1
|
Sundqvist N, Podéus H, Sten S, Engström M, Dura-Bernal S, Cedersund G. A Model-Driven Meta-Analysis Supports the Emerging Consensus View that Inhibitory Neurons Dominate BOLD-fMRI Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618416. [PMID: 39464088 PMCID: PMC11507712 DOI: 10.1101/2024.10.15.618416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal instead reflects the activity of inhibitory interneurons. However, these data paint a complex picture, with numerous regulatory interactions, and where the different experiments display many qualitative differences. It is therefore not trivial how to quantify the relative contributions of the different cell types and to combine all observations into a unified theory. To address this, we present a new model-driven meta-analysis, which provides a unified and quantitative explanation for all data. This model-driven analysis allows for quantification of the relative contribution of different cell types: the contribution to the BOLD-signal from the excitatory cells is <20 % and 50-80 % comes from the interneurons. Our analysis also provides a mechanistic explanation for the observed experiment-to-experiment differences, e.g. a biphasic vascular response dependent on different stimulation intensities and an emerging secondary post-stimulation peak during longer stimulations. In summary, our study provides a new, emerging consensus-view supporting the larger role of interneurons in fMRI.
Collapse
Affiliation(s)
- Nicolas Sundqvist
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Henrik Podéus
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Sebastian Sten
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Peirone S, Tirtei E, Campello A, Parlato C, Guarrera S, Mareschi K, Marini E, Asaftei SD, Bertero L, Papotti M, Priante F, Perrone S, Cereda M, Fagioli F. Impaired neutrophil-mediated cell death drives Ewing's Sarcoma in the background of Down syndrome. Front Oncol 2024; 14:1429833. [PMID: 39421445 PMCID: PMC11484044 DOI: 10.3389/fonc.2024.1429833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Ewing Sarcoma (EWS) has been reported in seven children with Down syndrome (DS). To date, a detailed assessment of this solid tumour in DS patients is yet to be made. Methods Here, we characterise a chemo-resistant mediastinal EWS in a 2-year-old DS child, the youngest ever reported case, by exploiting sequencing approaches. Results The tumour showed a neuroectodermal development driven by the EWSR1-FLI1 fusion. The inherited myeloperoxidase deficiency of the patient caused failure of neutrophil-mediated cell death and promoted genomic instability. Discussion In this context, the tumour underwent genome-wide near haploidisation resulting in a massive overexpression of pro-inflammatory cytokines. Recruitment of defective neutrophils fostered rapid evolution of this EWS.
Collapse
Affiliation(s)
- Serena Peirone
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Elisa Tirtei
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Anna Campello
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
| | - Caterina Parlato
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katia Mareschi
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Elena Marini
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, Turin, Italy
| | - Francesca Priante
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Sarah Perrone
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Matteo Cereda
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Franca Fagioli
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Bhattacharya P, Linnenbach A, South AP, Martinez-Outschoorn U, Curry JM, Johnson JM, Harshyne LA, Mahoney MG, Luginbuhl AJ, Vadigepalli R. Tumor microenvironment governs the prognostic landscape of immunotherapy for head and neck squamous cell carcinoma: A computational model-guided analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615149. [PMID: 39386511 PMCID: PMC11463398 DOI: 10.1101/2024.09.26.615149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. An exhaustive simulation of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8+ killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Alban Linnenbach
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Andrew P. South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Joseph M. Curry
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Jennifer M. Johnson
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Larry A. Harshyne
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Adam J. Luginbuhl
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107, USA
| |
Collapse
|
4
|
da Silva MI, Oli N, Gambonini F, Ott T. Effects of parity and early pregnancy on peripheral blood leukocytes in dairy cattle. J Dairy Sci 2024:S0022-0302(24)01086-5. [PMID: 39216517 DOI: 10.3168/jds.2024-25063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Subfertility remains a major problem in the dairy industry. Only 35-40% of high-yielding dairy cows and 55-65% of nonlactating heifers become pregnant after their first service. The immune system plays a critical role in the establishment of pregnancy. However, it can also create challenges for embryo survival and contribute to reduced fertility. We conducted 2 separate experiments to characterize changes in subsets of peripheral blood leukocytes (PBL) and their phenotype over the estrous cycle and early pregnancy in heifers and cows. We used flow cytometry and RT-qPCR to assess protein and mRNA expression of molecules important for immune function. We observed that CD14+ monocytes and CD3+ T cells tended to be affected by pregnancy status in heifers, whereas CD8B+ lymphocytes and NCR1+ natural killer (NK) cells were affected during early pregnancy in cows. Changes in expression of immune function proteins appeared to be greater in heifers than cows. To compare the most striking differences between heifers and cows observed in the initial experiments, we conducted a third experiment where PBL sampled from heifers and cows were simultaneously collected and analyzed under the same experimental conditions. Our results indicate that, compared with heifers, cows had greater mRNA expression of proinflammatory cytokines (IFNG and IL6) and AHR protein along with greater percentage of MM20A+ neutrophils and myeloid cells expressing SIRPA, ITGAM and ITGAX. Moreover, animals that failed to become pregnant showed altered expression of anti-inflammatory molecules compared with cyclic and pregnant animals. Overall, these findings support the hypothesis that early pregnancy signaling alters the phenotype of immune cells in the peripheral blood and that there are differences in the peripheral immune response to pregnancy between cows and heifers. Because cows have lower conception rates than heifers, it is possible that a more proinflammatory immune status in peripheral blood may play a role in embryo loss.
Collapse
Affiliation(s)
- M I da Silva
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - N Oli
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - F Gambonini
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - T Ott
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Rocha CM, Kawamoto D, Martins FH, Bueno MR, Ishikawa KH, Ando-Suguimoto ES, Carlucci AR, Arroteia LS, Casarin RV, Saraiva L, Simionato MRL, Mayer MPA. Experimental Inoculation of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii and Its Impact on Alveolar Bone Loss and Oral and Gut Microbiomes. Int J Mol Sci 2024; 25:8090. [PMID: 39125663 PMCID: PMC11312116 DOI: 10.3390/ijms25158090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 08/12/2024] Open
Abstract
Oral bacteria are implicated not only in oral diseases but also in gut dysbiosis and inflammatory conditions throughout the body. The periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa) often occurs in complex oral biofilms with Streptococcus gordonii (Sg), and this interaction might influence the pathogenic potential of this pathogen. This study aims to assess the impact of oral inoculation with Aa, Sg, and their association (Aa+Sg) on alveolar bone loss, oral microbiome, and their potential effects on intestinal health in a murine model. Sg and/or Aa were orally administered to C57Bl/6 mice, three times per week, for 4 weeks. Aa was also injected into the gingiva three times during the initial experimental week. After 30 days, alveolar bone loss, expression of genes related to inflammation and mucosal permeability in the intestine, serum LPS levels, and the composition of oral and intestinal microbiomes were determined. Alveolar bone resorption was detected in Aa, Sg, and Aa+Sg groups, although Aa bone levels did not differ from that of the SHAM-inoculated group. Il-1β expression was upregulated in the Aa group relative to the other infected groups, while Il-6 expression was downregulated in infected groups. Aa or Sg downregulated the expression of tight junction genes Cldn 1, Cldn 2, Ocdn, and Zo-1 whereas infection with Aa+Sg led to their upregulation, except for Cldn 1. Aa was detected in the oral biofilm of the Aa+Sg group but not in the gut. Infections altered oral and gut microbiomes. The oral biofilm of the Aa group showed increased abundance of Gammaproteobacteria, Enterobacterales, and Alloprevotella, while Sg administration enhanced the abundance of Alloprevotella and Rothia. The gut microbiome of infected groups showed reduced abundance of Erysipelotrichaceae. Infection with Aa or Sg disrupts both oral and gut microbiomes, impacting oral and gut homeostasis. While the combination of Aa with Sg promotes Aa survival in the oral cavity, it mitigates the adverse effects of Aa in the gut, suggesting a beneficial role of Sg associations in gut health.
Collapse
Affiliation(s)
- Catarina Medeiros Rocha
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Fernando Henrique Martins
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Division of Periodontics, Faculdade São Leopoldo Mandic, São Leopoldo Mandic Research Institute, Campinas 13045-755, SP, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Ellen Sayuri Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Aline Ramos Carlucci
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Leticia Sandoli Arroteia
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Renato V. Casarin
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Luciana Saraiva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Maria Regina Lorenzetti Simionato
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
6
|
Li J, Shi S, Yan W, Shen Y, Liu C, Xu J, Xu G, Lu L, Song H. Preliminary Mechanism of Glial Maturation Factor β on Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Adv Biol (Weinh) 2024; 8:e2300623. [PMID: 38640923 DOI: 10.1002/adbi.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Recent evidence suggests that glia maturation factor β (GMFβ) is important in the pathogenesis of pulmonary arterial hpertension (PAH), but the underlying mechanism is unknown. To clarify whether GMFβ can be involved in pulmonary vascular remodeling and to explore the role of the IL-6-STAT3 pathway in this process, the expression of GMFβ in PAH rats is examined and the expression of downstream molecules including periostin (POSTN) and interleukin-6 (IL-6) is measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The location and expression of POSTN is also tested in PAH rats using immunofluorescence. It is proved that GMFβ is upregulated in the lungs of PAH rats. Knockout GMFβ alleviated the MCT-PAH by reducing right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and pulmonary vascular remodeling. Moreover, the inflammation of the pulmonary vasculature is ameliorated in PAH rats with GMFβ absent. In addition, the IL-6-STAT3 signaling pathway is activated in PAH; knockout GMFβ reduced POSTN and IL-6 production by inhibiting the IL-6-STAT3 signaling pathway. Taken together, these findings suggest that knockout GMFβ ameliorates PAH in rats by inhibiting the IL-6-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Rehabilitation Medicine, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264199, China
| | - Si Shi
- Department of Ophthalmology, Shanghai Tongji Hospital affiliated to Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xincun Rd, Putuo District, Shanghai, 200072, China
| | - Wenwen Yan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Caiying Liu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Jinyuan Xu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Guotong Xu
- Department of Pharmacology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Lixia Lu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Haoming Song
- Department of General Practice, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| |
Collapse
|
7
|
Sapra L, Saini C, Das S, Mishra PK, Singh A, Mridha AR, Yadav PK, Srivastava RK. Lactobacillus rhamnosus (LR) ameliorates pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) via targeting neutrophils. Clin Immunol 2024; 258:109872. [PMID: 38113963 DOI: 10.1016/j.clim.2023.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure associated with high mortality. Despite progress in our understanding of the pathological mechanism causing the crippling illness, there are currently no targeted pharmaceutical treatments available for it. Recent discoveries have emphasized the existence of a potential nexus between gut and lung health fueling novel approaches including probiotics for the treatment of ARDS. We thus investigated the prophylactic-potential of Lactobacillus rhamnosus-(LR) in lipopolysaccharide (LPS)-induced pulmonary and cecal ligation puncture (CLP) induced extrapulmonary ARDS mice. Our in-vivo findings revealed that pretreatment with LR significantly ameliorated vascular-permeability (edema) of the lungs via modulating the neutrophils along with significantly reducing the expression of inflammatory-cytokines in the BALF, lungs and serum in both pulmonary and extrapulmonary mice-models. Interestingly, our ex-vivo immunofluorescence and flow cytometric data suggested that mechanistically LR via short chain fatty acids (butyrate being the most potent and efficient in ameliorating the pathophysiology of both pulmonary and extra-pulmonary ARDS) targets the phagocytic and neutrophils extracellular traps (NETs) releasing potential of neutrophils. Moreover, our in-vivo data further corroborated our ex-vivo findings and suggested that butyrate exhibits enhanced potential in ameliorating the pathophysiology of ARDS via reducing the infiltration of neutrophils into the lungs. Altogether, our study establishes the prophylactic role of LR and its associated metabolites in the prevention and management of both pulmonary and extrapulmonary ARDS via targeting neutrophils.
Collapse
Affiliation(s)
- Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Chaman Saini
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sneha Das
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, MP 462001, India
| | - Anurag Singh
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asit R Mridha
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pardeep K Yadav
- Central Animal Facility, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
8
|
Kargarpour Z, Cicko S, Köhler TC, Zech A, Stoshikj S, Bal C, Renner A, Idzko M, El-Gazzar A. Blocking P2Y2 purinergic receptor prevents the development of lipopolysaccharide-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1310098. [PMID: 38179047 PMCID: PMC10765495 DOI: 10.3389/fimmu.2023.1310098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality resulting from a direct or indirect injury of the lung. It is characterized by a rapid alveolar injury, lung inflammation with neutrophil accumulation, elevated permeability of the microvascular-barrier leading to an aggregation of protein-rich fluid in the lungs, followed by impaired oxygenation in the arteries and eventual respiratory failure. Very recently, we have shown an involvement of the Gq-coupled P2Y2 purinergic receptor (P2RY2) in allergic airway inflammation (AAI). In the current study, we aimed to elucidate the contribution of the P2RY2 in lipopolysaccharide (LPS)-induced ARDS mouse model. We found that the expression of P2ry2 in neutrophils, macrophages and lung tissue from animals with LPS-induced ARDS was strongly upregulated at mRNA level. In addition, ATP-neutralization by apyrase in vivo markedly attenuated inflammation and blocking of P2RY2 by non-selective antagonist suramin partially decreased inflammation. This was indicated by a reduction in the number of neutrophils, concentration of proinflammatory cytokines in the BALF, microvascular plasma leakage and reduced features of inflammation in histological analysis of the lung. P2RY2 blocking has also attenuated polymorphonuclear neutrophil (PMN) migration into the interstitium of the lungs in ARDS mouse model. Consistently, treatment of P2ry2 deficient mice with LPS lead to an amelioration of the inflammatory response showed by reduced number of neutrophils and concentrations of proinflammatory cytokines. In attempts to identify the cell type specific role of P2RY2, a series of experiments with conditional P2ry2 knockout animals were performed. We observed that P2ry2 expression in neutrophils, but not in the airway epithelial cells or CD4+ cells, was associated with the inflammatory features caused by ARDS. Altogether, our findings imply for the first time that increased endogenous ATP concentration via activation of P2RY2 is related to the pathogenesis of LPS-induced lung inflammation and may represent a potential therapeutic target for the treatment of ARDS and predictably assess new treatments in ARDS.
Collapse
Affiliation(s)
- Zahra Kargarpour
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Sanja Cicko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas C. Köhler
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Slagjana Stoshikj
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Christina Bal
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Andreas Renner
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ahmed El-Gazzar
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Main EN, Cruz TM, Bowlin GL. Mitochondria as a therapeutic: a potential new frontier in driving the shift from tissue repair to regeneration. Regen Biomater 2023; 10:rbad070. [PMID: 37663015 PMCID: PMC10468651 DOI: 10.1093/rb/rbad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Fibrosis, or scar tissue development, is associated with numerous pathologies and is often considered a worst-case scenario in terms of wound healing or the implantation of a biomaterial. All that remains is a disorganized, densely packed and poorly vascularized bundle of connective tissue, which was once functional tissue. This creates a significant obstacle to the restoration of tissue function or integration with any biomaterial. Therefore, it is of paramount importance in tissue engineering and regenerative medicine to emphasize regeneration, the successful recovery of native tissue function, as opposed to repair, the replacement of the native tissue (often with scar tissue). A technique dubbed 'mitochondrial transplantation' is a burgeoning field of research that shows promise in in vitro, in vivo and various clinical applications in preventing cell death, reducing inflammation, restoring cell metabolism and proper oxidative balance, among other reported benefits. However, there is currently a lack of research regarding the potential for mitochondrial therapies within tissue engineering and regenerative biomaterials. Thus, this review explores these promising findings and outlines the potential for mitochondrial transplantation-based therapies as a new frontier of scientific research with respect to driving regeneration in wound healing and host-biomaterial interactions, the current successes of mitochondrial transplantation that warrant this potential and the critical questions and remaining obstacles that remain in the field.
Collapse
Affiliation(s)
- Evan N Main
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Thaiz M Cruz
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| |
Collapse
|
10
|
Garaycochea O, Van Strahlen CR, Alobid I, Mullol J. Pheno-Endotyping Antrochoanal Nasal Polyposis. Curr Allergy Asthma Rep 2023; 23:165-180. [PMID: 36773125 DOI: 10.1007/s11882-023-01066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 02/12/2023]
Abstract
PURPOSE OF REVIEW Antrochoanal polyps (ACPs) are benign polypoid lesions arising from the inner wall of the maxillary sinus and extending into the choana. Although the diagnosis and treatment strategies of ACP have changed since this entity was first described, the underlying pathogenic mechanism of APC is poorly understood. This article reviews the current knowledge of the etiology, inflammatory parameters, and microscopic findings of ACP. RECENT FINDINGS The inflammatory pattern of ACP appears to center around a neutrophilic inflammation T1-dominant endotype. Apart from the inflammatory component of ACP, at the microscopic level, the presence of tissue remodeling, mostly fibrin deposition and edema, and cysts in the epithelium and lamina propria has been described. Although the origin of this T1-dominant endotype immune response of ACPs is not entirely clear, it could be related to a lymphatic obstruction mechanism. This review serves to define a phenotype of ACP with potential endotypes based on the characteristics of the inflammatory parameters, microscopic findings, and hypotheses about the pathogenesis of ACP.
Collapse
Affiliation(s)
- Octavio Garaycochea
- Rhinology and Skull Base Unit, Department of Otorhinolaryngology, Hospital Clinic, IDIBAPS, CIPERES, Barcelona University, Barcelona, Spain.,Department of Otorhinolaryngology, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Camilo Rodríguez Van Strahlen
- Rhinology and Skull Base Unit, Department of Otorhinolaryngology, Hospital Clinic, IDIBAPS, CIPERES, Barcelona University, Barcelona, Spain.
| | - Isam Alobid
- Rhinology and Skull Base Unit, Department of Otorhinolaryngology, Hospital Clinic, IDIBAPS, CIPERES, Barcelona University, Barcelona, Spain.,Unidad Alergo Rino, Centro Médico Teknon, Barcelona, Spain
| | - Joaquim Mullol
- Rhinology and Skull Base Unit, Department of Otorhinolaryngology, Hospital Clinic, IDIBAPS, CIPERES, Barcelona University, Barcelona, Spain
| |
Collapse
|
11
|
Millrine D, Rice CM, Fernandez JU, Jones SA. Tracking the Host Response to Infection in Peritoneal Models of Acute Resolving Inflammation. Methods Mol Biol 2023; 2691:81-95. [PMID: 37355539 DOI: 10.1007/978-1-0716-3331-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Antimicrobial host defense is dependent on the rapid recruitment of inflammatory cells to the site of infection, the elimination of invading pathogens, and the efficient resolution of inflammation that minimizes damage to the host. The peritoneal cavity provides an accessible and physiologically relevant system where the delicate balance of these processes may be studied. Here, we describe murine models of peritoneal inflammation that enable studies of competent antimicrobial immunity and inflammation-associated tissue damage as a consequence of recurrent bacterial challenge. The inflammatory hallmarks of these models reflect the clinical and molecular features of peritonitis seen in renal failure patients on peritoneal dialysis. The development of these models relies on the preparation of a cell-free supernatant derived from an isolate of Staphylococcus epidermidis (termed SES). Intraperitoneal administration of SES induces a Toll-like receptor 2-driven acute inflammatory response that is characterized by an initial transient influx of neutrophils that are replaced by a more sustained recruitment of mononuclear cells and lymphocytes. Adaptation of this model using a repeated administration of SES allows investigations into the development of adaptive immunity and the hallmarks associated with tissue remodelling and fibrosis. These models are therefore clinically relevant and provide exciting opportunities to study innate and adaptive immunity and the response of the stromal tissue compartment to bacterial infection and the ensuing inflammatory reaction.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - Christopher M Rice
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Javier U Fernandez
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
- Systems Immunity University Research Institute, Cardiff University, Cardiff, Wales, UK
| | - Simon A Jones
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK.
- Systems Immunity University Research Institute, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
12
|
Floreste FR, Titon B, Titon SCM, Muxel SM, Figueiredo ACD, Gomes FR, Assis VR. Liver vs. spleen: Time course of organ-dependent immune gene expression in an LPS-stimulated toad (Rhinella diptycha). Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110784. [PMID: 35931313 DOI: 10.1016/j.cbpb.2022.110784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022]
Abstract
The inflammatory response comprises highly orchestrated events that are conserved amongst vertebrate groups. Hepatic and splenic cytokines are major mediators of the systemic inflammatory processes. However, the liver is still neglected as an immune organ in amphibians. This study reports organ-dependent gene expression using an anuran model. We tracked mRNA levels of immune proteins [C1s (subcomponent S of the complement protein 1), IFN-γ, IL-1β, IL-6, and IL-10] at four time-points (1 h, 3 h, 6 h, and 18 h post-injection) in spleens and livers of intraperitoneal LPS-challenged (2 mg/kg) adult male toads (Rhinella diptycha) using independent samples. We found acute C1s up-regulation in the liver 1 h post-injection, with no treatment effect in the spleen. The LPS injection did not show any effect in splenic IFN-γ gene expression while eliciting only a marginal effect in the hepatic tissue. IL-1β was up-regulated in both organs, with the liver initially displaying early expression (1 h and 3 h) and the spleen taking over late expression (18 h). Both organs exhibited similar patterns for IL-6, with early up-regulation (1 h and 3 h) and late peak (18 h). Although IL-10 was early detected and up-regulated only in the liver, both organs showed up-regulation in 6 h and 18 h post-injection. Our results show an exclusive hepatic prominence in complement protein expression during the acute-phase response. Furthermore, hepatic pro-inflammatory cytokine expression was more pronounced in earliest time-points, while the spleen offers a slower and more consistent response overall. Our data provide an organ-integrative outlook into the initial hours of the inflammation in amphibians, confirming the liver's pivotal role as a regulator in the acute-phase of the inflammatory response in amphibians.
Collapse
Affiliation(s)
- Felipe R Floreste
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil.
| | - Braz Titon
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil
| | - Stefanny C M Titon
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil. https://twitter.com/StefannyTiton
| | - Sandra M Muxel
- Laboratory of Neuroimmunology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil. https://twitter.com/SandraMuxel
| | - Aymam C de Figueiredo
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil
| | - Fernando R Gomes
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil
| | - Vania R Assis
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil. https://twitter.com/VaniaRAssis1
| |
Collapse
|
13
|
Majerczyk D, Ayad E, Brewton K, Saing P, Hart P. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci Rep 2022; 42:BSR20220713. [PMID: 36300375 PMCID: PMC9670245 DOI: 10.1042/bsr20220713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder that manifests during early development, impacting individuals through their ways of communicating, social behaviors, and their ability to perform day-to-day activities. There have been different proposed mechanisms on how ASD precipitates within a patient, one of which being the impact cytokines have on fetal development once a mother's immune system has been activated (referred to as maternal immune activation, MIA). The occurrence of ASD has long been associated with elevated levels of several cytokines, including interleukin-6 (IL-6) and interferon gamma (IFN-γ). These proinflammatory cytokines can achieve high systemic levels in response to immune activating pathogens from various extrinsic sources. Transfer of cytokines such as IL-6 across the placental barrier allows accumulation in the fetus, potentially inducing neuroinflammation and consequently altering neurodevelopmental processes. Individuals who have been later diagnosed with ASD have been observed to have elevated levels of IL-6 and other proinflammatory cytokines during gestation. Moreover, the outcome of MIA has been associated with neurological effects such as impaired social interaction and an increase in repetitive behavior in animal models, supporting a mechanistic link between gestational inflammation and development of ASD-like characteristics. The present review attempts to provide a concise overview of the available preclinical and clinical data that suggest cross-talk between IL-6 and IFN-γ through both extrinsic and intrinsic factors as a central mechanism of MIA that may promote the development of ASD.
Collapse
Affiliation(s)
- Daniel Majerczyk
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
- Loyola Medicine, Berwyn, Illinois 60402, U.S.A
| | - Elizabeth G. Ayad
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Kari L. Brewton
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Pichrasmei Saing
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| |
Collapse
|
14
|
Xie Y, Hu Q, Jiang W, Ji W, Chen S, Jin Y, Duan G. Laboratory Indicators for Identifying Hand, Foot, and Mouth Disease Severity: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:1829. [PMID: 36366337 PMCID: PMC9694715 DOI: 10.3390/vaccines10111829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE The purpose of this study is to study laboratory indicators for the identification of hand, foot, and mouth disease (HFMD) severity. METHODS We searched PubMed, Embase, and the Web of Science for literature that was published before May 2022. The main results are presented as forest plots. Subgroup analyses, sensitivity analyses, and publication bias were also performed. RESULTS Our study indicated that white blood cells (WBC) (95%CI: 0.205-0.778), blood glucose (95%CI: 0.505-0.778), lymphocytes (95%CI: 0.072-0.239), creatinine (95%CI: 0.024-0.228), interleukin (IL)-2 (95%CI: 0.192-1.642), IL-6 (95%CI: 0.289-0.776), IL-8 (95%CI: 0.499-0.867), IL-10 (95%CI: 0.226-0.930), interferon-γ (IFN-γ) (95%CI: 0.193-2.584), tumor necrosis factor-α (TNF-α) (95%CI: 1.078-2.715), and creatine kinase MB isoenzyme (CK-MB) (95%CI: 0.571-1.459) were associated with an increased risk of HFMD severity, and the results of the sensitivity analysis of these indicators were stable and free of publication bias. CONCLUSIONS Our results suggest that various deleterious immune and metabolic changes can increase the risk of HFMD severity, which can provide a basis for predicting the prognosis and useful evidence for clinicians to manage patients efficiently.
Collapse
Affiliation(s)
- Yaqi Xie
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanman Hu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Jiang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Engler C, Renna MS, Beccaria C, Silvestrini P, Pirola SI, Pereyra EAL, Baravalle C, Camussone CM, Monecke S, Calvinho LF, Dallard BE. Differential immune response to two Staphylococcus aureus strains with distinct adaptation genotypes after experimental intramammary infection of dairy cows. Microb Pathog 2022; 172:105789. [PMID: 36176246 DOI: 10.1016/j.micpath.2022.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
The aim of this study was to evaluate and compare the ability of two S. aureus strains with different adaptation genotypes (low and high) to the bovine mammary gland (MG) to establish an intramammary infection (IMI) and induce an immune response after an experimental challenge in lactating cows. Two isolates (designated 806 and 5011) from bovine IMI with different genotypic profiles, harboring genes involved in adherence and biofilm production, belonging to different capsular polysaccharide (CP) type, accessory gene regulator (agr) group, pulsotype (PT) and sequence type/clonal complex (ST/CC) were selected. Strains 806 and 5011 were associated with low (nonpersistent-NP) and high (persistent-P) adaptation to the MG, respectively. Strain 806 (NP) was characterized as agr group II, cap5 positive and ST350; strain 5011 (P) agr group I, cap8 positive and CC188. Three groups of clinically healthy cows, 4 cows/treatment group, were inoculated by the intramammary route with strain 806 (NP), strain 5011 (P) and pyrogen-free saline solution. All mammary quarters challenged with strain 806 (NP) developed mild clinical mastitis between 1 and 7 d post inoculation (pi). Quarters challenged with strain 5011 (P) developed a persistent IMI; bacteria were recovered from milk from d 7 pi and up to d 56 pi. In quarters inoculated with strain 806 (NP) the inflammatory response induced was greater and earlier than the one induced by strain 5011 (P), since a somatic cell count (SCC) peak was observed at d 2 pi, while in quarters inoculated with strain 5011 (P) no variations in SCC were observed until d 4 pi reaching the maximum values at d 14 pi; indicating a lower and delayed initial inflammatory response. The highest levels of nitric oxide (NO) and lactoferrin (Lf) detected in milk from quarters inoculated with both S. aureus strains coincided with the highest SCC at the same time periods, indicating an association with the magnitude of inflammation. The high levels of IL-1β induced by strain 806 (NP) were associated with the highest SCC detected (d 2 pi); while quarters inoculated with strain 5011 (P) showed similar IL-1β levels to those found in control quarters. In quarters inoculated with strain 806 (NP) two peaks of IL-6 levels on d 2 and 14 pi were observed; while in quarters inoculated with strain 5011 (P) IL-6 levels were similar to those found in control quarters. The strain 806 (NP) induced a higher total IgG and IgG1 response; while strain 5011 (P) generated a higher IgG2 response (even against the heterologous strain). The present study demonstrated that S. aureus strains with different genotype and adaptability to bovine MG influence the local host immune response and the course and severity of the infectious process.
Collapse
Affiliation(s)
- Carolina Engler
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - María S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Camila Beccaria
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Paula Silvestrini
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Silvana I Pirola
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Elizabet A L Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Celina Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Cecilia M Camussone
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Stefan Monecke
- Institute for Medical Microbiology and Hygiene, TU Dresden, Dresden, Germany; Alere Technologies GmbH, Jena, Germany
| | - Luis F Calvinho
- Cátedra de Enfermedades Infecciosas. Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina.
| |
Collapse
|
16
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
17
|
Abousaad S, Ahmed F, Abouzeid A, Ongeri EM. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep 2022; 10:e15468. [PMID: 36117389 PMCID: PMC9483619 DOI: 10.14814/phy2.15468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Meprin metalloproteinases have been implicated in the pathophysiology of ischemia/reperfusion (IR)-induced kidney injury. Previous in vitro data showed that meprin β proteolytically processes interleukin-6 (IL-6) resulting in its inactivation. Recently, meprin-β was also shown to cleave the IL-6 receptor. The goal of this study was to determine how meprin β expression impacts IL-6 and downstream modulators of the JAK2-STAT3-mediated signaling pathway in IR-induced kidney injury. IR was induced in 12-week-old male wild-type (WT) and meprin β knockout (βKO) mice and kidneys obtained at 24 h post-IR. Real-time PCR, western blot, and immunostaining/microscopy approaches were used to quantify mRNA and protein levels respectively, and immunofluorescence counterstaining with proximal tubule (PT) markers to determine protein localization. The mRNA levels for IL-6, CASP3 and BCL-2 increased significantly in both genotypes. Interestingly, western blot data showed increases in protein levels for IL-6, CASP3, and BCL-2 in the βKO but not in WT kidneys. However, immunohistochemical data showed increases in IL-6, CASP3, and BCL-2 proteins in select kidney tubules in both genotypes, shown to be PTs by immunofluorescence counterstaining. IR-induced increases in p-STAT-3 and p-JAK-2 in βKO at a global level but immunoflourescence counterstaining demonstrated p-JAK2 and p-STAT3 increases in select PT for both genotypes. BCL-2 increased only in the renal corpuscle of WT kidneys, suggesting a role for meprins expressed in leukocytes. Immunohistochemical analysis confirmed higher levels of leukocyte infiltration in WT kidneys when compared to βKO kidneys. The present data demonstrate that meprin β modulates IR-induced kidney injury in part via IL-6/JAK2/STAT3-mediated signaling.
Collapse
Affiliation(s)
- Shaymaa Abousaad
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Faihaa Ahmed
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Ayman Abouzeid
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Elimelda Moige Ongeri
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
18
|
Methyl butyrate attenuates concanavalin A-induced autoimmune hepatitis by inhibiting Th1-cell activation and homing to the liver. Cell Immunol 2022; 378:104575. [DOI: 10.1016/j.cellimm.2022.104575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
|
19
|
Adapen C, Réot L, Nunez N, Cannou C, Marlin R, Lemaître J, d’Agata L, Gilson E, Ginoux E, Le Grand R, Nugeyre MT, Menu E. Local Innate Markers and Vaginal Microbiota Composition Are Influenced by Hormonal Cycle Phases. Front Immunol 2022; 13:841723. [PMID: 35401577 PMCID: PMC8990777 DOI: 10.3389/fimmu.2022.841723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background The female reproductive tract (FRT) mucosa is the first line of defense against sexually transmitted infection (STI). FRT environmental factors, including immune-cell composition and the vaginal microbiota, interact with each other to modulate susceptibility to STIs. Moreover, the menstrual cycle induces important modifications within the FRT mucosa. Cynomolgus macaques are used as a model for the pathogenesis and prophylaxis of STIs. In addition, their menstrual cycle and FRT morphology are similar to women. The cynomolgus macaque vaginal microbiota is highly diverse and similar to dysbiotic vaginal microbiota observed in women. However, the impact of the menstrual cycle on immune markers and the vaginal microbiota in female cynomolgus macaques is unknown. We conducted a longitudinal study covering three menstrual cycles in cynomolgus macaques. The evolution of the composition of the vaginal microbiota and inflammation (cytokine/chemokine profile and neutrophil phenotype) in the FRT and blood was determined throughout the menstrual cycle. Results Cervicovaginal cytokine/chemokine concentrations were affected by the menstrual cycle, with a peak of production during menstruation. We observed three main cervicovaginal neutrophil subpopulations: CD11bhigh CD101+ CD10+ CD32a+, CD11bhigh CD101+ CD10- CD32a+, and CD11blow CD101low CD10- CD32a-, of which the proportion varied during the menstrual cycle. During menstruation, there was an increase in the CD11bhigh CD101+ CD10+ CD32a+ subset of neutrophils, which expressed higher levels of CD62L. Various bacterial taxa in the vaginal microbiota showed differential abundance depending on the phase of the menstrual cycle. Compilation of the factors that vary according to hormonal phase showed the clustering of samples collected during menstruation, characterized by a high concentration of cytokines and an elevated abundance of the CD11bhigh CD101+ CD10+ CD32a+ CD62L+ neutrophil subpopulation. Conclusions We show a significant impact of menstruation on the local environment (cytokine production, neutrophil phenotype, and vaginal microbiota composition) in female cynomolgus macaques. Menstruation triggers increased production of cytokines, shift of the vaginal microbiota composition and the recruitment of mature/activated neutrophils from the blood to the FRT. These results support the need to monitor the menstrual cycle and a longitudinal sampling schedule for further studies in female animals and/or women focusing on the mucosal FRT environment.
Collapse
Affiliation(s)
- Cindy Adapen
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Louis Réot
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | | | - Claude Cannou
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Julien Lemaître
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | | | | | | | - Roger Le Grand
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Marie-Thérèse Nugeyre
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Millrine D, Jenkins RH, Hughes STO, Jones SA. Making sense of IL-6 signalling cues in pathophysiology. FEBS Lett 2022; 596:567-588. [PMID: 34618359 PMCID: PMC9673051 DOI: 10.1002/1873-3468.14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Unravelling the molecular mechanisms that account for functional pleiotropy is a major challenge for researchers in cytokine biology. Cytokine-receptor cross-reactivity and shared signalling pathways are considered primary drivers of cytokine pleiotropy. However, reports epitomized by studies of Jak-STAT cytokine signalling identify interesting biochemical and epigenetic determinants of transcription factor regulation that affect the delivery of signal-dependent cytokine responses. Here, a regulatory interplay between STAT transcription factors and their convergence to specific genomic enhancers support the fine-tuning of cytokine responses controlling host immunity, functional identity, and tissue homeostasis and repair. In this review, we provide an overview of the signalling networks that shape the way cells sense and interpret cytokine cues. With an emphasis on the biology of interleukin-6, we highlight the importance of these mechanisms to both physiological processes and pathophysiological outcomes.
Collapse
Affiliation(s)
- David Millrine
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
- Present address:
Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSir James Black CentreSchool of Life SciencesUniversity of Dundee3rd FloorDundeeUK
| | - Robert H. Jenkins
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Stuart T. O. Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Simon A. Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| |
Collapse
|
21
|
Khalil BA, Shakartalla SB, Goel S, Madkhana B, Halwani R, Maghazachi AA, AlSafar H, Al-Omari B, Al Bataineh MT. Immune Profiling of COVID-19 in Correlation with SARS and MERS. Viruses 2022; 14:v14010164. [PMID: 35062368 PMCID: PMC8778004 DOI: 10.3390/v14010164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major complication of the respiratory illness coronavirus disease 2019, with a death rate reaching up to 40%. The main underlying cause of ARDS is a cytokine storm that results in a dysregulated immune response. This review discusses the role of cytokines and chemokines in SARS-CoV-2 and its predecessors SARS-CoV and MERS-CoV, with particular emphasis on the elevated levels of inflammatory mediators that are shown to be correlated with disease severity. For this purpose, we reviewed and analyzed clinical studies, research articles, and reviews published on PubMed, EMBASE, and Web of Science. This review illustrates the role of the innate and adaptive immune responses in SARS, MERS, and COVID-19 and identifies the general cytokine and chemokine profile in each of the three infections, focusing on the most prominent inflammatory mediators primarily responsible for the COVID-19 pathogenesis. The current treatment protocols or medications in clinical trials were reviewed while focusing on those targeting cytokines and chemokines. Altogether, the identified cytokines and chemokines profiles in SARS-CoV, MERS-CoV, and SARS-CoV-2 provide important information to better understand SARS-CoV-2 pathogenesis and highlight the importance of using prominent inflammatory mediators as markers for disease diagnosis and management. Our findings recommend that the use of immunosuppression cocktails provided to patients should be closely monitored and continuously assessed to maintain the desirable effects of cytokines and chemokines needed to fight the SARS, MERS, and COVID-19. The current gap in evidence is the lack of large clinical trials to determine the optimal and effective dosage and timing for a therapeutic regimen.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
| | - Sarra B. Shakartalla
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
- Faculty of Pharmacy, University of Gezira, Wad Medani 2667, Sudan
| | - Swati Goel
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
| | - Bushra Madkhana
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Azzam A. Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Habiba AlSafar
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; or
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi P.O. Box 389, United Arab Emirates
| | - Basem Al-Omari
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; or
- KU Research and Data Intelligence Support Center (RDISC) AW 8474000331, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: (B.A.-O.); (M.T.A.B.)
| | - Mohammad T. Al Bataineh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; or
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: (B.A.-O.); (M.T.A.B.)
| |
Collapse
|
22
|
Which Therapy for Non-Type(T)2/T2-Low Asthma. J Pers Med 2021; 12:jpm12010010. [PMID: 35055325 PMCID: PMC8779705 DOI: 10.3390/jpm12010010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, the asthmatic population is divided into Type 2-high and non-Type 2/Type 2-low asthmatics, with 50% of patients belonging to one of the two groups. Differently from T2-high, T2-low asthma has not been clearly defined yet, and the T2-low patients are identified on the basis of the absence or non-predominant expression of T2-high biomarkers. The information about the molecular mechanisms underpinning T2-low asthma is scarce, but researchers have recognized as T2-low endotypes type 1 and type 3 immune response, and remodeling events occurring without inflammatory processes. In addition, the lack of agreed biomarkers reprents a challenge for the research of an effective therapy. The first-choice medication is represented by inhaled corticosteroids despite a low efficacy is reported for/in T2-low patients. However, macrolides and long-acting anti-muscarinic drugs have been recognized as efficacious. In recent years, clinical trials targeting biomarkers playing key roles in T3 and T1 immune pathways, alarmins, and molecules involved in neutrophil recruitment have provided conflicting results probably misleading (or biased) in patients' selection. However, further studies are warranted to achieve a precise characterization of T2-low asthma with the aim of defining a tailored therapy for each single asthmatic patient.
Collapse
|
23
|
Magryś A, Bogut A. MicroRNA hsa-let-7a facilitates staphylococcal small colony variants survival in the THP-1 macrophages by reshaping inflammatory responses. Int J Med Microbiol 2021; 311:151542. [PMID: 34864353 DOI: 10.1016/j.ijmm.2021.151542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/16/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Recent studies have provided emerging evidence of the critical involvement of microRNAs in host immune defence against bacterial infection and that likewise the expression of the miRNAs is profoundly impacted by a variety of pathogens to subvert the immune response. Here, we report the role of hsa-let-7a miRNA in response to Staphylococcus epidermidis Small Colony Variants infection. We also assessed whether the expression levels of inflammatory cytokines associated with the hsa-let-7a are manipulated by the pathogen and the effect of the IFN-γ priming on the expression of hsa-let-7a and the fate of SCVs/WTs in infected macrophages. A striking observation was the downregulation of the let-7a miRNA upon challenge of the THP-1 activated cells with the SCV isolates while no significant changes in expression were noticed after the infection of macrophages with their WT counterparts. Staphylococcus epidermidis WT and SCV strains were found to invade and survive in macrophages. A significant reduction in bacterial load for both phenotypes was observed in macrophages treated with let-7a mimic compared to untreated ones. Survival of WTs was augmented in cells treated with the inhibitor in 4 out of 5 strains as compared to the number of bacteria recovered from non-transfected cells. At the same time, let-7a inhibitor did not influence on the survival of SCVs in macrophages as their number was comparable to number recovered from non-transfected cells. When the ratio of both let-7a cytokine targets was compared, anti-inflammatory IL-10 cytokine was induced by SCVs predominantly, while the macrophage challenge with WTs was characterized by the inflammatory cytokine profile with high IL-6 and low IL-10 production. Moreover, the balance between pro-inflammatory and anti-inflammatory cytokines has been expectedly retrieved when macrophages were transfected with let-7a mimic before infection with WT or SCV strains. The results also show that IFN-γ likely regulates the macrophage environment contributing to the inflammatory response and elimination of bacteria from intracellular milieu by augmenting the synthesis of pro-inflammatory cytokines and supressing the anti-inflammatory IL-10. Our work has shown that SCVs have the potential to regulate the let-7a miRNA to balance the pro-inflammatory IL-6 with anti-inflammatory IL-10 and this mechanism is one of the ways in a complex regulatory network adopted by SCVs to promote their survival.
Collapse
Affiliation(s)
- Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, Poland.
| | - Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Poland
| |
Collapse
|
24
|
Krebs R, Tikkanen JM, Raissadati A, Hollmén M, Dhaygude K, Lemström KB. Inhibition of Vascular Endothelial Growth Factor Receptors 1 and 2 Attenuates Natural Killer Cell and Innate Immune Responses in an Experimental Model for Obliterative Bronchiolitis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 192:254-269. [PMID: 34774518 DOI: 10.1016/j.ajpath.2021.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Obliterative bronchiolitis (OB) after lung transplantation is a nonreversible, life-threatening complication. We investigated the role of vascular endothelial growth factor receptor (VEGFR)-1 and -2 in the development of obliterative airway disease (OAD), an experimental model for OB. The nonimmunosuppressed recipients underwent transplantation with fully major histocompatibility complex mismatched heterotopic tracheal allografts and received VEGFR-1 and -2-specific monoclonal antibodies either alone or in combination or rat IgG as a control. The treatment with VEGFR-1- or -2-blocking antibody significantly decreased intragraft mRNA expression of natural killer cell activation markers early after transplantation. This was followed by reduced infiltration of CD11b+ cells and CD4+ T cells as well as down-regulated mRNA expression of proinflammatory chemokines and profibrotic growth factors. However, blocking of both VEGFR-1 and -2 was necessary to reduce luminal occlusion. Furthermore, concomitant inhibition of the calcineurin activation pathway almost totally abolished the development of OAD. This study proposes that blocking of VEGF receptors blunted natural killer cell and innate immune responses early after transplantation and attenuated the development of OAD. The results of this study suggest that further studies on the role of VEGFR-1 and -2 blocking in development of obliterative airway lesions might be rewarding.
Collapse
Affiliation(s)
- Rainer Krebs
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland.
| | - Jussi M Tikkanen
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Department of Cardiothoracic Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Alireza Raissadati
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Maria Hollmén
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Kishor Dhaygude
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Karl B Lemström
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Department of Cardiothoracic Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Naylor D, Sharma A, Li Z, Monteith G, Mallard BA, Bergeron R, Baes C, Karrow NA. Endotoxin-induced cytokine, chemokine and white blood cell profiles of variable stress-responding sheep. Stress 2021; 24:888-897. [PMID: 34259115 DOI: 10.1080/10253890.2021.1954905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Individual variation of the hypothalamic-pituitary-adrenal (HPA) axis response to stress could contribute to variable stress resiliency of livestock. During stress events, the innate immune system can also become activated and work in concert with the neuroendocrine system to restore homeostasis, while minimizing tissue damage. The purpose of this study was to assess immune function in variable stress-responding sheep in response to bacterial lipopolysaccharide (LPS) endotoxin immune-challenge. High (HSR, n = 12), middle (MSR, n = 12), and low-stress responders (LSR, n = 12) were selected from a population of 112 female lambs and classified based on serum cortisol concentration after receiving an intravenous bolus of LPS (400 ng/kg). Blood was collected from the jugular vein at 0 and 4 hrs post-LPS challenge to monitor changes in serum pro- and anti-inflammatory cytokines and chemokines, and white blood cell populations. Rectal temperature was recorded hourly to monitor fever. HSR had the greatest increase in rectal temperature and strongest pro-inflammatory IL-6 and IFN-γ cytokine responses compared to MSR and LSR. HSR and MSR had stronger anti-inflammatory IL-10 cytokine and CCL2 chemokine responses than LSR. White blood cell counts changed between 0 and 4 h; however, no differences were detected among the variable stress response groups. The distinct inflammatory response in variable stress responding sheep could contribute to individual differences in stress resiliency and this warrants investigation in the context of other types of stress.
Collapse
Affiliation(s)
- D Naylor
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - A Sharma
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Z Li
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - G Monteith
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, Guelph, Canada
| | - R Bergeron
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - C Baes
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - N A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| |
Collapse
|
26
|
Jin X, Jian Z, Chen X, Ma Y, Ma H, Liu Y, Gong L, Xiang L, Zhu S, Shu X, Qi S, Li H, Wang K. Short Chain Fatty Acids Prevent Glyoxylate-Induced Calcium Oxalate Stones by GPR43-Dependent Immunomodulatory Mechanism. Front Immunol 2021; 12:729382. [PMID: 34675921 PMCID: PMC8523925 DOI: 10.3389/fimmu.2021.729382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Calcium oxalate (CaOx) stones are the most common type of kidney stones and are associated with high recurrence, short chain fatty acids (SCFAs), and inflammation. However, it remains uncertain whether SCFAs affect the formation of CaOx stones through immunomodulation. We first performed mass cytometry (CyTOF) and RNA sequencing on kidney immune cells with glyoxylate-induced CaOx crystals (to elucidate the landscape of the associated immune cell population) and explored the role of SCFAs in renal CaOx stone formation through immunomodulation. We identified 29 distinct immune cell subtypes in kidneys with CaOx crystals, where CX3CR1+CD24- macrophages significantly decreased and GR1+ neutrophils significantly increased. In accordance with the CyTOF data, RNA sequencing showed that most genes involved were related to monocytes and neutrophils. SCFAs reduced kidney CaOx crystals by increasing the frequency of CX3CR1+CD24- macrophages and decreasing GR1+ neutrophil infiltration in kidneys with CaOx crystals, which was dependent on the gut microbiota. GPR43 knockdown by transduction with adeno-associated virus inhibited the alleviation of crystal formation and immunomodulatory effects in the kidney, due to SCFAs. Moreover, CX3CR1+CD24- macrophages regulated GR1+ neutrophils via GPR43. Our results demonstrated a unique trilateral relationship among SCFAs, immune cells, and the kidneys during CaOx formation. These findings suggest that future immunotherapies may be used to prevent kidney stones using SCFAs.
Collapse
Affiliation(s)
- Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Ma
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Hongwen Ma
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Lina Gong
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Liyuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Shiyu Zhu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoling Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shiqian Qi
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Heise D, Derrac Soria A, Hansen S, Dambietz C, Akbarzadeh M, Berg AF, Waetzig GH, Jones SA, Dvorsky R, Ahmadian MR, Scheller J, Moll JM. Selective inhibition of IL-6 trans-signaling by a miniaturized, optimized chimeric soluble gp130 inhibits T H17 cell expansion. Sci Signal 2021; 14:eabc3480. [PMID: 34404751 DOI: 10.1126/scisignal.abc3480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cytokine interleukin-6 (IL-6) signals through three mechanisms called classic signaling, trans-signaling, and trans-presentation. IL-6 trans-signaling is distinctly mediated through a soluble form of its transmembrane receptor IL-6R (sIL-6R) and the coreceptor gp130 and is implicated in multiple autoimmune diseases. Although a soluble form of gp130 (sgp130) inhibits only IL-6 trans-signaling, it also blocks an analogous trans-signaling mechanism of IL-11 and its soluble receptor sIL-11R. Here, we report miniaturized chimeric soluble gp130 variants that efficiently trap IL-6:sIL-6R but not IL-11:sIL-11R complexes. We designed a novel IL-6 trans-signaling trap by fusing a miniaturized sgp130 variant to an IL-6:sIL-6R complex-binding nanobody and the Fc portion of immunoglobulin G (IgG). This trap, called cs-130Fc, exhibited improved inhibition of as well as increased selectivity for IL-6 trans-signaling compared to the conventional fusion protein sgp130Fc. We introduced affinity-enhancing mutations in cs-130Fc and sgp130Fc that further improved selectivity toward IL-6 trans-signaling. Moreover, cs-130Fc efficiently inhibited the expansion of T helper 17 (TH17) cells in cultures of mouse CD4+ T cells treated with IL-6:sIL-6R. Thus, these variants may provide or lead to the development of more precisely targeted therapeutics for inflammatory disorders associated with IL-6 trans-signaling.
Collapse
Affiliation(s)
- Denise Heise
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Alicia Derrac Soria
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Selina Hansen
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Christine Dambietz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Mohammad Akbarzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Anna F Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Georg H Waetzig
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
- CONARIS Research Institute AG, Kiel 24118, Germany
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| |
Collapse
|
28
|
Li C, He K, Yin M, Zhang Q, Lin J, Niu Y, Wang Q, Xu Q, Jiang N, Zhao G. LOX-1 Regulates Neutrophil Apoptosis and Fungal Load in A. Fumigatus Keratitis. Curr Eye Res 2021; 46:1800-1811. [PMID: 34264144 DOI: 10.1080/02713683.2021.1948063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To determine whether LOX-1 regulates neutrophil apoptosis and fungal load in A. fumigatus keratitis. METHODS Fas, FasL, CASP3, CASP8, CASP9 and BCL2 were tested in normal and infected corneas of C57BL/6 mice. Mice corneas were infected with A. fumigatus with or without pretreatment of LOX-1 neutralizing antibody or inhibitor (Poly I). Clinical score was recored and HE staining was tested. Fungal load in mice corneas was observed by plate counting. Poly morphonuclear neutrophilic leukocytes (PMNs) were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of LOX-1 neutralizing antibody or Poly I. PCR, western blot and immunostaining tested expression of Fas, FasL, CASP3, CASP8, CASP9, BCL2 and cleaved caspase-3. PMNs infiltration and TUNEL-positive cells were assessed by immunofluorescent staining. Flow cytometry assay tested the percentage of apoptosis neutrophils. RESULTS Fas, Fas ligand, caspase-8, caspase-9 and caspase-3 mRNA levels were significantly higher in C57BL/6 mice corneas infected with A. fumigatus than normal corneas. Poly I treatment alleviated the severity and decreased clinical score at 3, 5 and 7 days post infecrion (p.i.). HE staining showed less infiltration in corneal tissue after LOX-1 inhibition. Plate counting experiment showed that number of viable fungus in corneas of Poly I treated group was significantly less than control group. LOX-1 neutralizing antibody or Poly I treatment significantly decreased neutrophil infiltration, the quantity of TUNEL-positive cells, the expression of Fas, Fas ligand, caspase-8, caspase-9, caspase-3, cleaved caspase-3 and the percentage of apoptosis neutrophils compared with control corneas. LOX-1 neutralizing antibody treatment significantly decreased Fas, FasL, CASP3, CASP8, CASP9 and cleaved caspase-3 expression in neutrophils. CONCLUSION LOX-1 inhibition decrease neutrophil apoptosis and fungal load in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kun He
- Department of Ophthalmology, Zhejiang Quhua Hospital Quzhou, Zhejiang, China
| | - Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiuqiu Zhang
- Department of Ophthalmology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yawen Niu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Mateos-Quiros CM, Garrido-Jimenez S, Álvarez-Hernán G, Diaz-Chamorro S, Barrera-Lopez JF, Francisco-Morcillo J, Roman AC, Centeno F, Carvajal-Gonzalez JM. Junctional Adhesion Molecule 3 Expression in the Mouse Airway Epithelium Is Linked to Multiciliated Cells. Front Cell Dev Biol 2021; 9:622515. [PMID: 34395412 PMCID: PMC8355548 DOI: 10.3389/fcell.2021.622515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Tight-junction (TJ) proteins are essential for establishing the barrier function between neighbor epithelial cells, but also for recognition of pathogens or cell migration. Establishing the expression pattern and localization of different TJ proteins will help to understand the development and physiology of the airway. Here we identify that the junctional adhesion molecule 3 (Jam3) expression is restricted to multiciliated cells (MCCs) in the airway epithelium. In vitro, Jam3 expression varies along airway basal stem cell (BSC) differentiation and upon DAPT treatment or IL6 exposure. However, Jam3 is not required for BSC differentiation to specific cell types. In addition, we found that MCC lacking Jam3 display normal cilia morphology and cilia beating frequency with a delay in BB assembly/positioning in MCCs during differentiation. Remarkably, Jam3 in MCC is mostly localized to subapical organelles, which are negative for the apical recycling endosome marker Rab11 and positive for EEA1. Our data show that Jam3 expression is connected to mature MCC in the airway epithelium and suggest a Jam3 role unrelated to its known barrier function.
Collapse
Affiliation(s)
- Clara Maria Mateos-Quiros
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Selene Diaz-Chamorro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Juan Francisco Barrera-Lopez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Angel Carlos Roman
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
30
|
Tang Y, Sun J, Pan H, Yao F, Yuan Y, Zeng M, Ye G, Yang G, Zheng B, Fan J, Pan Y, Zhao Z, Guo S, Liu Y, Liao F, Duan Y, Jiao X, Li Y. Aberrant cytokine expression in COVID-19 patients: Associations between cytokines and disease severity. Cytokine 2021; 143:155523. [PMID: 33840589 PMCID: PMC8011640 DOI: 10.1016/j.cyto.2021.155523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/12/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
Cytokines play pleiotropic, antagonistic, and collaborative in viral disease. The high morbidity and mortality of coronavirus disease 2019 (COVID-19) make it a significant threat to global public health. Elucidating its pathogenesis is essential to finding effective therapy. A retrospective study was conducted on 71 patients hospitalized with COVID-19. Data on cytokines, T lymphocytes, and other clinical and laboratory characteristics were collected from patients with variable disease severity. The effects of cytokines on the overall survival (OS) and event-free survival (EFS) of patients were analyzed. The critically severe and severe patients had higher infection indexes and significant multiple organ function abnormalities than the mild patients (P < 0.05). IL-6 and IL-10 were significantly higher in the critically severe patients than in the severe and mild patients (P < 0.05). IL-6 and IL-10 were closely associated with white blood cells, neutrophils, T lymphocyte subsets, D-D dimer, blood urea nitrogen, complement C1q, procalcitonin C-reactive protein. Moreover, the IL-6 and IL-10 levels were closely correlated to dyspnea and dizziness (P < 0.05). The patients with higher IL-10 levels had shorter OS than the group with lower levels (P < 0.05). The older patients with higher levels of single IL-6 or IL-10 tended to have shorter EFS (P < 0.05), while the patients who had more elevated IL-6 and IL-10 had shorter OS (P < 0.05). The Cox proportional hazard model revealed that IL-6 was the independent factor affecting EFS. IL-6 and IL-10 play crucial roles in COVID-19 prognosis.
Collapse
Affiliation(s)
- Yueting Tang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Jiayu Sun
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Huaqin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67813517, China.
| | - Fen Yao
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Yumeng Yuan
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Mi Zeng
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Guangming Ye
- Center for Clinical Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Gui Yang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Bokun Zheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Junli Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yunbao Pan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Ziwu Zhao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Shuang Guo
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yinjuan Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Fanlu Liao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yongwei Duan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Xiaoyang Jiao
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| |
Collapse
|
31
|
The pro-apoptotic ARTS protein induces neutrophil apoptosis, efferocytosis, and macrophage reprogramming to promote resolution of inflammation. Apoptosis 2021; 25:558-573. [PMID: 32564202 DOI: 10.1007/s10495-020-01615-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ARTS (Sept4_i2) is a pro-apoptotic protein and a product of the Sept4 gene. ARTS acts upstream of mitochondria to initiate caspase activation. ARTS induces apoptosis by specifically binding XIAP and allowing de-repression of active caspases required for Mitochondrial Outer Membrane Permeabilzation (MOMP). Moreover, ARTS promotes apoptosis by inducing ubiquitin-mediated degradation of both major anti-apoptotic proteins XIAP and Bcl-2. In the resolution phase of inflammation, the infiltrating leukocytes, which execute the acute innate response, undergo apoptosis and are subsequently cleared by phagocytic macrophages (i.e. efferocytosis). In this course, macrophages undergo reprogramming from inflammatory, to anti-inflammatory, and eventually to resolving macrophages that leave the injury sites. Since engulfment of apoptotic leukocytes is a key signaling step in macrophage reprogramming and resolution of inflammation, we hypothesized that a failed apoptosis in leukocytes in vivo would result in an impaired resolution process. To test this hypothesis, we utilized the Sept4/ARTS-/- mice, which exhibit resistance to apoptosis in many cell types. During zymosan A-induced peritonitis, Sept4/ARTS-/- mice exhibited impaired resolution of inflammation, characterized by reduced neutrophil apoptosis, macrophage efferocytosis and expression of pro-resolving mediators. This was associated with increased pro-inflammatory cytokines and reduced anti-inflammatory cytokines, secreted by resolution-phase macrophages. Moreover, ARTS overexpression in leukocytes in vitro promoted an anti-inflammatory behavior. Overall, our results suggest that ARTS is a key master-regulator necessary for neutrophil apoptosis, macrophage efferocytosis and reprogramming to the pro-resolving phenotype during the resolution of inflammation.
Collapse
|
32
|
Fantini MC, Guadagni I. From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: Pathogenesis and impact of current therapies. Dig Liver Dis 2021; 53:558-565. [PMID: 33541800 DOI: 10.1016/j.dld.2021.01.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The risk of colorectal cancer (CRC) is higher in patients with inflammatory bowel disease (IBD). Population-based data from patients with ulcerative colitis (UC) estimate that the risk of CRC is approximately 2- to 3-fold that of the general population; patients with Crohn's disease appear to have a similar increased risk. However, the true extent of colitis-associated cancer (CAC) in undertreated IBD is unclear. Data suggest that the size (i.e., severity and extent) and persistence of the inflammatory process is largely responsible for the development of CRC in IBD. As patients with IBD and CRC have a worse prognosis than those without a history of IBD, the impact of current therapies for IBD on CAC is of importance. Chronic inflammation of the gut has been shown to increase the risk of developing CAC in both UC and CD. Therefore, control of inflammation is pivotal to the prevention of CAC. This review presents an overview of the current knowledge of CAC in IBD patients, focusing on the role of inflammation in the pathogenesis of CAC and the potential for IBD drugs to interfere with the process of carcinogenesis by reducing the inflammatory process or by modulating pathways directly involved in carcinogenesis.
Collapse
Affiliation(s)
- Massimo Claudio Fantini
- Department of Medical Science and Public Health, Gastroenterology Unit, University of Cagliari, Cittadella Universitaria di Monserrato - Asse Didattico I, SS 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy.
| | | |
Collapse
|
33
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
34
|
Acosta-Ampudia Y, Monsalve DM, Rojas M, Rodríguez Y, Gallo JE, Salazar-Uribe JC, Santander MJ, Cala MP, Zapata W, Zapata MI, Manrique R, Pardo-Oviedo JM, Camacho B, Ramírez-Santana C, Anaya JM. COVID-19 convalescent plasma composition and immunological effects in severe patients. J Autoimmun 2021; 118:102598. [PMID: 33524876 PMCID: PMC7826092 DOI: 10.1016/j.jaut.2021.102598] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023]
Abstract
Convalescent plasma (CP) has emerged as a treatment for COVID-19. However, the composition and mechanism of action are not fully known. Therefore, we undertook a two-phase controlled study in which, first the immunological and metabolomic status of recovered and severe patients were evaluated. Secondly, the 28-day effect of CP on the immune response in severe patients was assessed. Nineteen recovered COVID-19 patients, 18 hospitalized patients with severe disease, and 16 pre-pandemic controls were included. Patients with severe disease were treated with CP transfusion and standard therapy (i.e., plasma recipients, n = 9) or standard therapy alone (n = 9). Clinical and biological assessments were done on day 0 and during follow-up on days 4, 7, 14, and 28. Clinical parameters, viral load, total immunoglobulin (Ig) G and IgA anti-S1-SARS-CoV-2 antibodies, neutralizing antibodies (NAbs), autoantibodies, cytokines, T and B cells, and metabolomic and lipidomic profiles were examined. Total IgG and IgA anti-S1-SARS-CoV-2 antibodies were key factors for CP selection and correlated with NAbs. In severe COVID-19 patients, mostly interleukin (IL)-6 (P = <0.0001), IL-10 (P = <0.0001), IP-10 (P = <0.0001), fatty acyls and glycerophospholipids were higher than in recovered patients. Latent autoimmunity and anti-IFN-α antibodies were observed in both recovered and severe patients. COVID-19 CP induced an early but transient cytokine profile modification and increases IgG anti-S1-SARS-CoV-2 antibodies. At day 28 post-transfusion, a decrease in activated, effector and effector memory CD4+ (P < 0.05) and activated and effector CD8+ (P < 0.01) T cells and naïve B cells (P = 0.001), and an increase in non-classical memory B cells (P=<0.0001) and central memory CD4+ T cells (P = 0.0252) were observed. Moreover, IL-6/IFN-γ (P = 0.0089) and IL-6/IL-10 (P = 0.0180) ratios decreased in plasma recipients compared to those who received standard therapy alone. These results may have therapeutic implications and justify further post-COVID-19 studies.
Collapse
Affiliation(s)
- Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | | | | | - María José Santander
- Metabolomics Core Facility-MetCore, Vicepresidency for Research, Universidad de los Andes, Bogota, Colombia
| | - Mónica P Cala
- Metabolomics Core Facility-MetCore, Vicepresidency for Research, Universidad de los Andes, Bogota, Colombia
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - María Isabel Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Rubén Manrique
- Epidemiology and Biostatistics Research Group, Universidad CES, Medellin, Colombia
| | | | - Bernardo Camacho
- Instituto Distrital de Ciencia Biotecnología e Investigación en Salud, IDCBIS, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia.
| |
Collapse
|
35
|
Florentin J, Zhao J, Tai YY, Vasamsetti SB, O’Neil SP, Kumar R, Arunkumar A, Watson A, Sembrat J, Bullock GC, Sanders L, Kassa B, Rojas M, Graham BB, Chan SY, Dutta P. Interleukin-6 mediates neutrophil mobilization from bone marrow in pulmonary hypertension. Cell Mol Immunol 2021; 18:374-384. [PMID: 33420357 PMCID: PMC8027442 DOI: 10.1038/s41423-020-00608-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/21/2020] [Indexed: 01/29/2023] Open
Abstract
Myeloid cells, such as neutrophils, are produced in the bone marrow in high quantities and are important in the pathogenesis of vascular diseases such as pulmonary hypertension (PH). Although neutrophil recruitment into sites of inflammation has been well studied, the mechanisms of neutrophil egress from the bone marrow are not well understood. Using computational flow cytometry, we observed increased neutrophils in the lungs of patients and mice with PH. Moreover, we found elevated levels of IL-6 in the blood and lungs of patients and mice with PH. We observed that transgenic mice overexpressing Il-6 in the lungs displayed elevated neutrophil egress from the bone marrow and exaggerated neutrophil recruitment to the lungs, resulting in exacerbated pulmonary vascular remodeling, and dysfunctional hemodynamics. Mechanistically, we found that IL-6-induced neutrophil egress from the bone marrow was dependent on interferon regulatory factor 4 (IRF-4)-mediated CX3CR1 expression in neutrophils. Consequently, Cx3cr1 genetic deficiency in hematopoietic cells in Il-6-transgenic mice significantly reduced neutrophil egress from bone marrow and decreased neutrophil counts in the lungs, thus ameliorating pulmonary remodeling and hemodynamics. In summary, these findings define a novel mechanism of IL-6-induced neutrophil egress from the bone marrow and reveal a new therapeutic target to curtail neutrophil-mediated inflammation in pulmonary vascular disease.
Collapse
Affiliation(s)
- Jonathan Florentin
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - Jingsi Zhao
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - Yi-Yin Tai
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - Sathish Babu Vasamsetti
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - Scott P. O’Neil
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - Rahul Kumar
- grid.266102.10000 0001 2297 6811Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, Building 100, 2nd floor, 1001 Potrero Ave, San Francisco, CA USA
| | - Anagha Arunkumar
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - Annie Watson
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - John Sembrat
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Grant C. Bullock
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA ,grid.412689.00000 0001 0650 7433Division of Hematopathology, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - Linda Sanders
- grid.430503.10000 0001 0703 675XDepartment of Medicine, Anschutz Medical Campus, Building RC2, 9th floor, 12700 E 19th Ave, Aurora, CO 80045 USA
| | - Biruk Kassa
- grid.266102.10000 0001 2297 6811Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, Building 100, 2nd floor, 1001 Potrero Ave, San Francisco, CA USA
| | - Mauricio Rojas
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Brian B. Graham
- grid.430503.10000 0001 0703 675XDepartment of Medicine, Anschutz Medical Campus, Building RC2, 9th floor, 12700 E 19th Ave, Aurora, CO 80045 USA
| | - Stephen Y. Chan
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA
| | - Partha Dutta
- grid.412689.00000 0001 0650 7433Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
36
|
Chen L, Xu P, Xiao Q, Chen L, Li S, Jian JM, Zhong YB. Sunitinib malate inhibits intestinal tumor development in male Apc Min/+ mice by down-regulating inflammation-related factors with suppressing β-cateinin/c-Myc pathway and re-balancing Bcl-6 and Caspase-3. Int Immunopharmacol 2021; 90:107128. [PMID: 33191180 DOI: 10.1016/j.intimp.2020.107128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Sunitinib is a tyrosine kinase inhibitor for many tumors. Inflammation is one of the most important factors in the development of intestinal tumors. Many inflammation-related factors are regulated by tyrosine kinase receptors. It is reasonable to hypothesize that sunitinib can regulate the development of intestinal tumors by regulating the expression and/or activity of inflammation-related factors. Here, ApcMin/+ male mouse model was used to investigate the effect and mechanism of sunitinib malate against intestinal cancer. Results show that compared to vehicle, after sunitinib malate treatment, overall survival of ApcMin/+ mice was lengthened up to 25 days, with a gain of body weight, reduction of spleen/body weight index, and RBC, WBC and HGC regulated to normal levels of wild type mice, and a number of polyps no less than 1 mm significantly reduced. Meanwhile, in the intestines, the nuclear β-Catenin protein and c-Myc mRNA were both down-regulated, and Bcl-6 was significantly reduced with Caspase-3 up regulated. Furthermore, inflammation-related factors including IL-6, TNF-α, IL-1α, IL-1β and IFN-γ were down-regulated at mRNA levels in the intestines. These results suggest that sunitinib malate can significantly improve the survival status and inhibit intestinal tumor development in male ApcMin/+ mice, through inhibiting inflammation-related factors, while suppressing β-cateinin/c-Myc pathway and re-balancing protein levels of Bcl-6 and Caspase-3.
Collapse
Affiliation(s)
- Lai Chen
- Integrated Chinese & Western Medicine Oncology Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Pan Xu
- Integrated Chinese & Western Medicine Oncology Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- Research and Development Department of Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China
| | - Shanshan Li
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China
| | - Ji-Mo Jian
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan, Shandong 250012, China; Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - You-Bao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
37
|
Guimarães ES, Martins JM, Gomes MTR, Cerqueira DM, Oliveira SC. Lack of Interleukin-6 Affects IFN-γ and TNF-α Production and Early In Vivo Control of Brucella abortus Infection. Pathogens 2020; 9:pathogens9121040. [PMID: 33322581 PMCID: PMC7764695 DOI: 10.3390/pathogens9121040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine promptly produced in response to infections, which contributes to host defense through the stimulation of acute phase immune responses. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals and triggers a robust immune response, characterized by the production of inflammatory cytokines. However, the mechanisms of IL-6-related immune responses in the context of Brucella infections are not completely understood. In this report, we describe an increased susceptibility of IL-6 knockout (KO) mice in the early phase of Brucella infection. Furthermore, we demonstrate that IL-6 is required for interferon (IFN)-γ and tumor necrosis factor (TNF)-α induction by infected splenocytes, indicating a protective role for IL-6 against B. abortus that parallels with Th1 type of immune response. Additionally, IL-6 KO mice exhibited reduced splenomegaly during the early phase of the infection. Corroborating this result, IL-6 KO mice displayed reduced numbers of macrophages, dendritic cells, and neutrophils in the spleen and reduced myeloperoxidase activity in the liver compared to wild-type infected mice. However, we demonstrate that IL-6 is not involved in B. abortus intracellular restriction in mouse macrophages. Taken together, our findings demonstrate that IL-6 contributes to host resistance during the early phase of B. abortus infection in vivo, and suggest that its protective role maybe partially mediated by proinflammatory immune responses and immune cell recruitment.
Collapse
Affiliation(s)
- Erika S. Guimarães
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.M.M.); (M.T.R.G.); (D.M.C.)
| | - Jéssica M. Martins
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.M.M.); (M.T.R.G.); (D.M.C.)
| | - Marco Túlio R. Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.M.M.); (M.T.R.G.); (D.M.C.)
| | - Daiane M. Cerqueira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.M.M.); (M.T.R.G.); (D.M.C.)
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.M.M.); (M.T.R.G.); (D.M.C.)
- Correspondence:
| |
Collapse
|
38
|
Abstract
♦ Background The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of the peritoneal mesothelial cell. Mesothelial cells isolated from omental tissue have immunohistochemical markers that are identical to those of mesothelial stem cells, and omental mesothelial cells can be cultivated in vitro to study changes to their biologic functions in the setting of PD. ♦ Method The present article describes the structure and function of mesothelial cells in the normal peritoneum and details the morphologic changes that occur after the introduction of PD. Furthermore, this article reviews the literature of mesothelial cell culture and the limitations of in vitro studies. ♦ Results The mesothelium is now considered to be a dynamic membrane that plays a pivotal role in the homeostasis of the peritoneal cavity, contributing to the control of fluid and solute transport, inflammation, and wound healing. These functional properties of the mesothelium are compromised in the setting of PD. Cultures of peritoneal mesothelial cells from omental tissue provide a relevant in vitro model that allows researchers to assess specific molecular pathways of disease in a distinct population of cells. Structural and functional attributes of mesothelial cells are discussed in relation to long-term culture, proliferation potential, age of tissue donor, use of human or animal in vitro models, and how the foregoing factors may influence in vitro data. ♦ Conclusions The ability to propagate mesothelial cells in culture has resulted, over the past two decades, in an explosion of mesothelial cell research pertaining to PD and peritoneal disorders. Independent researchers have highlighted the potential use of mesothelial cells as targets for gene therapy or transplantation in the search to provide therapeutic strategies for the preservation of the mesothelium during chemical or bacterial injury.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| | - Chan Tak Mao
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
39
|
Balzer MS. Molecular pathways in peritoneal fibrosis. Cell Signal 2020; 75:109778. [PMID: 32926960 DOI: 10.1016/j.cellsig.2020.109778] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/02/2023]
Abstract
Peritoneal dialysis (PD) is a renal replacement therapy for patients with end-stage renal disease that is equivalent to hemodialysis with respect to adequacy, mortality, and other outcome parameters, yet providing superior quality-of-life measures and cost savings. However, long-term usage of the patient's peritoneal membrane as a dialyzer filter is unphysiological and leads to peritoneal fibrosis, which is a major factor of patient morbidity and PD technique failure, resulting in a transfer to hemodialysis or death. Peritoneal fibrosis pathophysiology involves chronic inflammation and the fibrotic process itself. Frequently, inflammation precedes membrane fibrosis development, although a bidirectional relationship of one inducing the other exists. This review aims at highlighting the histopathological definition of peritoneal fibrosis, outlining the interplay of fibrosis, angiogenesis and epithelial-to-mesenchymal transition (EMT), delineating important fibrogenic pathways involving Smad-dependent and Smad-independent transforming growth factor-β (TGF-β) as well as connective tissue growth factor (CTGF) signaling, and summarizing historic and recent studies of inflammatory pathways involving NOD-like receptor protein 3 (NLRP3)/interleukin (IL)-1β, IL-6, IL-17, and other cytokines.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
40
|
Gagliardi I, Patella G, Michael A, Serra R, Provenzano M, Andreucci M. COVID-19 and the Kidney: From Epidemiology to Clinical Practice. J Clin Med 2020; 9:E2506. [PMID: 32759645 PMCID: PMC7464116 DOI: 10.3390/jcm9082506] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023] Open
Abstract
The new respiratory infectious disease coronavirus disease 2019 (COVID-19) that originated in Wuhan, China, in December 2019 and caused by a new strain of zoonotic coronavirus, named severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), to date has killed over 630,000 people and infected over 15,000,000 worldwide. Most of the deceased patients had pre-existing comorbidities; over 20% had chronic kidney disease (CKD). Furthermore, although SARS-CoV-2 infection is characterized mainly by diffuse alveolar damage and acute respiratory failure, acute kidney injury (AKI) has developed in a high percentage of cases. As AKI has been shown to be associated with worse prognosis, we believe that the impact of SARS-CoV-2 on the kidney should be investigated. This review sets out to describe the main renal aspects of SARS-CoV-2 infection and the role of the virus in the development and progression of kidney damage. In this article, attention is focused on the epidemiology, etiology and pathophysiological mechanisms of kidney damage, histopathology, clinical features in nephropathic patients (CKD, hemodialysis, peritoneal dialysis, AKI, transplantation) and prevention and containment strategies. Although there remains much more to be learned with regards to this disease, nonetheless it is our hope that this review will aid in the understanding and management of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ida Gagliardi
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| | - Gemma Patella
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| | - Ashour Michael
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Provenzano
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (I.G.); (G.P.); (A.M.); (M.P.)
| |
Collapse
|
41
|
Lagunas-Rangel FA, Chávez-Valencia V. High IL-6/IFN-γ ratio could be associated with severe disease in COVID-19 patients. J Med Virol 2020; 92:1789-1790. [PMID: 32297995 PMCID: PMC7262117 DOI: 10.1002/jmv.25900] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico, Mexico
| | - Venice Chávez-Valencia
- Department of Nephrology, Hospital General Regional Hospital No. 1, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| |
Collapse
|
42
|
Catar RA, Chen L, Cuff SM, Kift-Morgan A, Eberl M, Kettritz R, Kamhieh-Milz J, Moll G, Li Q, Zhao H, Kawka E, Zickler D, Parekh G, Davis P, Fraser DJ, Dragun D, Eckardt KU, Jörres A, Witowski J. Control of neutrophil influx during peritonitis by transcriptional cross-regulation of chemokine CXCL1 by IL-17 and IFN-γ. J Pathol 2020; 251:175-186. [PMID: 32232854 DOI: 10.1002/path.5438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/08/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Neutrophil infiltration is a hallmark of peritoneal inflammation, but mechanisms regulating neutrophil recruitment in patients with peritoneal dialysis (PD)-related peritonitis are not fully defined. We examined 104 samples of PD effluent collected during acute peritonitis for correspondence between a broad range of soluble parameters and neutrophil counts. We observed an association between peritoneal IL-17 and neutrophil levels. This relationship was evident in effluent samples with low but not high IFN-γ levels, suggesting a differential effect of IFN-γ concentration on neutrophil infiltration. Surprisingly, there was no association of neutrophil numbers with the level of CXCL1, a key IL-17-induced neutrophil chemoattractant. We investigated therefore the production of CXCL1 by human peritoneal mesothelial cells (HPMCs) under in vitro conditions mimicking clinical peritonitis. Stimulation of HPMCs with IL-17 increased CXCL1 production through induction of transcription factor SP1 and activation of the SP1-binding region of the CXCL1 promoter. These effects were amplified by TNFα. In contrast, IFN-γ dose-dependently suppressed IL-17-induced SP1 activation and CXCL1 production through a transcriptional mechanism involving STAT1. The SP1-mediated induction of CXCL1 was also observed in HPMCs exposed to PD effluent collected during peritonitis and containing IL-17 and TNFα, but not IFN-γ. Supplementation of the effluent with IFN-γ led to a dose-dependent activation of STAT1 and a resultant inhibition of SP1-induced CXCL1 expression. Transmesothelial migration of neutrophils in vitro increased upon stimulation of HPMCs with IL-17 and was reduced by IFN-γ. In addition, HPMCs were capable of binding CXCL1 at their apical cell surface. These observations indicate that changes in relative peritoneal concentrations of IL-17 and IFN-γ can differently engage SP1-STAT1, impacting on mesothelial cell transcription of CXCL1, whose release and binding to HPMC surface may determine optimal neutrophil recruitment and retention during peritonitis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rusan A Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Lei Chen
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
| | - Simone M Cuff
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ann Kift-Morgan
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Max-Delbrück-Center für Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin, Berlin, Germany
- Julius Wolff Institute, Charité Universitätsmedizin, Berlin, Germany
| | - Qing Li
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
| | - Gita Parekh
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedford, UK
| | - Paul Davis
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedford, UK
| | - Donald J Fraser
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
- Wales Kidney Research Unit, Cardiff University, Cardiff, UK
| | - Duska Dragun
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
| | - Achim Jörres
- Department of Medicine I, Nephrology, Transplantation and Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Cologne, Germany
| | - Janusz Witowski
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Germany
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
43
|
Jing H, Hsu WL, Wu VC, Tsai HJ, Tsai SF, Tsai PSJ, Lai TS, Lee YJ. Urine hemojuvelin in cats with naturally occurring kidney disease. J Vet Intern Med 2020; 34:1222-1230. [PMID: 32324955 PMCID: PMC7255673 DOI: 10.1111/jvim.15781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soluble-type hemojuvelin in serum and urine has been shown to be a biomarker in humans for chronic kidney disease (CKD) and acute kidney injury (AKI). No similar research has been conducted on cats. OBJECTIVE Urine hemojuvelin (u-hemojuvelin) can be used as a clinical indicator for cats with various renal diseases. ANIMALS Eighteen healthy cats, 10 cats with AKI, 21 cats with acute-on-chronic kidney injury (ACKI), and 45 cats with CKD were enrolled. METHODS The expression profile of u-hemojuvelin was assessed by Western blot analysis, whereas the u-hemojuvelin concentration was measured using an in-house sandwich ELISA. Each cat's u-hemojuvelin-to-creatinine ratio (UHCR) also was determined. RESULTS Significant differences were found in both u-hemojuvelin concentration and UHCR between the control cats and the other cats (AKI, CKD, ACKI). Both u-hemojuvelin and UHCR had high areas under the receiver operator curve (AUROC) for diagnoses of AKI (u-hemojuvelin, 0.885; UHCR, 0.982), CKD (hemojuvelin, 0.869; UHCR, 0.959), and ACKI (hemojuvelin, 0.910; UHCR, 1). Late stage (International Renal Interest Society, IRIS stages 3 and 4) CKD cats had significantly higher u-hemojuvelin concentration and UHCR than did early stage cats (IRIS stages 1 and 2). Both u-hemojuvelin and UHCR were significantly correlated with high blood urea nitrogen, plasma creatinine, and plasma phosphate concentrations and with low hematocrit (Hct), red blood cell (RBC) count, and plasma albumin concentration. The UHCR values were also significantly correlated with white blood cell count in blood. CONCLUSION Both u-hemojuvelin and UHCR potentially can serve as diagnostic indicators for a range of renal diseases in cats.
Collapse
Affiliation(s)
- Hwei Jing
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei City, Taiwan.,National Taiwan University Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, Taipei City, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Han-Ju Tsai
- National Taiwan University Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, Taipei City, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Pei-Shiue Jason Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan
| | - Tai-Shuan Lai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Ya-Jane Lee
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei City, Taiwan.,National Taiwan University Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
44
|
Affiliation(s)
- Rachel McLoughlin
- Institute of Nephrology Wales College of Medicine Cardiff University, Heath Park Cardiff, United Kingdom
| |
Collapse
|
45
|
Abstract
During the past few years, there has been a substantial increase in the understanding of innate immunity. Dendritic cells are emerging as key players in the orchestration of this early phase of immune responses, with a role that will translate into the subsequent type of adaptive immune response against infection. Here we provide an overview of dendritic cell differentiation and function, with particular emphasis on those features unique to the immune defense of the peritoneal cavity and in the context of peritoneal dialysis-associated immune responses. The reader is referred to the primary references included in the accompanying list for specific details in this fascinating field.
Collapse
Affiliation(s)
- Michelle L. McCully
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and the Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Joaquín Madrenas
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and the Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
46
|
Abstract
The development of peritoneal dialysis has been paralleled by a growing interest in establishing suitable experimental models to better understand the functional and structural processes operating in the peritoneal membrane. Thus far, most investigations have been performed in rat and rabbit models, with mechanistic insights essentially based on intervention studies using pharmacological agents, blocking antibodies, or transient expression systems. Since the body size of a species is no longer a limiting factor in the performance of in vivo studies related to peritoneal dialysis, it has been considered that mice, particularly once they have been genetically modified, could provide an attractive tool to investigate the molecular mechanisms operating in the peritoneal membrane. The purpose of this review is to illustrate how investigators in peritoneal dialysis research, catching up with other fields of biomedical research, are increasingly taking advantage of mouse models to provide direct evidence of basic mechanisms involved in the major complications of peritoneal dialysis.
Collapse
Affiliation(s)
- Tomoya Nishino
- Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium
| | - Jie Ni
- Division of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Olivier Devuyst
- Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium
| |
Collapse
|
47
|
Affiliation(s)
- Olivier Devuyst
- Division of Nephrology Université Catholique de Louvain Medical School Brussels, Belgium
| | - Nicholas Topley
- Institute of Nephrology School of Medicine, Cardiff University Cardiff, United Kingdom
| |
Collapse
|
48
|
Gou X, Yuan J, Wang H, Wang X, Xiao J, Chen J, Liu S, Yin Y, Zhang X. IL-6 During Influenza- Streptococcus pneumoniae Co-Infected Pneumonia-A Protector. Front Immunol 2020; 10:3102. [PMID: 32038632 PMCID: PMC6985362 DOI: 10.3389/fimmu.2019.03102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding of pathogenesis and protection mechanisms underlying influenza-Streptococcus pneumoniae co-infection may provide potential strategies for decreasing its high morbidity and mortality. Interleukin-6 (IL-6) is an important cytokine that acts to limit infection-related inflammation; however, its role in co-infected pneumonia remains unclear. Here we show that the clinically relevant co-infected mice displayed dramatically elevated IL-6 levels; which was also observed in patients with co-infected pneumonia. IL-6−/− mice presented with increased bacterial burden, early dissemination of bacteria to extrapulmonary sites accompanied by aggravated pulmonary lesions and high mortality when co-infection. This protective function of IL-6 is associated with cellular death and macrophage function. Importantly, therapeutic administration of recombinant IL-6 protein reduced cells death in BALF, and enhanced macrophage phagocytosis through increased MARCO expression. This protective immune mechanism furthers our understanding of the potential impact of immune components during infection and provides potential therapeutic avenues for influenza-Streptococcus pneumoniae co-infected pneumonia.
Collapse
Affiliation(s)
- Xuemei Gou
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jun Yuan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaofang Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jiangming Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jingyi Chen
- Department of Laboratory Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Liu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
49
|
Xiong G, Deng Y, Cao Z, Liao X, Zhang J, Lu H. The hepatoprotective effects of Salvia plebeia R. Br. extract in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 95:399-410. [PMID: 31654769 DOI: 10.1016/j.fsi.2019.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Salvia plebeia R. Br. is a traditional Chinese medicinal herb that has been widely used for the treatment of many inflammatory diseases such as hepatitis. However, the underlying molecular mechanism about the hepatoprotective effects of S. plebeia remains largely unknown. Here, we investigated the antioxidant activities and anti-inflammatory effects of ethanol extracts of S. plebeia (SPEE) in the zebrafish model. Firstly, we determined the chemical compositions of SPEE and identified three major constituents by using GC-MS analysis. After that, SPEE exhibited significantly antioxidant properties in the LPS-induced zebrafish embryos, and the enzyme activities of ROS, CAT and SOD were obviously inhibited in a dose-dependent manner. Secondly, SPEE greatly reduced fat vacuoles (HE staining), lipid accumulation (Oil O staining) and hepatocyte fibrosis (Gemori staining) in the thioacetamide (TAA)-induced hepatocyte injury of adult zebrafish. Meanwhile, the NO contents and lipid metabolism-related genes were substantially down-regulated after SPEE exposure. Thirdly, we used RNA-Seq analysis to identify the differentially expressed genes (DEGs) after SPEE exposure in adult zebrafish liver. The results showed that 1289 DEGs including 558 up-regulated and 731 down-regulated were identified between the TAA + SPEE and TAA groups. KEGG pathway and GO functional analysis revealed that steroid biosynthesis, oxidation-reduction and innate immunity were significantly enriched. Mechanistically, SPEE can considerably reduce the cell apoptosis of hepatocytes and promote the translocation of Nrf2 protein from the nucleus to the cytoplasm in TAA-induced zebrafish. Moreover, SPEE can modulate various inflammatory cytokines and immune genes both in the control and H2O2-stimulated conditions. The pro-inflammatory cytokines such as IL-1β and TNF-α was markedly up-regulated but the anti-inflammatory cytokines such as TGF-β was greatly down-regulated after SPEE treatment. In addition, some key genes in the TLR signaling were also activated in the H2O2-stimulated conditions. In summary, our results suggested that SPEE had an important role in the antioxidant and anti-inflammatory effects in zebrafish in the near future. Some of the components identified in this study may be served as potential sources of new hepatoprotective compounds for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yunyun Deng
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Zigang Cao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China.
| |
Collapse
|
50
|
Kanno E, Tanno H, Masaki A, Sasaki A, Sato N, Goto M, Shisai M, Yamaguchi K, Takagi N, Shoji M, Kitai Y, Sato K, Kasamatsu J, Ishii K, Miyasaka T, Kawakami K, Imai Y, Iwakura Y, Maruyama R, Tachi M, Kawakami K. Defect of Interferon γ Leads to Impaired Wound Healing through Prolonged Neutrophilic Inflammatory Response and Enhanced MMP-2 Activation. Int J Mol Sci 2019; 20:ijms20225657. [PMID: 31726690 PMCID: PMC6888635 DOI: 10.3390/ijms20225657] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN)-γ is mainly secreted by CD4+ T helper 1 (Th1), natural killer (NK) and NKT cells after skin injury. Although IFN-γ is well known regarding its inhibitory effects on collagen synthesis by fibroblasts in vitro, information is limited regarding its role in wound healing in vivo. In the present study, we analyzed how the defect of IFN-γ affects wound healing. Full-thickness wounds were created on the backs of wild type (WT) C57BL/6 and IFN-γ-deficient (KO) mice. We analyzed the percent wound closure, wound breaking strength, accumulation of leukocytes, and expression levels of COL1A1, COL3A1, and matrix metalloproteinases (MMPs). IFN-γKO mice exhibited significant attenuation in wound closure on Day 10 and wound breaking strength on Day 14 after wound creation, characteristics that are associated with prolonged neutrophil accumulation. Expression levels of COL1A1 and COL3A1 mRNA were lower in IFN-γKO than in WT mice, whereas expression levels of MMP-2 (gelatinase) mRNA were significantly greater in IFN-γKO than in WT mice. Moreover, under neutropenic conditions created with anti-Gr-1 monoclonal antibodies, wound closure in IFN-γKO mice was recovered through low MMP-2 expression levels. These results suggest that IFN-γ may be involved in the proliferation and maturation stages of wound healing through the regulation of neutrophilic inflammatory responses.
Collapse
Affiliation(s)
- Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (H.T.); (M.G.); (M.S.); (R.M.)
- Correspondence: ; Tel.: +81-22-717-8675
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (H.T.); (M.G.); (M.S.); (R.M.)
| | - Airi Masaki
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (A.M.); (A.S.); (N.S.); (N.T.); (M.S.); (Y.I.); (M.T.)
| | - Ayako Sasaki
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (A.M.); (A.S.); (N.S.); (N.T.); (M.S.); (Y.I.); (M.T.)
| | - Noriko Sato
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (A.M.); (A.S.); (N.S.); (N.T.); (M.S.); (Y.I.); (M.T.)
| | - Maiko Goto
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (H.T.); (M.G.); (M.S.); (R.M.)
| | - Mayu Shisai
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (H.T.); (M.G.); (M.S.); (R.M.)
| | - Kenji Yamaguchi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (A.M.); (A.S.); (N.S.); (N.T.); (M.S.); (Y.I.); (M.T.)
| | - Naoyuki Takagi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (A.M.); (A.S.); (N.S.); (N.T.); (M.S.); (Y.I.); (M.T.)
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (A.M.); (A.S.); (N.S.); (N.T.); (M.S.); (Y.I.); (M.T.)
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan (Y.K.); (K.I.)
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (K.S.)
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (K.S.)
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan (Y.K.); (K.I.)
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 9818558, Japan; (T.M.); (K.K.)
| | - Kaori Kawakami
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 9818558, Japan; (T.M.); (K.K.)
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (A.M.); (A.S.); (N.S.); (N.T.); (M.S.); (Y.I.); (M.T.)
| | - Yoichiro Iwakura
- Division of Laboratory Animals, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 2788510, Japan;
| | - Ryoko Maruyama
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (H.T.); (M.G.); (M.S.); (R.M.)
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (A.M.); (A.S.); (N.S.); (N.T.); (M.S.); (Y.I.); (M.T.)
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan (Y.K.); (K.I.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 9808575, Japan; (K.S.)
| |
Collapse
|