1
|
Zhao Y, Lu Z, Zhang H, Wang L, Sun F, Li Q, Cao T, Wang B, Ma H, You M, Zhou Q, Wei X, Li L, Liao Y, Yan Z, Liu D, Gao P, Zhu Z. Sodium-glucose exchanger 2 inhibitor canagliflozin promotes mitochondrial metabolism and alleviates salt-induced cardiac hypertrophy via preserving SIRT3 expression. J Adv Res 2025; 70:255-269. [PMID: 38744404 DOI: 10.1016/j.jare.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Excess salt intake is not only an independent risk factor for heart failure, but also one of the most important dietary factors associated with cardiovascular disease worldwide. Metabolic reprogramming in cardiomyocytes is an early event provoking cardiac hypertrophy that leads to subsequent cardiovascular events upon high salt loading. Although SGLT2 inhibitors, such as canagliflozin, displayed impressive cardiovascular health benefits, whether SGLT2 inhibitors protect against cardiac hypertrophy-related metabolic reprogramming upon salt loading remain elusive. OBJECTIVES To investigate whether canagliflozin can improve salt-induced cardiac hypertrophy and the underlying mechanisms. METHODS Dahl salt-sensitive rats developed cardiac hypertrophy by feeding them an 8% high-salt diet, and some rats were treated with canagliflozin. Cardiac function and structure as well as mitochondrial function were examined. Cardiac proteomics, targeted metabolomics and SIRT3 cardiac-specific knockout mice were used to uncover the underlying mechanisms. RESULTS In Dahl salt-sensitive rats, canagliflozin showed a potent therapeutic effect on salt-induced cardiac hypertrophy, accompanied by lowered glucose uptake, reduced accumulation of glycolytic end-products and improved cardiac mitochondrial function, which was associated with the recovery of cardiac expression of SIRT3, a key mitochondrial metabolic regulator. Cardiac-specific knockout of SIRT3 not only exacerbated salt-induced cardiac hypertrophy but also abolished the therapeutic effect of canagliflozin. Mechanistically, high salt intake repressed cardiac SIRT3 expression through a calcium-dependent epigenetic modifications, which could be blocked by canagliflozin by inhibiting SGLT1-mediated calcium uptake. SIRT3 improved myocardial metabolic reprogramming by deacetylating MPC1 in cardiomyocytes exposed to pro-hypertrophic stimuli. Similar to canagliflozin, the SIRT3 activator honokiol also exerted therapeutic effects on cardiac hypertrophy. CONCLUSION Cardiac mitochondrial dysfunction caused by SIRT3 repression is a critical promotional determinant of metabolic pattern switching underlying salt-induced cardiac hypertrophy. Improving SIRT3-mediated mitochondrial function by SGLT2 inhibitors-mediated calcium handling would represent a therapeutic strategy against salt-related cardiovascular events.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Hexuan Zhang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Bowen Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Xiao Wei
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Yingying Liao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China.
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China; Lead Contact, China.
| |
Collapse
|
2
|
Bertero E, Ghigo A, Ameri P. Stop Me at Your Own PeRiL: PRL2 Constrains AMPK in the Pressure-Overloaded Heart. Circ Res 2025; 136:664-666. [PMID: 40146805 DOI: 10.1161/circresaha.124.325806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Affiliation(s)
- Edoardo Bertero
- Department of Internal Medicine, University of Genova, Italy (E.B., P.A.)
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiology Network, Genova, Italy (E.B., P.A.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone," University of Torino, Italy (A.G.)
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Italy (E.B., P.A.)
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiology Network, Genova, Italy (E.B., P.A.)
| |
Collapse
|
3
|
Chevalley T, Dübi M, Fumeaux L, Merli MS, Sarre A, Schaer N, Simeoni U, Yzydorczyk C. Sexual Dimorphism in Cardiometabolic Diseases: From Development to Senescence and Therapeutic Approaches. Cells 2025; 14:467. [PMID: 40136716 PMCID: PMC11941476 DOI: 10.3390/cells14060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The global incidence and prevalence of cardiometabolic disorders have risen significantly in recent years. Although lifestyle choices in adulthood play a crucial role in the development of these conditions, it is well established that events occurring early in life can have an important effect. Recent research on cardiometabolic diseases has highlighted the influence of sexual dimorphism on risk factors, underlying mechanisms, and response to therapies. In this narrative review, we summarize the current understanding of sexual dimorphism in cardiovascular and metabolic diseases in the general population and within the framework of the Developmental Origins of Health and Disease (DOHaD) concept. We explore key risk factors and mechanisms, including the influence of genetic and epigenetic factors, placental and embryonic development, maternal nutrition, sex hormones, energy metabolism, microbiota, oxidative stress, cell death, inflammation, endothelial dysfunction, circadian rhythm, and lifestyle factors. Finally, we discuss some of the main therapeutic approaches, responses to which may be influenced by sexual dimorphism, such as antihypertensive and cardiovascular treatments, oxidative stress management, nutrition, cell therapies, and hormone replacement therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (T.C.); (M.D.); (L.F.); (M.S.M.); (A.S.); (N.S.)
| |
Collapse
|
4
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
5
|
Lee JE, Kim BG, Won JC. Molecular Pathways in Diabetic Cardiomyopathy and the Role of Anti-hyperglycemic Drugs Beyond Their Glucose Lowering Effect. J Lipid Atheroscler 2025; 14:54-76. [PMID: 39911956 PMCID: PMC11791414 DOI: 10.12997/jla.2025.14.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 02/07/2025] Open
Abstract
Epidemiological evidence has shown that diabetes is associated with overt heart failure (HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic cardiomyopathy (DCM) has not been easy to prove because the association between diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific biomarkers have been identified. Nonetheless, several mechanistic associations at the systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this review, we focus on recent clinical and preclinical advances in our understanding of the molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM beyond their glucose lowering effect.
Collapse
Affiliation(s)
- Jie-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Byung Gyu Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Goedeke L, Ma Y, Gaspar RC, Nasiri A, Lee J, Zhang D, Galsgaard KD, Hu X, Zhang J, Guerrera N, Li X, LaMoia T, Hubbard BT, Haedersdal S, Wu X, Stack J, Dufour S, Butrico GM, Kahn M, Perry RJ, Cline GW, Young LH, Shulman GI. SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts. J Clin Invest 2024; 134:e176708. [PMID: 39680452 PMCID: PMC11645152 DOI: 10.1172/jci176708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/17/2024] [Indexed: 12/18/2024] Open
Abstract
Previous studies highlight the potential for sodium-glucose cotransporter type 2 (SGLT2) inhibitors (SGLT2i) to exert cardioprotective effects in heart failure by increasing plasma ketones and shifting myocardial fuel utilization toward ketone oxidation. However, SGLT2i have multiple in vivo effects and the differential impact of SGLT2i treatment and ketone supplementation on cardiac metabolism remains unclear. Here, using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology combined with infusions of [13C6]glucose or [13C4]βOHB, we demonstrate that acute SGLT2 inhibition with dapagliflozin shifts relative rates of myocardial mitochondrial metabolism toward ketone oxidation, decreasing pyruvate oxidation with little effect on fatty acid oxidation in awake rats. Shifts in myocardial ketone oxidation persisted when plasma glucose levels were maintained. In contrast, acute βOHB infusion similarly augmented ketone oxidation, but markedly reduced fatty acid oxidation and did not alter glucose uptake or pyruvate oxidation. After inducing heart failure, dapagliflozin increased relative rates of ketone and fatty acid oxidation, but decreased pyruvate oxidation. Dapagliflozin increased mitochondrial redox and reduced myocardial oxidative stress in heart failure, which was associated with improvements in left ventricular ejection fraction after 3 weeks of treatment. Thus, SGLT2i have pleiotropic effects on systemic and heart metabolism, which are distinct from ketone supplementation and may contribute to the long-term cardioprotective benefits of SGLT2i.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Medicine (Cardiology) and The Cardiovascular Research Institute and
- Department of Medicine (Endocrinology) and The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yina Ma
- Department of Internal Medicine (Cardiovascular Medicine) and The Yale Cardiovascular Research Center, Yale School of Medicine, New Haven Connecticut, USA
| | - Rafael C. Gaspar
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Ali Nasiri
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Jieun Lee
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Dongyan Zhang
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Katrine Douglas Galsgaard
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyue Hu
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Jiasheng Zhang
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Nicole Guerrera
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Xiruo Li
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Traci LaMoia
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Brandon T. Hubbard
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Sofie Haedersdal
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Xiaohong Wu
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - John Stack
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Sylvie Dufour
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Gina Marie Butrico
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Mario Kahn
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Rachel J. Perry
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Gary W. Cline
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Lawrence H. Young
- Department of Internal Medicine (Cardiovascular Medicine) and The Yale Cardiovascular Research Center, Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Gerald I. Shulman
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
7
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
8
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024; 68:363-377. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
9
|
Seale B, Slotabec L, Nguyen JD, Wang H, Patterson C, Filho F, Rouhi N, Adenawoola MI, Li J. Sestrin2 serves as a scaffold protein to maintain cardiac energy and metabolic homeostasis during pathological stress. FASEB J 2024; 38:e70106. [PMID: 39404019 PMCID: PMC11698584 DOI: 10.1096/fj.202401404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide. Metabolic imbalances and pathological stress often contribute to increased mortality. Sestrin2 (Sesn2) is a stress-inducible protein crucial in maintaining cardiac energy and metabolic homeostasis under pathological conditions. Sesn2 is upregulated in response to various stressors, including oxidative stress, hypoxia, and energy depletion, and mediates multiple cellular pathways to enhance antioxidant defenses, promote autophagy, and inhibit inflammation. This review explores the mechanisms through which Sesn2 regulates these pathways, focusing on the AMPK-mTORC1, Sesn2-Nrf2, and HIF1α-Sesn2 pathways, among others. We can identify the potential therapeutic targets for treating CVDs and related metabolic disorders by comprehending these complex mechanisms. Sesn2's unique ability to respond thoroughly to metabolic challenges, oxidative stress, and inflammation makes it a promising prospect for enhancing cardiac health and resilience against pathological stress.
Collapse
Affiliation(s)
- Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Jennie D. Nguyen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Cory Patterson
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
10
|
Chen M, Li F, Qu M, Jin X, He T, He S, Chen S, Yao Q, Wang L, Chen D, Wu X, Xiao G. Pip5k1γ promotes anabolism of nucleus pulposus cells and intervertebral disc homeostasis by activating CaMKII-Ampk pathway in aged mice. Aging Cell 2024; 23:e14237. [PMID: 38840443 PMCID: PMC11488325 DOI: 10.1111/acel.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Degenerative disc disease (DDD) represents a significant global health challenge, yet its underlying molecular mechanisms remain elusive. This study aimed to investigate the role of type 1 phosphatidylinositol 4-phosphate 5-kinase (Pip5k1) in intervertebral disc (IVD) homeostasis and disease. All three Pip5k1 isoforms, namely Pip5k1α, Pip5k1β, and Pip5k1γ, were detectable in mouse and human IVD tissues, with Pip5k1γ displaying a highest expression in nucleus pulposus (NP) cells. The expression of Pip5k1γ was significantly down-regulated in the NP cells of aged mice and patients with severe DDD. To determine whether Pip5k1γ expression is required for disc homeostasis, we generated a Pip5k1γfl/fl; AggrecanCreERT2 mouse model for the conditional knockout of the Pip5k1γ gene in aggrecan-expressing IVD cells. Our findings revealed that the conditional deletion of Pip5k1γ did not affect the disc structure or cellular composition in 5-month-old adult mice. However, in aged (15-month-old) mice, this deletion led to several severe degenerative disc defects, including decreased NP cellularity, spontaneous fibrosis and cleft formation, and a loss of the boundary between NP and annulus fibrosus. At the molecular level, the absence of Pip5k1γ reduced the anabolism of NP cells without markedly affecting their catabolic or anti-catabolic activities. Moreover, the loss of Pip5k1γ significantly dampened the activation of the protective Ampk pathway in NP cells, thereby accelerating NP cell senescence. Notably, Pip5k1γ deficiency blunted the effectiveness of metformin, a potent Ampk activator, in activating the Ampk pathway and mitigating lumbar spine instability (LSI)-induced disc lesions in mice. Overall, our study unveils a novel role for Pip5k1γ in promoting anabolism and maintaining disc homeostasis, suggesting it as a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Feiyun Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Minghao Qu
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Shuangshuang He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Lin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaohao Wu
- Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- VA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
11
|
Cho C, Lee S. The Effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. Int J Mol Sci 2024; 25:9274. [PMID: 39273223 PMCID: PMC11394695 DOI: 10.3390/ijms25179274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Blood flow restriction exercise has emerged as a promising alternative, particularly for elderly individuals and those unable to participate in high-intensity exercise. However, existing research has predominantly focused on blood flow restriction resistance exercise. There remains a notable gap in understanding the comprehensive effects of blood flow restriction aerobic exercise (BFRAE) on body composition, lipid profiles, glycemic metabolism, and cardiovascular function. This review aims to explore the physiological effects induced by chronic BFRAE. Chronic BFRAE has been shown to decrease fat mass, increase muscle mass, and enhance muscular strength, potentially benefiting lipid profiles, glycemic metabolism, and overall function. Thus, the BFRAE offers additional benefits beyond traditional aerobic exercise effects. Notably, the BFRAE approach may be particularly suitable for individuals with low fitness levels, those prone to injury, the elderly, obese individuals, and those with metabolic disorders.
Collapse
Affiliation(s)
- Chaeeun Cho
- Department of Human Movement Science, Graduate School, Incheon National University, Incheon 22012, Republic of Korea
| | - Sewon Lee
- Division of Sport Science, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Sport Science Institute, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Health Promotion Center, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
12
|
Li Y, Zhao W, Sair AT, Li T, Liu RH. Ferulic acid restores mitochondrial dynamics and autophagy via AMPK signaling pathway in a palmitate-induced hepatocyte model of metabolic syndrome. Sci Rep 2024; 14:18970. [PMID: 39152139 PMCID: PMC11329500 DOI: 10.1038/s41598-024-66362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/01/2024] [Indexed: 08/19/2024] Open
Abstract
Mitochondrial dysfunction, characterized by elevated oxidative stress, impaired energy balance, and dysregulated mitochondrial dynamics, is a hallmark of metabolic syndrome (MetS) and its comorbidities. Ferulic acid (FA), a principal phenolic compound found in whole grains, has demonstrated potential in ameliorating oxidative stress and preserving energy homeostasis. However, the influence of FA on mitochondrial health within the context of MetS remains unexplored. Moreover, the impact of FA on autophagy, which is essential for maintaining energy homeostasis and mitochondrial integrity, is not fully understood. Here, we aimed to study the mechanisms of action of FA in regulating mitochondrial health and autophagy using palmitate-treated HepG2 hepatocytes as a MetS cell model. We found that FA improved mitochondrial health by restoring redox balance and optimizing mitochondrial dynamics, including biogenesis and the fusion/fission ratio. Additionally, FA was shown to recover autophagy and activate AMPK-related cell signaling. Our results provide new insights into the therapeutic potential of FA as a mitochondria-targeting agent for the prevention and treatment of MetS.
Collapse
Affiliation(s)
- Yitong Li
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA
| | - Weiyang Zhao
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA
| | - Ali Tahir Sair
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA
| | - Tong Li
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA
| | - Rui Hai Liu
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
14
|
Athari SZ, Farajdokht F, Keyhanmanesh R, Mohaddes G. AMPK Signaling Pathway as a Potential Therapeutic Target for Parkinson's Disease. Adv Pharm Bull 2024; 14:120-131. [PMID: 38585465 PMCID: PMC10997932 DOI: 10.34172/apb.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of dopaminergic neurons. Genetic factors, inflammatory responses, oxidative stress, metabolic disorders, cytotoxic factors, and mitochondrial dysfunction are all involved in neuronal death in neurodegenerative diseases. The risk of PD can be higher in aging individuals due to decreased mitochondrial function, energy metabolism, and AMP-activated protein kinase (AMPK) function. The potential of AMPK to regulate neurodegenerative disorders lies in its ability to enhance antioxidant capacity, reduce oxidative stress, improve mitochondrial function, decrease mitophagy and macroautophagy, and inhibit inflammation. In addition, it has been shown that modulating the catalytic activity of AMPK can protect the nervous system. This article reviews the mechanisms by which AMPK activation can modulate PD.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
15
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Zhang H, Hu H, Zhai C, Jing L, Tian H. Cardioprotective Strategies After Ischemia-Reperfusion Injury. Am J Cardiovasc Drugs 2024; 24:5-18. [PMID: 37815758 PMCID: PMC10806044 DOI: 10.1007/s40256-023-00614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Acute myocardial infarction (AMI) is associated with high morbidity and mortality worldwide. Although early reperfusion is the most effective strategy to salvage ischemic myocardium, reperfusion injury can develop with the restoration of blood flow. Therefore, it is important to identify protection mechanisms and strategies for the heart after myocardial infarction. Recent studies have shown that multiple intracellular molecules and signaling pathways are involved in cardioprotection. Meanwhile, device-based cardioprotective modalities such as cardiac left ventricular unloading, hypothermia, coronary sinus intervention, supersaturated oxygen (SSO2), and remote ischemic conditioning (RIC) have become important areas of research. Herein, we review the molecular mechanisms of cardioprotection and cardioprotective modalities after ischemia-reperfusion injury (IRI) to identify potential approaches to reduce mortality and improve prognosis in patients with AMI.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Huilin Hu
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China.
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Hongen Tian
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| |
Collapse
|
17
|
Sun M, Zhang Z, Yin Y, Yu L, Jiang W, Zhang C, Gu C, Ma H, Wang Y. Melatonin enhanced the cardioprotective effects of HTK solution on Langendorff-perfused mouse hearts subjected to ischemia/reperfusion. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:366-374. [PMID: 38333753 PMCID: PMC10849209 DOI: 10.22038/ijbms.2023.74152.16109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 02/10/2024]
Abstract
Objectives Cardiac arrest is a crucial procedure in various cardiac surgeries, during which the heart is subjected to an ischemic state. The occurrence of ischemia/reperfusion (I/R) injury is inevitable due to aortic blockage and opening. The Histidine-tryptophan-ketoglutarate (HTK) solution is commonly used as an organ protection liquid to mitigate cardiac injury during cardiac surgery. Despite its widespread use, there is significant potential for improving its protective efficacy. Materials and Methods The cardioprotective effect of HTK solution with and without melatonin was evaluated using the isolated Langendorff-perfused mouse heart model. The isolated C57bL/6 mouse hearts were randomly divided into four groups: control, I/R, HTK solution treatment before reperfusion (HTK+I/R), and HTK solution combined with melatonin before reperfusion (HTK+M+I/R). Cardiac function and myocardial injury markers were then measured. AMP-activated protein kinase α2 (AMPKα2) KO mice were used to investigate the underlying mechanism. Results In our study, we found that melatonin significantly improved the protective effects of HTK solution in an isolated Langendorff-perfused mouse model, mechanistically by reducing mitochondrial damage, improving energy metabolism, inhibiting cardiomyocyte apoptosis, and reducing myocardial infarction size. We also observed that the HTK solution alone was ineffective in inhibiting ER stress, but when melatonin was added, there was a significant reduction in ER stress. Furthermore, melatonin was found to alleviate carbonyl stress during cardiac I/R. Interestingly, our results showed that the cardioprotective properties of melatonin were dependent on AMPKα2. Conclusion The findings presented in this study offer a valuable empirical foundation for the development of perioperative cardioprotective strategies.
Collapse
Affiliation(s)
- Mingchu Sun
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an Shaanxi, 710072 China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an Shaanxi, 710072 China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, 710032 China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an Shaanxi, 710072 China
| | - Chan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an Shaanxi, 710072 China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, 710032 China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
18
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
19
|
Alam S, Pardue S, Shen X, Glawe JD, Yagi T, Bhuiyan MAN, Patel RP, Dominic PS, Virk CS, Bhuiyan MS, Orr AW, Petit C, Kolluru GK, Kevil CG. Hypoxia increases persulfide and polysulfide formation by AMP kinase dependent cystathionine gamma lyase phosphorylation. Redox Biol 2023; 68:102949. [PMID: 37922764 PMCID: PMC10641705 DOI: 10.1016/j.redox.2023.102949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
Hydropersulfide and hydropolysulfide metabolites are increasingly important reactive sulfur species (RSS) regulating numerous cellular redox dependent functions. Intracellular production of these species is known to occur through RSS interactions or through translational mechanisms involving cysteinyl t-RNA synthetases. However, regulation of these species under cell stress conditions, such as hypoxia, that are known to modulate RSS remain poorly understood. Here we define an important mechanism of increased persulfide and polysulfide production involving cystathionine gamma lyase (CSE) phosphorylation at serine 346 and threonine 355 in a substrate specific manner, under acute hypoxic conditions. Hypoxic phosphorylation of CSE occurs in an AMP kinase dependent manner increasing enzyme activity involving unique inter- and intramolecular interactions within the tetramer. Importantly, both cellular hypoxia and tissue ischemia result in AMP Kinase dependent CSE phosphorylation that regulates blood flow in ischemic tissues. Our findings reveal hypoxia molecular signaling pathways regulating CSE dependent persulfide and polysulfide production impacting tissue and cellular response to stress.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Sibile Pardue
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - John D Glawe
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Takashi Yagi
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | | | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Paari S Dominic
- Internal Medicine-Cardiovascular Medicine, University of Iowa Healthcare, Iowa, USA
| | - Chiranjiv S Virk
- Department of Surgery, LSU Health Sciences Center, Shreveport, USA
| | | | - A Wayne Orr
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Chad Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, USA
| | - Gopi K Kolluru
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, USA.
| |
Collapse
|
20
|
Sabbar R, Kadhim SAA, Fawzi HA, Flayih A, Mohammad B, Swadi A. Metformin effects on cardiac parameters in non-diabetic Iraqi patients with heart failure and mid-range ejection fraction - a comparative two-arm parallel clinical study. J Med Life 2023; 16:1400-1406. [PMID: 38107711 PMCID: PMC10719796 DOI: 10.25122/jml-2023-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023] Open
Abstract
Heart failure (HF) remains a difficult challenge to the healthcare system, necessitating promoting interventions and multidrug management. Metformin, typically used to manage diabetes, has emerged as a promising intervention in the treatment of HF. This study aimed to assess the effect of adding metformin to the standard treatment of HF on cardiac parameters. This clinical study comprised 60 newly diagnosed HF patients randomly assigned to two groups: Group C received standard HF treatment, while Group M received standard HF treatment in addition to daily metformin (500 mg). After 3 months of treatment, group M showed a significantly higher ejection fraction (EF) compared to Group C (6.1% and 3.2%, respectively; p-value=0.023) and a reduction in the left ventricular end-diastolic pressure (LVEDD) (0.28, and 0.21 mm respectively; p-value=0.029). No significant differences were observed in the interventricular septal thickness (IVST) or left ventricular end-systolic pressure (LVESD). For cardiac markers, N-Terminal pro-BNP (NT-proBNP) showed the highest reduction in Group M compared to Group C (719.9 pg/ml and 271.9 pg/ml respectively; p-value=0.009). No significant changes were reported for soluble ST2. Metformin demonstrated cardiac protective effects by increasing EF and reducing NT-proBNP. Given its affordability and accessibility, metformin offers a valuable addition to the current HF treatment options. This positive effect may be attributed to mechanisms that enhance the impact of conventional HF treatments or vice versa.
Collapse
Affiliation(s)
- Reeman Sabbar
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Sinaa Abdul Amir Kadhim
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | | | - Ali Flayih
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Bassim Mohammad
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Asma Swadi
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| |
Collapse
|
21
|
Zhang J, Wang H, Slotabec L, Cheng F, Tan Y, Li J. Alterations of SIRT1/SIRT3 subcellular distribution in aging undermine cardiometabolic homeostasis during ischemia and reperfusion. Aging Cell 2023; 22:e13930. [PMID: 37537789 PMCID: PMC10497814 DOI: 10.1111/acel.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related sensors Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) play an essential role in the protective response upon myocardial ischemia and/or reperfusion (I/R). However, the subcellular localization and co-regulatory network between cardiac SIRT1 and SIRT3 remain unknown, especially their effects on age-related metabolic regulation during acute ischemia and I/R. Here, we found that defects of cardiac SIRT1 or SIRT3 with aging result in an exacerbated cardiac physiological structural and functional deterioration after acute ischemic stress and failed recovery through reperfusion operation. In aged hearts, SIRT1 translocated into mitochondria and recruited more mitochondria SIRT3 to enhance their interaction during acute ischemia, acting as adaptive protection for the aging hearts from further mitochondria dysfunction. Subsequently, SIRT3-targeted proteomics revealed that SIRT1 plays a crucial role in maintaining mitochondrial integrity through SIRT3-mediated substrate metabolism during acute ischemic and I/R stress. Although the loss of SIRT1/SIRT3 led to a compromised PGC-1α/PPARα-mediated transcriptional control of fatty acid oxidation in response to acute ischemia and I/R, their crosstalk in mitochondria plays a more important role in the aging heart during acute ischemia. However, the increased mitochondria SIRT1-SIRT3 interaction promoted adaptive protection to aging-related fatty acid metabolic disorder via deacetylation of long-chain acyl CoA dehydrogenase (LCAD) during ischemic insults. Therefore, the dynamic network of SIRT1/SIRT3 acts as a mediator that regulates adaptive metabolic response to improve the tolerance of aged hearts to ischemic insults, which will facilitate investigation into the role of SIRT1/SIRT3 in age-related ischemic heart disease.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of SurgeryUniversity of South FloridaTampaFloridaUSA
| | - Hao Wang
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of SurgeryUniversity of South FloridaTampaFloridaUSA
| | - Lily Slotabec
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of SurgeryUniversity of South FloridaTampaFloridaUSA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of South FloridaTampaFloridaUSA
| | - Yi Tan
- Pediatric Research Institute, Department of PediatricsUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Ji Li
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of SurgeryUniversity of South FloridaTampaFloridaUSA
- G.V. (Sonny) Montgomery VA Medical CenterJacksonMississippiUSA
| |
Collapse
|
22
|
Li Q, Zhang S, Yang G, Wang X, Liu F, Li Y, Chen Y, Zhou T, Xie D, Liu Y, Zhang L. Energy metabolism: A critical target of cardiovascular injury. Biomed Pharmacother 2023; 165:115271. [PMID: 37544284 DOI: 10.1016/j.biopha.2023.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Cardiovascular diseases are the main killers threatening human health. Many studies have shown that abnormal energy metabolism plays a key role in the occurrence and development of acute and chronic cardiovascular diseases. Regulating cardiac energy metabolism is a frontier topic in the treatment of cardiovascular diseases. However, we are not very clear about the choice of different substrates, the specific mechanism of energy metabolism participating in the course of cardiovascular disease, and how to develop appropriate drugs to regulate energy metabolism to treat cardiovascular disease. Therefore, this paper reviews how energy metabolism participates in cardiovascular pathophysiological processes and potential drugs aimed at interfering energy metabolism.It is expected to provide good suggestions for promoting the clinical prevention and treatment of cardiovascular diseases from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingxiong Xie
- Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation Ministry of Education, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| |
Collapse
|
23
|
Farzaei MH, Ramezani-Aliakbari F, Ramezani-Aliakbari M, Zarei M, Komaki A, Shahidi S, Sarihi A, Salehi I. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1633-1646. [PMID: 36971866 DOI: 10.1007/s00210-023-02469-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a tissue damage during reperfusion after an ischemic condition. I/R injury is induced by pathological cases including stroke, myocardial infarction, circulatory arrest, sickle cell disease, acute kidney injury, trauma, and sleep apnea. It can lead to increased morbidity and mortality in the context of these processes. Mitochondrial dysfunction is one of the hallmarks of I/R insult, which is induced via reactive oxygen species (ROS) production, apoptosis, and autophagy. MicroRNAs (miRNAs, miRs) are non-coding RNAs that play a main regulatory role in gene expression. Recently, there are evidence, which miRNAs are the major modulators of cardiovascular diseases, especially myocardial I/R injury. Cardiovascular miRNAs, specifically miR-21, and probably miR-24 and miR-126 have protective effects on myocardial I/R injury. Trimetazidine (TMZ) is a new class of metabolic agents with an anti-ischemic activity. It has beneficial effects on chronic stable angina by suppressing mitochondrial permeability transition pore (mPTP) opening. The present review study addressed the different mechanistic effects of TMZ on cardiac I/R injury. Online databases including Scopus, PubMed, Web of Science, and Cochrane library were assessed for published studies between 1986 and 2021. TMZ, an antioxidant and metabolic agent, prevents the cardiac reperfusion injury by regulating AMP-activated protein kinase (AMPK), cystathionine-γ-lyase enzyme (CSE)/hydrogen sulfide (H2S), and miR-21. Therefore, TMZ protects the heart against I/R injury by inducing key regulators such as AMPK, CSE/H2S, and miR-21.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Maryam Ramezani-Aliakbari
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Li Z, Wang H, Zoungrana LI, James A, Slotabec L, Didik S, Fatmi MK, Krause-Hauch M, Lesnefsky EJ, Li J. Administration of metformin rescues age-related vulnerability to ischemic insults through mitochondrial energy metabolism. Biochem Biophys Res Commun 2023; 659:46-53. [PMID: 37031594 PMCID: PMC10190118 DOI: 10.1016/j.bbrc.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of death on a global scale. Despite significant advances in the reperfusion treatment of acute myocardial infarction, there is still a significant early mortality rate among the elderly, as angioplasty-achieved reperfusion can exacerbate myocardial damage, leading to severe ischemia/reperfusion (I/R) injury and induce fatal arrhythmias. Mitochondria are a key mediator of ischemic insults; a transient blockade of the electron transport chain (ETC) at complex I during reperfusion can reduce myocardial infarct caused by ischemic insults. The reversible, transient modulation of complex I during early reperfusion is limited by the available of clinically tractable agents. We employed the novel use of acute, high dose metformin to modulate complex I activity during early reperfusion to decrease cardiac injury in the high-risk aged heart. Young (3-6 months) and aged (22-24 months) male and female C57BL/6 J mice were subjected to in vivo regional ischemia for 45 min, followed by metformin (2 mM, i. v.) injection 5 min prior to reperfusion for 24 h. The cardiac functions were measured with echocardiography. A Seahorse XF24 Analyzer was used to ascertain mitochondrial function. Cardiomyocyte sarcomere shortening and calcium transients were measured using the IonOptix Calcium and Contractility System. The results demonstrated that administration of acute, high dose metformin at the onset of reperfusion significantly limited cardiac damage and rescued cardiac dysfunction caused by I/R in both young and aged mice. Importantly, metformin treatment improves contractile functions of isolated cardiomyocytes and maintains mitochondrial integrity under I/R stress conditions. Thus, acute metformin administration at the onset of reperfusion has potential as a mitochondrial-based therapeutic to mitigate reperfusion injury and reduce infarct size in the elderly heart attack patient who remains at greater mortality risk despite reperfusion alone.
Collapse
Affiliation(s)
- Zehui Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hao Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Linda Ines Zoungrana
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Adewale James
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lily Slotabec
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Steven Didik
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Meredith Krause-Hauch
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Edward J Lesnefsky
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Cardiology Section, Medical Service, Richmond Department of Veterans Affairs Medical Center, Richmond, VA, USA
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
25
|
Robbins JM, Gerszten RE. Exercise, exerkines, and cardiometabolic health: from individual players to a team sport. J Clin Invest 2023; 133:e168121. [PMID: 37259917 PMCID: PMC10231996 DOI: 10.1172/jci168121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Exercise confers numerous salutary effects that extend beyond individual organ systems to provide systemic health benefits. Here, we discuss the role of exercise in cardiovascular health. We summarize major findings from human exercise studies in cardiometabolic disease. We next describe our current understanding of cardiac-specific substrate metabolism that occurs with acute exercise and in response to exercise training. We subsequently focus on exercise-stimulated circulating biochemicals ("exerkines") as a paradigm for understanding the global health circuitry of exercise, and discuss important concepts in this emerging field before highlighting exerkines relevant in cardiovascular health and disease. Finally, this Review identifies gaps that remain in the field of exercise science and opportunities that exist to translate biologic insights into human health improvement.
Collapse
Affiliation(s)
- Jeremy M. Robbins
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Kalra P, Khan H, Singh TG, Grewal AK. Mechanistic insights on impact of Adenosine monophosphate-activated protein kinase (AMPK) mediated signalling pathways on cerebral ischemic injury. Neurosci Res 2023; 190:17-28. [PMID: 36403790 DOI: 10.1016/j.neures.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/23/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cerebral ischemia is the primary cause of morbidity and mortality worldwide due to the perturbations in the blood supply to the brain. The brain triggers a cascade of complex metabolic and cellular defects in response to ischemic stress. However, due to the disease heterogeneity and complexity, ischemic injury's metabolic and cellular pathologies remain elusive, and the link between various pathological mechanisms is difficult to determine. Efforts to develop effective treatments for these disorders have yielded limited efficacy, with no proper cure available to date. Recent clinical and experimental research indicates that several neuronal diseases commonly coexist with metabolic dysfunction, which may aggravate neurological symptoms. As a result, it stands to a reason that metabolic hormones could be a potential therapeutic target for major NDDs. Moreover, fasting signals also influence the circadian clock, as AMPK phosphorylates and promotes the degradation of the photo-sensing receptor (cryptochrome). Here, the interplay of AMPK signaling between metabolic regulation and neuronal death and its role for pathogenesis and therapeutics has been studied. We have also highlighted a significant signaling pathway, i.e., the adenosine monophosphate-activated protein kinase (AMPK) involved in the relationship between the metabolism and ischemia, which could be used as a target for future studies therapeutics, and review some of the clinical progress in this area.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
27
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
28
|
Hsu CN, Hsuan CF, Liao D, Chang JKJ, Chang AJW, Hee SW, Lee HL, Teng SIF. Anti-Diabetic Therapy and Heart Failure: Recent Advances in Clinical Evidence and Molecular Mechanism. Life (Basel) 2023; 13:1024. [PMID: 37109553 PMCID: PMC10144651 DOI: 10.3390/life13041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic patients have a two- to four-fold increase in the risk of heart failure (HF), and the co-existence of diabetes and HF is associated with poor prognosis. In randomized clinical trials (RCTs), compelling evidence has demonstrated the beneficial effects of sodium-glucose co-transporter-2 inhibitors on HF. The mechanism includes increased glucosuria, restored tubular glomerular feedback with attenuated renin-angiotensin II-aldosterone activation, improved energy utilization, decreased sympathetic tone, improved mitochondria calcium homeostasis, enhanced autophagy, and reduced cardiac inflammation, oxidative stress, and fibrosis. The RCTs demonstrated a neutral effect of the glucagon-like peptide receptor agonist on HF despite its weight-reducing effect, probably due to it possibly increasing the heart rate via increasing cyclic adenosine monophosphate (cAMP). Observational studies supported the markedly beneficial effects of bariatric and metabolic surgery on HF despite no current supporting evidence from RCTs. Bromocriptine can be used to treat peripartum cardiomyopathy by reducing the harmful cleaved prolactin fragments during late pregnancy. Preclinical studies suggest the possible beneficial effect of imeglimin on HF through improving mitochondrial function, but further clinical evidence is needed. Although abundant preclinical and observational studies support the beneficial effects of metformin on HF, there is limited evidence from RCTs. Thiazolidinediones increase the risk of hospitalized HF through increasing renal tubular sodium reabsorption mediated via both the genomic and non-genomic action of PPARγ. RCTs suggest that dipeptidyl peptidase-4 inhibitors, including saxagliptin and possibly alogliptin, may increase the risk of hospitalized HF, probably owing to increased circulating vasoactive peptides, which impair endothelial function, activate sympathetic tones, and cause cardiac remodeling. Observational studies and RCTs have demonstrated the neutral effects of insulin, sulfonylureas, an alpha-glucosidase inhibitor, and lifestyle interventions on HF in diabetic patients.
Collapse
Affiliation(s)
- Chih-Neng Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 824, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Daniel Liao
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jack Keng-Jui Chang
- Biological Programs for Younger Scholar, Academia Sinica, Taipei 115, Taiwan
| | - Allen Jiun-Wei Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsiao-Lin Lee
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sean I. F. Teng
- Department of Cardiology, Ming-Sheng General Hospital, Taoyuan 330, Taiwan
| |
Collapse
|
29
|
Sun Y, Xu H, Tan B, Yi Q, Liu H, Tian J, Zhu J. Andrographolide-treated bone marrow mesenchymal stem cells-derived conditioned medium protects cardiomyocytes from injury by metabolic remodeling. Mol Biol Rep 2023; 50:2651-2662. [PMID: 36641493 DOI: 10.1007/s11033-023-08250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) transplantation therapy providing a great hope for the recovery of myocardial ischemic hypoxic injury. However, the microenvironment after myocardial injury is not conducive to the survival of BMSCs, which limits the therapeutic application of BMSCs. Our previous study has confirmed that the survival of BMSCs cells in the glucose and serum deprivation under hypoxia (GSDH) is increased after Andrographolide (AG) pretreatment, but whether this treatment could improve the effect of BMSCs in repairing of myocardial injury has not been verified. METHODS AND RESULT We first treated H9C2 with GSDH to simulate the microenvironment of myocardial injury in vitro, then we pretreated rat primary BMSCs with AG, and collected conditioned medium derived from BMSCs (BMSCs-CM) and conditioned medium derived from AG-pretreated BMSCs (AG-BMSCs-CM) after GSDH treatment. And they were used to treat H9C2 cells under GSDH to further detect oxidative stress and metabolic changes. The results showed that AG-BMSCs-CM could be more advantageous for cardiomyocyte injury repair than BMSCs-CM, as indicated by the decrease of apoptosis rate and oxidative stress. The changes of mitochondria and lipid droplets results suggested that AG-BMSCs-CM can regulate metabolic remodeling of H9C2 cells to repair cell injury, and that AMPK was activated during this process. CONCLUSIONS This study demonstrates, for the first time, the protective effect of AG-BMSCs-CM on GSDH-induced myocardial cell injury, providing a potential therapeutic strategy for clinical application.
Collapse
Affiliation(s)
- Yanting Sun
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Centre of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Xu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Qin Yi
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Jie Tian
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.
| |
Collapse
|
30
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
31
|
Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 2023; 14:1114582. [PMID: 36875093 PMCID: PMC9975160 DOI: 10.3389/fimmu.2023.1114582] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. AMPK contributes to diverse metabolic and physiological effects besides its fundamental role in glucose and lipid metabolism. Aberrancy in AMPK signaling is one of the determining factors which lead to the development of chronic diseases such as obesity, inflammation, diabetes, and cancer. The activation of AMPK and its downstream signaling cascades orchestrate dynamic changes in the tumor cellular bioenergetics. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. In addition, AMPK plays a central role in potentiating the phenotypic and functional reprogramming of various classes of immune cells which reside in the tumor microenvironment (TME). Furthermore, AMPK-mediated inflammatory responses facilitate the recruitment of certain types of immune cells to the TME, which impedes the development, progression, and metastasis of cancer. Thus, AMPK appears to play an important role in the regulation of anti-tumor immune response by regulating the metabolic plasticity of various immune cells. AMPK effectuates the metabolic modulation of anti-tumor immunity via nutrient regulation in the TME and by virtue of its molecular crosstalk with major immune checkpoints. Several studies including that from our lab emphasize on the role of AMPK in regulating the anticancer effects of several phytochemicals, which are potential anticancer drug candidates. The scope of this review encompasses the significance of the AMPK signaling in cancer metabolism and its influence on the key drivers of immune responses within the TME, with a special emphasis on the potential use of phytochemicals to target AMPK and combat cancer by modulating the tumor metabolism.
Collapse
Affiliation(s)
- Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
32
|
Tukhovskaya EA, Shaykhutdinova ER, Pakhomova IA, Slashcheva GA, Goryacheva NA, Sadovnikova ES, Rasskazova EA, Kazakov VA, Dyachenko IA, Frolova AA, Brovkin AN, Kaluzhsky VE, Beburov MY, Murashev AN. AICAR Improves Outcomes of Metabolic Syndrome and Type 2 Diabetes Induced by High-Fat Diet in C57Bl/6 Male Mice. Int J Mol Sci 2022; 23:ijms232415719. [PMID: 36555360 PMCID: PMC9778872 DOI: 10.3390/ijms232415719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to investigate the effect of AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on the consequences of metabolic syndrome and type 2 diabetes induced by the consumption of a high-fat diet (HFD) in male C57Bl/6 mice. Additionally, the animals from group 6 were administered Methotrexate (MTX) at a dose of 1 mg/kg in parallel with AICAR, which slows down the metabolism of AICAR. The animals were recorded with signs of metabolic syndrome and type 2 diabetes mellitus by recording their body weights, glucose and insulin levels, and the calculating HOMA-IRs. At the end of the study, at the end of the 13th week, during necropsy, the internal organs were assessed, the masses of the organs were recorded, and special attention was paid to visceral fat, assessing its amount and the mass of the fat surrounding epididymis. The biochemical parameters and histology of the internal organs and tissues were assessed. The animals showed signs of metabolic syndrome and type 2 diabetes, namely, weight gain, hyperglycemia, hyperinsulinemia, an increase in the amount and mass of abdominal fat, and metabolic disorders, all expressed in a pathological change in biochemical parameters and pathological changes in internal organs. The AICAR treatment led to a decrease in body weight, a decrease in the amount and mass of abdominal fat, and an improvement in the pathomorphological picture of internal organs. However, some hepatotoxic effects were observed when the animals, on a received standard diet (STD), were treated with AICAR starting from the first day of the study. The additional administration of MTX, an AICAR metabolic inhibitor, did not improve its efficacy. Thus, AICAR has therapeutic potential for the treatment of metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Elena A. Tukhovskaya
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
- Correspondence:
| | - Elvira R. Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Irina A. Pakhomova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Gulsara A. Slashcheva
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Natalya A. Goryacheva
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Elena S. Sadovnikova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Ekaterina A. Rasskazova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Vitaly A. Kazakov
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Igor A. Dyachenko
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Alina A. Frolova
- LLC “OKA-BIOTECH”, Novatorov St., d. 34, bldg. 7, apt. 42, 119421 Moscow, Russia
| | - Alexey N. Brovkin
- LLC “OKA-BIOTECH”, Novatorov St., d. 34, bldg. 7, apt. 42, 119421 Moscow, Russia
| | - Vasiliy E. Kaluzhsky
- LLC “OKA-BIOTECH”, Novatorov St., d. 34, bldg. 7, apt. 42, 119421 Moscow, Russia
| | - Mikhail Yu. Beburov
- LLC “OKA-BIOTECH”, Novatorov St., d. 34, bldg. 7, apt. 42, 119421 Moscow, Russia
| | - Arkady N. Murashev
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
33
|
Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7346699. [PMID: 36267813 PMCID: PMC9578802 DOI: 10.1155/2022/7346699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
Abstract
Recent studies indicate cell death is the hallmark of cardiac pathology in myocardial infarction and diabetes. The AMP-activated protein kinase (AMPK) signalling pathway is considered a putative salvaging phenomenon, plays a decisive role in almost all cellular, metabolic, and survival functions, and therefore entails precise regulation of its activity. AMPK regulates various programmed cell death depending on the stimuli and context, including autophagy, apoptosis, necroptosis, and ferroptosis. There is substantial evidence suggesting that AMPK is down-regulated in cardiac tissues of animals and humans with type 2 diabetes or metabolic syndrome compared to non-diabetic control and that stimulation of AMPK (physiological or pharmacological) can ameliorate diabetes-associated cardiovascular complications, such as myocardial ischemia-reperfusion injury. Furthermore, AMPK is an exciting therapeutic target for developing novel drug candidates to treat cell death in diabetes-associated myocardial ischemia-reperfusion injury. Therefore, in this review, we summarized how AMPK regulates autophagic, apoptotic, necroptotic, and ferroptosis pathways in the context of myocardial ischemia-reperfusion injury in the presence and absence of diabetes.
Collapse
|
34
|
Naghibi M, Tayefi Nasrabadi H, Soleimani Rad J, Gholami Farashah MS, Mohammadnejad D. The effects of metformin and forskolin on sperm quality parameters and sexual hormones in type II diabetic male rats. Andrologia 2022; 54:1605-1617. [PMID: 35396719 DOI: 10.1111/and.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to investigate the effects of metformin and forskolin independently and in combinations on the sperm quality parameters and sexual hormones of diabetic male rats. Fifty adult male rats were divided randomly into five identical groups, and diabetes mellitus was induced to the rats, except for the rats in the control group, using a high-fat diet and injection of Streptozotocin. Daily administration of metformin and forskolin independently and in combinations were performed for 8 weeks in different groups. Sperm quality parameters (including sperm count, morphology, sperm motility and Johnson score), testosterone, blood sugar level, Bax to Bcl-2 ratio mRNA expression level and oxidative stress levels were measured and compared between the investigated groups. Treating diabetic rats with metformin and forskolin resulted in significant improvement in sperm quality parameters, increased testosterone levels, reduced oxidative stress in blood and testicular tissue, and decreased blood sugar, and Bax to Bcl-2 ratio level. Although the combination of metformin with forskolin had a higher effect in some parameters such as testosterone levels compared to treatment with metformin or forskolin alone, this combination had not shown a synergistic effect in all the sperm quality parameters. Metformin and forskolin are effective anti-diabetic agents, which significantly improve the sperm quality and sexual hormone levels in diabetic rats. Combining metformin and gorskolin resulted in significantly better testosterone level and antioxidant activity in blood serum without significant effect on sperm quality of diabetic rats.
Collapse
Affiliation(s)
- Mehran Naghibi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Daryoush Mohammadnejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Molaei A, Molaei E, Sadeghnia H, Hayes AW, Karimi G. LKB1: An emerging therapeutic target for cardiovascular diseases. Life Sci 2022; 306:120844. [PMID: 35907495 DOI: 10.1016/j.lfs.2022.120844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Cardiovascular diseases (CVDs) are currently the most common cause of morbidity and mortality worldwide. Experimental studies suggest that liver kinase B1 (LKB1) plays an important role in the heart. Several studies have shown that cardiomyocyte-specific LKB1 deletion leads to hypertrophic cardiomyopathy, left ventricular contractile dysfunction, and an increased risk of atrial fibrillation. In addition, the cardioprotective effects of several medicines and natural compounds, including metformin, empagliflozin, bexarotene, and resveratrol, have been reported to be associated with LKB1 activity. LKB1 limits the size of the damaged myocardial area by modifying cellular metabolism, enhancing the antioxidant system, suppressing hypertrophic signals, and inducing mild autophagy, which are all primarily mediated by the AMP-activated protein kinase (AMPK) energy sensor. LKB1 also improves myocardial efficiency by modulating the function of contractile proteins, regulating the expression of electrical channels, and increasing vascular dilatation. Considering these properties, stimulation of LKB1 signaling offers a promising approach in the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamidreza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
36
|
Gao M, Cai Q, Si H, Shi S, Wei H, Lv M, Wang X, Dong T. Isoliquiritigenin attenuates pathological cardiac hypertrophy via regulating AMPKα in vivo and in vitro. J Mol Histol 2022; 53:679-689. [PMID: 35834120 DOI: 10.1007/s10735-022-10090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Isoliquiritigenin (ISL) is a type of flavonoid, derived from the root of the legume plant Glycyrrhiza, that has multiple pharmacological properties. However, its role in cardiac remodeling induced by pressure overload has yet to be fully elucidated. Aortic banding (AB) surgery was used to establish a cardiac hypertrophy model in male C57BL/6 mice. Mice were randomly divided into four groups (n = 20 per group) as follows: Sham + vehicle, sham + ISL, AB + vehicle and AB + ISL. ISL was administered to the mice intragastrically for 1 week after the operation. To evaluate the role of ISL in mice challenged with AB, echocardiography, histological analysis and molecular biochemistry examinations were performed. ISL treatment decreased cardiac hypertrophy and improved cardiac dysfunction induced by pressure overload. In addition, ISL decreased the cross-sectional area of cardiomyocytes. Furthermore, ISL reversed the AB-mediated increase in phosphorylated (p-)mTOR and p-ERK protein levels and further increased the protein expression of p-AMP-activated protein kinase (AMPK)α in response to AB, whereas knockout of AMPKα abolished the protective effects of ISL. The present study suggested that ISL could suppress pressure overload-induced cardiac hypertrophy through the activation of AMPKα. Therefore, ISL may serve as a therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Meiling Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Cai
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Haichao Si
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Shi
- Department of Anesthesiology, Hubei Provincial Peoples Hospital affiliated to Wuhan University, Wuhan, China
| | - Huixia Wei
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Miaomiao Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofan Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
37
|
Lu Y, Zhang C, Chen J, Zou Q, Li B, Wei H, Chang MP, Liao X, Hu C. Hypothermia preconditioning improves cardiac contractility after cardiopulmonary resuscitation through AMPK-activated mitophagy. Exp Biol Med (Maywood) 2022; 247:1277-1286. [PMID: 35410532 PMCID: PMC9379608 DOI: 10.1177/15353702221081546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hypothermia preconditioning (HPC) improves cardiac function after cardiac arrest, yet the mechanism is unclear. We hypothesized that HPC-activated adenosine monophosphate-activated protein kinase (AMPK) activity may be involved. Adult male Wistar rats were randomly divided into normothermia Control, HPC (cooling to 32-34°C for 30 min), and HPC + Compound C (Compound C 10 mg/kg was injected intraperitoneally 30 min before HPC group). The rats underwent 7 min of untreated ventricular fibrillation (VF) followed by cardiopulmonary resuscitation (CPR). Cardiac function and hemodynamic parameters were evaluated at 4 h after return of spontaneous circulation (ROSC). Survival status was determined 72 h after ROSC. Mechanistically, we further examined the AMPK-Unc-51 Like Autophagy Activating Kinase 1 (ULK1)-mitophagy pathway and autophagic flux in vivo and in vitro. Six of twelve rats in the Control group, 10 of 12 rats in the HPC group, and 7 of 12 rats in HPC + Compound C group were successfully resuscitated. The 72-h survival rates were 1 of 12 Control, 6 of 12 HPC, and 2 of 12 HPC + Compound C rats, respectively (P = 0.043). Rats in the HPC group demonstrated greater cardiac contractility and hemodynamic stability which were compromised by Compound C. Furthermore, HPC increased the protein levels of p-AMPKα and p-ULK1 and promoted the expression of mitochondrial autophagy-related genes. Compound C decreased the expression of mitochondrial autophagy-related genes and reduced autophagic flux. Consistent with the observations obtained in vivo, in vitro experiments in cultured neonatal rat cardiomyocytes (CMs) demonstrated that HPC attenuated simulated ischemia-reperfusion-induced CM death, accompanied by increased AMPK-ULK1-mitophagy pathway activity. These findings suggest that AMPK-ULK1-mitophagy pathway was activated by HPC and has a crucial role in cardioprotection during cardiac arrest. Manipulation of mitophagy by hypothermia may merit further investigation as a novel strategy to prevent cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yuanzheng Lu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China,Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Jie Chen
- Department of Critical Care Medicine, The First People’s Hospital of Dongguan, Dongguan 523059, P.R. China
| | - Qiuping Zou
- Department of Emergency Medicine, The First People’s Hospital of Dongguan, Dongguan 523059, P.R. China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Mary P Chang
- Department of Emergency Medicine, University of Texas at Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Xiaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P.R. China,Research Institute, Sun Yat-sen University, Shenzhen 518057, P.R. China
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China,Chunlin Hu.
| |
Collapse
|
38
|
Maherinia H, Peeri M, Azarbayjani M, Delfan M. Aerobic exercise training combined with probiotic supplement improves antioxidant defence of cardiomyocytes by regulating Nrf2 and caspase3 gene expression in type 2 diabetic rats. COMPARATIVE EXERCISE PHYSIOLOGY 2022; 18:255-263. [DOI: 10.3920/cep200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
This study aimed to evaluate the effect of four weeks of aerobic exercise training combined with probiotic supplementation on mRNA levels of Nrf-2 and caspase-3 genes, superoxide dismutase (SOD), and serum total antioxidant capacity (TAC) in rats with type 2 diabetes. 40 male Wistar diabetic rats were divided into five groups: healthy placebo control group (NC), diabetic control group without supplement (DC), diabetic control group with supplement (SDC), diabetic aerobic training group without supplement (DT), and diabetic aerobic training group with probiotic supplement (SDT). Each training group performed training five days per week for four weeks and each session of training consisted of 30 min running on a treadmill with an intensity of 65-60% of maximum speed. Simultaneously, rats were fed probiotic supplements. Serum glucose, SOD, and TAC were analysed. The real-time PCR technique was used to determine the gene expression of Nrf-2 and caspase-3. Both aerobic exercise training and probiotic supplementation interactively reduced caspase 3 gene expression, increased Nrf-2 gene expression and enhanced TAC in the left ventricle of diabetic rats. Also, the reduction of caspase-3 mRNA in the left ventricle was more effective in the SDT group than in other diabetic groups. There was no interaction effect on SOD. However, a simultaneous effect of training and supplementation was observed on increasing TAC levels when compared to the DC group. Pearson’s correlation showed that the heart weight gain in the SDT group occurred only by decreasing the expression of the caspase-3 gene. Based on these results, probiotics combined with exercise training can be a strategy for improving the antioxidant defence system and preventing risk factors of diabetic cardiomyocytes, especially cell death and myocardial ischemia.
Collapse
Affiliation(s)
- H. Maherinia
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M. Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M.A. Azarbayjani
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M. Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
39
|
Li H, Yang DH, Zhang Y, Zheng F, Gao F, Sun J, Shi G. Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury. Chin Med 2022; 17:73. [PMID: 35715805 PMCID: PMC9205109 DOI: 10.1186/s13020-022-00616-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND NLRP3 inflammasome activation and pyroptosis play a significant role in myocardial ischemia reperfusion injury (MI/RI). Geniposide was reported to show potential therapeutic use for MI/RI with its anti-inflammatory and anti-oxidative properties. However, research on the specific mechanism of geniposide has not been reported. METHODS The MIRI model of animal was created in male C57BL/6J mice and the hypoxia reoxygenation (H/R) model was established for the in vitro experiments. Neonatal rat ventricular myocytes (NRVMs) and H9c2 cells with knockdown of TXNIP or NLRP3 were used. Geniposide was administered to mice before vascular ligation. HE staining, 2,3,5-triphenyltetrazolium chloride (TTC) staining, echocardiography, oxidative stress and myocardial enzyme detection were used to evaluate the cardioprotective effect of geniposide. Meanwhile, pharmacological approaches of agonist and inhibitor were used to observe potential pathway for geniposide cardioprotective in vitro and in vivo. Moreover, ELISA kits were adopted to detect the levels of inflammatory factors, such as IL-1β and IL-18. The gene and protein expression of NLRP3 and pyroptosis-related factors in heart tissue were performed by RT-PCR, western blotting and immunofluorescence in vivo and in vitro, respectively. RESULTS Our results indicate that geniposide can reduce the area of myocardial infarction, improve heart function, and inhibit the inflammatory response in mice after MI/RI. In addition, RT-PCR and western blotting shown geniposide promoting AMPK phosphorylation to activate myocardium energy metabolism and reducing the levels of genes and proteins expression of NLRP3, ASC, N-GSDMD and cleaved caspase-1, IL-1β, IL-18. Meanwhile, geniposide improved NRVMs energy metabolism, which decreased ROS levels and the protein expression of TXNIP and thus suppressed the expression of NLRP3. AMPK antagonist or agonist and siRNA downregulation of TXNIP or NLRP3 were also verify the effect of geniposide against H/R injury. Further research found that geniposide promoted the translocation of TXNIP and reduce the binding of TXNIP and NLRP3. CONCLUSIONS In our study, geniposide can significantly inhibit NLRP3 inflammasome activation via the AMPK signaling pathway and inhibit pyroptosis of cardiomyocytes in myocardial tissues.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Fuchun Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Jiajia Sun
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
40
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
41
|
Li Q, Xia B, Wu J, Yuan X, Lu X, Huang C, Gu H, Zheng K, You Q, Liu K. Indole-3-Carbinol (I3C) Protects the Heart From Ischemia/Reperfusion Injury by Inhibiting Oxidative Stress, Inflammation, and Cellular Apoptosis in Mice. Front Pharmacol 2022; 13:924174. [PMID: 35734410 PMCID: PMC9208008 DOI: 10.3389/fphar.2022.924174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Strategies for treating myocardial ischemia in the clinic usually include re-canalization of the coronary arteries to restore blood supply to the myocardium. However, myocardial reperfusion insult often leads to oxidative stress and inflammation, which in turn leads to apoptosis and necrosis of myocardial cells, for which there are no standard treatment methods. The aim of this study was to determine the pharmacological effect of indole-3-carbinol (I3C), a phytochemical found in most cruciferous vegetables, in a mouse model of myocardial ischemia/reperfusion injury (MIRI). Our results showed that I3C pretreatment (100 mg/kg, once daily, i. p.) prevented the MIRI-induced increase in infarct size and serum creatine kinase (CK) and lactate dehydrogenase (LDH) in mice. I3C pretreatment also suppressed cardiac apoptosis in MIRI mice by increasing the expression levels of the anti-apoptotic protein Bcl-2 and decreasing the expression levels of several apoptotic proteins, including Bax, caspase-3, and caspase-9. In addition, I3C pretreatment was found to reduce the levels of parameters reflecting oxidative stress, such as dihydroethidium (DHE), malondialdehyde (MDA), reactive oxygen species (ROS), and nitric oxide (NO), while increasing the levels of parameters reflecting anti-oxidation, such as total antioxidant capacity (T-AOC) and glutathione (GSH), in MIRI-induced ischemic heart tissue. I3C pretreatment was also able to remarkably decrease the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) mRNA in ischemic heart tissue. These results demonstrate that administration of I3C protects the heart from MIRI through its anti-apoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Hongcheng Gu
- Medical College, Nantong University, Nantong, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Qingsheng You, ; Kun Liu,
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Qingsheng You, ; Kun Liu,
| |
Collapse
|
42
|
Horváth C, Ravingerová T, Suleiman MS, Adameová A. Subacute Reperfusion in Ischemic Hearts: Study of Autophagy and its Possible Interconnection with Receptor-Interacting Protein Kinase 3. Rev Cardiovasc Med 2022; 23:213. [PMID: 39077170 PMCID: PMC11273659 DOI: 10.31083/j.rcm2306213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 07/31/2024] Open
Abstract
Background The role of cardiac autophagy during ischemia and reperfusion (I/R) remains controversial. Furthermore, whether this cell death during I/R is also interconnected with other cell damaging event, such as necroptosis, is insufficiently known. Thus, the aim of this study was to investigate possible links between autophagy and necroptosis in the hearts under conditions of acute I/R injury. Methods Langendorff-perfused male Wistar rat hearts were subjected to 30-min global ischemia followed by 10-min reperfusion in the presence of either vehicle or a drug inhibiting the pro-necroptotic receptor-interacting protein kinase 3 (RIP3). Hemodynamic parameters and lactate dehydrogenase (LDH) release were measured to assess heart function and non-specific cell death due to the disruption of plasma membrane. Results Immunoblot analysis of left ventricles revealed that early reperfusion suppressed the activation of autophagy as evidenced by the decreased protein expression of Beclin-1, pSer555-ULK1, pSer555-ULK1/ULK1 ratio, and LC3-II/LC3-I ratio. On the other hand, the molecular signalling responsible for autophagy inhibition did not appear to be affected in these I/R settings. RIP3 inhibition during reperfusion significantly mitigated the loss of the plasma membrane integrity but did not improve cardiac function. This pharmacological intervention targeting necroptosis-mediating protein decreased LC3-II expression in I/R hearts, suggesting some effect on autophagosome processing, but it did not significantly alter other signalling pathways involved in autophagy activation or inhibition. Conclusions In summary, we showed for the first time that an early reperfusion phase does not promote autophagy and that there may be an interplay between pro-necroptotic protein RIP3 and autophagy with respect to the regulation of autophagosome processing.
Collapse
Affiliation(s)
- Csaba Horváth
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovak Republic
| | - Tanya Ravingerová
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 81438 Bratislava, Slovak Republic
| | - M. Saadeh Suleiman
- Faculty of Health Sciences, Bristol Heart Institute, The Bristol Medical School, University of Bristol, BS8 Bristol, UK
| | - Adriana Adameová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovak Republic
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 81438 Bratislava, Slovak Republic
| |
Collapse
|
43
|
Metabolic Determinants in Cardiomyocyte Function and Heart Regenerative Strategies. Metabolites 2022; 12:metabo12060500. [PMID: 35736435 PMCID: PMC9227827 DOI: 10.3390/metabo12060500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heart disease is the leading cause of mortality in developed countries. The associated pathology is characterized by a loss of cardiomyocytes that leads, eventually, to heart failure. In this context, several cardiac regenerative strategies have been developed, but they still lack clinical effectiveness. The mammalian neonatal heart is capable of substantial regeneration following injury, but this capacity is lost at postnatal stages when cardiomyocytes become terminally differentiated and transit to the fetal metabolic switch. Cardiomyocytes are metabolically versatile cells capable of using an array of fuel sources, and the metabolism of cardiomyocytes suffers extended reprogramming after injury. Apart from energetic sources, metabolites are emerging regulators of epigenetic programs driving cell pluripotency and differentiation. Thus, understanding the metabolic determinants that regulate cardiomyocyte maturation and function is key for unlocking future metabolic interventions for cardiac regeneration. In this review, we will discuss the emerging role of metabolism and nutrient signaling in cardiomyocyte function and repair, as well as whether exploiting this axis could potentiate current cellular regenerative strategies for the mammalian heart.
Collapse
|
44
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
45
|
Su KN, Ma Y, Cacheux M, Ilkan Z, Raad N, Muller GK, Wu X, Guerrera N, Thorn SL, Sinusas AJ, Foretz M, Viollet B, Akar JG, Akar FG, Young LH. Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. JCI Insight 2022; 7:141213. [PMID: 35451373 PMCID: PMC9089788 DOI: 10.1172/jci.insight.141213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic stress is an important cause of pathological atrial remodeling and atrial fibrillation. AMPK is a ubiquitous master metabolic regulator, yet its biological function in the atria is poorly understood in both health and disease. We investigated the impact of atrium-selective cardiac AMPK deletion on electrophysiological and structural remodeling in mice. Loss of atrial AMPK expression caused atrial changes in electrophysiological properties and atrial ectopic activity prior to the onset of spontaneous atrial fibrillation. Concomitant transcriptional downregulation of connexins and atrial ion channel subunits manifested with delayed left atrial activation and repolarization. The early molecular and electrophysiological abnormalities preceded left atrial structural remodeling and interstitial fibrosis. AMPK inactivation induced downregulation of transcription factors (Mef2c and Pitx2c) linked to connexin and ion channel transcriptional reprogramming. Thus, AMPK plays an essential homeostatic role in atria, protecting against adverse remodeling potentially by regulating key transcription factors that control the expression of atrial ion channels and gap junction proteins.
Collapse
Affiliation(s)
- Kevin N Su
- Department of Cellular & Molecular Physiology and
| | - Yina Ma
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marine Cacheux
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zeki Ilkan
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nour Raad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Xiaohong Wu
- Department of Cellular & Molecular Physiology and
| | - Nicole Guerrera
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie L Thorn
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Joseph G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fadi G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H Young
- Department of Cellular & Molecular Physiology and.,Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
47
|
AMPK Activation Is Indispensable for the Protective Effects of Caloric Restriction on Left Ventricular Function in Postinfarct Myocardium. BIOLOGY 2022; 11:biology11030448. [PMID: 35336822 PMCID: PMC8945456 DOI: 10.3390/biology11030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Background: Caloric restriction (CR) extends lifespan in many species, including mammals. CR is cardioprotective in senescent myocardium by correcting pre-existing mitochondrial dysfunction and apoptotic activation. Furthermore, it confers cardioprotection against acute ischemia-reperfusion injury. Here, we investigated the role of AMP-activated protein kinase (AMPK) in mediating the cardioprotective CR effects in failing, postinfarct myocardium. Methods: Ligation of the left coronary artery or sham operation was performed in rats and mice. Four weeks after surgery, left ventricular (LV) function was analyzed by echocardiography, and animals were assigned to different feeding groups (control diet or 40% CR, 8 weeks) as matched pairs. The role of AMPK was investigated with an AMPK inhibitor in rats or the use of alpha 2 AMPK knock-out mice. Results: CR resulted in a significant improvement in LV function, compared to postinfarct animals receiving control diet in both species. The improvement in LV function was accompanied by a reduction in serum BNP, decrease in LV proapoptotic activation, and increase in mitochondrial biogenesis in the LV. Inhibition or loss of AMPK prevented most of these changes. Conclusions: The failing, postischemic heart is protected from progressive loss of LV systolic function by CR. AMPK activation is indispensable for these protective effects.
Collapse
|
48
|
Chen S, Lin Y, Zhu Y, Geng L, Cui C, Li Z, Liu H, Chen H, Ju W, Chen M. Atrial Lesions in a Pedigree With PRKAG2 Cardiomyopathy: Involvement of Disrupted AMP-Activated Protein Kinase Signaling. Front Cardiovasc Med 2022; 9:840337. [PMID: 35360035 PMCID: PMC8960295 DOI: 10.3389/fcvm.2022.840337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
PRKAG2 cardiomyopathy is a rare progressive disease characterized by increased ventricular wall thickness and preexcitation. Dysfunction of the protein 5′-AMP-activated protein kinase (AMPK) plays a decisive role in the progression of ventricular lesions. Although patients with the PRKAG2-R302Q mutation have a high incidence of atrial fibrillation (AF), the molecular mechanism contributing to the disease remains unclear. We carried out whole-genome sequencing with linkage analysis in three affected members of a family. Atrial samples were obtained from the proband via surgical intervention. Control atrium biopsies were obtained from patients with persistent AF. Pathological changes were analyzed using the hematoxylin and eosin (H&E), Masson, and periodic acid–Schiff (PAS) staining. The AMPK signaling pathway was investigated by western blot. A murine atrial cardiomyocyte cell line (HL-1) and human induced pluripotent stem derived atrial cardiomyocytes (hiPSC-ACMs) were transfected with an adenovirus carrying the same mutation. We used enzyme linked immunosorbent assay (ELISA) to determine the AMPK activity in HL-1 cells and hiPSC-ACMs overexpressing PRKAG2-R302Q. Pathological results showed a large quantity of glycogen accumulation and vacuolization in cardiomyocytes from the proband atrial tissue. Western blot analysis revealed that the AMPK activity was significantly downregulated compared with that of the controls. Furthermore, remarkable glycogen deposition and impairment of AMPK activity were reproduced in HL-1 cells overexpressing PRKAG2-R302Q. Taken together, PRKAG2-R302Q mutation directly impair atrial cardiomyocytes. PRKAG2-R302Q mutation lead to glycogen deposition and promote the growth of atrial lesions by disrupting the AMPK pathway.
Collapse
Affiliation(s)
- Shaojie Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le Geng
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaomin Li
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwu Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhu Ju
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Weizhu Ju,
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Minglong Chen,
| |
Collapse
|
49
|
Guan Y, Yan Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022; 11:872. [PMID: 35269492 PMCID: PMC8909156 DOI: 10.3390/cells11050872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Healthspan is the period of our life without major debilitating diseases. In the modern world where unhealthy lifestyle choices and chronic diseases taper the healthspan, which lead to an enormous economic burden, finding ways to promote healthspan becomes a pressing goal of the scientific community. Exercise, one of humanity's most ancient and effective lifestyle interventions, appears to be at the center of the solution since it can both treat and prevent the occurrence of many chronic diseases. Here, we will review the current evidence and opinions about regular exercise promoting healthspan through enhancing the functionality of our organ systems and preventing diseases.
Collapse
Affiliation(s)
- Yuntian Guan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
50
|
Cui YK, Hong YX, Wu WY, Han WM, Wu Y, Wu C, Li GR, Wang Y. Acacetin ameliorates cardiac hypertrophy by activating Sirt1/AMPK/PGC-1α pathway. Eur J Pharmacol 2022; 920:174858. [PMID: 35219729 DOI: 10.1016/j.ejphar.2022.174858] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Cardiac hypertrophy is a major risk factor for developing heart failure. This study investigates the effects of the natural flavone acacetin on myocardial hypertrophy in cellular level and whole animals. In cardiomyocytes from neonatal rat with hypertrophy induced by angiotensin II (Ang II), acacetin at 0.3, 1, and 3 μM reduced the increased myocyte surface area, brain natriuretic peptide (BNP), and ROS production by upregulating anti-oxidative molecules (i.e. Nrf2, SOD1, SOD2, HO-1), anti-apoptotic protein Bcl-2, and downregulating the pro-apoptotic protein Bax and the inflammatory cytokine IL-6 in a concentration-dependent manner. In addition, acacetin rescued Ang II-induced impairment of PGC-1α, PPARα and pAMPK. These beneficial effects of acacetin were mediated by activation of Sirt1, which was confirmed in cardiac hypertrophy induced by abdominal aorta constriction (AAC) in SD rats. Acacetin prodrug (10 mg/kg, s.c., b.i.d.) treatment reduced the elevated artery blood pressure, improved the increased heart size and thickness of left ventricular wall and the ventricular fibrosis associated with inhibiting myocardial fibrosis and BNP, and reversed the impaired protective signal molecules including PGC-1α, Nrf2, PPARα, pAMPK and Sirt1 of left ventricular tissue. Our results demonstrate the novel pharmacological effect that acacetin ameliorates cardiac hypertrophy via Sirt1-mediated activation of AMPK/PGC-1α signal molecules followed by reducing oxidation, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yu-Kai Cui
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Wei-Min Han
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Yao Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China; Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu, 210032, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China.
| |
Collapse
|