boston, Massachusetts
| | - Patrick T Ellinor
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Akl C Fahed
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| |
Collapse
|
3
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2025; 329:e13382. [PMID: 39158380 PMCID: PMC11744256 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
- Nexus Institute of Research and Innovation (NIRI)KathmanduNepal
| |
Collapse
|
4
|
Evans MA, Chavkin NW, Sano S, Sun H, Sardana T, Ravi R, Doviak H, Wang Y, Yura Y, Polizio AH, Horitani K, Ogawa H, Hirschi KK, Walsh K. Tet2-mediated clonal hematopoiesis modestly improves neurological deficits and is associated with inflammation resolution in the subacute phase of experimental stroke. Front Cell Neurosci 2024; 18:1487867. [PMID: 39742155 PMCID: PMC11685025 DOI: 10.3389/fncel.2024.1487867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Recent work has revealed that clonal hematopoiesis (CH) is associated with a higher risk of numerous age-related diseases, including ischemic stroke, however little is known about whether it influences stroke outcome independent of its widespread effects on cardiovascular disease. Studies suggest that leukocytes carrying CH driver mutations have an enhanced inflammatory profile, which could conceivably exacerbate brain injury after a stroke. Methods Using a competitive bone marrow transplant model of Tet2-mediated CH, we tested the hypothesis that CH would lead to a poorer outcome after ischemic stroke by augmenting brain inflammation. Stroke was induced in mice by middle cerebral artery occlusion and neurological outcome was assessed at acute (24 h) and subacute (14 d) timepoints. Brains were collected at both time points for histological, immunofluorescence and gene expression assays. Results Unexpectedly, Tet2-mediated CH had no effect on acute stroke outcome but led to a reduction in neurological deficits during the subacute phase. This improved neurological outcome was associated with lower levels of brain inflammation as evidenced by lower transcript levels of various inflammatory molecules alongside reduced astrogliosis. Discussion These findings suggest that Tet2-mediated CH may have beneficial effects on outcome after stroke, contrasting with the conventional understanding of CH whereby leukocytes with driver mutations promote disease by exacerbating inflammation.
Collapse
Affiliation(s)
- Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Nicholas W. Chavkin
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hanna Sun
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Taneesha Sardana
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ramya Ravi
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ariel H. Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Karen K. Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
5
|
Stiehl T. Stem cell graft dose and composition could impact on the expansion of donor-derived clones after allogeneic hematopoietic stem cell transplantation - a virtual clinical trial. Front Immunol 2024; 15:1321336. [PMID: 39737169 PMCID: PMC11682905 DOI: 10.3389/fimmu.2024.1321336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/10/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Hematopoietic stem cell transplantation is a potentially curative intervention for a broad range of diseases. However, there is evidence that malignant or pre-malignant clones contained in the transplant can expand in the recipient and trigger donor-derived malignancies. This observation has gained much attention in the context of clonal hematopoiesis, a medical condition where significant amounts of healthy blood cells are derived from a small number of hematopoietic stem cell clones. In many cases the dominating clones carry mutations conferring a growth advantage and thus could undergo malignant transformation in the recipient. Since clonal hematopoiesis exists in a significant proportion of potential stem cell donors, a more detailed understanding of its role for stem cell transplantation is required. Methods We propose mechanistic computational models and perform virtual clinical trials to investigate clonal dynamics during and after allogenic hematopoietic stem cell transplantation. Different mechanisms of clonal expansion are considered, including mutation-related changes of stem cell proliferation and self-renewal, aberrant response of mutated cells to systemic signals, and self-sustaining chronic inflammation triggered by the mutated cells. Results Model simulations suggest that an aberrant response of mutated cells to systemic signals is sufficient to explain the frequently observed quick expansion of the mutated clone shortly after transplantation which is followed by a stabilization of the mutated cell number at a constant value. In contrary, a mutation-related increase of self-renewal or self-sustaining chronic inflammation lead to ongoing clonal expansion. Our virtual clinical trials suggest that a low number of transplanted stem cells per kg of body weight increases the transplantation-related expansion of donor-derived clones, whereas the transplanted progenitor dose or growth factor support after transplantation have no impact on clonal dynamics. Furthermore, in our simulations the change of the donors' variant allele frequencies in the year before stem cell donation is associated with the expansion of donor-derived clones in the recipient. Discussion This in silico study provides insights in the mechanisms leading to clonal expansion and identifies questions that could be addressed in future clinical trials.
Collapse
Affiliation(s)
- Thomas Stiehl
- Aachen Medical School, Institute for Computational Biomedicine & Disease Modeling,
RWTH Aachen University, Aachen, Germany
- Department for Science and Environment, Roskilde University,
Roskilde, Denmark
| |
Collapse
|
6
|
Zuriaga MA, Yu Z, Matesanz N, Truong B, Ramos-Neble BL, Asensio-López MC, Uddin MM, Nakao T, Niroula A, Zorita V, Amorós-Pérez M, Moro R, Ebert BL, Honigberg MC, Pascual-Figal D, Natarajan P, Fuster JJ. Colchicine prevents accelerated atherosclerosis in TET2-mutant clonal haematopoiesis. Eur Heart J 2024; 45:4601-4615. [PMID: 39212933 PMCID: PMC11560281 DOI: 10.1093/eurheartj/ehae546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIMS Somatic mutations in the TET2 gene that lead to clonal haematopoiesis (CH) are associated with accelerated atherosclerosis development in mice and a higher risk of atherosclerotic disease in humans. Mechanistically, these observations have been linked to exacerbated vascular inflammation. This study aimed to evaluate whether colchicine, a widely available and inexpensive anti-inflammatory drug, prevents the accelerated atherosclerosis associated with TET2-mutant CH. METHODS In mice, TET2-mutant CH was modelled using bone marrow transplantations in atherosclerosis-prone Ldlr-/- mice. Haematopoietic chimeras carrying initially 10% Tet2-/- haematopoietic cells were fed a high-cholesterol diet and treated with colchicine or placebo. In humans, whole-exome sequencing data and clinical data from 37 181 participants in the Mass General Brigham Biobank and 437 236 participants in the UK Biobank were analysed to examine the potential modifying effect of colchicine prescription on the relationship between CH and myocardial infarction. RESULTS Colchicine prevented accelerated atherosclerosis development in the mouse model of TET2-mutant CH, in parallel with suppression of interleukin-1β overproduction in conditions of TET2 loss of function. In humans, patients who were prescribed colchicine had attenuated associations between TET2 mutations and myocardial infarction. This interaction was not observed for other mutated genes. CONCLUSIONS These results highlight the potential value of colchicine to mitigate the higher cardiovascular risk of carriers of somatic TET2 mutations in blood cells. These observations set the basis for the development of clinical trials that evaluate the efficacy of precision medicine approaches tailored to the effects of specific mutations linked to CH.
Collapse
Affiliation(s)
- María A Zuriaga
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Zhi Yu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
| | - Nuria Matesanz
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Buu Truong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
| | - Beatriz L Ramos-Neble
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Mari C Asensio-López
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
| | - Tetsushi Nakao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Abhishek Niroula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Virginia Zorita
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Marta Amorós-Pérez
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rosa Moro
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Honigberg
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Domingo Pascual-Figal
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - José J Fuster
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
7
|
Liu W, Hardaway BD, Kim E, Pauli J, Wettich JL, Yalcinkaya M, Hsu CC, Xiao T, Reilly MP, Tabas I, Maegdefessel L, Schlepckow K, Haass C, Wang N, Tall AR. Inflammatory crosstalk impairs phagocytic receptors and aggravates atherosclerosis in clonal hematopoiesis in mice. J Clin Invest 2024; 135:e182939. [PMID: 39531316 DOI: 10.1172/jci182939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Clonal hematopoiesis (CH) increases inflammasome-linked atherosclerosis, but the mechanisms by which CH mutant cells transmit inflammatory signals to nonmutant cells are largely unknown. To address this question, we transplanted 1.5% Jak2V617F (Jak2VF) bone marrow (BM) cells with 98.5% WT BM cells into hyperlipidemic Ldlr-/- mice. Low-allele-burden (LAB) mice showed accelerated atherosclerosis with increased features of plaque instability, decreased levels of the macrophage phagocytic receptors c-Mer tyrosine kinase (MERTK) and triggering receptor expressed on myeloid cells 2 (TREM2), and increased neutrophil extracellular traps (NETs). These changes were reversed when Jak2VF BM was transplanted with Il1r1-/- BM. LAB mice with noncleavable MERTK in WT BM showed improvements in necrotic core and fibrous cap formation and reduced NETs. An agonistic TREM2 antibody (4D9) markedly increased fibrous caps in both control and LAB mice, eliminating the difference between the groups. Mechanistically, 4D9 increased TREM2+PDGFB+ macrophages and PDGF receptor-α+ fibroblast-like cells in the cap region. TREM2 and PDGFB mRNA levels were positively correlated in human carotid plaques and coexpressed in macrophages. In summary, low frequencies of Jak2VF mutations promoted atherosclerosis via IL-1 signaling from Jak2VF to WT macrophages and neutrophils, promoting cleavage of phagocytic receptors and features of plaque instability. Therapeutic approaches that stabilize MERTK or TREM2 could promote plaque stabilization, especially in CH- and inflammasome-driven atherosclerosis.
Collapse
Affiliation(s)
- Wenli Liu
- Division of Molecular Medicine, Department of Medicine, and
| | | | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York, USA
| | - Jessica Pauli
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | - Justus Leonard Wettich
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | | | | | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, and
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York, USA
| | - Ira Tabas
- Division of Molecular Medicine, Department of Medicine, and
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, and
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, and
| |
Collapse
|
8
|
Topping J, Chang L, Nadat F, Poulter JA, Ibbotson A, Lara-Reyna S, Watson CM, Carter C, Pournara LP, Zernicke J, Ross RL, Cargo C, Lyons PA, Smith KGC, Del Galdo F, Rech J, Fautrel B, Feist E, McDermott MF, Savic S. Characterization of Genetic Landscape and Novel Inflammatory Biomarkers in Patients With Adult-Onset Still's Disease. Arthritis Rheumatol 2024. [PMID: 39492681 DOI: 10.1002/art.43054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/25/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Adult-onset Still disease (AOSD) is a systemic autoinflammatory disorder (AID) of unknown etiology. Genetic studies have been limited. Here, we conducted detailed genetic and inflammatory biomarker analysis of a large cohort with AOSD to investigate the underlying pathology and identify novel targets for potential treatment. METHODS We investigated AOSD cases (n = 60) for rare germline and somatic variants using whole exome sequencing with virtual gene panels. Transcriptome profiles were investigated by bulk RNA sequencing whole blood. Cytokine profiling was performed on an extended patient cohort (n = 106) alongside measurements of NLRP3 inflammasome activation using a custom assay and type I interferon (IFN) score using a novel method. RESULTS We observed higher than expected frequencies of rare germline variants associated with monogenic AIDs in AOSD cases (AOSD 38.4% vs healthy controls [HCs] 20.4%) and earlier onset of putative somatic variants associated with clonal hematopoiesis of indeterminate potential. Transcriptome profiling revealed a positive correlation between Still Activity Score and gene expression associated with the innate immune system. ASC/NLRP3 specks levels and type I IFN scores were significantly elevated in AOSD cases compared with HCs (P = 0.0001 and 0.0015, respectively), in addition to several cytokines: interleukin (IL)-6 (P < 0.0001), IL-10 (P < 0.0075), IL-12p70 (P = 0.0005), IL-18 (P < 0.0001), IL-23 (P < 0.0001), IFN-α2 (P = 0.0009), and IFNγ (P = 0.0002). CONCLUSION Our study shows considerable genetic complexity within AOSD and demonstrates the potential utility of the ASC/NLRP3 specks assay for disease stratification and targeted treatment. The enriched genetic variants identified may not by themselves be sufficient to cause disease, but may contribute to a polygenic model for AOSD.
Collapse
Affiliation(s)
| | - Leon Chang
- University of Leeds, Leeds, United Kingdom
| | - Fatima Nadat
- St James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | - Clive Carter
- St James's University Hospital, Leeds, United Kingdom
| | | | - Jan Zernicke
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rebecca L Ross
- University of Leeds and National Institute for Health and Care Research Leeds Biomedical Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| | | | - Paul A Lyons
- University of Cambridge, Cambridge, United Kingdom
| | | | - Francesco Del Galdo
- University of Leeds and National Institute for Health and Care Research Leeds Biomedical Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Jürgen Rech
- Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bruno Fautrel
- Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, INSERM UMR 1136, Paris, France
| | - Eugen Feist
- Otto-von-Guericke-University Magdeburg, Magdeburg, Germany, and Helios Clinic, Gommern, Germany
| | | | - Sinisa Savic
- University of Leeds, St James's University Hospital, and National Institute for Health and Care Research Leeds Biomedical Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| |
Collapse
|
9
|
Xie Y, Kazakova V, Weeks LD, Gerber JM, Tai J, Zhang TY, Lowsky R, Wu X, Yang C, Patel SA. Effects of donor-engrafted clonal hematopoiesis in allogeneic and autologous stem cell transplantation: a systematic review and meta-analysis. Bone Marrow Transplant 2024; 59:1585-1593. [PMID: 39183321 PMCID: PMC11531373 DOI: 10.1038/s41409-024-02403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Donor stem cell health may be critically important to the success of hematopoietic stem cell transplantation (HSCT). Herein, we performed this systematic review and meta-analysis including meta-regression to assess the impact of donor-engrafted clonal hematopoiesis (CH) in allogeneic HSCT (allo-HSCT) and impact of pre-transplant CH in autologous HSCT (auto-HSCT). We applied random-effects models to analyze 5 allo-HSCT studies with 3192 donor-recipient pairs and 9 auto-HSCT studies with 2854 patients. We found that donor-engrafted CH after allo-HSCT decreased the risk of disease relapse [Hazard Ratio (HR) = 0.79, 95% Confidence Interval (CI): (0.67, 0.93)], but did not affect overall survival (OS) [HR = 0.91, 95% CI: (0.75, 1.11)], progression-free survival (PFS) [HR = 0.94, 95% CI: (0.63, 1.41)], or non-relapse mortality [HR = 1.06, 95% CI: (0.81, 1.39)]. In contrast, pre-transplant CH in auto-HSCT recipients resulted in inferior OS [HR = 1.30, 95% CI: (1.16, 1.46)], inferior PFS [HR = 1.35, 95% CI: (1.18, 1.54)], and higher risk for therapy-related myeloid neoplasm [HR = 4.85, 95% CI: (2.39, 9.82)] when compared to auto-HSCT recipients without CH. This study sheds light onto the debate about prospective "CHIP screening" for stem cell donors and addresses the impact of CH as a transmissible phenomenon.
Collapse
Affiliation(s)
- Yiyu Xie
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA
| | - Vera Kazakova
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA
| | - Lachelle D Weeks
- Center for Early Detection and Interception of Blood Cancers, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Gerber
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA
- Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA
| | - Jesse Tai
- Dept. of Medicine - Division of Hematology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Tian Y Zhang
- Dept. of Medicine - Division of Hematology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Lowsky
- Dept. of Medicine - Division of Blood & Marrow Transplantation & Cellular Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chengwu Yang
- Measurement, Outcome, and Design Section, Division of Biostatistics and Health Service Research, Department of Population and Quantitative Health Sciences, T.H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, USA.
- Department of Obstetrics & Gynecology, T.H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| | - Shyam A Patel
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA.
- Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Oren O, Small AM, Libby P. Clonal hematopoiesis and atherosclerosis. J Clin Invest 2024; 134:e180066. [PMID: 39352379 PMCID: PMC11444192 DOI: 10.1172/jci180066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a previously unrecognized, potent, age-related, and common risk factor for atherosclerosis. Somatic mutations in certain known leukemia driver genes give rise to clones of mutant cells in peripheral blood. The increased risk of developing hematologic malignancy does not, on its own, explain excess mortality in individuals with CHIP. Cardiovascular disease accounts for much of this gap. Experimental evidence supports the causality of certain CHIP mutations in accelerated atherosclerosis. CHIP due to mutations in different driver genes varies in their promotion of atherosclerotic events and in the region of augmented atherosclerotic involvement. For example, CHIP due to mutations in DNMT3a appears less atherogenic than CHIP that arises from TET2 or JAK2, forms of CHIP that incite inflammation. The recognition of certain CHIP mutations as promoters of atherosclerotic risk has opened new insights into understanding of the pathophysiology of this disease. The accentuated cardiovascular risk and involvement of distinct pathways of various forms of CHIP also inform novel approaches to allocation of targeted therapies, affording a step toward personalized medicine.
Collapse
Affiliation(s)
- Ohad Oren
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aeron M Small
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Pan Y, Sun X, Kelly TN. Elucidating the role of clonal hematopoiesis in acute kidney injury. Kidney Int 2024; 106:554-556. [PMID: 39304268 DOI: 10.1016/j.kint.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Xiao Sun
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA.
| |
Collapse
|
12
|
Yalcinkaya M, Tall AR. Genetic and epigenetic regulation of inflammasomes: Role in atherosclerosis. Atherosclerosis 2024; 396:118541. [PMID: 39111028 PMCID: PMC11374466 DOI: 10.1016/j.atherosclerosis.2024.118541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
The cardiovascular complications of atherosclerosis are thought to arise from an inflammatory response to the accumulation of cholesterol-rich lipoproteins in the arterial wall. The positive outcome of CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) provided key evidence to support this concept and suggested that inflammasomes and IL-1β are important inflammatory mediators in human atherosclerotic cardiovascular diseases (ACVD). In specific settings NLRP3 or AIM2 inflammasomes can induce inflammatory responses in the arterial wall and promote the formation of unstable atherosclerotic plaques. Clonal hematopoiesis (CH) has recently emerged as a major independent risk factor for ACVD. CH mutations arise during ageing and commonly involves variants in genes mediating epigenetic modifications (TET2, DNMT3A, ASXL1) or cytokine signaling (JAK2). Accumulating evidence points to the role of inflammasomes in the progression of CH-induced ACVD events and has shed light on the regulatory pathways and possible therapeutic approaches that specifically target inflammasomes in atherosclerosis. Epigenetic dynamics play a vital role in regulating the generation and activation of inflammasome components by causing changes in DNA methylation patterns and chromatin assembly. This review examines the genetic and epigenetic regulation of inflammasomes, the intersection of macrophage cholesterol accumulation with inflammasome activation and their roles in atherosclerosis. Understanding the involvement of inflammasomes in atherosclerosis pathogenesis may lead to customized treatments that reduce the burden of ACVD.
Collapse
Affiliation(s)
- Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Topping J, Taylor A, Nadat F, Crouch S, Ibbotson A, Čermák J, Symeonidis A, Tatic A, Langemeijer S, Hellström-Lindberg E, Culligan D, Garelius HG, Ashcroft J, Nga E, Parker J, Kolade S, McDermott MF, De Witte T, Bowen D, Smith A, Cargo C, Savic S. Inflammatory profile of lower risk myelodysplastic syndromes. Br J Haematol 2024; 205:1044-1054. [PMID: 38772913 DOI: 10.1111/bjh.19530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
The precise link between inflammation and pathogenesis of myelodysplastic syndrome (MDS) is yet to be fully established. We developed a novel method to measure ASC/NLRP3 protein specks which are specific for the NLRP3 inflammasome only. We combined this with cytokine profiling to characterise various inflammatory markers in a large cohort of patients with lower risk MDS in comparison to healthy controls and patients with defined autoinflammatory disorders (AIDs). The ASC/NLRP3 specks were significantly elevated in MDS patients compared to healthy controls (p < 0.001) and these levels were comparable to those found in patients with AIDs. The distribution of protein specks positive only for ASC was different to ASC/NLRP3 ones suggesting that other ASC-containing inflammasome complexes might be important in the pathogenesis of MDS. Patients with MDS-SLD had the lowest levels of interleukin (IL)-1β, tumour necrosis factor (TNF), IL-23, IL-33, interferon (IFN) γ and IFN-α2, compared to other diagnostic categories. We also found that inflammatory cytokine TNF was positively associated with MDS progression to a more aggressive form of disease and IL-6 and IL-1β with time to first red blood cell transfusion. Our study shows that there is value in analysing inflammatory biomarkers in MDS, but their diagnostic and prognostic utility is yet to be fully validated.
Collapse
Affiliation(s)
- Joanne Topping
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Adele Taylor
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Fatima Nadat
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Alice Ibbotson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Jaroslav Čermák
- Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, Praha, Czech Republic
| | - Argiris Symeonidis
- Division of Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Aurelia Tatic
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Saskia Langemeijer
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Hellström-Lindberg
- Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dominic Culligan
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - John Ashcroft
- Department of Hematology, Mid Yorkshire Hospitals, Wakefield, UK
| | - Emma Nga
- Department of Haematology, Royal Blackburn Teaching Hospital, Blackburn, Lancashire, UK
| | - Jane Parker
- Northampton General Hospital, Northampton, UK
| | - Seye Kolade
- Department of Haematology, Blackpool Victoria Hospital, Blackpool, Lancashire, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Theo De Witte
- Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David Bowen
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Catherine Cargo
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research-Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
14
|
Yu Z, Coorens THH, Uddin MM, Ardlie KG, Lennon N, Natarajan P. Genetic variation across and within individuals. Nat Rev Genet 2024; 25:548-562. [PMID: 38548833 PMCID: PMC11457401 DOI: 10.1038/s41576-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 04/12/2024]
Abstract
Germline variation and somatic mutation are intricately connected and together shape human traits and disease risks. Germline variants are present from conception, but they vary between individuals and accumulate over generations. By contrast, somatic mutations accumulate throughout life in a mosaic manner within an individual due to intrinsic and extrinsic sources of mutations and selection pressures acting on cells. Recent advancements, such as improved detection methods and increased resources for association studies, have drastically expanded our ability to investigate germline and somatic genetic variation and compare underlying mutational processes. A better understanding of the similarities and differences in the types, rates and patterns of germline and somatic variants, as well as their interplay, will help elucidate the mechanisms underlying their distinct yet interlinked roles in human health and biology.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Niall Lennon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Singh J, Li N, Ashrafi E, Thao LTP, Curtis DJ, Wood EM, McQuilten ZK. Clonal hematopoiesis of indeterminate potential as a prognostic factor: a systematic review and meta-analysis. Blood Adv 2024; 8:3771-3784. [PMID: 38838228 PMCID: PMC11298876 DOI: 10.1182/bloodadvances.2024013228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
ABSTRACT With advances in sequencing, individuals with clonal hematopoiesis of indeterminate potential (CHIP) are increasingly being identified, making it essential to understand its prognostic implications. We conducted a systematic review of studies comparing the risk of clinical outcomes in individuals with and without CHIP. We searched MEDLINE and EMBASE and included original research reporting an outcome risk measure in individuals with CHIP, adjusted for the effect of age. From the 3305 studies screened, we included 88 studies with 45 to 470 960 participants. Most studies had a low-to-moderate risk of bias in all domains of the Quality in Prognostic Factor Studies tool. Random-effects meta-analyses were performed for outcomes reported in at least 3 studies. CHIP conferred an increased risk of all-cause mortality (hazard ratio [HR], 1.34; 95% confidence interval, 1.19-1.50), cancer mortality (HR, 1.46; 1.13-1.88), composite cardiovascular events (HR, 1.40; 1.19-1.65), coronary heart disease (HR, 1.76; 1.27-2.44), stroke (HR, 1.16; 1.05-1.28), heart failure (HR, 1.27; 1.15-1.41), hematologic malignancy (HR, 4.28; 2.29-7.98), lung cancer (HR, 1.40; 1.27-1.54), renal impairment (HR, 1.25; 1.18-1.33) and severe COVID-19 (odds ratio [OR], 1.46; 1.18-1.80). CHIP was not associated with cardiovascular mortality (HR, 1.09; 0.97-1.22), except in the subgroup analysis restricted to larger clones (HR, 1.31; 1.12-1.54). Isolated DNMT3A mutations did not increase the risk of myeloid malignancy, all-cause mortality, or renal impairment. The reasons for heterogeneity between studies included differences in definitions and measurements of CHIP and the outcomes, and populations studied. In summary, CHIP is associated with diverse clinical outcomes, with clone size, specific gene, and inherent patient characteristics important mediators of risk.
Collapse
Affiliation(s)
- Jasmine Singh
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Fiona Stanley Hospital, Perth, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Nancy Li
- Department of Haematology, Eastern Health, Melbourne, Australia
| | - Elham Ashrafi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Le Thi Phuong Thao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - David J. Curtis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, Alfred Health, Melbourne, Australia
| | - Erica M. Wood
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Monash Health, Melbourne, Australia
| | - Zoe K. McQuilten
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Monash Health, Melbourne, Australia
| |
Collapse
|
16
|
Waldron C, Zafar MA, Ma D, Zhang H, Dykas D, Ziganshin BA, Popa A, Jha A, Kwan JM, Elefteriades JA. Somatic Variants Acquired Later in Life Associated with Thoracic Aortic Aneurysms: JAK2 V617F. Genes (Basel) 2024; 15:883. [PMID: 39062663 PMCID: PMC11276600 DOI: 10.3390/genes15070883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The JAK2 V617F somatic variant is a well-known driver of myeloproliferative neoplasms (MPN) associated with an increased risk for athero-thrombotic cardiovascular disease. Recent studies have demonstrated its role in the development of thoracic aortic aneurysm (TAA). However, limited clinical information and level of JAK2 V617F burden have been provided for a comprehensive evaluation of potential confounders. A retrospective genotype-first study was conducted to identify carriers of the JAK2 V617F variant from an internal exome sequencing database in Yale DNA Diagnostics Lab. Additionally, the overall incidence of somatic variants in the JAK2 gene across various tissue types in the healthy population was carried out based on reanalysis of SomaMutDB and data from the UK Biobank (UKBB) cohort to compare our dataset to the population prevalence of the variant. In our database of 12,439 exomes, 594 (4.8%) were found to have a thoracic aortic aneurysm (TAA), and 12 (0.049%) were found to have a JAK2 V617F variant. Among the 12 JAK2 V617F variant carriers, five had a TAA (42%), among whom four had an ascending TAA and one had a descending TAA, with a variant allele fraction ranging from 11.2% to 20%. Among these five patients, 60% were female, and average age at diagnosis was 70 (49-79). The mean ascending aneurysm size was 5.05 cm (range 4.6-5.5 cm), and four patients had undergone surgical aortic replacement or repair. UKBB data revealed a positive correlation between the JAK2 V617F somatic variant and aortic valve disease (effect size 0.0086, p = 0.85) and TAA (effect size = 0.004, p = 0.92), although not statistically significant. An unexpectedly high prevalence of TAA in our dataset (5/594, 0.84%) is greater than the prevalence reported before for the general population, supporting its association with TAA. JAK2 V617F may contribute a meaningful proportion of otherwise unexplained aneurysm patients. Additionally, it may imply a potential JAK2-specific disease mechanism in the developmental of TAA, which suggests a possible target of therapy that warrants further investigation.
Collapse
Affiliation(s)
- Christina Waldron
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Mohammad A. Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Deqiong Ma
- DNA Diagnostics Lab, Yale University School of Medicine, New Haven, CT 06510, USA; (D.M.); (H.Z.); (D.D.)
| | - Hui Zhang
- DNA Diagnostics Lab, Yale University School of Medicine, New Haven, CT 06510, USA; (D.M.); (H.Z.); (D.D.)
| | - Daniel Dykas
- DNA Diagnostics Lab, Yale University School of Medicine, New Haven, CT 06510, USA; (D.M.); (H.Z.); (D.D.)
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Andreea Popa
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Alokkumar Jha
- Centre for Neurogenetics, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jennifer M. Kwan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| |
Collapse
|
17
|
Magyar E, Újfalusi A, Czenke M, Méhes G. [Somatic JAK2 gene mutation is an evolving risk factor in cardiovascular diseases]. Orv Hetil 2024; 165:883-890. [PMID: 38852144 DOI: 10.1556/650.2024.33055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
A JAK-kináz működése egyes, sejtfelszíni receptorokhoz kötött jelátviteli
útvonalak központi eleme (JAK/STAT útvonal), a fiziológiás sejtaktiváció
közvetítője. Közvetítő hatása a myeloid eredetű sejtekben, elsősorban
macrophagokban, neutrophil granulocytákban, illetve a thrombocytákban is
szükséges a nem specifikus gyulladásos reakció elindításához. A jelátviteli
útvonal kóros aktivációja a krónikus myeloproliferativ neoplasiákban az egyik
leggyakoribb genetikai eltérés és a fokozott myelo- és thrombopoesis egyik jól
ismert ’driver’ mechanizmusa. A myeloproliferativ neoplasiák diagnosztikájához a
szerzett patogén JAK2-mutációk (elsősorban a
V617F variáns) kimutatása is hozzátartozik. Ismertté vált
ugyanakkor, hogy a génhiba – más, ritkább eltérések mellett – akár hosszú ideig
fennállhat jelentős hematológiai eltérések nélkül. Ezt az állapotot klonális
haemopoesisnek nevezik. A variáns JAK2 újabb megfigyelések
szerint a myeloid eredetű sejtek funkciójára ebben a helyzetben is komoly
aktiváló hatást fejthet ki, és meggyőző összefüggéseket mutattak ki a
gyulladásos háttérrel rendelkező cardiovascularis szövődményekkel kapcsolatosan.
A klonális JAK2-eltérés, valamint az ischaemiás szívbetegség,
illetve a hasi aortaaneurysma kialakulása között is jelentős összefüggések
mérhetők. Mára egyértelmű, hogy az atheromaképződés és a következményes
coronariasclerosis kialakulása egy komplex thromboinflammatoricus folyamat
következménye, és jelentős mértékben függ többek között a JAK2
mediálta szöveti macrophag–granulocyta interakcióktól. Közleményünkben a
fokozott kockázat hátterében húzódó mechanizmusokat és a rendelkezésre álló
legújabb ismereteket elemezzük. Orv Hetil. 2024; 165(23): 883–890.
Collapse
Affiliation(s)
- Eszter Magyar
- 1 Debreceni Egyetem, Általános Orvostudományi Kar, Patológiai Intézet Debrecen, Nagyerdei krt. 98., 4032 Magyarország
| | - Anikó Újfalusi
- 2 Debreceni Egyetem, Általános Orvostudományi Kar, Laboratóriumi Medicina Intézet Budapest Magyarország
| | - Marianna Czenke
- 1 Debreceni Egyetem, Általános Orvostudományi Kar, Patológiai Intézet Debrecen, Nagyerdei krt. 98., 4032 Magyarország
| | - Gábor Méhes
- 1 Debreceni Egyetem, Általános Orvostudományi Kar, Patológiai Intézet Debrecen, Nagyerdei krt. 98., 4032 Magyarország
| |
Collapse
|
18
|
Lin J, Wang J, Fang J, Li M, Xu S, Little PJ, Zhang D, Liu Z. The cytoplasmic sensor, the AIM2 inflammasome: A precise therapeutic target in vascular and metabolic diseases. Br J Pharmacol 2024; 181:1695-1719. [PMID: 38528718 DOI: 10.1111/bph.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Cardio-cerebrovascular diseases encompass pathological changes in the heart, brain and vascular system, which pose a great threat to health and well-being worldwide. Moreover, metabolic diseases contribute to and exacerbate the impact of vascular diseases. Inflammation is a complex process that protects against noxious stimuli but is also dysregulated in numerous so-called inflammatory diseases, one of which is atherosclerosis. Inflammation involves multiple organ systems and a complex cascade of molecular and cellular events. Numerous studies have shown that inflammation plays a vital role in cardio-cerebrovascular diseases and metabolic diseases. The absent in melanoma 2 (AIM2) inflammasome detects and is subsequently activated by double-stranded DNA in damaged cells and pathogens. With the assistance of the mature effector molecule caspase-1, the AIM2 inflammasome performs crucial biological functions that underpin its involvement in cardio-cerebrovascular diseases and related metabolic diseases: The production of interleukin-1 beta (IL-1β), interleukin-18 (IL-18) and N-terminal pore-forming Gasdermin D fragment (GSDMD-N) mediates a series of inflammatory responses and programmed cell death (pyroptosis and PANoptosis). Currently, several agents have been reported to inhibit the activity of the AIM2 inflammasome and have the potential to be evaluated for use in clinical settings. In this review, we systemically elucidate the assembly, biological functions, regulation and mechanisms of the AIM2 inflammasome in cardio-cerebrovascular diseases and related metabolic diseases and outline the inhibitory agents of the AIM2 inflammasome as potential therapeutic drugs.
Collapse
Affiliation(s)
- Jiuguo Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jiaojiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jian Fang
- Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Meihang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Rodriguez J, Baldini C, Bayle A, Pages A, Danlos FX, Vasseur D, Rouleau E, Lacroix L, Alonso de Castro B, Goldschmidt V, Seknazi L, Hollebecque A, Michot JM, Champiat S, Marabelle A, Ouali K, Marzac C, Ponce S, Micol JB, Chaput N, Massard C, Italiano A. Impact of Clonal Hematopoiesis-Associated Mutations in Phase I Patients Treated for Solid Tumors: An Analysis of the STING Trial. JCO Precis Oncol 2024; 8:e2300631. [PMID: 38815178 DOI: 10.1200/po.23.00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE With liquid biopsy's widespread adoption in oncology, an increased number of clonal hematopoiesis-associated mutations (CHm) have been identified in patients with solid tumors. However, its impact on patient outcomes remains unclear. This study aimed to analyze and describe CHm in a cohort of phase I patients. METHODS Retrospective data collection from medical records and molecular profiles (Foundation One Liquid CDx Assay) was performed before first study drug administration at the Drug Development Department of Gustave Roussy (France) within the STING trial (ClinicalTrials.gov identifier: NCT04932525). CHm prevalence was assessed using any and ≥1% variant allele frequency (VAF) in epigenetic modifier genes (DNMT3A, TET2, and ASXL1). RESULTS From January 2021 to December 2022, 255 patients were enrolled in a phase I clinical trial. A total of 55% were male, with a median age of 62 years (24-86). Principal tumor locations were GI (27%) and genitourinary (21%). Overall, 104 patients (41%) had at least one CHm in liquid biopsy, with 55 patients (22%) having a VAF of ≥ 1%. The most frequent mutation was DNMT3A 73% at any VAF (n = 76) and 22% at 1% VAF (n = 23). Median progression-free survival (PFS) and overall survival were 3.8 months (m) for the CHm group versus 3.2 m for nonclonal hematopoiesis (CH; P = .08) and 18.26 m CHm versus 15.8 m non-CH (P = .9), respectively. PFS increased in the CHm population treated with targeted therapy (hazard ratio, 0.6 [95% CI, 0.42 to 0.84]; P = .004). CONCLUSION CHm was commonly found in patients with solid tumors treated in phase I trials, with a prevalence of 41% in our cohort. The most frequently mutated gene was DNMT3A. The presence of CHm had no impact on the population of patients treated in the phase I trials.
Collapse
Affiliation(s)
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy, Villejuif, France
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France
| | - Arnaud Bayle
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Arnaud Pages
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | | | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | | | | | - Lauren Seknazi
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | | | | | | | - Kaissa Ouali
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
- A Coruña University Complex, Coruña, Spain
- Department of Hematology, Gustave Roussy, Villejuif, France
- Paris-Saclay University, School of Pharmacy, Orsay, France
| | | | | |
Collapse
|
20
|
Knudsen AD, Eskelund CW, Benfield T, Zhao Y, Gelpi M, Køber L, Trøseid M, Kofoed KF, Ostrowski SR, Reilly C, Borges ÁH, Grønbæk K, Nielsen SD. Clonal hematopoiesis of indeterminate potential in persons with HIV. AIDS 2024; 38:487-495. [PMID: 37976039 DOI: 10.1097/qad.0000000000003788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) has been associated with older age, inflammation and with risk of coronary artery disease (CAD). We aimed to characterize the burden of CHIP, and to explore the association between CHIP, inflammatory markers, and CAD in older persons with HIV (PWH). METHODS From the Copenhagen Comorbidity in HIV Infection (COCOMO) study, we included 190 individuals older than 55 years of age. We defined CHIP as variant allele fraction at least 2%. CAD was categorized according to the most severe coronary artery lesion on coronary computed tomography (CT) angiography as no coronary atherosclerosis; any atherosclerosis defined as at least 1% stenosis and obstructive CAD defined as at least 50% stenosis. RESULTS In the entire population (median age 66 years, 87% men), we identified a total of 62 mutations distributed among 49 (26%) participants. The three most mutated genes were DNMT3A , TET2 , and ASXL1 , accounting for 49, 25, and 16% of mutations, respectively. Age and sex were the only variables associated with CHIP. IL-1β, IL-1Ra, IL-2, IL-6, IL-10, soluble CD14, soluble CD163 and TNF-α were not associated with CHIP, and CHIP was not associated with any atherosclerosis or with obstructive CAD in adjusted analyses. CONCLUSION In older, well treated, Scandinavian PWH, more than one in four had at least one CHIP mutation. We did not find evidence of an association between CHIP and inflammatory markers or between CHIP and CAD. CHIP is an unlikely underlying mechanism to explain the association between inflammation and CAD in treated HIV disease.
Collapse
Affiliation(s)
- Andreas D Knudsen
- Department of Infectious Diseases 8632
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
| | | | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre
| | | | | | - Lars Køber
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
| | - Marius Trøseid
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
- Department of Radiology, Rigshospitalet, University of Copenhagen
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cavan Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, MN, USA
| | - Álvaro H Borges
- Department of Infectious Disease Immunology, Statens Serum Institut
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Fidler TP, Dunbar A, Kim E, Hardaway B, Pauli J, Xue C, Abramowicz S, Xiao T, O’Connor K, Sachs N, Wang N, Maegdefessel L, Levine R, Reilly M, Tall AR. Suppression of IL-1β promotes beneficial accumulation of fibroblast-like cells in atherosclerotic plaques in clonal hematopoiesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:60-75. [PMID: 38362011 PMCID: PMC10868728 DOI: 10.1038/s44161-023-00405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/30/2023] [Indexed: 02/17/2024]
Abstract
Clonal hematopoiesis (CH) is an independent risk factor for atherosclerotic cardiovascular disease. Murine models of CH suggest a central role of inflammasomes and IL-1β in accelerated atherosclerosis and plaque destabilization. Here we show using single-cell RNA sequencing in human carotid plaques that inflammasome components are enriched in macrophages, while the receptor for IL-1β is enriched in fibroblasts and smooth muscle cells (SMCs). To address the role of inflammatory crosstalk in features of plaque destabilization, we conducted SMC fate mapping in Ldlr-/- mice modeling Jak2VF or Tet2 CH treated with IL-1β antibodies. Unexpectedly, this treatment minimally affected SMC differentiation, leading instead to a prominent expansion of fibroblast-like cells. Depletion of fibroblasts from mice treated with IL-1β antibody resulted in thinner fibrous caps. Conversely, genetic inactivation of Jak2VF during plaque regression promoted fibroblast accumulation and fibrous cap thickening. Our studies suggest that suppression of inflammasomes promotes plaque stabilization by recruiting fibroblast-like cells to the fibrous cap.
Collapse
Affiliation(s)
- Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of San Francisco, San Francisco, CA, USA
| | - Andrew Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Brian Hardaway
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica Pauli
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Chenyi Xue
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Muredach Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
22
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
23
|
De Luca G, Lev PR, Camacho MF, Goette NP, Sackmann F, Castro Ríos MA, Moiraghi B, Cortes Guerrieri V, Bendek G, Carricondo E, Enrico A, Vallejo V, Varela A, Khoury M, Gutierrez M, Larripa IB, Marta RF, Glembotsky AC, Heller PG. High cell-free DNA is associated with disease progression, inflammasome activation and elevated levels of inflammasome-related cytokine IL-18 in patients with myelofibrosis. Front Immunol 2023; 14:1161832. [PMID: 38035089 PMCID: PMC10687201 DOI: 10.3389/fimmu.2023.1161832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Myelofibrosis (MF) is a clonal hematopoietic stem cell disorder classified among chronic myeloproliferative neoplasms, characterized by exacerbated myeloid and megakaryocytic proliferation and bone marrow fibrosis. It is induced by driver (JAK2/CALR/MPL) and high molecular risk mutations coupled to a sustained inflammatory state that contributes to disease pathogenesis. Patient outcome is determined by stratification into risk groups and refinement of current prognostic systems may help individualize treatment decisions. Circulating cell-free (cf)DNA comprises short fragments of double-stranded DNA, which promotes inflammation by stimulating several pathways, including inflammasome activation, which is responsible for IL-1β and IL-18 maturation and release. In this work, we assessed the contribution of cfDNA as a marker of disease progression and mediator of inflammation in MF. cfDNA was increased in MF patients and higher levels were associated with adverse clinical outcome, a high-risk molecular profile, advanced disease stages and inferior overall survival, indicating its potential value as a prognostic marker. Cell-free DNA levels correlated with tumor burden parameters and markers of systemic inflammation. To mimic the effects of cfDNA, monocytes were stimulated with poly(dA:dT), a synthetic double-stranded DNA. Following stimulation, patient monocytes released higher amounts of inflammasome-processed cytokine, IL-18 to the culture supernatant, reflecting enhanced inflammasome function. Despite overexpression of cytosolic DNA inflammasome sensor AIM2, IL-18 release from MF monocytes was shown to rely mainly on the NLRP3 inflammasome, as it was prevented by NLRP3-specific inhibitor MCC950. Circulating IL-18 levels were increased in MF plasma, reflecting in vivo inflammasome activation, and highlighting the previously unrecognized involvement of this cytokine in MF cytokine network. Monocyte counts were higher in patients and showed a trend towards correlation with IL-18 levels, suggesting monocytes represent a source of circulating IL-18. The close correlation shown between IL-18 and cfDNA levels, together with the finding of enhanced DNA-triggered IL-18 release from monocytes, suggest that cfDNA promotes inflammation, at least in part, through inflammasome activation. This work highlights cfDNA, the inflammasome and IL-18 as additional players in the complex inflammatory circuit that fosters MF progression, potentially providing new therapeutic targets.
Collapse
Affiliation(s)
- Geraldine De Luca
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola R. Lev
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria F. Camacho
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Nora P. Goette
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | | | - Beatriz Moiraghi
- Departamento de Hematología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Veronica Cortes Guerrieri
- División Hematología Clínica, IDIM Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Georgina Bendek
- Departamento de Hematología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Emiliano Carricondo
- Departamento de Hematología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Alicia Enrico
- Departamento de Hematología, Hospital Italiano de La Plata, Buenos Aires, Argentina
| | - Veronica Vallejo
- Departamento de Hematología, Instituto Cardiovascular de Buenos Aires, Buenos Aires, Argentina
| | - Ana Varela
- Departamento de Hematología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Marina Khoury
- Departamento de Docencia e Investigación, IDIM Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Gutierrez
- Unidad Genómica, Laboratorio Stamboulian, Buenos Aires, Argentina
| | - Irene B. Larripa
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Rosana F. Marta
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana C. Glembotsky
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula G. Heller
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Emon IM, Al-Qazazi R, Rauh MJ, Archer SL. The Role of Clonal Hematopoiesis of Indeterminant Potential and DNA (Cytosine-5)-Methyltransferase Dysregulation in Pulmonary Arterial Hypertension and Other Cardiovascular Diseases. Cells 2023; 12:2528. [PMID: 37947606 PMCID: PMC10650407 DOI: 10.3390/cells12212528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression without altering gene sequences in health and disease. DNA methyltransferases (DNMTs) are enzymes responsible for DNA methylation, and their dysregulation is both a pathogenic mechanism of disease and a therapeutic target. DNMTs change gene expression by methylating CpG islands within exonic and intergenic DNA regions, which typically reduces gene transcription. Initially, mutations in the DNMT genes and pathologic DNMT protein expression were found to cause hematologic diseases, like myeloproliferative disease and acute myeloid leukemia, but recently they have been shown to promote cardiovascular diseases, including coronary artery disease and pulmonary hypertension. We reviewed the regulation and functions of DNMTs, with an emphasis on somatic mutations in DNMT3A, a common cause of clonal hematopoiesis of indeterminant potential (CHIP) that may also be involved in the development of pulmonary arterial hypertension (PAH). Accumulation of somatic mutations in DNMT3A and other CHIP genes in hematopoietic cells and cardiovascular tissues creates an inflammatory environment that promotes cardiopulmonary diseases, even in the absence of hematologic disease. This review summarized the current understanding of the roles of DNMTs in maintenance and de novo methylation that contribute to the pathogenesis of cardiovascular diseases, including PAH.
Collapse
Affiliation(s)
- Isaac M. Emon
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| |
Collapse
|