1
|
Katikaneni D, Morel L, Scindia Y. Animal models of lupus nephritis: the past, present and a future outlook. Autoimmunity 2024; 57:2319203. [PMID: 38477884 PMCID: PMC10981450 DOI: 10.1080/08916934.2024.2319203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Lupus nephritis (LN) is the most severe end-organ pathology in Systemic Lupus Erythematosus (SLE). Research has enhanced our understanding of immune effectors and inflammatory pathways in LN. However, even with the best available therapy, the rate of complete remission for proliferative LN remains below 50%. A deeper understanding of the resistance or susceptibility of renal cells to injury during the progression of SLE is critical for identifying new targets and developing effective long-term therapies. The complex and heterogeneous nature of LN, combined with the limitations of clinical research, make it challenging to investigate the aetiology of this disease directly in patients. Hence, multiple murine models resembling SLE-driven nephritis are utilised to dissect LN's cellular and genetic mechanisms, identify therapeutic targets, and screen novel compounds. This review discusses commonly used spontaneous and inducible mouse models that have provided insights into pathogenic mechanisms and long-term maintenance therapies in LN.
Collapse
Affiliation(s)
- Divya Katikaneni
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health, San Antonio, Texas, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Cabana-Puig X, Bond JM, Wang Z, Dai R, Lu R, Lin A, Oakes V, Rizzo A, Swartwout B, Abdelhamid L, Mao J, Prakash M, Sangmeister C, Cheung N, Cowan C, Reilly CM, Sun S, Ahmed SA, Luo XM. Phenotypic Drift in Lupus-Prone MRL/lpr Mice: Potential Roles of MicroRNAs and Gut Microbiota. Immunohorizons 2022; 6:36-46. [PMID: 35039434 PMCID: PMC10984647 DOI: 10.4049/immunohorizons.2100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
MRL/lpr mice have been extensively used as a murine model of lupus. Disease progression in MRL/lpr mice can differ among animal facilities, suggesting a role for environmental factors. We noted a phenotypic drift of our in-house colony, which was the progeny of mice obtained from The Jackson Laboratory (JAX; stocking number 000485), that involved attenuated glomerulonephritis, increased splenomegaly, and reduced lymphadenopathy. To validate our in-house mice as a model of lupus, we compared these mice with those newly obtained from JAX, which were confirmed to be genetically identical to our in-house mice. Surprisingly, the new JAX mice exhibited a similar phenotypic drift, most notably the attenuation of glomerulonephritis. Interestingly, our in-house colony differed from JAX mice in body weight and kidney size (both sexes), as well as in splenic size, germinal center formation, and level of anti-dsDNA auto-IgG in the circulation (male only). In addition, we noted differential expression of microRNA (miR)-21 and miR-183 that might explain the splenic differences in males. Furthermore, the composition of gut microbiota was different between in-house and new JAX mice at early time points, which might explain some of the renal differences (e.g., kidney size). However, we could not identify the reason for attenuated glomerulonephritis, a shared phenotypic drift between the two colonies. It is likely that this was due to certain changes of environmental factors present in both JAX and our facilities. Taken together, these results suggest a significant phenotypic drift in MRL/lpr mice in both colonies that may require strain recovery from cryopreservation.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jacob M Bond
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA
| | - Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Amy Lin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Vanessa Oakes
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Amy Rizzo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Brianna Swartwout
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jiangdi Mao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Meeta Prakash
- Carilion School of Medicine, Virginia Tech, Roanoke, VA
| | - Constanza Sangmeister
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Nathaniel Cheung
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Catharine Cowan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Sha Sun
- Department of Development and Cell Biology, University of California, Irvine, CA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA;
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA;
| |
Collapse
|
3
|
Rananaware SR, Pathak S, Chakraborty S, Bisen RY, Chattopadhyay A, Nandi D. Autoimmune-prone lpr mice exhibit a prolonged but lethal infection with an attenuated Salmonella Typhimurium strain. Microb Pathog 2020; 150:104684. [PMID: 33301858 DOI: 10.1016/j.micpath.2020.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/15/2022]
Abstract
Autoimmunity can potentially pre-dispose to, exacerbate or ameliorate pathogenic infections. The current study was designed to compare and understand the infection outcomes with Salmonella enterica serovar Typhimurium ATCC 14028s (S. Typhimurium) wild type (WT) and attenuated ΔrpoS strains, in autoimmune-prone lpr mice. C57BL/6 (B6) and B6/lpr (lpr) 6-8 weeks old mice were orally infected with S. Typhimurium WT and ΔrpoS strains. Disease outcomes were assessed with respect to survival, organ bacterial load, tissue damage and inflammation in infected mice. The acute infection stage (day 4) was examined and compared to the later stages (up to day 12) post ΔrpoS infection. S. Typhimurium WT exhibited an acute and lethal infection in both B6 and lpr mice. However, the ΔrpoS strain exhibited prolonged infection with reduced mortality in B6 mice but complete mortality in lpr mice. During late infection, bacterial load and serum IFNγ levels were higher in the ΔrpoS strain infected lpr mice compared to B6 mice. The ΔrpoS strain infected lpr mice also exhibited greater bacterial faecal shedding and greater tissue histopathological changes. Interestingly, ΔrpoS-infected B6 mice displayed minimal microbial load in the brain; however, sustained brain bacterial load was observed in ΔrpoS-infected lpr mice, corresponding to abnormal gait. Overall, S. Typhimurium ΔrpoS is competent in establishing infection but compromised in sustaining it. Nonetheless, lpr mice are less efficient in controlling this attenuated infection. The findings from the study demonstrate that genetic pre-disposition to autoimmunity is sufficient for greater host susceptibility to infection by attenuated S. Typhimurium strains.
Collapse
Affiliation(s)
- Supriya Rajendra Rananaware
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Sanmoy Pathak
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Subhashish Chakraborty
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Rajeshwari Yadorao Bisen
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Avik Chattopadhyay
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Meynier S, Rieux-Laucat F. FAS and RAS related Apoptosis defects: From autoimmunity to leukemia. Immunol Rev 2019; 287:50-61. [PMID: 30565243 DOI: 10.1111/imr.12720] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
The human adaptive immune system recognizes almost all the pathogens that we encounter and all the tumor antigens that may arise during our lifetime. Primary immunodeficiencies affecting lymphocyte development or function therefore lead to severe infections and tumor susceptibility. Furthermore, the fact that autoimmunity is a frequent feature of primary immunodeficiencies reveals a third function of the adaptive immune system: its self-regulation. Indeed, the generation of a broad repertoire of antigen receptors (via a unique strategy of random somatic rearrangements of gene segments in T cell and B cell receptor loci) inevitably creates receptors with specificity for self-antigens and thus leads to the presence of autoreactive lymphocytes. There are many different mechanisms for controlling the emergence or action of autoreactive lymphocytes, including clonal deletion in the primary lymphoid organs, receptor editing, anergy, suppression of effector lymphocytes by regulatory lymphocytes, and programmed cell death. Here, we review the genetic defects affecting lymphocyte apoptosis and that are associated with lymphoproliferation and autoimmunity, together with the role of somatic mutations and their potential involvement in more common autoimmune diseases.
Collapse
Affiliation(s)
- Sonia Meynier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
5
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Amici SA, Young NA, Narvaez-Miranda J, Jablonski KA, Arcos J, Rosas L, Papenfuss TL, Torrelles JB, Jarjour WN, Guerau-de-Arellano M. CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions. Front Immunol 2018; 9:1593. [PMID: 30042766 PMCID: PMC6048227 DOI: 10.3389/fimmu.2018.01593] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Macrophages and their monocyte precursors mediate innate immune responses and can promote a spectrum of phenotypes from pro-inflammatory to pro-resolving. Currently, there are few markers that allow for robust dissection of macrophage phenotype. We recently identified CD38 as a marker of inflammatory macrophages in murine in vitro and in vivo models. However, it is unknown whether CD38 plays a similar marker and/or functional role in human macrophages and inflammatory diseases. Here, we establish that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4. Pharmacologic and/or genetic CD38 loss-of-function significantly reduced the secretion of inflammatory cytokines IL-6 and IL-12p40 and glycolytic activity in human primary macrophages. Finally, monocyte analyses in systemic lupus erythematosus patients revealed that, while all monocytes express CD38, high CD38 expression in the non-classical monocyte subpopulation is associated with disease. These data are consistent with an inflammatory marker role for CD38 in human macrophages and monocytes.
Collapse
Affiliation(s)
- Stephanie A Amici
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Nicholas A Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Janiret Narvaez-Miranda
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Kyle A Jablonski
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Lucia Rosas
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Tracey L Papenfuss
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Wael N Jarjour
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mireia Guerau-de-Arellano
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. J Clin Immunol 2018; 38:558-568. [PMID: 29911256 DOI: 10.1007/s10875-018-0523-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023]
Abstract
The autoimmune lymphoproliferative syndrome (ALPS) is a non-malignant and non-infectious uncontrolled proliferation of lymphocytes accompanied by autoimmune cytopenia. The genetic etiology of the ALPS was described in 1995 by the discovery of the FAS gene mutations. The related apoptosis defect accounts for the accumulation of autoreactive lymphocytes as well as for specific clinical and biological features that distinguish the ALPS-FAS from other monogenic defects of this apoptosis pathway, such as FADD and CASPASE 8 deficiencies. The ALPS-FAS was the first description of a monogenic cause of autoimmunity, but its non-Mendelian expression remained elusive until the description of somatic and germline mutations in ALPS patients. The recognition of these genetic diseases brought new information on the role of this apoptotic pathway in controlling the adaptive immune response in humans.
Collapse
|
8
|
Machida T, Sakamoto N, Ishida Y, Takahashi M, Fujita T, Sekine H. Essential Roles for Mannose-Binding Lectin-Associated Serine Protease-1/3 in the Development of Lupus-Like Glomerulonephritis in MRL/ lpr Mice. Front Immunol 2018; 9:1191. [PMID: 29892304 PMCID: PMC5985374 DOI: 10.3389/fimmu.2018.01191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
The complement system, composed of the three activation pathways, has both protective and pathogenic roles in the development of systemic lupus erythematosus (or lupus), a prototypic autoimmune disease. The classical pathway contributes to the clearance of immune complexes (ICs) and apoptotic cells, whereas the alternative pathway (AP) exacerbates renal inflammation. The role of the lectin pathway (LP) in lupus has remained largely unknown. Mannose-binding lectin (MBL)-associated serine proteases (MASPs), which are associated with humoral pattern recognition molecules (MBL or ficolins), are the enzymatic constituents of the LP and AP. MASP-1 encoded by the Masp1 gene significantly contributes to the activation of the LP. After the binding of MBL/ficolins to pathogens or self-altered cells, MASP-1 autoactivates first, then activates MASP-2, and both participate in the formation of the LP C3 convertase C4b2a, whereas, MASP-3, the splice variant of the Masp1 gene, is required for the activation of the zymogen of factor D (FD), and finally participates in the formation of the AP C3 convertase C3bBb. To investigate the roles of MASP-1 and MASP-3 in lupus, we generated Masp1 gene knockout lupus-prone MRL/lpr mice (Masp1/3−/− MRL/lpr mice), lacking both MASP-1 and MASP-3, and analyzed their renal disease. As expected, sera from Masp1/3−/− MRL/lpr mice had no or markedly reduced activation of the LP and AP with zymogen forms of complement FD. Compared to their wild-type littermates, the Masp1/3−/− MRL/lpr mice had maintained serum C3 levels, little-to-no albuminuria, as well as significantly reduced glomerular C3 deposition levels and glomerular pathological score. On the other hand, there were no significant differences in the levels of serum anti-dsDNA antibody, circulating ICs, glomerular IgG and MBL/ficolins deposition, renal interstitial pathological score, urea nitrogen, and mortality between the wild-type and Masp1/3−/− MRL/lpr mice. Our data indicate that MASP-1/3 plays essential roles in the development of lupus-like glomerulonephritis in MRL/lpr mice, most likely via activation of the LP and/or AP.
Collapse
Affiliation(s)
- Takeshi Machida
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Natsumi Sakamoto
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Yumi Ishida
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
9
|
Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2017; 53:181-197. [DOI: 10.1007/s12016-017-8605-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
11
|
Nie X, Deng R, Xiang L, Jiang P, Xue Q. Reno-protective effect and mechanism study of Huang Lian Jie Du Decoction on lupus nephritis MRL/lpr mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:448. [PMID: 27825337 PMCID: PMC5101683 DOI: 10.1186/s12906-016-1433-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Huang Lian Jie Du Decoction (HLJDD), a very famous traditional Chinese medicinal prescription, has been used for heat dissipation and detoxification in China. This study was aimed to evaluate the reno-protective effects of HLJDD against lupus nephritis (LN) in vivo in MRL/lpr mice. METHODS Animals were administered orally every day for eight consecutive weeks except the mice of normal group and model group. Organ indexes, serum interleukin-6 (IL-6), interleukin-10 (IL-10), interferon-gamma (IFN-γ) and the anti-double stranded DNA (anti-dsDNA) antibody were tested, respectively. Creatinine (Cr), blood urea nitrogen (BUN) and urine protein were measured for renal function evaluation. The expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT 3) in kidney tissue was observed by western blot (WB) and immunohistochemical (IHC) method. Meanwhile, histopathological changes in the renal were studied by hematoxylin-eosin (H&E) staining. RESULTS The mice of HLJDD-treated group exhibited a significant reduced mortality (p < 0.05), serum anti-dsDNA level (p < 0.05) and renal immune complex deposition (p < 0.05), compared with the untreated MRL/lpr mice. In addition, HLJDD treatment remarkably reduced the levels of BUN, Cr, proteinuria (p < 0.01) and the levels of inflammatory cytokines such as IL-6, IL-10 and IFN-γ (p < 0.01). Moreover, HLJDD significantly suppressed the phosphorylations of STAT 3 (p < 0.05) and the renal pathological changes. CONCLUSIONS The study implied that HLJDD may be a potential agent for the therapy of LN, and the down-regulated p-STAT 3 expression suggesting that it may be one of the LN therapy targets for HLJDD.
Collapse
Affiliation(s)
- Xiaoli Nie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Rong Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Lei Xiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Pingping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Qi Xue
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| |
Collapse
|
12
|
Allman WR, Liu L, Coleman AS, Akkoyunlu M. MRL Strains Have a BAFFR Mutation without Functional Consequence. PLoS One 2016; 11:e0154518. [PMID: 27149280 PMCID: PMC4858247 DOI: 10.1371/journal.pone.0154518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 04/14/2016] [Indexed: 11/18/2022] Open
Abstract
It has been shown that B cell activating factor receptor (BAFFR) is critical for B cell development and survival. In this study, we sought to evaluate the expression and function of BAFFR across multiple stains of mice that vary in their potential to develop systemic autoimmune disease. The inability of a commercial antibody to bind to BAFFR in the autoimmune prone mouse strains, MRL and MRL/Lpr led to the discovery of a mutation in TNFRSF13C gene (encoding BAFFR) that resulted in a Pro44Ser substitution in the N-terminus near the BAFF binding site in these strains. To define the biological consequences of mutant BAFFR, we compared the expression and activity of BAFFR in MRL and MRL/Lpr mice to BALB/c, which express the consensus version of TNFRSF13C. B cells from MRL and MRL/Lpr mice expressed mutant BAFFR on surface and were capable of responding to BAFF as exhibited by BAFF-mediated reduction in apoptosis and NF-κB2 activation. Signaling through MAPK ERK1/2 was not significantly induced by BAFF in MRL/Lpr mice; however, MAPK ERK1/2 signaling was intact in MRL mice. The inability of MRL/Lpr B cells to significantly activate ERK1/2 in response to BAFF was due to the high basal activity of the signaling pathway in these cells. In fact, basal activity of ERK1/2 in B cells correlated with the degree of autoimmune susceptibility exhibited by each strain. In addition, aged MRL/Lpr mice with severe autoimmune disease had high BAFF levels, low surface BAFFR, and high basal NF-κB2 activation, a pattern which is attributed to the high frequency of antibody secreting cells. We conclude that P44S BAFFR mutation does not hinder BAFFR function or enhance B cell activity in MRL/Lpr and MRL mice and that other susceptibility loci on the MRL background contributed to the hyperactivity of these cells.
Collapse
Affiliation(s)
- Windy R. Allman
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993–0002, United States of America
| | - Lunhua Liu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993–0002, United States of America
| | - Adam S. Coleman
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993–0002, United States of America
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993–0002, United States of America
- * E-mail:
| |
Collapse
|
13
|
Wu X, Guo J, Ding R, Lv B, Bi L. CXCL13 blockade attenuates lupus nephritis of MRL/lpr mice. Acta Histochem 2015; 117:732-7. [PMID: 26456520 DOI: 10.1016/j.acthis.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 12/29/2022]
Abstract
The chemokine CXC ligand 13 protein (CXCL13) is reported to closely related to the disease activity and severity of systemic lupus erythematosus (SLE), moreover, the level of CXCL13 was markedly raised in kidney tissues of lupus nephritis (LN) patients. The aim of the present study was to explore whether the blockade of CXCL13 has therapeutic effects on murine LN. MRL/lpr mice received 50μg anti-CXCL13 neutralizing antibody or isotype IgG by intraperitoneal injection everyday for six weeks, and renal damage of each group was determined. Our results showed that the blockade of CXCL13 significantly reduced urine protein, serum creatinine, and dramatically attenuated renal pathology injury. Treatment with anti-CXCL13Ab also reduced serum anti-dsDNA level, renal immune complex deposition as well as inflammatory cytokines secretion. Meanwhile, Th17/Treg ratio in spleens of MRL/lpr mice was significantly decreased by the blocking of CXCL13. These findings suggested that CXCL13 may be a promising target for the therapy of LN.
Collapse
Affiliation(s)
- Xiaobei Wu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China; The Affiliated Hospital of Northeast Normal University, Changchun 130024, People's Republic of China
| | - Jialong Guo
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Rui Ding
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Bin Lv
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
14
|
Otani Y, Ichii O, Otsuka-Kanazawa S, Chihara M, Nakamura T, Kon Y. MRL/MpJ-Faslprmice show abnormalities in ovarian function and morphology with the progression of autoimmune disease. Autoimmunity 2015; 48:402-11. [DOI: 10.3109/08916934.2015.1031889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Lpr-induced systemic autoimmunity is unaffected by mast cell deficiency. Immunol Cell Biol 2015; 93:841-8. [PMID: 25849740 DOI: 10.1038/icb.2015.49] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/16/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
The function of mast cells in allergic and organ-specific autoimmune responses is highly controversial. In the current study, we aimed to dissect the role of mast cells in systemic autoimmunity in the B6(lpr/lpr) mouse, a spontaneous model of systemic lupus erythematosus. B6(lpr/lpr) mice were interbred with C57Bl/6-Kit(W-sh/W-sh) (Wsh) mice, resulting in mast cell deficiency. The offspring from this cross (Lpr/Wsh mice) developed symptoms of lupus of the same severity as B6(lpr/lpr) mice. Loss of mast cells on the Lpr background did not alter autoantibody production, proteinuria, the composition of T and B cell populations or autoimmune pathology. Reduced c-Kit expression did drive expanded splenomegaly and impeded interleukin-4 production by CD4(+) cells, suggesting minor functions for mast cells. In general, we conclude that mast cell deficiency and c-Kit deficiency do not play a role in the pathogenesis of lupus in B6(lpr/lpr) mice.
Collapse
|
16
|
Spada R, Rojas JM, Pérez-Yagüe S, Mulens V, Cannata-Ortiz P, Bragado R, Barber DF. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol 2015; 97:583-98. [PMID: 25583577 DOI: 10.1189/jlb.4a0714-326r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NK cells are a major component of the immune system, and alterations in their activity are correlated with various autoimmune diseases. In the present work, we observed an increased expression of the NKG2D ligand MICA in SLE patients' kidneys but not healthy subjects. We also show glomerulus-specific expression of the NKG2D ligands Rae-1 and Mult-1 in various murine SLE models, which correlated with a higher number of glomerular-infiltrating NK cells. As the role of NK cells in the immunopathogenesis of SLE is poorly understood, we explored NK cell differentiation and activity in tissues and organs in SLE-prone murine models by use of diseased and prediseased MRL/MpJ and MRL/lpr mice. We report here that phenotypically iNK cells accumulate only in the spleen but not in BM or kidneys of diseased mice. Infiltrating NK cells in kidneys undergoing a lupus nephritic process showed a more mature, activated phenotype compared with kidney, as well as peripheral NK cells from prediseased mice, as determined by IFN-γ and STAT5 analysis. These findings and the presence of glomerulus-specific NKG2D ligands in lupus-prone mice identify a role for NK cells and NKG2D ligands in the lupus nephritic process, which could aid in understanding their role in human SLE.
Collapse
Affiliation(s)
- Roberto Spada
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - José M Rojas
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Sonia Pérez-Yagüe
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Vladimir Mulens
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Pablo Cannata-Ortiz
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Rafael Bragado
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Domingo F Barber
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| |
Collapse
|
17
|
Sang A, Niu H, Cullen J, Choi SC, Zheng YY, Wang H, Shlomchik MJ, Morel L. Activation of rheumatoid factor-specific B cells is antigen dependent and occurs preferentially outside of germinal centers in the lupus-prone NZM2410 mouse model. THE JOURNAL OF IMMUNOLOGY 2014; 193:1609-21. [PMID: 25015835 DOI: 10.4049/jimmunol.1303000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AM14 rheumatoid factor (RF) B cells in the MRL/lpr mice are activated by dual BCR and TLR7/9 ligation and differentiate into plasmablasts via an extrafollicular (EF) route. It was not known whether this mechanism of activation of RF B cells applied to other lupus-prone mouse models. We investigated the mechanisms by which RF B cells break tolerance in the NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) strain in comparison with C57BL/6 (B6) controls, each expressing the AM14 H chain transgene in the presence or absence of the IgG2a(a) autoantigen. The TC, but not B6, genetic background promotes the differentiation of RF B cells into Ab-forming cells (AFCs) in the presence of the autoantigen. Activated RF B cells preferentially differentiated into plasmablasts in EF zones. Contrary to the MRL/lpr strain, TC RF B cells were also located within germinal centers, but only the formation of EF foci was positively correlated with the production of RF AFCs. Immunization of young TC.AM14 H chain transgenic mice with IgG2a(a) anti-chromatin immune complexes (ICs) activated RF B cells in a BCR- and TLR9-dependent manner. However, these IC immunizations did not result in the production of RF AFCs. These results show that RF B cells break tolerance with the same general mechanisms in the TC and the MRL/lpr lupus-prone genetic backgrounds, namely the dual activation of the BCR and TLR9 pathways. There are also distinct differences, such as the presence of RF B cells in GCs and the requirement of chronic IgG2a(a) anti-chromatin ICs for full differentiation of RF AFCs.
Collapse
Affiliation(s)
- Allison Sang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Haitao Niu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Jaime Cullen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Seung Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Ying Yi Zheng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Haowei Wang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Mark J Shlomchik
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|
18
|
Naja naja atra Venom Protects against Manifestations of Systemic Lupus Erythematosus in MRL/lpr Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:969482. [PMID: 25093033 PMCID: PMC4100264 DOI: 10.1155/2014/969482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease and effective therapy for this pathology is currently unavailable. We previously reported that oral administration of Naja naja atra venom (NNAV) had anti-inflammatory and immune regulatory actions. We speculated that NNAV may have therapeutic effects in MRL/lpr SLE mice. Twelve-week-old MRL/lpr mice received oral administration of NNAV (20, 40, and 80 μg/kg) or Tripterygium wilfordii polyglycosidium (10 mg/kg) daily for 16 weeks. The effects of NNAV on SLE manifestations, including skin erythema, proteinuria, and anxiety-like behaviors, were assessed with visual inspection and Multistix 8 SG strips and open field test, respectively. The pathology of spleen and kidney was examined with H&E staining. The changes in autoimmune antibodies and cytokines were determined with ELISA kits. The results showed that NNAV protected against the manifestation of SLE, including skin erythema and proteinuria. In addition, although no apparent histological change was found in liver and heart in MRL/lpr SLE mice, NNAV reduced the levels of glutamate pyruvate transaminase and creatine kinase. Furthermore, NNAV increased serum C3 and reduced concentrations of circulating globulin, anti-dsDNA antibody, and inflammatory cytokines IL-6 and TNF-α. NNAV also reduced lymphadenopathy and renal injury. These results suggest that NNAV may have therapeutic values in the treatment of SLE by inhibiting autoimmune responses.
Collapse
|
19
|
Oates JC, Mashmoushi AK, Shaftman SR, Gilkeson GS. NADPH oxidase and nitric oxide synthase-dependent superoxide production is increased in proliferative lupus nephritis. Lupus 2013; 22:1361-70. [PMID: 24106214 PMCID: PMC3839955 DOI: 10.1177/0961203313507988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Lupus nephritis (LN) is an immune complex-mediated glomerulonephritis. Proliferative LN (PLN, ISN/RPS classes III and IV)) often leads to renal injury or failure despite traditional induction and maintenance therapy. Successful targeted therapeutic development requires insight into mediators of inflammation in PLN. Superoxide (SO) and its metabolites are mediators of the innate immune response through their ability to mediate reduction-oxidation signaling. Endothelial nitric oxide synthase (eNOS) modulates inflammatory responses in endothelial cells. We hypothesized that markers of SO production would be increased in active PLN and that SO production would be dependent on the activity of select enzymes in the renal cortex. METHODS Patients with systemic lupus erythematosus were enrolled at the time of renal biopsy for active LN of all classes. Serum collected at baseline was analyzed by HPLC with electrochemical detection for markers of SO production (durable modifications of serum protein Tyr ultimately requiring SO as a substrate). Renal cortex from MRL/MpJ-FAS(lpr) (MRL/lpr) mice with and without functional eNOS was analyzed during active disease for superoxide (SO) production with and without inhibitors of SO-producing enzymes. RESULTS Serum protein modifications indicative of total SO production were significantly higher in patients with PLN. These markers were increased in association with more active, inflammatory PLN. Mice lacking functional eNOS had 80% higher levels of renal cortical SO during active disease, and inhibitors of nitric oxide synthase and NADPH oxidase reduced these levels by 60% and 77%, respectively. CONCLUSION These studies demonstrate that SO production is unique to active PLN in a NOS and NADPH oxidase-dependent fashion. These findings suggest the emulating or augmenting eNOS activity or inhibiting NADPH oxidase SO production may be targets of therapy in patients with PLN. The markers of SO production used in this study could rationally be used to select SO-modulating therapies and serve as pharmacodynamic indicators for dose titration.
Collapse
Affiliation(s)
- Jim C. Oates
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC and Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Ahmad K. Mashmoushi
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC
| | - Stephanie R. Shaftman
- Department of Biostatistics, Bioinformatics & Epidemiology, Medical University of South Carolina, Charleston, SC
| | - Gary S. Gilkeson
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC and Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
20
|
Gilkeson GS, Mashmoushi AK, Ruiz P, Caza TN, Perl A, Oates JC. Endothelial nitric oxide synthase reduces crescentic and necrotic glomerular lesions, reactive oxygen production, and MCP1 production in murine lupus nephritis. PLoS One 2013; 8:e64650. [PMID: 23741359 PMCID: PMC3669382 DOI: 10.1371/journal.pone.0064650] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/17/2013] [Indexed: 12/04/2022] Open
Abstract
Systemic lupus erythematosus, in both animal models and in humans, is characterized by autoantibody production followed by immune complex deposition in target tissues. Ensuing target organ damage is modulated by reactive intermediates, including reactive nitrogen and oxygen species, through as of now incompletely understood mechanisms. Endothelial nitric oxide synthase is known to impact vascular reactivity; however its impact on reactive intermediate production and inflammatory renal disease is less well defined. In this study, we assessed the impact of endothelial nitric oxide synthase (eNOS) on disease in lupus prone MRL/lpr mice. Mice lacking eNOS developed earlier more severe disease with decreased survival. eNOS deficient mice died sooner and developed significantly more glomerular crescents, necrosis, inflammatory infiltrates and vasculitis, indicating a role for eNOS in modulating these renal lesions. Immune complex deposition was similar between groups, indicating the impact of eNOS is distal to antibody/complement glomerular deposition. Urinary nitric oxide production was decreased in the eNOS deficient mice, while proteinuria was increased. Urinary monocyte chemotactic protein-1 was also increased in the knockout mice. CD4+ T cells from MRL/lpr mice demonstrated mitochondrial hyperpolarization, increased nitric oxide and superoxide production and increased calcium flux compared to B6 control mice. Deficiency of eNOS resulted in decreased nitric oxide and mitochondrial calcium levels but had no effect on mitochondrial hyperpolarization. Renal cortices from MRL/lpr mice that are eNOS deficient demonstrated increased superoxide production, which was blocked by both nitric oxide synthase and NADPH oxidase inhibitors. These studies thus demonstrate a key role for eNOS in modulating renal disease in lupus prone MRL/lpr mice. The impact appears to be mediated by effects on superoxide production in the kidney, impacting downstream mediators such as monocyte chemotactic protein-1. These results suggest that modulation of eNOS may be a novel therapeutic approach to treating lupus nephritis.
Collapse
Affiliation(s)
- Gary S. Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| | - Ahmad K. Mashmoushi
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Phillip Ruiz
- Transplant Laboratories and Immunopathology, Department of Surgery and Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Tiffany N. Caza
- Division of Rheumatology, Department of Medicine, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Jim C. Oates
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| |
Collapse
|
21
|
Fukuoka A, Futatsugi-Yumikura S, Takahashi S, Kazama H, Iyoda T, Yoshimoto T, Inaba K, Nakanishi K, Yonehara S. Identification of a novel type 2 innate immunocyte with the ability to enhance IgE production. Int Immunol 2013; 25:373-82. [DOI: 10.1093/intimm/dxs160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
22
|
Abstract
Autoreactive B and T cells are present in healthy, autoimmunity-free individuals, but they are kept in check by various regulatory mechanisms. In systemic lupus erythematosus (SLE) patients, however, autoreactive cells are expanded, activated, and produce large quantities of autoantibodies, directed especially against nuclear antigens. These antibodies form immune complexes with self-nucleic acids present in SLE serum. Since self-DNA and self-RNA in the form of protein complexes can act as TLR9 and TLR7 ligands, respectively, TLR stimulation is suggested as an additional signal contributing to activation and/or modulation of the aberrant adaptive immune response. Data from mouse models suggest a pathogenic role for TLR7 and a protective role for TLR9 in the pathogenesis of SLE. Future investigations are needed to elucidate the underlying modulatory mechanisms and the role of TLR7 and TLR9 in the complex pathogenesis of human SLE.
Collapse
Affiliation(s)
- T Celhar
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Singapore
| | | | | |
Collapse
|
23
|
Autocrine IFNγ controls the regulatory function of lymphoproliferative double negative T cells. PLoS One 2012; 7:e47732. [PMID: 23077665 PMCID: PMC3471870 DOI: 10.1371/journal.pone.0047732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
TCRαβ+ CD4−CD8−NK− double negative T cells (DN T cells) can act as regulatory T cells to inhibit allograft rejection and autoimmunity. Their role in graft-versus-host disease and mechanisms of suppression remain elusive. In this study, we demonstrate that DN T cells can inhibit CD4+ T cell-mediated GVHD in a semi-allogeneic model of bone marrow transplantation. Furthermore, we present evidence of a novel autocrine IFNγ signaling pathway in Fas-deficient C57BL/6.lpr (B6.lpr) DN T cells. B6.lpr DN T cells lacking IFNγ or its receptor were impaired in their ability to suppress syngeneic CD4+ T cells responding to alloantigen stimulation both in vitro and in vivo. Autocrine IFNγ signaling was required for sustained B6.lpr DN T cell IFNγ secretion in vivo and for upregulation of surface Fas ligand expression during TCR stimulation. Fas ligand (FasL) expression by B6.lpr DN T cells permitted lysis of activated CD4+ T cells and was required for suppression of GVHD. Collectively, our data indicate that DN T cells can inhibit GVHD and that IFNγ plays a critical autocrine role in controlling the regulatory function of B6.lpr DN T cells.
Collapse
|
24
|
Role of MHC-linked susceptibility genes in the pathogenesis of human and murine lupus. Clin Dev Immunol 2012; 2012:584374. [PMID: 22761632 PMCID: PMC3385965 DOI: 10.1155/2012/584374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 02/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies against nuclear antigens and a systemic inflammation that can damage a broad spectrum of organs. SLE patients suffer from a wide variety of symptoms, which can affect virtually almost any tissue. As lupus is difficult to diagnose, the worldwide prevalence of SLE can only be roughly estimated to range from 10 and 200 cases per 100,000 individuals with dramatic differences depending on gender, ethnicity, and location. Although the treatment of this disease has been significantly ameliorated by new therapies, improved conventional drug therapy options, and a trained expert eye, the underlying pathogenesis of lupus still remain widely unknown. The complex etiology reflects the complex genetic background of the disease, which is also not well understood yet. However, in the past few years advances in lupus genetics have been made, notably with the publication of genome-wide association studies (GWAS) in humans and the identification of susceptibility genes and loci in mice. This paper reviews the role of MHC-linked susceptibility genes in the pathogenesis of systemic lupus erythematosus.
Collapse
|
25
|
Shimp SK, Chafin CB, Regna NL, Hammond SE, Read MA, Caudell DL, Rylander M, Reilly CM. Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus. Cell Mol Immunol 2012; 9:255-66. [PMID: 22543833 DOI: 10.1038/cmi.2012.5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Elevated expression of heat shock protein 90 (HSP90) has been found in kidneys and serum of systemic lupus erythematosus (SLE) patients and MRL/Mp-Fas(lpr)/Fas(lpr) (MRL/lpr) autoimmune mice. We investigated if inhibition of HSP90 would reduce disease in MRL/lpr mice. In vitro, pretreatment of mesangial cells with HSP90 inhibitor Geldanamycin prior to immune-stimulation showed reduced expression of IL-6, IL-12 and NO. In vivo, we found HSP90 expression was elevated in MRL/lpr kidneys when compared to C57BL/6 mice and MRL/lpr mice treated with HSP90 inhibitor 17-DMAG. MRL/lpr mice treated with 17-DMAG showed decreased proteinuria and reduced serum anti-dsDNA antibody production. Glomerulonephritis and glomerular IgG and C3 were not significantly affected by administration of 17-DMAG in MRL/lpr. 17-DMAG increased CD8(+) T cells, reduced double-negative T cells, decreased the CD4/CD8 ratio and reduced follicular B cells. These studies suggest that HSP90 may play a role in regulating T-cell differentiation and activation and that HSP90 inhibition may reduce inflammation in lupus.
Collapse
Affiliation(s)
- Samuel K Shimp
- Virginia Tech-Wake Forest School of Biomedical Engineering and Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 21061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
McGaha TL, Ma Z, Ravishankar B, Gabunia K, McMenamin M, Madaio MP. Heterologous protein incites abnormal plasma cell accumulation and autoimmunity in MRL-MpJ mice. Autoimmunity 2012; 45:279-89. [PMID: 22283427 DOI: 10.3109/08916934.2012.654864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although it is evident that there is complex interplay among genetic and environmental factors contributing to systemic autoimmunity, the events inciting autoreactivity are incompletely understood. Previously we demonstrated that MRL-MpJ mice posses a genetic background susceptible to autoimmunity development under conditions of altered inhibitory signaling. To gain better understanding of the influence of exogenous factors on autoreactivity in susceptible individuals, young MRL-MpJ mice were challenged with a single injection of heterologous protein and evaluated for evidence of autoimmunity. We found that MRL-MpJ mice developed high titer serum reactivity to DNA within 1 week of protein administration reaching maximal levels within 1 month. Importantly, the level of autoimmunity was sustained for an extended period of time (6 months). This was accompanied by a substantial increase in germinal center B cell and plasma cell numbers. In contrast, control mice showed no change in autoreactivity or lymphocyte homeostasis. Autoimmunity was dependent on marginal zone B cells as their depletion reduced serum auto-reactivity after challenge, thus suggesting immune stimulation with heterologous proteins can precipitate loss of B cell tolerance and autoimmunity in genetically prone individuals. This model may provide an important tool to further investigate the mechanisms whereby environmental stimuli trigger autoimmune reactivity in susceptible hosts.
Collapse
Affiliation(s)
- Tracy L McGaha
- Department of Medicine, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Thuret S, Thallmair M, Horky LL, Gage FH. Enhanced functional recovery in MRL/MpJ mice after spinal cord dorsal hemisection. PLoS One 2012; 7:e30904. [PMID: 22348029 PMCID: PMC3278405 DOI: 10.1371/journal.pone.0030904] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/29/2011] [Indexed: 11/20/2022] Open
Abstract
Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice.
Collapse
Affiliation(s)
- Sandrine Thuret
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (ST); (FHG)
| | - Michaela Thallmair
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Laura L. Horky
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (ST); (FHG)
| |
Collapse
|
28
|
Park H, Sheen DH, Lim MK, Shim SC. Animal Models in Systemic Lupus Erythematosus. JOURNAL OF RHEUMATIC DISEASES 2012. [DOI: 10.4078/jrd.2012.19.4.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyo Park
- Department of Internal Medicine, Eulji University College of Medicine, Eulji Medi-Bio Research Institute, Daejeon, Korea
| | - Dong Hyuk Sheen
- Department of Internal Medicine, Eulji University College of Medicine, Eulji Medi-Bio Research Institute, Daejeon, Korea
| | - Mi Kyoung Lim
- Department of Internal Medicine, Eulji University College of Medicine, Eulji Medi-Bio Research Institute, Daejeon, Korea
| | - Seung Cheol Shim
- Department of Internal Medicine, Eulji University College of Medicine, Eulji Medi-Bio Research Institute, Daejeon, Korea
| |
Collapse
|
29
|
|
30
|
Yu WR, Fehlings MG. Fas/FasL-mediated apoptosis and inflammation are key features of acute human spinal cord injury: implications for translational, clinical application. Acta Neuropathol 2011; 122:747-61. [PMID: 22038545 PMCID: PMC3224722 DOI: 10.1007/s00401-011-0882-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022]
Abstract
The Fas/FasL system plays an important role in apoptosis, the inflammatory response and gliosis in a variety of neurologic disorders. A better understanding of these mechanisms could lead to effective therapeutic strategies following spinal cord injury (SCI). We explored these mechanisms by examining molecular changes in postmortem human spinal cord tissue from cases with acute and chronic SCI. Complementary studies were conducted using the in vivo Fejota™ clip compression model of SCI in Fas-deficient B6.MRL-Fas-lpr (lpr) and wild-type (Wt) mice to test Fas-mediated apoptosis, inflammation, gliosis and axonal degeneration by immunohistochemistry, Western blotting, gelatin zymography and ELISA with Mouse 32-plex cytokine/chemokine panel bead immunoassay. We report novel evidence that shows that Fas-mediated apoptosis of neurons and oligodendrocytes occurred in the injury epicenter in all cases of acute and subacute SCI and not in chronic SCI or in control cases. We also found significantly reduced apoptosis, expression of GFAP, NF-κB, p-IKappaB and iba1, increased number of CD4 positive T cells and MMP2 expression and reduced neurological dysfunction in lpr mice when compared with Wt mice after SCI. We found dramatically reduced inflammation and cytokines and chemokine expression in B6.MRL-Fas-lpr mice compared to Wt mice after SCI. In conclusion, we report multiple lines of evidence that Fas/FasL activation plays a pivotal role in mediating apoptosis, the inflammatory response and neurodegeneration after SCI, providing a compelling rationale for therapeutically targeting Fas in human SCI.
Collapse
Affiliation(s)
- Wen Ru Yu
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8 Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Toronto Western Research Institute and Krembil Neuroscience Centre, The Toronto Western Hospital, University Health Network, Room 4W-449, 399 Bathurst Street, Toronto, ON M5T 2S8 Canada
| |
Collapse
|
31
|
Oldham AL, Miner CA, Wang HC, Webb CF. The transcription factor Bright plays a role in marginal zone B lymphocyte development and autoantibody production. Mol Immunol 2011; 49:367-79. [PMID: 21963220 DOI: 10.1016/j.molimm.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Previous data suggested that constitutive expression of the transcription factor Bright (B cell regulator of immunoglobulin heavy chain transcription), normally tightly regulated during B cell differentiation, was associated with autoantibody production. Here we show that constitutive Bright expression results in skewing of mature B lineage subpopulations toward marginal zone cells at the expense of the follicular subpopulation. C57Bl/6 transgenic mice constitutively expressing Bright in B lineage cells generated autoantibodies that were not the result of global increases in immunoglobulin or of breaches in key tolerance checkpoints typically defective in other autoimmune mouse models. Rather, autoimmunity correlated with increased numbers of marginal zone B cells and alterations in the phenotype and gene expression profiles of lymphocytes within the follicular B cell compartment. These data suggest a novel role for Bright in the normal development of mature B cell subsets and in autoantibody production.
Collapse
Affiliation(s)
- Athenia L Oldham
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
32
|
Jiang C, Zhao ML, Scearce RM, Diaz M. Activation-induced deaminase-deficient MRL/lpr mice secrete high levels of protective antibodies against lupus nephritis. ACTA ACUST UNITED AC 2011; 63:1086-96. [PMID: 21225690 DOI: 10.1002/art.30230] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We previously generated MRL/lpr mice deficient in activation-induced deaminase (AID) that lack isotype switching and immunoglobulin hypermutation. These mice have high levels of unmutated (germline) autoreactive IgM, yet they experienced an increase in survival and an improvement in lupus nephritis that exceeded that of MRL/lpr mice lacking IgG. The purpose of the present study was to test the hypothesis that high levels of germline autoreactive IgM in these mice confer protection against lupus nephritis. METHODS Autoreactive IgM antibodies of various specificities, including antibodies against double-stranded DNA (dsDNA), from AID-deficient MRL/lpr mice were given to asymptomatic MRL/lpr mice, and the levels of cytokines, proteinuria, immune complex deposition in the kidneys, and glomerulonephritis were examined. Novel AID-deficient MRL/lpr mice that lack any antibodies were generated for comparison to AID-deficient MRL/lpr mice that secrete only IgM. RESULTS Treatment with IgM anti-dsDNA resulted in a dramatic improvement in lupus nephritis. Other autoreactive IgM antibodies, such as antiphospholipid and anti-Sm, did not alter the pathologic changes. Secretion of proinflammatory cytokines by macrophages and the levels of inflammatory cells and apoptotic debris in the kidneys were lower in mice receiving IgM anti-dsDNA. Protective IgM derived from AID-deficient MRL/lpr mice displayed a distinct B cell repertoire, with a bias toward members of the V(H) 7183 family. CONCLUSION IgM anti-dsDNA protected MRL/lpr mice from lupus nephritis, likely by stopping the inflammatory cascade leading to kidney damage. A distinct repertoire of V(H) usage in IgM anti-dsDNA hybridomas from AID-deficient mice suggests that there is enrichment of a dedicated B cell population that secretes unmutated protective IgM in these mice.
Collapse
Affiliation(s)
- Chuancang Jiang
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
33
|
Viegas MS, Silva T, Monteiro MM, do Carmo A, Martins TC. Knocking out of CD38 accelerates development of a lupus-like disease in lpr mice. Rheumatology (Oxford) 2011; 50:1569-77. [DOI: 10.1093/rheumatology/ker178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:271694. [PMID: 21403825 PMCID: PMC3042628 DOI: 10.1155/2011/271694] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 12/19/2010] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder. The study of diverse mouse models of lupus has provided clues to the etiology of SLE. Spontaneous mouse models of lupus have led to identification of numerous susceptibility loci from which several candidate genes have emerged. Meanwhile, induced models of lupus have provided insight into the role of environmental factors in lupus pathogenesis as well as provided a better understanding of cellular mechanisms involved in the onset and progression of disease. The SLE-like phenotypes present in these models have also served to screen numerous potential SLE therapies. Due to the complex nature of SLE, it is necessary to understand the effect specific targeted therapies have on immune homeostasis. Furthermore, knowledge gained from mouse models will provide novel therapy targets for the treatment of SLE.
Collapse
|
35
|
Bagavant H, Kalantarinia K, Scindia Y, Deshmukh U. Novel therapeutic approaches to lupus glomerulonephritis: translating animal models to clinical practice. Am J Kidney Dis 2011; 57:498-507. [PMID: 21239097 DOI: 10.1053/j.ajkd.2010.10.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/11/2010] [Indexed: 11/11/2022]
Abstract
Systemic lupus erythematosus is a chronic autoimmune disease frequently affecting the kidney. Renal involvement is characterized by glomerular immune complex deposits and proliferative glomerulonephritis progressing to glomerulosclerosis and kidney failure. The development of systemic lupus erythematosus is regulated genetically, and lupus susceptibility genes have been linked to immune hyper-responsiveness and loss of immune regulation. In addition to the systemic immune defects, recent studies in animal models show that susceptibility to lupus nephritis is influenced by intrinsic renal factors. Thus, renal cell responses to immune-mediated glomerular injury determine disease outcome. This supports the idea that future treatments for lupus nephritis need to focus on regulating end-organ responses. The feasibility of this approach has been shown in animal models of kidney disease. For more than 50 years, the emphasis in management of lupus nephritis has been suppression of autoimmune responses and systemic control of inflammation. This review describes recently developed targeted drug delivery technologies and potential targets that can regulate glomerular cell responses, offering a novel therapeutic approach for lupus nephritis.
Collapse
Affiliation(s)
- Harini Bagavant
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
36
|
Santiuste I, Buelta L, Iglesias M, Genre F, Mazorra F, Izui S, Merino J, Merino R. B-cell overexpression of Bcl-2 cooperates with p21 deficiency for the induction of autoimmunity and lymphomas. J Autoimmun 2010; 35:316-24. [PMID: 20691570 DOI: 10.1016/j.jaut.2010.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 11/13/2022]
Abstract
Genetic abnormalities predisposing to autoimmunity generally act in a cooperative manner affecting one or several mechanisms regulating immunological tolerance. In addition, many of these genetic abnormalities are also involved in the development of lymphoproliferative diseases. In the present study, we have determined the possible cooperation between deficiencies in members of the Cip/Kip family of cell cycle regulators (p21(WAF1/Cip1) or p27(kip1)) and the overexpression of human Bcl-2 in B lymphocytes in the induction of autoimmune and lymphoproliferative diseases in non-autoimmune C57BL/6 (B6) mice. Unlike single mutant mice, B6.p21(-/-) mice transgenic for human Bcl-2 in B cells developed a lethal autoimmune syndrome characterized by the production of autoantibodies, the prominent expansion of memory B and CD4(+) T cells and the development of severe glomerular lesions resembling IgA nephropathy. Furthermore, these mice presented a high incidence of B-cell lymphoproliferative disorders. Such genetic cooperation in the induction of autoimmunity was not observed in B6.p27(-/-) mice transgenic for human Bcl-2 in B cells. Altogether, what we have demonstrated here is the existence of preferential interactions among particular regulators of the G(1)/S transition of the cell cycle and B-cell survival in the induction of systemic autoimmune and lymphoproliferative diseases.
Collapse
Affiliation(s)
- Inés Santiuste
- Departmento de Biología Molecular, Universidad de Cantabria-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Quantitative trait locus analysis of ovarian cysts derived from rete ovarii in MRL/MpJ mice. Mamm Genome 2010; 21:162-71. [PMID: 20182879 DOI: 10.1007/s00335-010-9254-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
MRL/MpJ (MRL) is a model mouse for autoimmune diseases such as dermatitis, vasculitis, arthritis, and glomerulonephritis. In addition to these immune-associated disorders, we found that older MRL mice develop ovarian cysts originating from the rete ovarii, which is lined by ciliated or nonciliated epithelium and considered remnants of mesonephric tubules. Ovarian cysts, which are reported to have several sources, are associated with female infertility, but information regarding the genetic etiology of ovarian cysts originating from the rete ovarii is rare. In this study, to elucidate the genetic background of development of ovarian cysts, we performed quantitative trait locus (QTL) analysis using 120 microsatellite markers, which cover the whole genome of murine chromosomes, and 213 backcross progenies between female MRL and male C57BL/6N mice. The quantitative trait measured was the circumferences of rete ovarii or ovarian cysts. As a result, suggestive linkages were detected on Chrs 3, 4, 6, and 11, but significant linkages were located on Chr 14 by interval mapping. We thereby designated the 27.5-cM region of Chr 14 "MRL Rete Ovarian Cysts (mroc)." The peak regions of Chrs 4 and 14 in particular showed a close additive interaction (p < 0.00001). From these results we concluded that multiple loci on Chrs 3, 4, 6, 11, and 14 interact to result in development of ovarian cysts in MRL mice.
Collapse
|
38
|
Nickerson KM, Christensen SR, Shupe J, Kashgarian M, Kim D, Elkon K, Shlomchik MJ. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. THE JOURNAL OF IMMUNOLOGY 2010; 184:1840-8. [PMID: 20089701 DOI: 10.4049/jimmunol.0902592] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is characterized by the production of autoantibodies against nucleic acid-associated Ags. We previously found that Tlr7 was required for anti-Sm and Tlr9 for anti-chromatin autoantibodies. Yet, although Tlr7 deficiency ameliorated disease, Tlr9 deficiency exacerbated it. Despite the mechanistic and clinical implications of this finding, it has yet to be elucidated. In this study, we characterize MRL/lpr lupus-prone mice genetically deficient in Tlr7, Tlr9, both Tlr7 and Tlr9, or Myd88 to test whether Tlr7 and Tlr9 function independently or instead regulate each other. We find that disease that is regulated by Tlr9 (and hence is worse in its absence) depends on Tlr7 for its manifestation. In addition, although Tlr7 and Tlr9 act in parallel pathways on different subsets of autoantibodies, Tlr9 also suppresses the production of Tlr7-dependent RNA-associated autoantibodies, suggesting previously unrecognized cross-regulation of autoantibody production as well. By comparing disease in mice deficient for Tlr7 and/or Tlr9 to those lacking Myd88, we also identify aspects of disease that have Tlr- and Myd88-independent components. These results suggest new models for how Tlr9 regulates and Tlr7 enhances disease and provide insight into aspects of autoimmune disease that are, and are not, influenced by TLR signals.
Collapse
Affiliation(s)
- Kevin M Nickerson
- Department of Laboratory Medicine, Yale University, New Haven, CT 06519, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Cheung YH, Loh C, Pau E, Kim J, Wither J. Insights into the genetic basis and immunopathogenesis of systemic lupus erythematosus from the study of mouse models. Semin Immunol 2009; 21:372-82. [DOI: 10.1016/j.smim.2009.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 01/15/2023]
|
40
|
Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc Natl Acad Sci U S A 2009; 106:12061-6. [PMID: 19574451 DOI: 10.1073/pnas.0905441106] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Using the Unc93b1 3d mutation that selectively abolishes nucleic acid-binding Toll-like receptor (TLR) (TLR3, -7, -9) signaling, we show these endosomal TLRs are required for optimal production of IgG autoAbs, IgM rheumatoid factor, and other clinical parameters of disease in 2 lupus strains, B6-Fas(lpr) and BXSB. Strikingly, treatment with lipid A, an autoAb-inducing TLR4 agonist, could not overcome this requirement. The 3d mutation slightly reduced complete Freund's adjuvant (CFA)-mediated antigen presentation, but did not affect T-independent type 1 or alum-mediated T-dependent humoral responses or TLR-independent IFN production induced by cytoplasmic nucleic acids. These findings suggest that nucleic acid-sensing TLRs might act as an Achilles' heel in susceptible individuals by providing a critical pathway by which relative tolerance for nucleic acid-containing antigens is breached and systemic autoimmunity ensues. Importantly, this helps provide an explanation for the high frequency of anti-nucleic acid Abs in lupus-like systemic autoimmunity.
Collapse
|
41
|
Odegard JM, DiPlacido LD, Greenwald L, Kashgarian M, Kono DH, Dong C, Flavell RA, Craft J. ICOS controls effector function but not trafficking receptor expression of kidney-infiltrating effector T cells in murine lupus. THE JOURNAL OF IMMUNOLOGY 2009; 182:4076-84. [PMID: 19299705 DOI: 10.4049/jimmunol.0800758] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Renal pathology in systemic lupus erythematosus involves both autoantibody deposition and a cellular inflammatory response, both of which are mediated by effector CD4 T cells. MRL(lpr) mice spontaneously develop massive perivascular infiltrates, but the pathways that regulate the development, trafficking, and effector functions of kidney-infiltrating T cells are poorly defined. To address these questions, we first surveyed inflammatory chemokine protein levels in nephritic kidneys from lupus-prone MRL(lpr) mice. After identifying highly elevated levels of the CXCR3 ligand CXCL9, we found that kidney-infiltrating effectors are enriched for expression of CXCR3, as well as P-selectin ligand and ICOS. Using genetic ablation, we demonstrate that ICOS plays an essential role in the establishment of renal perivascular infiltrates, although a small number of infiltrating cells remain around the blood vessels. Interestingly, though IgG autoantibody production is substantially reduced in Icos(-/-) MRL(lpr) mice, the progression of immune complex glomerulonephritis is only modestly diminished and the production of inflammatory chemokines, such as CXCL9, remains high in the kidney. We find that Icos(-/-) effector cell numbers are only slightly reduced and these have normal expression of CXCR3 and P-selectin ligand with intact migration to CXCL9. However, they have impaired production of inflammatory cytokines and fail to show evidence of efficient proliferation in the kidney. Thus, while dispensable for acquisition of renal trafficking receptor expression, ICOS is strictly required for local inflammatory functions of autoreactive CD4 T cells in murine lupus.
Collapse
Affiliation(s)
- Jared M Odegard
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abe K, Klaften M, Narita A, Kimura T, Imai K, Kimura M, Rubio-Aliaga I, Wagner S, Jakob T, Hrabé de Angelis M. Genome-wide search for genes that modulate inflammatory arthritis caused by Ali18 mutation in mice. Mamm Genome 2009; 20:152-61. [PMID: 19238339 DOI: 10.1007/s00335-009-9170-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 12/30/2008] [Indexed: 01/17/2023]
Abstract
Many of inflammatory diseases, including inflammatory arthritis, are multifactorial bases. The Ali18 semidominant mutation induced by N-ethyl-N-nitrosourea in the C3HeB/FeJ (C3H) genome causes spontaneous inflammation of peripheral limbs and elevated immunoglobulin E (IgE) levels in mice. Although the Ali18 locus was mapped to a single locus on chromosome 4, the arthritic phenotype of Ali18/+ mice was completely suppressed in F1 hybrid genetic backgrounds. To determine the chromosomal locations of the modifier loci affecting the severity of arthritis, an autosomal genome scan of 22 affected Ali18/+ F2 mice was conducted using C57BL/6J as a partner strain. Interestingly, regions on chromosomes 1 and 3 in C3H showed significant genetic interactions. Moreover, 174 N2 (backcross to Ali18/Ali18) and 267 F2 animals were used for measurement of arthritis scores and plasma IgE levels, and also for genotyping with 153 genome-wide single nucleotide polymorphism (SNP) markers. In N2 populations, two significant trait loci for arthritis scores on chromosomes 1 and 15 were detected. Although no significant scores were detected in F2 mice besides chromosome 4, a suggestive score was detected on chromosome 3. In addition, a two-dimensional genome scan using F2 identified five suggestive scores of chromosomal combinations, chromosomes 1 x 10, 2 x 6, 3 x 4, 4 x 9, and 6 x 15. No significant trait loci affecting IgE levels were detected in both N2 and F2 populations. Identification of the Ali18 modifier genes by further detailed analyses such as congenic strains and expression profiling may dissect molecular complexity in inflammatory diseases.
Collapse
Affiliation(s)
- Koichiro Abe
- Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa, 259-1193, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu O, Chen GP, Chen H, Li XP, Xu JH, Zhao SS, Sheng J, Feng JB, Cai J, Fang XH, Zhang WH, Li LH, Zhang N, Li J, Li JJ, Pan FM, Wang CZ, Ye DQ. The expressions of Toll-like receptor 9 and T-bet in circulating B and T cells in newly diagnosed, untreated systemic lupus erythematosus and correlations with disease activity and laboratory data in a Chinese population. Immunobiology 2008; 214:392-402. [PMID: 19362685 DOI: 10.1016/j.imbio.2008.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/29/2008] [Accepted: 10/05/2008] [Indexed: 10/21/2022]
Abstract
Toll-like receptor 9 (TLR9) plays a controversial role in the pathogenesis of systemic lupus erythematosus (SLE). T-bet may be involved in the processes between the initiation of TLR9 activation and the antibodies' production. To clarify the paradox of TLR9, we investigated the intracellular expressions of TLR9 and T-bet in B and T cells in peripheral blood samples from 35 newly diagnosed, untreated patients with SLE and 16 healthy subjects by flow cytometry (FCM). And we collected the clinic laboratory data obtained from the same individual blood sample tested by FCM each time. And the correlations among the expression levels of the two proteins and SLE laboratory data were calculated. We found the percentages of B cells expressing TLR9 and T-bet and of T cells expressing TLR9 were significantly elevated in SLE patients when compared with healthy controls. There was a significantly negative relationship between the proportion of B cells expressing TLR9 and SLE Disease Activity Index (SLEDAI) score. The serum levels of anti-dsDNA antibody reversely correlated with the mean fluorescence intensity (MFI) of B cells co-expressing T-bet and TLR9. The serum levels of anti-C1q antibody significantly associated with the proportion of B cells expressing T-bet. Also, the serum levels of IgM and IgA antibodies both significantly correlated with TLR9 and T-bet expressions in T and B cells. According to the immunological pathway knowledge and the mutually verified associations, the following conclusions are made. Expressions of TLR9 and T-bet were increased in patients with SLE. TLR9 may have a role to play in protecting against lupus. And the increase of the co-expression of TLR9 and T-bet may be of benefit to the protective antibodies' production and pathogenic antibodies' decline, and could be regarded as a good sign for lupus demission and/or treatment.
Collapse
Affiliation(s)
- Ou Wu
- Department of Epidemiology & Biostatistics, Anhui Medical University, Anhui, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Odegard JM, Marks BR, DiPlacido LD, Poholek AC, Kono DH, Dong C, Flavell RA, Craft J. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. ACTA ACUST UNITED AC 2008; 205:2873-86. [PMID: 18981236 PMCID: PMC2585848 DOI: 10.1084/jem.20080840] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of specialized follicular helper T (TFH) cells in the germinal center has become well recognized, but it is less clear how effector T cells govern the extrafollicular response, the dominant pathway of high-affinity, isotype-switched autoantibody production in the MRL/MpJ-Faslpr (MRLlpr) mouse model of lupus. MRLlpr mice lacking the Icos gene have impaired extrafollicular differentiation of immunoglobulin (Ig) G+ plasma cells accompanied by defects in CXC chemokine receptor (CXCR) 4 expression, interleukin (IL) 21 secretion, and B cell helper function in CD4 T cells. These phenotypes reflect the selective loss of a population of T cells marked by down-regulation of P-selectin glycoprotein ligand 1 (PSGL-1; also known as CD162). PSGL-1lo T cells from MRLlpr mice express CXCR4, localize to extrafollicular sites, and uniquely mediate IgG production through IL-21 and CD40L. In other autoimmune strains, PSGL-1lo T cells are also abundant but may exhibit either a follicular or extrafollicular phenotype. Our findings define an anatomically distinct extrafollicular population of cells that regulates plasma cell differentiation in chronic autoimmunity, indicating that specialized humoral effector T cells akin to TFH cells can occur outside the follicle.
Collapse
Affiliation(s)
- Jared M Odegard
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ballok DA, Sakic B. Purine receptor antagonist modulates serology and affective behaviors in lupus-prone mice: evidence of autoimmune-induced pain? Brain Behav Immun 2008; 22:1208-16. [PMID: 18601998 PMCID: PMC2783694 DOI: 10.1016/j.bbi.2008.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 12/31/2022] Open
Abstract
Neurologic and psychiatric (NP) manifestations are severe complications of systemic lupus erythematosus (SLE). As commonly seen in patients, spontaneous disease onset in the MRL/MpJ-Fas(lpr)/J (MRL-lpr) mouse model of NP-SLE is accompanied by increased autoantibodies, pro-inflammatory cytokines and behavioral dysfunction which precede neuroinflammation and structural brain lesions. The role of purinergic receptors in the regulation of immunity and behavior remains largely unexplored in the field of neuropsychiatry. To examine the possibility that purinoception is involved in the development of affective behaviors, the P2X purinoceptor antagonist, suramin, was administered to lupus-prone mice from 5 to 14 weeks of age. In addition to food and water measures, novel object and sucrose preference tests were performed to assess neophobic anxiety- and anhedonic-like behaviors. Enzyme-linked immunosorbant assays for anti-nuclear antibodies (ANA) and pro-inflammatory cytokines were employed in immunopathological analyses. Changes in dendritic morphology in the hippocampal CA1 region were examined by a Golgi impregnation method. Suramin significantly lowered serum ANA and prevented behavioral deficits, but did not prevent neuronal atrophy in MRL-lpr animals. In a new batch of asymptomatic mice, systemic administration of corticosterone was found to induce aberrations in CA1 dendrites, comparable to the "stress" of chronic disease. The precise mechanism(s) through which purine receptor inhibition exerted beneficial effects is not known. The present data supports the hypothesis that activation of the peripheral immune system induces nociceptive-related behavioral symptomatology which is attenuated by the analgesic effects of suramin. Hypercortisolemia may also initiate neuronal damage, and metabolic perturbations may underlie neuro-immuno-endocrine imbalances in MRL-lpr mice.
Collapse
Affiliation(s)
- David A Ballok
- Department of Surgery (Neurosurgery, Neurobiology), McMaster University, Canada L8N 3Z5.
| | | |
Collapse
|
46
|
Lucas JA, Menke J, Rabacal WA, Schoen FJ, Sharpe AH, Kelley VR. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:2513-21. [PMID: 18684942 DOI: 10.4049/jimmunol.181.4.2513] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MRL/MpJ-Fas(lpr) (MRL-Fas(lpr)) mice develop a spontaneous T cell and macrophage-dependent autoimmune disease that shares features with human lupus. Interactions via the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway down-regulate immune responses and provide a negative regulatory checkpoint in mediating tolerance and autoimmune disease. Therefore, we tested the hypothesis that the PD-1/PD-L1 pathway suppresses lupus nephritis and the systemic illness in MRL-Fas(lpr) mice. For this purpose, we compared kidney and systemic illness (lymph nodes, spleen, skin, lung, glands) in PD-L1 null (-/-) and PD-L1 intact (wild type, WT) MRL-Fas(lpr) mice. Unexpectedly, PD-L1(-/-);MRL-Fas(lpr) mice died as a result of autoimmune myocarditis and pneumonitis before developing renal disease or the systemic illness. Dense infiltrates, consisting of macrophage and T cells (CD8(+) > CD4(+)), were prominent throughout the heart (atria and ventricles) and localized specifically around vessels in the lung. In addition, once disease was evident, we detected heart specific autoantibodies in PD-L1(-/-);MRL-Fas(lpr) mice. This unique phenotype is dependent on MRL-specific background genes as PD-L1(-/-);MRL(+/+) mice lacking the Fas(lpr) mutation developed autoimmune myocarditis and pneumonitis. Notably, the transfer of PD-L1(-/-);MRL(+/+) bone marrow cells induced myocarditis and pneumonitis in WT;MRL(+/+) mice, despite a dramatic up-regulation of PD-L1 expression on endothelial cells in the heart and lung of WT;MRL(+/+) mice. Taken together, we suggest that PD-L1 expression is central to autoimmune heart and lung disease in lupus-susceptible (MRL) mice.
Collapse
Affiliation(s)
- Julie A Lucas
- Laboratory of Molecular Autoimmune Disease, Renal Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hao Z, Duncan GS, Seagal J, Su YW, Hong C, Haight J, Chen NJ, Elia A, Wakeham A, Li WY, Liepa J, Wood GA, Casola S, Rajewsky K, Mak TW. Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity 2008; 29:615-27. [PMID: 18835195 DOI: 10.1016/j.immuni.2008.07.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 06/05/2008] [Accepted: 07/09/2008] [Indexed: 12/13/2022]
Abstract
Fas is highly expressed in activated and germinal center (GC) B cells but can potentially be inactivated by misguided somatic hypermutation. We employed conditional Fas-deficient mice to investigate the physiological functions of Fas in various B cell subsets. B cell-specific Fas-deficient mice developed fatal lymphoproliferation due to activation of B cells and T cells. Ablation of Fas specifically in GC B cells reproduced the phenotype, indicating that the lymphoproliferation initiates in the GC environment. B cell-specific Fas-deficient mice also showed an accumulation of IgG1(+) memory B cells expressing high amounts of CD80 and the expansion of CD28-expressing CD4(+) Th cells. Blocking T cell-B cell interaction and GC formation completely prevented the fatal lymphoproliferation. Thus, Fas-mediated selection of GC B cells and the resulting memory B cell compartment is essential for maintaining the homeostasis of both T and B lymphocytes.
Collapse
Affiliation(s)
- Zhenyue Hao
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
In this issue of Immunity, the Coronin-1A gene Coro1a, which regulates cytoskeletal structure, is shown by Haraldsson et al. (2007) to be a surprising disease-susceptibility gene that contributes to the spontaneous systemic autoimmunity in the MRL mouse, a model of systemic lupus erythematosus.
Collapse
|
49
|
Tarasenko T, Kole HK, Bolland S. A Lupus-Suppressor BALB/c Locus Restricts IgG2 Autoantibodies without Altering Intrinsic B Cell-Tolerance Mechanisms. THE JOURNAL OF IMMUNOLOGY 2008; 180:3807-14. [DOI: 10.4049/jimmunol.180.6.3807] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Witsch EJ, Bettelheim E. Allelic and Isotypic Light Chain Inclusion in Peripheral B Cells from Anti-DNA Antibody Transgenic C57BL/6 and BALB/c Mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:3708-18. [DOI: 10.4049/jimmunol.180.6.3708] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|