1
|
Snider JM, You JK, Wang X, Snider AJ, Hallmark B, Zec MM, Seeds MC, Sergeant S, Johnstone L, Wang Q, Sprissler R, Carr TF, Lutrick K, Parthasarathy S, Bime C, Zhang HH, Luberto C, Kew RR, Hannun YA, Guerra S, McCall CE, Yao G, Del Poeta M, Chilton FH. Group IIA secreted phospholipase A2 is associated with the pathobiology leading to COVID-19 mortality. J Clin Invest 2021; 131:e149236. [PMID: 34428181 PMCID: PMC8483752 DOI: 10.1172/jci149236] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
There is an urgent need to identify the cellular and molecular mechanisms responsible for severe COVID-19 that results in death. We initially performed both untargeted and targeted lipidomics as well as focused biochemical analyses of 127 plasma samples and found elevated metabolites associated with secreted phospholipase A2 (sPLA2) activity and mitochondrial dysfunction in patients with severe COVID-19. Deceased COVID-19 patients had higher levels of circulating, catalytically active sPLA2 group IIA (sPLA2-IIA), with a median value that was 9.6-fold higher than that for patients with mild disease and 5.0-fold higher than the median value for survivors of severe COVID-19. Elevated sPLA2-IIA levels paralleled several indices of COVID-19 disease severity (e.g., kidney dysfunction, hypoxia, multiple organ dysfunction). A decision tree generated by machine learning identified sPLA2-IIA levels as a central node in the stratification of patients who died from COVID-19. Random forest analysis and least absolute shrinkage and selection operator-based (LASSO-based) regression analysis additionally identified sPLA2-IIA and blood urea nitrogen (BUN) as the key variables among 80 clinical indices in predicting COVID-19 mortality. The combined PLA-BUN index performed significantly better than did either one alone. An independent cohort (n = 154) confirmed higher plasma sPLA2-IIA levels in deceased patients compared with levels in plasma from patients with severe or mild COVID-19, with the PLA-BUN index-based decision tree satisfactorily stratifying patients with mild, severe, or fatal COVID-19. With clinically tested inhibitors available, this study identifies sPLA2-IIA as a therapeutic target to reduce COVID-19 mortality.
Collapse
Affiliation(s)
- Justin M. Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Jeehyun Karen You
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Xia Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Department of Molecular and Cellular Biology and
| | - Ashley J. Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Brian Hallmark
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Manja M. Zec
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | | | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Qiuming Wang
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Ryan Sprissler
- Center for Applied Genetics and Genomic Medicine
- Department of Health Sciences
| | | | - Karen Lutrick
- Family and Community Medicine, College of Medicine – Tucson
| | | | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Hao Helen Zhang
- Department of Mathematics, and
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
- Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Richard R. Kew
- Stony Brook Cancer Center, Stony Brook, New York, USA
- Department of Pathology
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook, New York, USA
- Department of Pathology
- Department of Medicine, and
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
| | | | - Charles E. McCall
- Departments of Internal Medicine, Microbiology, and Immunology and Translational Sciences Institute, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology and
- Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Paris R, Pagliarani G, Savazzini F, Aloisi I, Iorio RA, Tartarini S, Ricci G, Del Duca S. Comparative analysis of allergen genes and pro-inflammatory factors in pollen and fruit of apple varieties. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:57-68. [PMID: 28969803 DOI: 10.1016/j.plantsci.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Allergy to freshly consumed apple fruits is often associated to pollinosis and manifested as oral allergy syndrome (OAS). The allergenic properties of apple varieties differ greatly, spanning from low allergenic to high allergenic varieties. The knowledge of the genetic determinants for allergenicity has been of great interest in scientific community for several years, but the molecular mechanisms involved are still little understood. Here, factors putatively involved in allergenicity were investigated at biochemical and molecular level in pollen and in fruits of apple varieties differing in their allergenic potential. Among putative sensitizing factors, transglutaminase (TGase) and phospholipase A2 (PLA2) were considered together with reactive oxygen species (ROS) and known apple allergen genes, with particular attention devoted to the Mal d 1 gene family, the most important one in sensitization. We found that the expression of some allergen genes and the activities of TGase, PLA2 and ROS producing enzyme are lower in the hypo-allergenic variety 'Durello di Forlì' in comparison with the high-allergenic genotypes 'Gala' and 'Florina'. These results highlight correlations among allergen expressions, enzymatic activities and apple cultivars; these data underline the possibility that some of them could be used in the future as markers for allergenicity.
Collapse
Affiliation(s)
- Roberta Paris
- CREA - Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy
| | - Giulia Pagliarani
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Federica Savazzini
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Rosa Anna Iorio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 11, 40138 Bologna, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
3
|
Ong WY, Farooqui T, Kokotos G, Farooqui AA. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. ACS Chem Neurosci 2015; 6:814-31. [PMID: 25891385 DOI: 10.1021/acschemneuro.5b00073] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipases A2 (PLA2) are a diverse group of enzymes that hydrolyze membrane phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is metabolized to eicosanoids (prostaglandins, leukotrienes, thromboxanes), and lysophospholipids are converted to platelet-activating factors. These lipid mediators play critical roles in the initiation, maintenance, and modulation of neuroinflammation and oxidative stress. Neurological disorders including excitotoxicity; traumatic nerve and brain injury; cerebral ischemia; Alzheimer's disease; Parkinson's disease; multiple sclerosis; experimental allergic encephalitis; pain; depression; bipolar disorder; schizophrenia; and autism are characterized by oxidative stress, inflammatory reactions, alterations in phospholipid metabolism, accumulation of lipid peroxides, and increased activities of brain phospholipase A2 isoforms. Several old and new synthetic inhibitors of PLA2, including fatty acid trifluoromethyl ketones; methyl arachidonyl fluorophosphonate; bromoenol lactone; indole-based inhibitors; pyrrolidine-based inhibitors; amide inhibitors, 2-oxoamides; 1,3-disubstituted propan-2-ones and polyfluoroalkyl ketones as well as phytochemical based PLA2 inhibitors including curcumin, Ginkgo biloba and Centella asiatica extracts have been discovered and used for the treatment of neurological disorders in cell culture and animal model systems. The purpose of this review is to summarize information on selective and potent synthetic inhibitors of PLA2 as well as several PLA2 inhibitors from plants, for treatment of oxidative stress and neuroinflammation associated with the pathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department
of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Tahira Farooqui
- Department
of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - George Kokotos
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis,
Athens 15771, Greece
| | - Akhlaq A. Farooqui
- Department
of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Leonardi A, Palmigiano A, Mazzola EA, Messina A, Milazzo EMS, Bortolotti M, Garozzo D. Identification of human tear fluid biomarkers in vernal keratoconjunctivitis using iTRAQ quantitative proteomics. Allergy 2014; 69:254-60. [PMID: 24329893 DOI: 10.1111/all.12331] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Understanding and treating vernal keratoconjunctivitis (VKC) has been a challenge because the pathogenesis is unclear and antiallergic therapy often unsuccessful. The aim of the study was to analyze peptide profiles in human tears using mass spectrometry to elucidate compositional differences between healthy subjects and patients affected by VKC. METHODS Tears were collected from healthy subjects and VKC patients. Digested samples were treated with iTRAQ (isobaric tag for relative and absolute quantitation). Separation of tryptic peptides was realized using a MicroHPLC interfaced with a microfraction collector. MS and MS/MS mass spectra were performed using a MALDI TOF/TOF 4800 Applied Biosystem spectrometer. Protein Pilot™ software with Paragon™ algorithm v4.1.46 or GPS™ with Mascot engine was used as search engines with SwissProt or IPI human as the databases. RESULTS A significant number of peptides were examined, and 78 proteins were successfully identified. In all VKC samples, levels of serum albumin, transferrin, and hemopexin were found up to 100 times higher than control tear levels and correlated to the severity of disease. Hemopexin, transferrin, mammaglobin B, and secretoglobin 1D were found significantly over-expressed in VKC samples compared with the control samples. Tear samples from patients treated with topical cyclosporine or corticosteroids showed a dramatic reduction in these protein levels. CONCLUSIONS LC MALDI MS and isobaric tag for relative and absolute quantitation technique may be useful in the quantitative and qualitative characterization of the peptidoma of human tears. These techniques may identify target proteins to be used in the diagnosis and management of VKC and other inflammatory ocular surface conditions.
Collapse
Affiliation(s)
- A. Leonardi
- Ophthalmology Unit; Department of Neuroscience; University of Padua; Padua Italy
| | - A. Palmigiano
- CNR Istituto per la Chimica e la Tecnologia dei Polimeri; Catania Italy
| | - E. A. Mazzola
- CNR Istituto per la Chimica e la Tecnologia dei Polimeri; Catania Italy
| | - A. Messina
- CNR Istituto per la Chimica e la Tecnologia dei Polimeri; Catania Italy
| | - E. M. S. Milazzo
- CNR Istituto per la Chimica e la Tecnologia dei Polimeri; Catania Italy
| | - M. Bortolotti
- Ophthalmology Unit; Department of Neuroscience; University of Padua; Padua Italy
| | - D. Garozzo
- CNR Istituto per la Chimica e la Tecnologia dei Polimeri; Catania Italy
| |
Collapse
|
5
|
Attenuation of experimental TPA-induced dermatitis by acetylenic acetogenins is associated with inhibition of PLA2 activity. Eur J Pharmacol 2011; 672:175-9. [DOI: 10.1016/j.ejphar.2011.09.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/20/2011] [Accepted: 09/24/2011] [Indexed: 11/22/2022]
|
6
|
Yohannes E, Ghosh SK, Jiang B, McCormick TS, Weinberg A, Hill E, Faddoul F, Chance MR. Proteomic signatures of human oral epithelial cells in HIV-infected subjects. PLoS One 2011; 6:e27816. [PMID: 22114700 PMCID: PMC3218055 DOI: 10.1371/journal.pone.0027816] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/26/2011] [Indexed: 01/26/2023] Open
Abstract
The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies on over twenty HIV infected and healthy subjects. In a discovery phase two Dimensional Difference Gel Electrophoresis (2-D DIGE) analyses of human oral gingival epithelial cell (HOEC) lysates were carried out; this identified 61 differentially expressed proteins between HIV-infected on HAART subjects and healthy controls. Down regulated proteins in HIV-infected subjects include proteins associated with maintenance of protein folding and pro- and anti-inflammatory responses (e.g., heat-shock proteins, Cryab, Calr, IL-1RA, and Galectin-3-binding protein) as well as proteins involved in redox homeostasis and detoxification (e.g., Gstp1, Prdx1, and Ero1). Up regulated proteins include: protein disulfide isomerases, proteins whose expression is negatively regulated by Hsp90 (e.g., Ndrg1), and proteins that maintain cellular integrity (e.g., Vimentin). In a verification phase, proteins identified in the protein profiling experiments and those inferred from Ingenuity Pathway Analysis were analyzed using Western blotting analysis on separate HOEC lysate samples, confirming many of the discovery findings. Additionally in HIV-infected patient samples Heat Shock Factor 1 is down regulated, which explains the reduced heat shock responses, while activation of the MAPK signal transduction cascade is observed. Overall, HAART therapy provides an incomplete immune recovery of the oral epithelial cells of the oral cavity for HIV-infected subjects, and the toxic side effects of HAART and/or HIV chronicity silence expression of multiple proteins that in healthy subjects function to provide robust innate immune responses and combat cellular stress.
Collapse
Affiliation(s)
- Elizabeth Yohannes
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Santosh K. Ghosh
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bin Jiang
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas S. McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aaron Weinberg
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Edward Hill
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Faddy Faddoul
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University Cleveland, Ohio, United States of America
| |
Collapse
|
7
|
Ventura E, Balza E, Borsi L, Tutolo G, Carnemolla B, Castellani P, Zardi L. Selective targeted delivery of the TNF-alpha receptor p75 and uteroglobin to the vasculature of inflamed tissues: a preliminary report. BMC Biotechnol 2011; 11:104. [PMID: 22074550 PMCID: PMC3226451 DOI: 10.1186/1472-6750-11-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/10/2011] [Indexed: 12/31/2022] Open
Abstract
Background Ligand-targeted approaches have proven successful in improving the therapeutic index of a number of drugs. We hypothesized that the specific targeting of TNF-alpha antagonists to inflamed tissues could increase drug efficacy and reduce side effects. Results Using uteroglobin (UG), a potent anti-inflammatory protein, as a scaffold, we prepared a bispecific tetravalent molecule consisting of the extracellular ligand-binding portion of the human TNF-alpha receptor P75 (TNFRII) and the scFv L19. L19 binds to the ED-B containing fibronectin isoform (B-FN), which is expressed only during angiogenesis processes and during tissue remodeling. B-FN has also been demonstrated in the pannus in rheumatoid arthritis. L19-UG-TNFRII is a stable, soluble homodimeric protein that maintains the activities of both moieties: the immuno-reactivity of L19 and the capability of TNFRII to inhibit TNF-alpha. In vivo bio-distribution studies demonstrated that the molecule selectively accumulated on B-FN containing tissues, showing a very fast clearance from the blood but a very long residence time on B-FN containing tissues. Despite the very fast clearance from the blood, this fusion protein was able to significantly improve the severe symptomatology of arthritis in collagen antibody-induced arthritis (CAIA) mouse model. Conclusions The recombinant protein described here, able to selectively deliver the TNF-alpha antagonist TNFRII to inflamed tissues, could yield important contributions for the therapy of degenerative inflammatory diseases.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Therapeutic Recombinant Proteins, Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 1016132 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Simulated environmental criticalities affect transglutaminase of Malus and Corylus pollens having different allergenic potential. Amino Acids 2011; 42:1007-24. [PMID: 21847612 DOI: 10.1007/s00726-011-1043-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/26/2011] [Indexed: 10/17/2022]
Abstract
Increases in temperature and air pollution influence pollen allergenicity, which is responsible for the dramatic raise in respiratory allergies. To clarify possible underlying mechanisms, an anemophilous pollen (hazel, Corylus avellana), known to be allergenic, and an entomophilous one (apple, Malus domestica), the allergenicity of which was not known, were analysed. The presence also in apple pollen of known fruit allergens and their immunorecognition by serum of an allergic patient were preliminary ascertained, resulting also apple pollen potentially allergenic. Pollens were subjected to simulated stressful conditions, provided by changes in temperature, humidity, and copper and acid rain pollution. In the two pollens exposed to environmental criticalities, viability and germination were negatively affected and different transglutaminase (TGase) gel bands were differently immunodetected with the polyclonal antibody AtPng1p. The enzyme activity increased under stressful treatments and, along with its products, was found to be released outside the pollen with externalisation of TGase being predominant in C. avellana, whose grain presents a different cell wall composition with respect to that of M. domestica. A recombinant plant TGase (AtPng1p) stimulated the secreted phospholipase A(2) (sPLA(2)) activity, that in vivo is present in human mucosa and is involved in inflammation. Similarly, stressed pollen, hazel pollen being the most efficient, stimulated to very different extent sPLA(2) activity and putrescine conjugation to sPLA(2). We propose that externalised pollen TGase could be one of the mediators of pollen allergenicity, especially under environmental stress induced by climate changes.
Collapse
|
9
|
Mukherjee AB, Zhang Z, Chilton BS. Uteroglobin: a steroid-inducible immunomodulatory protein that founded the Secretoglobin superfamily. Endocr Rev 2007; 28:707-25. [PMID: 17916741 DOI: 10.1210/er.2007-0018] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Blastokinin or uteroglobin (UG) is a steroid-inducible, evolutionarily conserved, secreted protein that has been extensively studied from the standpoint of its structure and molecular biology. However, the physiological function(s) of UG still remains elusive. Isolated from the uterus of rabbits during early pregnancy, UG is the founding member of a growing superfamily of proteins called Secretoglobin (Scgb). Numerous studies demonstrated that UG is a multifunctional protein with antiinflammatory/ immunomodulatory properties. It inhibits soluble phospholipase A(2) activity and binds and perhaps sequesters hydrophobic ligands such as progesterone, retinols, polychlorinated biphenyls, phospholipids, and prostaglandins. In addition to its antiinflammatory activities, UG manifests antichemotactic, antiallergic, antitumorigenic, and embryonic growth-stimulatory activities. The tissue-specific expression of the UG gene is regulated by several steroid hormones, although a nonsteroid hormone, prolactin, further augments its expression in the uterus. The mucosal epithelia of virtually all organs that communicate with the external environment express UG, and it is present in the blood, urine, and other body fluids. Although the physiological functions of this protein are still under investigation, a single nucleotide polymorphism in the UG gene appears to be associated with several inflammatory/autoimmune diseases. Investigations with UG-knockout mice revealed that the absence of this protein leads to phenotypes that suggest its critical homeostatic role(s) against oxidative damage, inflammation, autoimmunity, and cancer. Recent studies on UG-binding proteins (receptors) provide further insight into the multifunctional nature of this protein. Based on its antiinflammatory and antiallergic properties, UG is a potential drug target.
Collapse
Affiliation(s)
- Anil B Mukherjee
- Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institute of Health, Building 10, Bethesda, Maryland 20892-1830, USA.
| | | | | |
Collapse
|
10
|
Farooqui AA, Horrocks LA, Farooqui T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J Neurosci Res 2007; 85:1834-50. [PMID: 17393491 DOI: 10.1002/jnr.21268] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The neural membranes contain phospholipids, sphingolipids, cholesterol, and proteins. Glycerophospholipids and sphingolipids are precursors for lipid mediators involved in signal transduction processes. Degradation of glycerophospholipids by phospholipase A(2) (PLA(2)) generates arachidonic acid (AA) and docosahexaenoic acids (DHA). Arachidonic acid is metabolized to eicosanoids and DHA is metabolized to docosanoids. The catabolism of glycosphingolipids generates ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. These metabolites modulate PLA(2) activity. Arachidonic acid, a product derived from glycerophospholipid catabolism by PLA(2), modulates sphingomyelinase (SMase), the enzyme that generates ceramide and phosphocholine. Furthermore, sphingosine 1-phosphate modulates cyclooxygenase, an enzyme responsible for eicosanoid production in brain. This suggests that an interplay and cross talk occurs between lipid mediators of glycerophospholipid and glycosphingolipid metabolism in brain tissue. This interplay between metabolites of glycerophospholipid and sphingolipid metabolism may play an important role in initiation and maintenance of oxidative stress associated with neurologic disorders as well as in neural cell proliferation, differentiation, and apoptosis. Recent studies indicate that PLA(2) and SMase inhibitors can be used as neuroprotective and anti-apoptotic agents. Development of novel inhibitors of PLA(2) and SMase may be useful for the treatment of oxidative stress, and apoptosis associated with neurologic disorders such as stroke, Alzheimer disease, Parkinson disease, and head and spinal cord injuries.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
11
|
Fransson M, Adner M, Uddman R, Cardell LO. Lipopolysaccharide-induced down-regulation of uteroglobin in the human nose. Acta Otolaryngol 2007; 127:285-91. [PMID: 17364366 DOI: 10.1080/00016480600801340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONCLUSION Lipopolysaccharide (LPS) challenge of the human nose has the capacity to reduce the amount of natural anti-inflammatory proteins, such as uteroglobin. OBJECTIVES Nasal challenge with LPS, an activator of innate immunity, has been shown to increase the amount of pro-inflammatory mediators in nasal lavage fluid. Uteroglobin is a newly described anti-inflammatory mediator that is secreted in the nose. This study examined the effect of nasal LPS application on the level of uteroglobin in nasal lavage fluid as well as on the expression of uteroglobin in nasal mucosa. MATERIALS AND METHODS Thirty-eight volunteers were challenged nasally with either 50 microg LPS or vehicle; 6 h later, nasal lavage fluid was collected and a nasal biopsy was obtained. Levels of uteroglobin, albumin and the pro-inflammatory mediators interleukin (IL)-6 and IL-8 were analysed in the lavage fluids using enzyme-linked immunosorbent assays (ELISAs). Biopsies were used for either quantification of uteroglobin mRNA by real-time PCR or for localization of the corresponding protein with immunohistochemistry. RESULTS The uteroglobin level decreased in nasal lavage fluid following LPS challenge, whereas the levels of IL-6 and albumin increased. Uteroglobin was mainly seen in the respiratory epithelium and its mRNA expression decreased as a consequence of the LPS challenge.
Collapse
Affiliation(s)
- Mattias Fransson
- Laboratory of Clinical and Experimental Allergy Research, Department of Oto-Rhino-Laryngology, Malmö University Hospital, Lund University, Malmö, Sweden.
| | | | | | | |
Collapse
|
12
|
Benson M, Fransson M, Martinsson T, Naluai AT, Uddman R, Cardell LO. Inverse relation between nasal fluid Clara Cell Protein 16 levels and symptoms and signs of rhinitis in allergen-challenged patients with intermittent allergic rhinitis. Allergy 2007; 62:178-83. [PMID: 17298427 DOI: 10.1111/j.1398-9995.2006.01264.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Decreased levels of the anti-inflammatory Clara Cell Protein 16 (CC16) are found in intermittent allergic rhinitis (IAR) and asthma. In asthma this decrease has been associated with hyperreactivity and the A38G single nucleotide polymorphism (SNP). The aim of this study was to examine if IAR is associated with signs and symptoms of rhinitis and the A38G SNP. METHODS Nasal fluid CC16 was analyzed in 20 patients with IAR before allergen challenge and 1 and 6 h after challenge, and from 28 healthy controls. The A38G SNP was analyzed in 80 patients with IAR and 106 controls. Nasal biopsies were obtained from three subjects in each group for immunohistochemical analysis of CC16. RESULTS In the allergen-challenged patients symptoms and rhinoscopic signs of rhinitis increased after 1 h and normalized after 6 h. In contrast, nasal fluid CC16 decreased 1 h after allergen challenge and returned to baseline after 6 h. Nasal fluid CC16 levels did not differ from controls before and 6 h after challenge. Immunohistochemical investigation showed intense CC16 staining in the nasal epithelium of both patients before season and healthy controls, but weak staining in symptomatic patients during season. No significant association between the A38G SNP and IAR was found. CONCLUSION There was an inverse relation between nasal fluid CC16 levels and symptoms and signs of rhinitis in allergen-challenged patients with IAR. However, there was no association between IAR and the A38G SNP.
Collapse
Affiliation(s)
- M Benson
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Sane DC, Kontos JL, Greenberg CS. Roles of transglutaminases in cardiac and vascular diseases. FRONT BIOSCI-LANDMRK 2007; 12:2530-45. [PMID: 17127261 PMCID: PMC2762549 DOI: 10.2741/2253] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
All transglutaminases share the common enzymatic activity of transamidation, or the cross-linking of glutamine and lysine residues to form N epsilon (gamma-glutamyl) lysyl isopeptide bonds. The plasma proenzyme factor XIII is responsible for stabilizing the fibrin clot against physical and fibrinolytic disruption. Another member of the transglutaminase family, tissue transglutaminase or TG2 is abundantly expressed in cardiomyocytes, vascular cells and macrophages. The transglutaminases have a variety of functions independent of their transamidating activity. For example, TG2 binds and hydrolyzes GTP, thereby fostering signal transduction by several G protein coupled receptors. Accumulating evidence points to novel roles for factor XIII and TG2 in cardiovascular biology including: (a) modulating platelet activity, (b) regulating glucose control, (c) contributing to the development of hypertension, (d) influencing the progression of atherosclerosis, (e) regulating vascular permeability and angiogenesis (f) and contributing to myocardial signaling, contractile activity and ischemia/reperfusion injury. In this review, we summarize the cardiovascular biology of two members of the family of transglutaminases, Factor XIII and TG2.
Collapse
Affiliation(s)
- David C Sane
- Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1045, USA.
| | | | | |
Collapse
|
14
|
Balajthy Z, Csomós K, Vámosi G, Szántó A, Lanotte M, Fésüs L. Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions. Blood 2006; 108:2045-54. [PMID: 16763214 DOI: 10.1182/blood-2004-02-007948] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractPromyelocytic NB4 leukemia cells undergo differentiation to granulocytes following retinoic acid treatment. Here we report that tissue transglutaminase (TG2), a protein cross-linking enzyme, was induced, then partially translocated into the nucleus, and became strongly associated with the chromatin during the differentiation process. The transglutaminase-catalyzed cross-link content of both the cytosolic and the nuclear protein fractions increased while NB4 cells underwent cellular maturation. Inhibition of cross-linking activity of TG2 by monodansylcadaverin in these cells led to diminished nitroblue tetrazolium (NBT) positivity, production of less superoxide anion, and decreased expression of GP91PHOX, the membrane-associated subunit of NADPH oxidase. Neutrophils isolated from TG2–/– mice showed diminished NBT reduction capacity, reduced superoxide anion formation, and down-regulation of the gp91phox subunit of NADPH oxidase, compared with wild-type cells. It was also observed that TG2–/– mice exhibited increased neutrophil phagocytic activity, but had attenuated neutrophil chemotaxis and impaired neutrophil extravasation with higher neutrophil counts in their circulation during yeast extract–induced peritonitis. These results clearly suggest that TG2 may modulate the expression of genes related to neutrophil functions and is involved in several intracellular and extracellular functions of extravasating neutrophil.
Collapse
Affiliation(s)
- Zoltán Balajthy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, H-4012 Debrecen, Nagyerdei krt. 98, Hungary.
| | | | | | | | | | | |
Collapse
|
15
|
Citron BA, Zoloty JE, Suo Z, Festoff BW. Tissue transglutaminase during mouse central nervous system development: lack of alternative RNA processing and implications for its role(s) in murine models of neurotrauma and neurodegeneration. ACTA ACUST UNITED AC 2005; 135:122-33. [PMID: 15857675 DOI: 10.1016/j.molbrainres.2004.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 11/17/2004] [Accepted: 12/05/2004] [Indexed: 11/28/2022]
Abstract
Tissue transglutaminase (tTG) is a member of a multigene family principally involved in catalyzing the formation of protein cross-links. Unlike other members of the transglutaminase family, tTG is multifunctional since it also serves as a guanosine triphosphate (GTP) binding protein (Galpha(h)) and participates in cell adhesion. Different isoforms of tTG can be produced by proteolysis or alternative splicing. We find that tTG mRNA is expressed at low levels in the mouse CNS relative to other tissues, and at lower levels in the CNS of mouse in comparison to that of human or rat. tTG mRNA levels are higher in the heart compared to the CNS, for example, and much higher in the liver. Within the CNS, tTG message is lowest in the adult cerebellum and thalamus and highest in the frontal cortex and striatum. In the hippocampus, tTG expression is highest during embryonic development and falls off dramatically after 1 week of life. We did not find alternative splicing of the mouse tTG. At the protein level, the predominant isoform is approximately 62 kDa. In summary, tTG, an important factor in neuronal survival, is expressed at low levels in the mouse CNS and, unlike rat and human tTG, does not appear to be regulated by alternative splicing. These findings have implications for analyses of rodent tTG expression in human neurodegenerative and neurotrauma models where alternative processing may be an attractive pathogenetic mechanism. They further impact on drug discovery paradigms, where modulation of activity may have therapeutic value.
Collapse
Affiliation(s)
- Bruce A Citron
- Molecular Biology, Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, USA
| | | | | | | |
Collapse
|
16
|
Yoshikawa S, Miyahara T, Reynolds SD, Stripp BR, Anghelescu M, Eyal FG, Parker JC. Clara cell secretory protein and phospholipase A2activity modulate acute ventilator-induced lung injury in mice. J Appl Physiol (1985) 2005; 98:1264-71. [PMID: 15608088 DOI: 10.1152/japplphysiol.01150.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung vascular permeability is acutely increased by high-pressure and high-volume ventilation. To determine the roles of mechanically activated cytosolic PLA2(cPLA2) and Clara cell secretory protein (CCSP), a modulator of cPLA2activity, we compared lung injury with and without a PLA2inhibitor in wild-type mice and CCSP-null mice (CCSP−/−) ventilated with high and low peak inflation pressures (PIP) for 2- or 4-h periods. After ventilation with high PIP, we observed significant increases in the bronchoalveolar lavage albumin concentrations, lung wet-to-dry weight ratios, and lung myeloperoxidase in both genotypes compared with unventilated controls and low-PIP ventilated mice. All injury variables except myeloperoxidase were significantly greater in the CCSP−/−mice relative to wild-type mice. Inhibition of cPLA2in wild-type and CCSP−/−mice ventilated at high PIP for 4 h significantly reduced bronchoalveolar lavage albumin and total protein and lung wet-to-dry weight ratios compared with vehicle-treated mice of the same genotype. Membrane phospho-cPLA2and cPLA2activities were significantly elevated in lung homogenates of high-PIP ventilated mice of both genotypes but were significantly higher in the CCSP−/−mice relative to the wild-type mice. Inhibition of cPLA2significantly attenuated both the phospho-cPLA2increase and increased cPLA2activity due to high-PIP ventilation. We propose that mechanical activation of the cPLA2pathway contributes to acute high PIP-induced lung injury and that CCSP may reduce this injury through inhibition of the cPLA2pathway and reduction of proinflammatory products produced by this pathway.
Collapse
Affiliation(s)
- Sawako Yoshikawa
- Dept. of Physiology, MSB 3074, Univ. of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Barbosa NR, Fischmann L, Talib LL, Gattaz WF. Inhibition of platelet phospholipase A2 activity by catuaba extract suggests antiin?ammatory properties. Phytother Res 2004; 18:942-4. [PMID: 15597313 DOI: 10.1002/ptr.1579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the inflammation process, phospholipase A2 (PLA2) catalyses the cleavage of the sn-2 ester-linked fatty acids from phospholipids, being the enzyme responsible for arachidonic acid (AA) release by cells for the biosynthesis of the prostaglandins and thromboxanes via the cyclooxygenase system, and the leukotrienes and eicosatetraenoids via the lipoxygenase pathway. AA mobilization by PLA2 and subsequent prostaglandins synthesis is considered to be a pivotal event in inflammation. Therefore, drugs that inhibit PLA2, thus blocking the COX and LOX pathways in the AA cascade, may be effective in the treatment of inflammatory processes. New strategies for the treatment of inflammatory processes could be detected by a search for active principles of vegetal origin that control the lipid mediator production by inhibition of PLA2. The present data are part of a wide explorative investigation on the effects of Trichilia catigua (catuaba), which found that PLA2 activity was totally inhibited by catuaba at a concentration of 120 microg/mL, suggesting that this natural substance may have antiinflammatory properties.
Collapse
Affiliation(s)
- Nádia R Barbosa
- Laboratory of Neuroscience, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
18
|
Abstract
Phospholipase A(2) (PLA(2)) enzymes are involved in lipid metabolism and, as such, are central to several cellular processes. The different PLA(2)s identified to date can be classified into three groups: secreted PLA(2) (sPLA(2)), calcium-independent PLA(2) (iPLA(2)) and calcium-dependent cytosolic PLA(2) (cPLA(2)). In addition to their role in cellular signalling, PLA(2)s have been implicated in diverse pathological conditions, including inflammation, tissue repair and cancer. Elevated levels of sPLA(2) and cPLA(2) have been reported in several tumour types. Here, we summarize the current views on the PLA(2)s, and look at their expression, role in human malignancy and potential as targets for anticancer drug development.
Collapse
Affiliation(s)
- Jonathan P Laye
- Cancer Research UK Laboratories, Tom Connors Cancer Research Centre, University of Bradford, West Yorkshire BD7 1DP, UK
| | | |
Collapse
|
19
|
Targeting two for the price of one. Nat Rev Drug Discov 2003. [DOI: 10.1038/nrd1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|