1
|
Perry CE, Halawani SM, Mukherjee S, Ngaba LV, Lieu M, Lee WD, Davis JG, Adzika GK, Bebenek AN, Bazianos DD, Chen B, Mercado-Ayon E, Flatley LP, Suryawanshi AP, Ho I, Rabinowitz JD, Serai SD, Biko DM, Tamaroff J, DeDio A, Wade K, Lin KY, Livingston DJ, McCormack SE, Lynch DR, Baur JA. NAD+ precursors prolong survival and improve cardiac phenotypes in a mouse model of Friedreich's Ataxia. JCI Insight 2024; 9:e177152. [PMID: 39171530 PMCID: PMC11343603 DOI: 10.1172/jci.insight.177152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.
Collapse
Affiliation(s)
- Caroline E. Perry
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah M. Halawani
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lucie V. Ngaba
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Melissa Lieu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - James G. Davis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabriel K. Adzika
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa N. Bebenek
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Bazianos
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beishan Chen
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Mercado-Ayon
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liam P. Flatley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arjun P. Suryawanshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabelle Ho
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Suraj D. Serai
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - David M. Biko
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - Jaclyn Tamaroff
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna DeDio
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristin Wade
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kimberly Y. Lin
- Division of Pediatric Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Shana E. McCormack
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A. Baur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Munguia-Galaviz FJ, Gutierrez-Mercado YK, Miranda-Diaz AG, Portilla de Buen E, Flores-Soto ME, Echavarria R. Cardiac transcriptomic changes induced by early CKD in mice reveal novel pathways involved in the pathogenesis of Cardiorenal syndrome type 4. Heliyon 2024; 10:e27468. [PMID: 38509984 PMCID: PMC10950824 DOI: 10.1016/j.heliyon.2024.e27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background Cardiorenal syndrome (CRS) type 4 is prevalent among the chronic kidney disease (CKD) population, with many patients dying from cardiovascular complications. However, limited data regarding cardiac transcriptional changes induced early by CKD is available. Methods We used a murine unilateral ureteral obstruction (UUO) model to evaluate renal damage, cardiac remodeling, and transcriptional regulation at 21 days post-surgery through histological analysis, RT-qPCR, RNA-seq, and bioinformatics. Results UUO leads to significant kidney injury, low uremia, and pathological cardiac remodeling, evidenced by increased collagen deposition and smooth muscle alpha-actin 2 expression. RNA-seq analysis identified 76 differentially expressed genes (DEGs) in UUO hearts. Upregulated DEGs were significantly enriched in cell cycle and cell division pathways, immune responses, cardiac repair, inflammation, proliferation, oxidative stress, and apoptosis. Gene Set Enrichment Analysis further revealed mitochondrial oxidative bioenergetic pathways, autophagy, and peroxisomal pathways are downregulated in UUO hearts. Vimentin was also identified as an UUO-upregulated transcript. Conclusions Our results emphasize the relevance of extensive transcriptional changes, mitochondrial dysfunction, homeostasis deregulation, fatty-acid metabolism alterations, and vimentin upregulation in CRS type 4 development.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Division de Ciencias de la Salud, CUSUR, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | | | | | - Eliseo Portilla de Buen
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Mario Eduardo Flores-Soto
- Division de Neurociencias, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| | - Raquel Echavarria
- CONAHCYT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
3
|
Han Y, Wennersten SA, Wright JM, Ludwig RW, Lau E, Lam MPY. Proteogenomics reveals sex-biased aging genes and coordinated splicing in cardiac aging. Am J Physiol Heart Circ Physiol 2022; 323:H538-H558. [PMID: 35930447 PMCID: PMC9448281 DOI: 10.1152/ajpheart.00244.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/24/2023]
Abstract
The risks of heart diseases are significantly modulated by age and sex, but how these factors influence baseline cardiac gene expression remains incompletely understood. Here, we used RNA sequencing and mass spectrometry to compare gene expression in female and male young adult (4 mo) and early aging (20 mo) mouse hearts, identifying thousands of age- and sex-dependent gene expression signatures. Sexually dimorphic cardiac genes are broadly distributed, functioning in mitochondrial metabolism, translation, and other processes. In parallel, we found over 800 genes with differential aging response between male and female, including genes in cAMP and PKA signaling. Analysis of the sex-adjusted aging cardiac transcriptome revealed a widespread remodeling of exon usage patterns that is largely independent from differential gene expression, concomitant with upstream changes in RNA-binding protein and splice factor transcripts. To evaluate the impact of the splicing events on cardiac proteoform composition, we applied an RNA-guided proteomics computational pipeline to analyze the mass spectrometry data and detected hundreds of putative splice variant proteins that have the potential to rewire the cardiac proteome. Taken together, the results here suggest that cardiac aging is associated with 1) widespread sex-biased aging genes and 2) a rewiring of RNA splicing programs, including sex- and age-dependent changes in exon usages and splice patterns that have the potential to influence cardiac protein structure and function. These changes contribute to the emerging evidence for considerable sexual dimorphism in the cardiac aging process that should be considered in the search for disease mechanisms.NEW & NOTEWORTHY Han et al. used proteogenomics to compare male and female mouse hearts at 4 and 20 mo. Sex-biased cardiac genes function in mitochondrial metabolism, translation, autophagy, and other processes. Hundreds of cardiac genes show sex-by-age interactions, that is, sex-biased aging genes. Cardiac aging is accompanied with a remodeling of exon usage in functionally coordinated genes, concomitant with differential expression of RNA-binding proteins and splice factors. These features represent an underinvestigated aspect of cardiac aging that may be relevant to the search for disease mechanisms.
Collapse
Grants
- R21-HL150456 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00-HL144829 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL127302 NHLBI NIH HHS
- R03-OD032666 HHS | NIH | NIH Office of the Director (OD)
- R01 HL141278 NHLBI NIH HHS
- F32 HL149191 NHLBI NIH HHS
- F32-HL149191 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00-HL127302 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R21 HL150456 NHLBI NIH HHS
- R03 OD032666 NIH HHS
- R00 HL144829 NHLBI NIH HHS
- R01-HL141278 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- University of Colorado
- University of Colorado School of Medicine, Anschutz Medical Campus
Collapse
Affiliation(s)
- Yu Han
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Sara A Wennersten
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Julianna M Wright
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - R W Ludwig
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Maggie P Y Lam
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
4
|
Transwoman Elite Athletes: Their Extra Percentage Relative to Female Physiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159103. [PMID: 35897465 PMCID: PMC9331831 DOI: 10.3390/ijerph19159103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
There is increasing debate as to whether transwoman athletes should be included in the elite female competition. Most elite sports are divided into male and female divisions because of the greater athletic performance displayed by males. Without the sex division, females would have little chance of winning because males are faster, stronger, and have greater endurance capacity. Male physiology underpins their better athletic performance including increased muscle mass and strength, stronger bones, different skeletal structure, better adapted cardiorespiratory systems, and early developmental effects on brain networks that wires males to be inherently more competitive and aggressive. Testosterone secreted before birth, postnatally, and then after puberty is the major factor that drives these physiological sex differences, and as adults, testosterone levels are ten to fifteen times higher in males than females. The non-overlapping ranges of testosterone between the sexes has led sports regulators, such as the International Olympic Committee, to use 10 nmol/L testosterone as a sole physiological parameter to divide the male and female sporting divisions. Using testosterone levels as a basis for separating female and male elite athletes is arguably flawed. Male physiology cannot be reformatted by estrogen therapy in transwoman athletes because testosterone has driven permanent effects through early life exposure. This descriptive critical review discusses the inherent male physiological advantages that lead to superior athletic performance and then addresses how estrogen therapy fails to create a female-like physiology in the male. Ultimately, the former male physiology of transwoman athletes provides them with a physiological advantage over the cis-female athlete.
Collapse
|
5
|
Masjoan Juncos JX, Shakil S, Ahmad A, Mariappan N, Zafar I, Bradley WE, Dell’Italia LJ, Ahmad A, Ahmad S. Sex differences in cardiopulmonary effects of acute bromine exposure. Toxicol Res (Camb) 2021; 10:1064-1073. [PMID: 34733491 PMCID: PMC8557644 DOI: 10.1093/toxres/tfab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
Accidental occupational bromine (Br>2>) exposures are common, leading to significant morbidity and mortality; however, the specific effects of Br>2> inhalation in female victims are unclear. Our studies demonstrated that acute high-concentration Br>2> inhalation is fatal, and cardiac injury and dysfunction play an important role in Br>2> toxicity in males. In this study, we exposed female Sprague Dawley rats, age-matched to those males from previously studied, to 600 ppm Br>2> for 45 min and assessed their survival, cardiopulmonary injury and cardiac function after exposure. Br>2> exposure caused serious mortality in female rats (59%) 48 h after exposure. Rats had severe clinical distress, reduced heart rates and oxygen saturation after Br>2> inhalation as was previously reported with male animals. There was significant lung injury and edema when measured 24 h after exposure. Cardiac injury biomarkers were also significantly elevated 24 h after Br>2> inhalation. Echocardiography and hemodynamic studies were also performed and revealed that the mean arterial pressure was not significantly elevated in females. Other functional cardiac parameters were also altered. Aside from the lack of elevation of blood pressure, all other changes observed in female animals were also present in male animals as reported in our previous study. These studies are important to understand the toxicity mechanisms to generate therapies and better-equip first responders to deal with these specific scenarios after bromine spill disasters.>.
Collapse
Affiliation(s)
- Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shazia Shakil
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aamir Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wayne E Bradley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Louis J Dell’Italia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Bianchi PC, Gomes-de-Souza L, Costa-Ferreira W, Palombo P, Carneiro de Oliveira PE, Engi SA, Leão RM, Planeta CS, Crestani CC, Cruz FC. Chronic ethanol vapor exposure potentiates cardiovascular responses to acute stress in male but not in female rats. Biol Sex Differ 2021; 12:27. [PMID: 33726842 PMCID: PMC7962247 DOI: 10.1186/s13293-021-00371-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ethanol use is related to a wide variety of negative health outcomes, including cardiovascular diseases. Stress is also involved in numerous pathologies, such as cardiovascular diseases and psychiatric disorders. Sexual dimorphism is an important factor affecting cardiovascular response and has been proposed as a potential risk factor for sex-specific health problems in humans. Here, we evaluated the effect of prolonged ethanol vapor inhalation on arterial pressure, heart rate, and tail skin temperature responses to acute restraint stress, investigating differences between male and female rats. METHODS We exposed male and female Long-Evans rats to ethanol vapor for 14 h, followed by ethanol withdrawal for 10 h, for 30 consecutive days, or to room air (control groups). The animals underwent surgical implantation of a cannula into the femoral artery for assessment of arterial pressure and heart rate values. The tail skin temperature was measured as an indirect measurement of sympathetic vasomotor response. RESULTS Chronic ethanol vapor inhalation reduced basal heart rate in both female and male rats. Sex-related difference was observed in the decrease of tail cutaneous temperature evoked by stress, but not in the pressor and tachycardiac responses. Furthermore, prolonged ethanol inhalation enhanced the blood pressure and heart rate increase caused by acute restraint stress in male, but not in female rats. However, no effect of chronic ethanol vapor was observed in the tail cutaneous temperature response to restraint in either sex. CONCLUSION Chronic ethanol vapor exposure increased the cardiovascular reactivity to stress in male, but not in female rats.
Collapse
Affiliation(s)
- Paula C. Bianchi
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
- Laboratory of Pharmacology, Paulista Medicine School, Universidade Federal de São Paulo – UNIFESP, Leal Prado Building, Botucatu 862 Street, 04024-002, Vila Clementino, São Paulo, SP Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Willian Costa-Ferreira
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Paola Palombo
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Paulo E. Carneiro de Oliveira
- Laboratory of Psychology, Psychology Department, Universidade Federal de São Carlos - UFSCar, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Sheila A. Engi
- Laboratory of Pharmacology, Paulista Medicine School, Universidade Federal de São Paulo – UNIFESP, Leal Prado Building, Botucatu 862 Street, 04024-002, Vila Clementino, São Paulo, SP Brazil
- Joint Graduate Program in Pharmacology, Pharmacology and Molecular Biology Institute - INFAR, Três de Maio 100 Street, 04044-020, Vila Clementino, São Paulo, SP Brazil
| | - Rodrigo M. Leão
- Biomedical Sciences Institute, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais Brazil
| | - Cleopatra S. Planeta
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Carlos C. Crestani
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Fabio C. Cruz
- Laboratory of Pharmacology, Paulista Medicine School, Universidade Federal de São Paulo – UNIFESP, Leal Prado Building, Botucatu 862 Street, 04024-002, Vila Clementino, São Paulo, SP Brazil
- Joint Graduate Program in Pharmacology, Pharmacology and Molecular Biology Institute - INFAR, Três de Maio 100 Street, 04044-020, Vila Clementino, São Paulo, SP Brazil
| |
Collapse
|
7
|
Rubio-Arias JÁ, Andreu L, Martínez-Aranda LM, Martínez-Rodríguez A, Manonelles P, Ramos-Campo DJ. Effects of medium- and long-distance running on cardiac damage markers in amateur runners: a systematic review, meta-analysis, and metaregression. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:192-200. [PMID: 33742602 PMCID: PMC7987568 DOI: 10.1016/j.jshs.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND To finish an endurance race, athletes perform a vigorous effort that induces the release of cardiac damage markers. There are several factors that can affect the total number of these markers, so the aim of this review was to analyze the effect of endurance running races on cardiac damage markers and to identify the factors that modify the levels of segregation of these cardiac damage markers. METHODS A systematic search of PubMed, Web of Science, and the Cochrane Library databases was performed. This analysis included studies where the acute effects of running races on cardiac damage markers (troponin I and troponin T) were analyzed, assessing the levels of these markers before and after the races. RESULTS The effects of running races on troponin I (mean difference = 0.0381 ng/mL) and troponin T (mean difference = 0.0256 ng/mL) levels were significant. The ages (R2 = 14.4%, p = 0.033) and body mass indexes (R2 = 14.5%, p = 0.045) of the athletes had a significant interaction with troponin I. In addition, gender, mean speed, time to finish the race, and type of race can affect the level of cardiac damage markers. CONCLUSION Endurance running races induce the release of cardiac-damage markers that remain elevated for at least 24 h after the races. In addition, young male athletes with high body mass indexes who perform races combining long duration and moderate intensity (i.e., marathons) release the highest levels of cardiac damage markers. Physicians should take into consideration these results in the diagnosis and treatment of patients admitted to the hospital days after finishing endurance running races.
Collapse
Affiliation(s)
- Jacobo Á Rubio-Arias
- Faculty of Sport, Catholic University of San Antonio (UCAM), Murcia 30107, Spain; LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, Madrid 28040, Spain.
| | - Luis Andreu
- International Chair of Sports Medicine, Catholic University of San Antonio (UCAM), Murcia 30107, Spain
| | - Luis Manuel Martínez-Aranda
- Faculty of Sport, Catholic University of San Antonio (UCAM), Murcia 30107, Spain; Neuroscience of Human Movement Research Group (Neuromove), Catholic University of San Antonio (UCAM), Murcia 30107, Spain
| | | | - Pedro Manonelles
- International Chair of Sports Medicine, Catholic University of San Antonio (UCAM), Murcia 30107, Spain
| | | |
Collapse
|
8
|
Schuldt M, Dorsch LM, Knol JC, Pham TV, Schelfhorst T, Piersma SR, Dos Remedios C, Michels M, Jimenez CR, Kuster DWD, van der Velden J. Sex-Related Differences in Protein Expression in Sarcomere Mutation-Positive Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2021; 8:612215. [PMID: 33732734 PMCID: PMC7956946 DOI: 10.3389/fcvm.2021.612215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Sex-differences in clinical presentation contribute to the phenotypic heterogeneity of hypertrophic cardiomyopathy (HCM) patients. While disease prevalence is higher in men, women present with more severe diastolic dysfunction and worse survival. Until today, little is known about the cellular differences underlying sex-differences in clinical presentation. Methods: To define sex-differences at the protein level, we performed a proteomic analysis in cardiac tissue obtained during myectomy surgery to relieve left ventricular outflow tract obstruction of age-matched female and male HCM patients harboring a sarcomere mutation (n = 13 in both groups). Furthermore, these samples were compared to 8 non-failing controls. Women presented with more severe diastolic dysfunction. Results: Out of 2099 quantified proteins, direct comparison of male, and female HCM samples revealed only 46 significantly differentially expressed proteins. Increased levels of tubulin and heat shock proteins were observed in female compared to male HCM patients. Western blot analyses confirmed higher levels of tubulin in female HCM samples. In addition, proteins involved in carbohydrate metabolism were significantly lower in female compared to male samples. Furthermore, we found lower levels of translational proteins specifically in male HCM samples. The disease-specificity of these changes were confirmed by a second analysis in which we compared female and male samples separately to non-failing control samples. Transcription factor analysis showed that sex hormone-dependent transcription factors may contribute to differential protein expression, but do not explain the majority of protein changes observed between male and female HCM samples. Conclusion: In conclusion, based on our proteomics analyses we propose that increased levels of tubulin partly underlie more severe diastolic dysfunction in women compared to men. Since heat shock proteins have cardioprotective effects, elevated levels of heat shock proteins in females may contribute to later disease onset in woman, while reduced protein turnover in men may lead to the accumulation of damaged proteins which in turn affects proper cellular function.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim Schelfhorst
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cris Dos Remedios
- Victor Chang Cardiac Research Institute, Darlinghurst Sydney, Sydney, NSW, Australia.,Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Ostadal B, Ostadalova I, Szarszoi O, Netuka I, Olejnickova V, Hlavackova M. Sex-dependent effect of perinatal hypoxia on cardiac tolerance to oxygen deprivation in adults. Can J Physiol Pharmacol 2020; 99:1-8. [PMID: 32687731 DOI: 10.1139/cjpp-2020-0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies have demonstrated a relationship between the adverse influence of perinatal development and increased risk of ischemic heart disease in adults. From negative factors to which the fetus is subjected, the most important is hypoxia. The fetus may experience hypoxic stress under different conditions, including pregnancy at high altitude, pregnancy with anemia, placental insufficiency, and heart, lung, and kidney disease. One of the most common insults during the early stages of postnatal development is hypoxemia due to congenital cyanotic heart defects. Experimental studies have demonstrated a link between early hypoxia and increased risk of ischemia/reperfusion injury (I/R) in adults. Furthermore, it has been observed that late myocardial effects of chronic hypoxia, experienced in early life, may be sex-dependent. Unlike in males, perinatal hypoxia significantly increased cardiac tolerance to acute I/R injury in adult females, expressed as decreased infarct size and lower incidence of ischemic arrhythmias. It was suggested that early hypoxia may result in sex-dependent programming of specific genes in the offspring with the consequence of increased cardiac susceptibility to I/R injury in adult males. These results would have important clinical implications, since cardiac sensitivity to oxygen deprivation in adult patients may be significantly influenced by perinatal hypoxia in a sex-dependent manner.
Collapse
Affiliation(s)
- B Ostadal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - I Ostadalova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - O Szarszoi
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - I Netuka
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - V Olejnickova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Hlavackova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Bassareo PP, Crisafulli A. Gender Differences in Hemodynamic Regulation and Cardiovascular Adaptations to Dynamic Exercise. Curr Cardiol Rev 2020; 16:65-72. [PMID: 30907327 PMCID: PMC7393595 DOI: 10.2174/1573403x15666190321141856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 01/28/2023] Open
Abstract
Exercise is a major challenge for cardiovascular apparatus since it recruits chronotropic, inotropic, pre-load, and afterload reserves. Regular physical training induces several physiological adaptations leading to an increase in both cardiac volume and mass. It appears that several gender-related physiological and morphological differences exist in the cardiovascular adjustments and adaptations to dynamic exercise in humans. In this respect, gender may be important in determining these adjustments and adaptations to dynamic exercise due to genetic, endocrine, and body composition differences between sexes. Females seem to have a reduced vasoconstriction and a lower vascular resistance in comparison to males, especially after exercise. Significant differences exist also in the cardiovascular adaptations to physical training, with trained women showing smaller cardiac volume and wall thickness compared with male athletes. In this review, we summarize these differences.
Collapse
Affiliation(s)
- Pier P Bassareo
- University College of Dublin, Mater Misericordiae University Teaching Hospital, Dublin, Ireland
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Yuan X, Mao S, Tang Q. Analysis of the incidence and baseline predictors of the left ventricular ejection fraction returning to normal after dilated cardiomyopathy in postmenopausal women: a retrospective, observational study. J Int Med Res 2020; 48:300060520922471. [PMID: 32429729 PMCID: PMC7241211 DOI: 10.1177/0300060520922471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective To analyse the incidence and baseline predictors of the left ventricular ejection fraction (LVEF) returning to normal after dilated cardiomyopathy (DCM) following intervention with standard anti-heart failure (HF) medication in postmenopausal women. Methods Data from consecutive postmenopausal women who were first diagnosed with DCM and received anti-HF treatment during 2011 to 2018 were prospectively retrieved. The study population was divided into the LVEF recovery (LVR) group and the LVEF unrecovered (LVU) group according to whether LVEF was > 50%. The primary endpoint was baseline predictors of LVEF returning to normal. Results LVEF returned to normal in 49.3% (210/426) of patients with DCM. LVEF was significantly higher in the LVR group than in the LVU group (57.4% ± 6.9% vs 44.2% ± 5.3%; hazard ratio 1.312, 95% confidence interval 1.015–1.726) at the final follow-up. High systolic pressure, a short history of HF, a short QRS interval, a small left ventricular end-diastolic diameter (LVEDd), and high LVEF at admission were independent predictors of LVEF returning to normal. Conclusions LVEF returning to normal in postmenopausal women with DCM who receive standard anti-HF treatment is associated with systolic pressure, a history of HF, QRS interval, LVEDd, LVEF at admission, and favourable outcome.
Collapse
Affiliation(s)
- Xiaopin Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute of Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Shuai Mao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute of Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Agarwal S, Sharma H, Chen L, Dhillon NK. NADPH oxidase-mediated endothelial injury in HIV- and opioid-induced pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1097-L1108. [PMID: 32233792 DOI: 10.1152/ajplung.00480.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that the combined exposure of human pulmonary microvascular endothelial cells (HPMECs) to morphine and viral protein(s) results in the oxidative stress-mediated induction of autophagy, leading to shift in the cells from early apoptotic to apoptosis-resistant proliferative status associated with the angioproliferative remodeling observed in pulmonary arterial hypertension (PAH). In this study, we tried to delineate the major source of HIV-1 protein Tat and morphine induced oxidative burst in HPMECs and its consequences on vascular remodeling and PAH in an in vivo model. We observed switch from the initial increased expression of NADPH oxidase (NOX) 2 in response to acute treatment of morphine and HIV-Tat to later increased expression of NOX4 on chronic treatment in the endoplasmic reticulum of HPMECs without any alterations in the mitochondria. Furthermore, NOX-dependent induction of autophagy was observed to play a pivotal role in regulating the endothelial cell survival. Our in vivo findings showed significant increase in pulmonary vascular remodeling, right ventricular systolic pressure, and Fulton index in HIV-transgenic rats on chronic administration of morphine. This was associated with increased oxidative stress in lung tissues and rat pulmonary microvascular endothelial cells. Additionally, endothelial cells from morphine-treated HIV-transgenic rats demonstrated increased expression of NOX2 and NOX4 proteins, inhibition of which ameliorated their increased survival upon serum starvation. In conclusion, this study describes NADPH oxidases as one of the main players in the oxidative stress-mediated endothelial dysfunction on the dual hit of HIV-viral protein(s) and opioids.
Collapse
Affiliation(s)
- Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
13
|
Walsh-Wilkinson E, Beaumont C, Drolet MC, Roy ÈM, Le Houillier C, Beaudoin J, Arsenault M, Couet J. Effects of the loss of estrogen on the heart's hypertrophic response to chronic left ventricle volume overload in rats. PeerJ 2019; 7:e7924. [PMID: 31656705 PMCID: PMC6812667 DOI: 10.7717/peerj.7924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 02/05/2023] Open
Abstract
Aortic valve regurgitation (AR) can result in heart failure from chronic overloading of the left ventricle (LV). Little is known of the role of estrogens in the LV responses to this condition. The aim of the study was to compare LV remodeling in female rats with severe AR in absence of estrogens by ovariectomy (Ovx). In a first study, we investigated over 6 months the development of hypertrophy in four groups of female Wistar rats: AR or sham-operated (sham) and Ovx or not. Ovx reduced normal heart growth. As expected, volume overload (VO) from AR resulted in significant LV dilation (42% and 32% increase LV end-diastolic diameter in intact and Ovx groups vs. their respective sham group; p < 0.0001). LV weight was also significantly and similarly increased in both AR groups (non-Ovx and Ovx). Increase in stroke volume or cardiac output and loss of systolic function were similar between AR intact and AR Ovx groups compared to sham. We then investigated what were the effects of 17beta-estradiol (E2; 0.03 mg/kg/day) treatment on the parameters studied in Ovx rats. Ovx reduced uterus weight by 85% and E2 treatment restored up to 65% of the normal weight. E2 also helped normalize heart size to normal values. On the other hand, it did not influence the extent of the hypertrophic response to AR. In fact, E2 treatment further reduced LV hypertrophy in AR Ovx rats (41% over Sham Ovx + E2). Systolic and diastolic functions parameters in AR Ovx + E2 were similar to intact AR animals. Ovx in sham rats had a significant effect on the LV gene expression of several hypertrophy markers. Atrial natriuretic peptide (Nppa) gene expression was reduced by Ovx in sham-operated females whereas brain natriuretic peptide (Nppb) expression was increased. Alpha (Myh6) and beta (Myh7) myosin heavy chain genes were also significantly modulated by Ovx in sham females. In AR rats, LV expression of both Nppa and Nppb genes were increased as expected. Ovx further increased it of AR rats for Nppa and did the opposite for Nppb. Interestingly, AR in Ovx rats had only minimal effects on Myh6 and Myh7 genes whereas they were modulated as expected for intact AR animals. In summary, loss of estrogens by Ovx in AR rats was not accompanied by a worsening of hypertrophy or cardiac function. Normal cardiac growth was reduced by Ovx in sham females but not the hypertrophic response to AR. On the other hand, Ovx had important effects on LV gene expression both in sham and AR female rats.
Collapse
Affiliation(s)
- Elisabeth Walsh-Wilkinson
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Catherine Beaumont
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie-Claude Drolet
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Ève-Marie Roy
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Charlie Le Houillier
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Jonathan Beaudoin
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie Arsenault
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Jacques Couet
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
14
|
Dehghanojamahalleh S, Kaya M. Sex-Related Differences in Photoplethysmography Signals Measured From Finger and Toe. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019; 7:1900607. [PMID: 31667026 PMCID: PMC6752633 DOI: 10.1109/jtehm.2019.2938506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/12/2019] [Accepted: 08/01/2019] [Indexed: 12/02/2022]
Abstract
Sex plays an important role in the normal cardiovascular system function including resting heart rate and arterial blood pressure. In addition, it has been reported that men and women are at different levels of risk for cardiovascular diseases. The aim of this study was to evaluate and compare the temporal and morphological features of both finger and toe photoplethysmography (PPG), and anthropometric and biological parameters with respect to sex. A customized PPG and electrocardiography (ECG) combo device was developed to measure the signals of interest. ECG/PPG features in addition to subjects’ information were compared regarding finger and toe PPGs. Eighty-eight subjects participated in the study. Linear regression and Student’s t-test were used for statistical analysis. Our results revealed that pulse arrival time (PAT), pulse transit time (PTT), systolic pulse transit time (SPTT), and the ratio of areas under the PPG waveform from the onset to the inflection point and the inflection point to the end of the waveform (S2/S1), are dependent on sex. The highest dependence was shown for the finger PTT while the toe PTT did not indicate any significant dependence on sex. This is the first study that evaluates the effect of sex on cardiovascular system function using finger and toe PPG based features which can help to understand sex-based risk factors for cardiovascular diseases and to improve related disease management and treatments.
Collapse
Affiliation(s)
| | - Mehmet Kaya
- Department of Biomedical and Chemical Engineering and SciencesFlorida Institute of TechnologyMelbourneFL32901USA
| |
Collapse
|
15
|
Tran TT, Mathieu C, Torres M, Loriod B, Lê LT, Nguyen C, Bernard M, Leone M, Lalevée N. Effect of landiolol on sex-related transcriptomic changes in the myocardium during sepsis. Intensive Care Med Exp 2019; 7:50. [PMID: 31428883 PMCID: PMC6701793 DOI: 10.1186/s40635-019-0263-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022] Open
Abstract
Objectives The aims of this study are to better understand phenotypic differences between male and female rats during sepsis, to characterise the contribution of the beta1-adrenergic blocker landiolol to septic cardiomyopathy and to determine why landiolol induces divergent effects in males and females. Methods The myocardial transcriptional profiles in male and female Wistar rats were assessed after the induction of sepsis by cecal ligation and puncture and addition of landiolol. Results Our results showed major differences in the biological processes activated during sepsis in male and female rats. In particular, a significant decrease in processes related to cell organisation, contractile function, ionic transport and phosphoinositide-3-kinase/AKT (PI3K/AKT) signalling was observed only in males. The transcript of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3 (SERCA3) was sex-differently regulated. In males, landiolol reversed several signalling pathways dysregulated during sepsis. The expression level of genes encoding tubulin alpha 8 (TUBA8) and myosin heavy chain 7B (MYH7) contractile proteins, phosphatase 2 catalytic subunit alpha (PPP2CA), G protein-coupled receptor kinase 5 (GRK5) and A-kinase anchoring protein 6 (AKAP6) returned to their basal levels. In contrast, in females, landiolol had limited effects. Conclusion In males, landiolol reversed the expression of many genes that were deregulated in sepsis. Conversely, sepsis-induced deregulation of gene expression was less pronounced in females than in males, and was maintained in the landiolol-treated females. These findings highlight important sex-related differences and confirm previous observations on the important benefit of landiolol intake on cardiac function in male rats. Electronic supplementary material The online version of this article (10.1186/s40635-019-0263-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thi Thom Tran
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Calypso Mathieu
- Aix Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France
| | - Magali Torres
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Béatrice Loriod
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France.,Aix-Marseille Univ, INSERM UMR 1090, TGML, Marseille, France
| | - Linh Thuy Lê
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Catherine Nguyen
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | | | - Marc Leone
- Aix Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France.
| | - Nathalie Lalevée
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France.
| |
Collapse
|
16
|
Walsh-Wilkinson É, Drolet MC, Le Houillier C, Roy ÈM, Arsenault M, Couet J. Sex differences in the response to angiotensin II receptor blockade in a rat model of eccentric cardiac hypertrophy. PeerJ 2019; 7:e7461. [PMID: 31404429 PMCID: PMC6686841 DOI: 10.7717/peerj.7461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background. Men and women differ in their susceptibility to cardiovascular disease, though the underlying mechanism has remained elusive. Heart disease symptoms, evolution and response to treatment are often sex-specific. This has been studied in animal models of hypertension or myocardial infarction in the past but has received less attention in the context of heart valve regurgitation. The aim of the study was to evaluate the development of cardiac hypertrophy (CH) in response to left ventricle (LV) volume overload (VO) caused by chronic aortic valve regurgitation (AR) in male and female rats treated or not with angiotensin II receptor blocker (ARB), valsartan. We studied eight groups of Wistar rats: male or female, AR or sham-operated (sham) and treated or not with valsartan (30 mg/kg/day) for 9 weeks starting one week before AR surgical induction. Results. As expected, VO from AR resulted for both male and female rats in significant LV dilation (39% vs. 40% end-diastolic LV diameter increase, respectively; p < 0.0001) and CH (53% vs. 64% heart weight increase, respectively; p < 0.0001) compared to sham. Sex differences were observed in LV wall thickening in response to VO. In untreated AR males, relative LV wall thickness (a ratio of wall thickness to end-diastolic diameter) was reduced compared to sham, whereas this ratio in females remained unchanged. ARB treatment did not prevent LV dilation in both male and female animals but reversed LV wall thickening in females. Systolic and diastolic functions in AR animals were altered similarly for both sexes. ARB treatment did not improve systolic function but helped normalizing diastolic parameters such as left atrial mass and E wave slope in female AR rats. Increased LV gene expression of Anp and Bnp was normalized by ARB treatment in AR females but not in males. Other hypertrophy gene markers (Fos, Trpc6, Klf15, Myh6 and Myh7) were not modulated by ARB treatment. The same was true for genes related to LV extracellular matrix remodeling (Col1a1, Col3a1, Fn1, Mmp2, Timp1 and Lox). In summary, ARB treatment of rats with severe AR blocked the female-specific hypertrophic response characterized by LV chamber wall thickening. LV dilation, on the other hand, was not significantly decreased by ARB treatment. This also indicates that activation of the angiotensin II receptor is probably more involved in the early steps of LV remodeling caused by AR in females than in males.
Collapse
Affiliation(s)
- Élisabeth Walsh-Wilkinson
- Université Laval, Groupe de recherche sur les valvulopathies, Centre de recherche, Institut universitaire de cardiologie et de pneumologie de Quebec, Québec, Québec, Canada
| | - Marie-Claude Drolet
- Université Laval, Groupe de recherche sur les valvulopathies, Centre de recherche, Institut universitaire de cardiologie et de pneumologie de Quebec, Québec, Québec, Canada
| | - Charlie Le Houillier
- Université Laval, Groupe de recherche sur les valvulopathies, Centre de recherche, Institut universitaire de cardiologie et de pneumologie de Quebec, Québec, Québec, Canada
| | - Ève-Marie Roy
- Université Laval, Groupe de recherche sur les valvulopathies, Centre de recherche, Institut universitaire de cardiologie et de pneumologie de Quebec, Québec, Québec, Canada
| | - Marie Arsenault
- Université Laval, Groupe de recherche sur les valvulopathies, Centre de recherche, Institut universitaire de cardiologie et de pneumologie de Quebec, Québec, Québec, Canada
| | - Jacques Couet
- Université Laval, Groupe de recherche sur les valvulopathies, Centre de recherche, Institut universitaire de cardiologie et de pneumologie de Quebec, Québec, Québec, Canada
| |
Collapse
|
17
|
Beaumont C, Walsh‐Wilkinson É, Drolet M, Roussel É, Melançon N, Fortier É, Harpin G, Beaudoin J, Arsenault M, Couet J. Testosterone deficiency reduces cardiac hypertrophy in a rat model of severe volume overload. Physiol Rep 2019; 7:e14088. [PMID: 31054220 PMCID: PMC6499867 DOI: 10.14814/phy2.14088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was to characterize if the development of cardiac hypertrophy (CH) caused by severe left ventricle (LV) volume overload (VO) from chronic aortic valve regurgitation (AR) in male rats was influenced by androgens. We studied Wistar rats with/without orchiectomy (Ocx) either sham-operated (S) or with severe AR for 26 weeks. Loss of testosterone induced by Ocx decreased general body growth. Cardiac hypertrophy resulting from AR was relatively more important in intact (non-Ocx) animals than in Ocx ones compared to their respective S group (60% vs. 40%; P = 0.019). The intact AR group had more LV dilation, end-diastolic LV diameter being increased by 37% over S group and by 17% in AROcx rats (P < 0.0001). Fractional shortening (an index of systolic function) decreased only by 15% in AROcx compared to 26% for intact AR animals (P = 0.029). Changes in LV gene expression resulting from CH were more marked in intact rats than in AROcx animals, especially for genes linked to extracellular matrix remodeling and energy metabolism. The ratio of hydroxyacyl-Coenzyme A dehydrogenase activity over hexokinase activity, an index of the shift of myocardial substrate use toward glucose from the preferred fatty acids, was significantly decreased in the AR group but not in AROcx. Finally, pJnk2 LV protein content was more abundant in AR than in AROcx rats, indicating decreased activation of this stress pathway in the absence of androgens. In summary, testosterone deficiency in rats with severe LV VO resulted in less CH and a normalization of the LV gene expression profile.
Collapse
Affiliation(s)
- Catherine Beaumont
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Élisabeth Walsh‐Wilkinson
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Marie‐Claude Drolet
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Élise Roussel
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Nicolas Melançon
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Émile Fortier
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Geneviève Harpin
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Jonathan Beaudoin
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Marie Arsenault
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Jacques Couet
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| |
Collapse
|
18
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
19
|
Sherman SB, Sarsour N, Salehi M, Schroering A, Mell B, Joe B, Hill JW. Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes 2018; 9:400-421. [PMID: 29469650 PMCID: PMC6219642 DOI: 10.1080/19490976.2018.1441664] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/24/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Conditions of excess androgen in women, such as polycystic ovary syndrome (PCOS), often exhibit intergenerational transmission. One way in which the risk for PCOS may be increased in daughters of affected women is through exposure to elevated androgens in utero. Hyperandrogenemic conditions have serious health consequences, including increased risk for hypertension and cardiovascular disease. Recently, gut dysbiosis has been found to induce hypertension in rats, such that blood pressure can be normalized through fecal microbial transplant. Therefore, we hypothesized that the hypertension seen in PCOS has early origins in gut dysbiosis caused by in utero exposure to excess androgen. We investigated this hypothesis with a model of prenatal androgen (PNA) exposure and maternal hyperandrogenemia by single-injection of testosterone cypionate or sesame oil vehicle (VEH) to pregnant dams in late gestation. We then completed a gut microbiota and cardiometabolic profile of the adult female offspring. RESULTS The metabolic assessment revealed that adult PNA rats had increased body weight and increased mRNA expression of adipokines: adipocyte binding protein 2, adiponectin, and leptin in inguinal white adipose tissue. Radiotelemetry analysis revealed hypertension with decreased heart rate in PNA animals. The fecal microbiota profile of PNA animals contained higher relative abundance of bacteria associated with steroid hormone synthesis, Nocardiaceae and Clostridiaceae, and lower abundance of Akkermansia, Bacteroides, Lactobacillus, Clostridium. The PNA animals also had an increased relative abundance of bacteria associated with biosynthesis and elongation of unsaturated short chain fatty acids (SCFAs). CONCLUSIONS We found that prenatal exposure to excess androgen negatively impacted cardiovascular function by increasing systolic and diastolic blood pressure and decreasing heart rate. Prenatal androgen was also associated with gut microbial dysbiosis and altered abundance of bacteria involved in metabolite production of short chain fatty acids. These results suggest that early-life exposure to hyperandrogenemia in daughters of women with PCOS may lead to long-term alterations in gut microbiota and cardiometabolic function.
Collapse
Affiliation(s)
- Shermel B. Sherman
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Nadeen Sarsour
- Department of Biological Sciences, University of Toledo, Toledo, OH
| | - Marziyeh Salehi
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Allen Schroering
- Department of Neurosciences and Neurological Disorders, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Blair Mell
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
- Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Bina Joe
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
- Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
- Center for Diabetes and Endocrine Research, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| |
Collapse
|
20
|
Cardiomyocyte-targeted and 17β-estradiol-loaded acoustic nanoprobes as a theranostic platform for cardiac hypertrophy. J Nanobiotechnology 2018; 16:36. [PMID: 29602311 PMCID: PMC5877324 DOI: 10.1186/s12951-018-0360-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Background Theranostic perfluorocarbon nanoprobes have recently attracted attention due to their fascinating versatility in integrating diagnostics and therapeutics into a single system. Furthermore, although 17β-estradiol (E2) is a potential anti-hypertrophic drug, it has severe non-specific adverse effects in various organs. Therefore, we have developed cardiomyocyte-targeted theranostic nanoprobes to achieve concurrent targeted imaging and treatment of cardiac hypertrophy. Results We had successfully synthesized E2-loaded, primary cardiomyocyte (PCM) specific peptide-conjugated nanoprobes with perfluorocarbon (PFP) as a core (PCM-E2/PFPs) and demonstrated their stability and homogeneity. In vitro and in vivo studies confirmed that when exposed to low-intensity focused ultrasound (LIFU), these versatile PCM-E2/PFPs can be used as an amplifiable imaging contrast agent. Furthermore, the significantly accelerated release of E2 enhanced the therapeutic efficacy of the drug and prevented systemic side effects. PCM-E2/PFPs + LIFU treatment also significantly increased cardiac targeting and circulation time. Further therapeutic evaluations showed that PCM-E2/PFPs + LIFU suppressed cardiac hypertrophy to a greater extent compared to other treatments, revealing high efficiency in cardiac-targeted delivery and effective cardioprotection. Conclusion Our novel theranostic nanoplatform could serve as a potential theranostic vector for cardiac diseases. Electronic supplementary material The online version of this article (10.1186/s12951-018-0360-3) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Richardson RV, Batchen EJ, Thomson AJW, Darroch R, Pan X, Rog-Zielinska EA, Wyrzykowska W, Scullion K, Al-Dujaili EAS, Diaz ME, Moran CM, Kenyon CJ, Gray GA, Chapman KE. Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis. J Endocrinol 2017; 232:437-450. [PMID: 28057868 PMCID: PMC5292999 DOI: 10.1530/joe-16-0458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023]
Abstract
Corticosteroids directly affect the heart and vasculature and are implicated in the pathogenesis of heart failure. Attention is focussed upon the role of the mineralocorticoid receptor (MR) in mediating pro-fibrotic and other adverse effects of corticosteroids upon the heart. In contrast, the role of the glucocorticoid receptor (GR) in the heart and vasculature is less well understood. We addressed this in mice with cardiomyocyte and vascular smooth muscle deletion of GR (SMGRKO mice). Survival of SMGRKO mice to weaning was reduced compared with that of littermate controls. Doppler measurements of blood flow across the mitral valve showed an elongated isovolumetric contraction time in surviving adult SMGRKO mice, indicating impairment of the initial left ventricular contractile phase. Although heart weight was elevated in both genders, only male SMGRKO mice showed evidence of pathological cardiomyocyte hypertrophy, associated with increased myosin heavy chain-β expression. Left ventricular fibrosis, evident in both genders, was associated with elevated levels of mRNA encoding MR as well as proteins involved in cardiac remodelling and fibrosis. However, MR antagonism with spironolactone from birth only modestly attenuated the increase in pro-fibrotic gene expression in SMGRKO mice, suggesting that elevated MR signalling is not the primary driver of cardiac fibrosis in SMGRKO mice, and cardiac fibrosis can be dissociated from MR activation. Thus, GR contributes to systolic function and restrains normal cardiac growth, the latter through gender-specific mechanisms. Our findings suggest the GR:MR balance is critical in corticosteroid signalling in specific cardiac cell types.
Collapse
MESH Headings
- Animals
- Corticosterone/blood
- Female
- Fibrosis/metabolism
- Fibrosis/pathology
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocardial Contraction/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Nonmuscle Myosin Type IIB/genetics
- Nonmuscle Myosin Type IIB/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Sex Factors
- Spironolactone/pharmacology
- Ventricular Function, Left/genetics
Collapse
Affiliation(s)
- Rachel V Richardson
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Emma J Batchen
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | | | - Rowan Darroch
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Xinlu Pan
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Eva A Rog-Zielinska
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Wiktoria Wyrzykowska
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Kathleen Scullion
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Emad A S Al-Dujaili
- DieteticsNutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, UK
| | - Mary E Diaz
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Carmel M Moran
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Edinburgh Preclinical ImagingUniversity of Edinburgh, Edinburgh, UK
| | - Christopher J Kenyon
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Gillian A Gray
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
22
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
23
|
Chandrasekera PC, Pippin JJ. The human subject: an integrative animal model for 21(st) century heart failure research. Am J Transl Res 2015; 7:1636-47. [PMID: 26550463 PMCID: PMC4626425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Heart failure remains a leading cause of death and it is a major cause of morbidity and mortality affecting tens of millions of people worldwide. Despite decades of extensive research conducted at enormous expense, only a handful of interventions have significantly impacted survival in heart failure. Even the most widely prescribed treatments act primarily to slow disease progression, do not provide sustained survival advantage, and have adverse side effects. Since mortality remains about 50% within five years of diagnosis, the need to increase our understanding of heart failure disease mechanisms and development of preventive and reparative therapies remains critical. Currently, the vast majority of basic science heart failure research is conducted using animal models ranging from fruit flies to primates; however, insights gleaned from decades of animal-based research efforts have not been proportional to research success in terms of deciphering human heart failure and developing effective therapeutics for human patients. Here we discuss the reasons for this translational discrepancy which can be equally attributed to the use of erroneous animal models and the lack of widespread use of human-based research methodologies and address why and how we must position our own species at center stage as the quintessential animal model for 21(st) century heart failure research. If the ultimate goal of the scientific community is to tackle the epidemic status of heart failure, the best way to achieve that goal is through prioritizing human-based, human-relevant research.
Collapse
Affiliation(s)
| | - John J Pippin
- Physicians Committee for Responsible Medicine Washington, D. C., USA
| |
Collapse
|
24
|
Guidelines for translational research in heart failure. J Cardiovasc Transl Res 2015; 8:3-22. [PMID: 25604959 DOI: 10.1007/s12265-015-9606-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) remains a major cause of death and hospitalization worldwide. Despite medical advances, the prognosis of HF remains poor and new therapeutic approaches are urgently needed. The development of new therapies for HF is hindered by inappropriate or incomplete preclinical studies. In these guidelines, we present a number of recommendations to enhance similarity between HF animal models and the human condition in order to reduce the chances of failure in subsequent clinical trials. We propose different approaches to address safety as well as efficacy of new therapeutic products. We also propose that good practice rules are followed from the outset so that the chances of eventual approval by regulatory agencies increase. We hope that these guidelines will help improve the translation of results from animal models to humans and thereby contribute to more successful clinical trials and development of new therapies for HF.
Collapse
|
25
|
Lookin O, Kuznetsov D, Protsenko Y. Sex differences in stretch-dependent effects on tension and Ca(2+) transient of rat trabeculae in monocrotaline pulmonary hypertension. J Physiol Sci 2015; 65:89-98. [PMID: 25359385 PMCID: PMC10718032 DOI: 10.1007/s12576-014-0341-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
We aim to compare the effects of stretch on isometric tension/Ca(2+) transient in the right ventricular trabeculae of control (CONT) and hypertensive (MCT, monocrotaline application) adult male and female rats. The treatment with MCT resulted in RV hypertrophy in males only. Blunted active force-length relation and substantially prolonged twitch were found in MCT-males but not MCT-females (vs same-sex CONT). Ca(2+) transient was prolonged in both MCT-treated groups but extremely so in the MCT-males. The gradual stretch resulted in a distinct "bump" on Ca(2+) transient decline in CONT and MCT-treated groups. The integral magnitude of the "bump" was unaffected by the treatment with MCT in males or females but was larger in males vs females. The rate of "bump" development was significantly slower in MCT-males. In conclusion, the sex-specific differences in the stretch-dependent regulation of [Ca(2+)] i may underlie preservation of the Frank-Starling mechanism in female rat myocardium in monocrotaline-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Oleg Lookin
- Laboratory of Biological Motility, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, 620049, Russia,
| | | | | |
Collapse
|
26
|
Ostadal B, Ostadal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 2014; 171:541-54. [PMID: 23750471 DOI: 10.1111/bph.12270] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022] Open
Abstract
Ischaemic heart disease (IHD) is the most frequent cause of mortality among men and women. Many epidemiological studies have demonstrated that premenopausal women have a reduced risk for IHD compared with their male counterparts. The incidence of IHD in women increases after menopause, suggesting that IHD is related to declining oestrogen levels. Experimental observations have confirmed the results of epidemiological studies investigating sex-specific differences in cardiac tolerance to ischaemia. Female sex appears also to favourably influence cardiac remodelling after ischaemia/reperfusion injury. Furthermore, sex-related differences in ischaemic tolerance of the adult myocardium can be influenced by interventions during the early phases of ontogenetic development. Detailed mechanisms of these sex-related differences remain unknown; however, they involve the genomic and non-genomic effects of sex steroid hormones, particularly the oestrogens, which have been the most extensively studied. Although the protective effects of oestrogen have many potential therapeutic implications, clinical trials have shown that oestrogen replacement in postmenopausal women may actually increase the incidence of IHD. The results of these trials have illustrated the complexity underlying the mechanisms involved in sex-related differences in cardiac tolerance to ischaemia. Sex-related differences in cardiac sensitivity to ischaemia/reperfusion injury may also influence therapeutic strategies in women with acute coronary syndrome. Women undergo coronary intervention less frequently and a lower proportion of women receive evidence-based therapy compared with men. Although our understanding of this important topic has increased in recent years, there is an urgent need for intensive experimental and clinical research to develop female-specific therapeutic strategies. Only then we will be able to offer patients better evidence-based treatment, a better quality of life and lower mortality.
Collapse
Affiliation(s)
- B Ostadal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
27
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death in women, as well as an important cause of disability, although many women and their physicians underestimate the risk. The pathogenesis, presentation and diagnosis of CVDs are different in women than men, which make the women prone to under-treatment for these diseases. More gender-based research regarding the management of coronary artery disease (CAD) in women needs to be done. Exercise, hypertension treatment, smoking cessation and aspirin therapy are effective measures for the primary prevention of CAD in women. The roles of hormone replacement therapy in primary prevention are not well established. Hormone replacement therapy has not been effective in lowering the risk of recurrent myocardial infarction. Cardiologists and family physicians should emphasize the use of proven treatments, with particular attention given to underserved populations.
Collapse
Affiliation(s)
- Fahad Aziz
- Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
28
|
Franconi F, Campesi I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: interaction with biological differences between men and women. Br J Pharmacol 2014; 171:580-94. [PMID: 23981051 PMCID: PMC3969074 DOI: 10.1111/bph.12362] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/05/2013] [Accepted: 08/16/2013] [Indexed: 12/16/2022] Open
Abstract
Pharmacological response depends on multiple factors and one of them is sex-gender. Data on the specific effects of sex-gender on pharmacokinetics, as well as the safety and efficacy of numerous medications, are beginning to emerge. Nevertheless, the recruitment of women for clinical research is inadequate, especially during the first phases. In general, pharmacokinetic differences between males and females are more numerous and consistent than disparities in pharmacodynamics. However, sex-gender pharmacodynamic differences are now increasingly being identified at the molecular level. It is now even becoming apparent that sex-gender influences pharmacogenomics and pharmacogenetics. Sex-related differences have been reported for several parameters, and it is consistently shown that women have a worse safety profile, with drug adverse reactions being more frequent and severe in women than in men. Overall, the pharmacological status of women is less well studied than that of men and deserves much more attention. The design of clinical and preclinical studies should have a sex-gender-based approach with the aim of tailoring therapies to an individual's needs and concerns.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Biomedical Sciences, University of SassariSassari, Italy
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and BiosystemsOsilo, Italy
| | - Ilaria Campesi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and BiosystemsOsilo, Italy
- Department of Surgical, Microsurgical and Medical Sciences, University of SassariSassari, Italy
| |
Collapse
|
29
|
Acute and Subchronic Toxic Effects of the Fruits of Physalis peruviana L. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:707285. [PMID: 24369482 PMCID: PMC3863561 DOI: 10.1155/2013/707285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/27/2013] [Indexed: 11/17/2022]
Abstract
The fruit of Physalis peruviana L. (PPL) has been traditionally used as antispasmodic, diuretic, antiseptic, sedative, and analgesic all over the world. We aimed to perform qualitative content analysis of the fruits of PPL and to clarify the in vitro genotoxicity and in vivo acute and subchronic toxicity of the fruit. Lyophilized fruit juice does not induce genetic damage. In the acute toxicity studies, LD50 value of the fruit was found to be more than 5000 mg kg−1 for both sexes. According to the subchronic toxicity studies, hepatic, renal, and hematological toxic effects were not induced in both sexes. Plasma troponin I (only in the group treated with 5000 mg kg−1 of lyophilized fruit juice) and troponin T levels were significantly increased in male groups treated with lyophilized fruit juice compared to the control group. Furthermore, potassium level was significantly increased in the male group treated with 5000 mg kg−1 of lyophilized fruit juice. These findings were considered to indicate the myocardial damage particularly in the male group treated with 5000 mg kg−1 of lyophilized fruit juice. In conclusion, lyophilized fruit juice of PPL is shown to induce cardiac toxicity only at high doses and in male gender.
Collapse
|
30
|
Chen M, Xiong F, Zhang L. Promoter methylation of Egr-1 site contributes to fetal hypoxia-mediated PKCε gene repression in the developing heart. Am J Physiol Regul Integr Comp Physiol 2013; 304:R683-9. [PMID: 23427086 PMCID: PMC3652077 DOI: 10.1152/ajpregu.00461.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/13/2013] [Indexed: 11/22/2022]
Abstract
Fetal hypoxia causes protein kinase Cε (PKCε) gene repression in the heart resulting in heightened ischemic injury in male offspring in a sex-dependent manner. The present study tested the hypothesis that heightened methylation of the early growth response factor-1 (Egr-1) binding site at PKCε gene promoter contributes to sex dimorphism of hypoxia-induced programming of PKCε gene repression in the developing heart. Pregnant rats were divided into normoxic and hypoxic (10.5% O2 from day 15 to 21 of gestation) groups. Hypoxia selectively decreased PKCε mRNA and protein abundance in the heart of male, but not female, near-term (21 days) fetuses. Methylation of the CpG site at the Egr-1 binding site of PKCε promoter was significantly increased in the male hearts by hypoxia, resulting in decreased Egr-1 binding affinity and reduced Egr-1 binding to the PKCε promoter. Nuclear Egr-1 levels were not affected by hypoxia. There was significantly higher abundance of estrogen receptor α (ERα) and β (ERβ) isoforms in female than in male fetal hearts, which were not significantly altered by hypoxia. Both ERα and ERβ bind to the Egr-1 binding site with significant greater levels in the female fetal hearts. The increased methylation with reduced Egr-1 binding and PKCε gene repression persisted in 3-mo-old adult male hearts in a sex-dependent manner. The results indicate a key role for heightened methylation of the Egr-1 binding site in hypoxia-mediated programming of PKCε gene repression in the developing heart and suggest a novel protective mechanism of ER by binding to the Egr-1 binding site in epigenetic regulation of PKCε gene expression patterns in the early developmental stage.
Collapse
Affiliation(s)
- Man Chen
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
31
|
Peche VS, Holak TA, Burgute BD, Kosmas K, Kale SP, Wunderlich FT, Elhamine F, Stehle R, Pfitzer G, Nohroudi K, Addicks K, Stöckigt F, Schrickel JW, Gallinger J, Schleicher M, Noegel AA. Ablation of cyclase-associated protein 2 (CAP2) leads to cardiomyopathy. Cell Mol Life Sci 2013; 70:527-43. [PMID: 22945801 PMCID: PMC11113306 DOI: 10.1007/s00018-012-1142-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/01/2012] [Accepted: 08/14/2012] [Indexed: 12/24/2022]
Abstract
Cyclase-associated proteins are highly conserved proteins that have a role in the regulation of actin dynamics. Higher eukaryotes have two isoforms, CAP1 and CAP2. To study the in vivo function of CAP2, we generated mice in which the CAP2 gene was inactivated by a gene-trap approach. Mutant mice showed a decrease in body weight and had a decreased survival rate. Further, they developed a severe cardiac defect marked by dilated cardiomyopathy (DCM) associated with drastic reduction in basal heart rate and prolongations in atrial and ventricular conduction times. Moreover, CAP2-deficient myofibrils exhibited reduced cooperativity of calcium-regulated force development. At the microscopic level, we observed disarrayed sarcomeres with development of fibrosis. We analyzed CAP2's role in actin assembly and found that it sequesters G-actin and efficiently fragments filaments. This activity resides completely in its WASP homology domain. Thus CAP2 is an essential component of the myocardial sarcomere and is essential for physiological functioning of the cardiac system, and a deficiency leads to DCM and various cardiac defects.
Collapse
Affiliation(s)
- Vivek S. Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tad A. Holak
- Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Bhagyashri D. Burgute
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Sushant P. Kale
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL USA
| | - F. Thomas Wunderlich
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max-Planck-Institute of Neurological Research, Cologne, Germany
| | - Fatiha Elhamine
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Klaus Nohroudi
- Institute of Anatomy I, University of Cologne, Cologne, Germany
| | - Klaus Addicks
- Institute of Anatomy I, University of Cologne, Cologne, Germany
| | - Florian Stöckigt
- Department of Medicine-Cardiology, University of Bonn, Bonn, Germany
| | - Jan W. Schrickel
- Department of Medicine-Cardiology, University of Bonn, Bonn, Germany
| | - Julia Gallinger
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Michael Schleicher
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Angelika A. Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
32
|
Sabatini CF, O'Sullivan ML, Valcour JE, Sears W, Johnson RJ. Effects of injectable anesthetic combinations on left ventricular function and cardiac morphology in Sprague-Dawley rats. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2013; 52:34-43. [PMID: 23562031 PMCID: PMC3548199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/24/2012] [Accepted: 08/05/2012] [Indexed: 06/02/2023]
Abstract
Novel anesthetic agents or combinations may provide superior general anesthesia for echocardiography in rodents with the potential for reduced adverse effects. This study sought to characterize the effects of 3 injectable anesthetics on left ventricular (LV) systolic function and cardiac morphology in healthy male and female rats. Rats underwent echocardiographic assessment after general anesthesia via pentobarbital or combinations of ketamine and medetomidine (KME) and ketamine and midazolam (KMI) according to a crossover Latin-square design. Blood samples for serum estradiol measurements were obtained from all females after echocardiography with each anesthetic. Rats given KMI showed superior LV systolic function with the highest values for fractional shortening (FS), ejection fraction (EF) and stroke volume, whereas heart rate was greatest with pentobarbital, followed by KMI and then KME. KME produced the greatest effects on cardiac morphology, most notably during systole, including reduced septal and posterior wall thickness and increased LV chamber dimensions and volumes. In addition, KME had the greatest cardiac-depressing effects on LV systolic function, including reduced FS, EF, and heart rate values. Compared with male rats, female rats had superior LV function with greater EF and FS values, whereas male rats showed higher heart rate. Significant negative correlations were noted between serum estradiol levels and FS and EF values in female rats receiving KME. We conclude that the combination of KMI may be a superior anesthetic for use in male and female rats undergoing echocardiography.
Collapse
Key Words
- co, cardiac output
- d, diastole
- ef, ejection fraction
- fs, fractional shortening
- hr, heart rate
- ivs, interventricular septal thickness
- kme, ketamine and medetomidine
- kmi, ketamine and midazolam
- kx, ketamine and xylazine
- lv, left ventricular
- lvedd, left ventricular end-diastolic dimension
- lvesd, left ventricular end-systolic dimension
- lvedv, left ventricular end-diastolic volume
- lvesv, left ventricular end-systolic volume
- lvpw, left ventricular posterior wall thickness
- sv, stroke volume
- s, systole
Collapse
Affiliation(s)
| | | | - James E Valcour
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - William Sears
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
33
|
Wong PG, Armstrong DWJ, Tse MY, Ventura NM, Pang SC. Contribution of Estrogen to Sex Dimorphic Expression of Cardiac Natriuretic Peptide and Nitric Oxide Synthase Systems in ANP Gene-Disrupted Mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojemd.2013.34a2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Wong PG, Armstrong DWJ, Tse MY, Brander EPA, Pang SC. Sex-specific differences in natriuretic peptide and nitric oxide synthase expression in ANP gene-disrupted mice. Mol Cell Biochem 2012. [PMID: 23180242 DOI: 10.1007/s11010-012-1511-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sex-specific differences in hormone-mediated gene regulation may influence susceptibility to cardiac hypertrophy, a primary risk factor for cardiovascular disease. Under hormonal influence, natriuretic peptide (NP) and nitric oxide synthase (NOS) systems modulate cardio-protective gene programs through common downstream production of cyclic guanosine 3'-5' monophosphate (cGMP). Ablation of either system can adversely affect cardiac adaptation to stresses and insults. This study elucidates sex-specific differences in cardiac NP and NOS system gene expression and assesses the impact of the estrous cycle on these systems using the atrial natriuretic peptide gene-disrupted (ANP(-/-)) mouse model. Left ventricular expression of the NP and NOS systems was analyzed using real-time quantitative polymerase chain reaction in 13- to 16-week-old male, proestrous and estrous female ANP(+/+) and ANP(-/-) mice. Left ventricular and plasma cGMP levels were measured to assess the convergent downstream effects of the NP and NOS systems. Regardless of genotype, males had higher expression of the NP system while females had higher expression of the NOS system. In females, transition from proestrus to estrus lowered NOS system expression in ANP(+/+) mice while the opposite was observed in ANP(-/-) mice. No significant changes in left ventricular cGMP levels across gender and genotype were observed. Significantly lower plasma cGMP levels were observed in ANP(-/-) mice compared to ANP(+/+) mice. Regardless of genotype, sex-specific differences in cardiac NP and NOS system expression exist, each sex enlisting a predominant system to conserve downstream cGMP. Estrous cycle-mediated alterations in NOS system expression suggests additional hormone-mediated gene regulation in females.
Collapse
Affiliation(s)
- Philip G Wong
- Department of Biomedical and Molecular Sciences, Queen's University, Room 850, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
35
|
Reade MC, Yende S, Angus DC. Revisiting Mars and Venus: understanding gender differences in critical illness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:180. [PMID: 21888682 PMCID: PMC3387615 DOI: 10.1186/cc10319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Understanding the nature and biological basis of gender-determined differences in risk of and outcome from infection might identify new therapeutic targets, allow more individualised treatment, and facilitate better risk prediction and application of healthcare resources. Gender differences in behaviours, comorbidities, access to healthcare and biology may result in differences in acquiring infection, or in response to infection once acquired. Some studies have reported higher male susceptibility to infection, and higher risk of death with sepsis, but others have found the opposite effect. The explanation for this disagreement is probably that different studies have included patients at different stages on the continuum from infectious agent exposure to death or recovery. Studying sufficient patient numbers to explore this entire continuum while accounting for heterogeneity in type of infection and comorbidity is difficult because of the number of patients required. However, if true gender effects can be identified, examination of their biological or psychosocial causes will be warranted.
Collapse
Affiliation(s)
- Michael C Reade
- Department of Intensive Care Medicine, Austin Hospital and University of Melbourne, Melbourne, VIC 3084, Australia
| | | | | |
Collapse
|
36
|
Modulation of sarcoplasmic reticulum Ca(2+) cycling in systolic and diastolic heart failure associated with aging. Heart Fail Rev 2011; 15:431-45. [PMID: 20419345 DOI: 10.1007/s10741-010-9167-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hypertension, atherosclerosis, and resultant chronic heart failure (HF) reach epidemic proportions among older persons, and the clinical manifestations and the prognoses of these worsen with increasing age. Thus, age per se is the major risk factor for cardiovascular disease. Changes in cardiac cell phenotype that occur with normal aging, as well as in HF associated with aging, include deficits in ss-adrenergic receptor (ss-AR) signaling, increased generation of reactive oxygen species (ROS), and altered excitation-contraction (EC) coupling that involves prolongation of the action potential (AP), intracellular Ca(2+) (Ca(i)(2+)) transient and contraction, and blunted force- and relaxation-frequency responses. Evidence suggests that altered sarcoplasmic reticulum (SR) Ca(2+) uptake, storage, and release play central role in these changes, which also involve sarcolemmal L-type Ca(2+) channel (LCC), Na(+)-Ca(2+) exchanger (NCX), and K(+) channels. We review the age-associated changes in the expression and function of Ca(2+) transporting proteins, and functional consequences of these changes at the cardiac myocyte and organ levels. We also review sexual dimorphism and self-renewal of the heart in the context of cardiac aging and HF.
Collapse
|
37
|
Veiga ECA, Antonio EL, Bocalini DS, Murad N, Abreu LC, Tucci PJF, Sato MA. Prior exercise training does not prevent acute cardiac alterations after myocardial infarction in female rats. Clinics (Sao Paulo) 2011; 66:889-93. [PMID: 21789396 PMCID: PMC3109391 DOI: 10.1590/s1807-59322011000500028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/14/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study aimed to investigate whether previous exercise training could prevent or attenuate acute cardiac alterations after myocardial infarction. METHODS Female rats were submitted to swim training (1 h/day; 5 days/week) or allowed to remain sedentary for 8 weeks. Afterwards, they were randomly assigned to left coronary artery occlusion or sham surgery. After this procedure, the rats remained sedentary for one week until euthanasia. Cardiac structural and functional analyses were performed using Doppler echocardiography. The rats that had a moderate or large infarct size were included in the evaluations. The data (mean ± SEM) were analyzed using a two-way ANOVA model followed by Tukey's post-hoc test. RESULTS After the surgery, no significant difference between the exercise and sedentary groups was observed in the left ventricular infarct sizes (34.58 ± 3.04 vs. 37.59 ± 3.07). In another group of rats evaluated with Evans blue 1 h after myocardial infarction, no siginificant difference in the area at risk was observed between the exercised and sedentary rats (49.73 ± 1.52 vs. 45.48 ± 3.49). The changes in the left ventricular fractional areas for the exercised and sedentary myocardial infarction groups (36 ± 2% and 39 ± 3%, respectively) were smaller than those for the exercise sham surgery (ES, 67 ± 1%) and sedentary sham surgery (SS, 69 ± 2%) groups. The E/A was higher in the sedentary myocardial infarction (4.4 ± 0.3) and exercised myocardial infarction (5.5 ± 0.3) rats than in the SS (2.4 ± 0.1) and ES (2.2 ± 0.1) rats. CONCLUSION Previous swim training of female rats does not attenuate systolic and diastolic function alterations after myocardial infarction induced by left coronary artery occlusion, suggesting that cardioprotection cannot be provided by exercise training in this experimental model.
Collapse
Affiliation(s)
- Eduardo C A Veiga
- Department of Medicine, Cardiology division. Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Rossi DM, Valenti VE, Navega MT. Exercise training attenuates acute hyperalgesia in streptozotocin-induced diabetic female rats. Clinics (Sao Paulo) 2011; 66:1615-9. [PMID: 22179169 PMCID: PMC3164414 DOI: 10.1590/s1807-59322011000900019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES We investigated the effects of chronic (eight weeks) low-to moderate-intensity swimming training on thermal pain sensitivity in streptozotocin-induced diabetic female rats. METHODS Female Wistar rats (n = 51) were divided into the following groups: trained streptozotocin-induced diabetic rats [hyperglycemic trained (HT)], sedentary streptozotocin-induced diabetic rats [hyperglycemic sedentary (HS)], normoglycemic trained rats (NT) and normoglycemic sedentary rats (NS). Diabetes was induced by a single injection of streptozotocin (50 mg/kg, i.p.). One day after the last exercise protocol (60 min/day, five days/week for eight weeks) in the trained groups or after water stress exposure (ten min/twice a week) in the sedentary groups, the rats were subjected to a hot plate test. RESULTS After eight weeks of swimming training, streptozotocin-induced diabetic rats presented a significantly lower body mass (trained: 219.5 ± 29 g, sedentary: 217.8 ± 23 g) compared with the normoglycemic groups (trained: 271 ± 24 g, sedentary: 275.7 ± 32 g). Interestingly, we did not find differences in blood glucose levels (mg/dl) between the trained and sedentary groups of the hyperglycemic or normoglycemic rats (HT: 360.2 ± 66.6, HS: 391.7 ± 66.7, NT: 83.8 ± 14.0, NS: 77.5 ± 10.1). In the hot plate test, the rats from the HT group presented a significantly lower latency than the other rats (HT: 11.7 ± 7.38 s, HS: 7.02 ± 7.38 s, NT: 21.21 ± 7.64 s, NS: 22.82 ± 7.82 s). CONCLUSION Low-to-moderate swimming training for a long duration reduces thermal hyperalgesia during a hot plate test in streptozotocin-induced diabetic female rats.
Collapse
Affiliation(s)
- Denise M Rossi
- Departamento de Educação Especial, Faculdade de Filosofia e Ciência, UNESP, Marília, SP, Brasil.
| | | | | |
Collapse
|
39
|
Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 2010; 51:518-28. [PMID: 21118696 DOI: 10.1016/j.yjmcc.2010.11.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Division, VA Medical Center, San Francisco, CA, USA.
| | | | | |
Collapse
|
40
|
Fung MM, Salem RM, Mehtani P, Thomas B, Lu CF, Perez B, Rao F, Stridsberg M, Ziegler MG, Mahata SK, O'Connor DT. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens 2010; 32:278-87. [PMID: 20662728 DOI: 10.3109/10641960903265246] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catestatin is a bioactive peptide of chromogranin A (CHGA) that is co-released with catecholamines from secretory vesicles. Catestatin may function as a vasodilator and is diminished in hypertension. To evaluate this potential vasodilator in vivo without systemic counterregulation, we infused catestatin to target concentrations of approximately 50, approximately 500, approximately 5000 nM into dorsal hand veins of 18 normotensive men and women, after pharmacologic venoconstriction with phenylephrine. Pancreastatin, another CHGA peptide, was infused as a negative control. After preconstriction to approximately 69%, increasing concentrations of catestatin resulted in dose-dependent vasodilation (P = 0.019), in female subjects (to approximately 44%) predominantly. The EC(50) (approximately 30 nM) for vasodilation induced by catestatin was the same order of magnitude to circulating endogenous catestatin (4.4 nM). No vasodilation occurred during the control infusion with pancreastatin. Plasma CHGA, catestatin, and CHGA-to-catestatin processing were then determined in 622 healthy subjects without hypertension. Female subjects had higher plasma catestatin levels than males (P = 0.001), yet lower CHGA precursor concentrations (P = 0.006), reflecting increased processing of CHGA-to-catestatin (P < 0.001). Our results demonstrate that catestatin dilates human blood vessels in vivo, especially in females. Catestatin may contribute to sex differences in endogenous vascular tone, thereby influencing the complex predisposition to hypertension.
Collapse
Affiliation(s)
- Maple M Fung
- Department of Medicine, University of California at San Diego and Veterans Affairs, San Diego Healthcare System, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cola MS, Gava AL, Meyrelles SS, Vasquez EC. Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice. Lipids Health Dis 2010; 9:51. [PMID: 20482882 PMCID: PMC2886002 DOI: 10.1186/1476-511x-9-51] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE) mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57) and hypercholesterolemic (ApoE) female mice in both normal and ovariectomized conditions. METHODS Twenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10(-9) to 2 x 10(-3) mol/L), acetylcholine (ACh) and sodium nitroprusside (SNP) (10(-10) to 10(-3) mol/L) were evaluated in the isolated mesenteric arteriolar bed through dose-response curves. RESULTS ACh-induced relaxation was significantly reduced (P < 0.05) in ApoE compared with C57 animals, as indicated by both the maximal response (37 +/- 4% vs. 72 +/- 1%) and the LogEC50 (-5.67 +/- 0.18 vs. -6.23 +/- 0.09 mol/L). Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 +/- 4%) but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 +/- 5%). SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice. CONCLUSION These data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient) female mice compared with normal (C57) female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.
Collapse
Affiliation(s)
- Maine S Cola
- Laboratory of Transgenes and Cardiovascular Control, Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | |
Collapse
|
42
|
Gardner JD, Murray DB, Voloshenyuk TG, Brower GL, Bradley JM, Janicki JS. Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts. Am J Physiol Heart Circ Physiol 2009; 298:H497-504. [PMID: 19933421 DOI: 10.1152/ajpheart.00336.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported gender differences in ventricular remodeling and development of heart failure using the aortocaval fistula model of chronic volume overload in rats. In contrast to males, female rats exhibited no adverse ventricular remodeling and less mortality in response to volume overload. This gender-specific cardioprotection was lost following ovariectomy and was partially restored using estrogen replacement. However, it is not known if estrogen treatment would be as effective in males. The purpose of this study was to evaluate the structural and functional effects of estrogen in male rats subjected to chronic volume overload. Four groups of male rats were studied at 3 days and 8 wk postsurgery as follows: fistula and sham-operated controls, with and without estrogen treatment. Biochemical and histological studies were performed at 3 days postsurgery, with chronic structural and functional effects studied at 8 wk. Measurement of systolic and diastolic pressure-volume relationships was obtained using a blood-perfused isolated heart preparation. Both fistula groups developed significant ventricular hypertrophy after 8 wk of volume overload. Untreated rats with fistula exhibited extensive ventricular dilatation, which was coupled with a loss of systolic function. Estrogen attenuated left ventricular dilatation and maintained function in treated rats. Estrogen treatment was also associated with a reduction in oxidative stress and circulating endothelin-1 levels, as well as prevention of matrix metalloproteinase-2 and -9 activation and breakdown of ventricular collagen in the early stage of remodeling. These data demonstrate that estrogen attenuates ventricular remodeling and disease progression in male rats subjected to chronic volume overload.
Collapse
Affiliation(s)
- Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Shephard R, Semsarian C. Role of animal models in HCM research. J Cardiovasc Transl Res 2009; 2:471-82. [PMID: 20560005 DOI: 10.1007/s12265-009-9120-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/17/2009] [Indexed: 10/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a complex cardiovascular genetic disorder characterized by marked clinical and genetic heterogeneity. Major advances have been made in the clinical characterization of patients with HCM and in identifying causative gene mutations. However, many questions remain regarding the underlying disease mechanisms. Furthermore, in a disease where no pharmacological treatments currently exists which can either prevent or cause regression of disease, processes to identify novel therapies are the crucial next steps. Animal models of HCM have already proved to be universally useful in confirming gene causation and dissecting out key molecular pathways involved in the development of HCM and its sequelae, including heart failure and sudden death. These findings have led to studies in animal models investigating novel therapeutic approaches in HCM, specifically targeting the development and progression of cardiac hypertrophy, fibrosis, and heart failure. This review will provide a brief summary of some of the key animal models of HCM and how these models have been utilized to understand disease mechanisms and to investigate new potential therapies. Ongoing studies using animal models of HCM will lead to a greater understanding of disease pathogenesis and will facilitate the translation of these findings to improved clinical outcomes in HCM patients.
Collapse
Affiliation(s)
- Rhian Shephard
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Locked Bag 6, Newtown, Sydney, NSW, 2042, Australia
| | | |
Collapse
|
44
|
The role of Akt/GSK-3beta signaling in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 2009; 46:739-47. [PMID: 19233194 DOI: 10.1016/j.yjmcc.2009.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/29/2009] [Accepted: 02/11/2009] [Indexed: 11/23/2022]
Abstract
Mutations in cardiac troponin T (TnT) are a cause of familial hypertrophic cardiomyopathy (FHC). Transgenic mice expressing a missense mutation (R92Q) or a splice site donor mutation (Trunc) in the cardiac TnT gene have mutation-specific phenotypes but mice of both models have smaller hearts compared to wild type and exhibit hemodynamic dysfunction. Because growth-related signaling pathways in the hearts of mice expressing TnT mutations are not known, we evaluated the impact of increased Akt or glycogen synthase kinase-3beta (GSK-3beta) activity in both mutant TnT mice; molecules that increase heart size via physiologic pathways and block pathologic growth, respectively. Expression of activated Akt dramatically augments heart size in both R92Q and Trunc mice; however, this increase in heart size is not beneficial, since Akt also increases fibrosis in both TnT mutants and causes some pathologic gene expression shifts in the R92Q mice. Activated GSK-3beta results in further decreases in left ventricular size in both R92Q and Trunc hearts, but this decrease is associated with significant mutation-specific phenotypes. Among many pathologic consequences, activating GSK-3beta in R92Q hearts decreases phosphorylation of troponin I and results in early mortality. In contrast, increased GSK-3beta activity in Trunc hearts does not significantly impact cardiac phenotypes. These findings demonstrate that increased Akt and its downstream target, GSK-3beta can impact both cardiac size and phenotype in a mutation-specific manner. Moreover, increased activity of these molecules implicated in beneficial cardiac phenotypes exacerbates the progression of disease in the R92Q TnT mutant.
Collapse
|
45
|
Seiler BM, Dick EJ, Guardado-Mendoza R, VandeBerg JL, Williams JT, Mubiru JN, Hubbard GB. Spontaneous heart disease in the adult chimpanzee (Pan troglodytes). J Med Primatol 2009; 38:51-8. [PMID: 18671767 PMCID: PMC2933140 DOI: 10.1111/j.1600-0684.2008.00307.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND A high incidence of heart disease, especially idiopathic cardiomyopathy (IC), is seen in chimpanzees (Pan troglodytes). METHODS We reviewed clinical records and necropsy reports of 87 adult chimpanzees for possible causes of heart disease/IC. We examined age, sex, cause of death, weight, diet, environment, infectious diseases, experimental uses and clinical pathology. RESULTS The overall prevalence of heart disease in chimpanzees was 67.81%; the prevalence of IC was 51.72%. The prevalence of IC was significantly higher in males (60.32%) than that in females (29.17%, P = 0.009). The prevalence of other heart disease was higher in females (25%) than that in males (12.70%, P = 0.165). Heart failure occurred in 47.13% of chimpanzees. Heart disease was the primary cause of death in 34.49% of chimpanzees; 29.88% died of unknown causes. CONCLUSIONS We found no evidence that diet, environment, viral agents, experimental use or disease exposure contributed to the deaths resulting from IC in chimpanzees.
Collapse
Affiliation(s)
- Brittany M. Seiler
- College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| | - Edward J. Dick
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| | - Rodolfo Guardado-Mendoza
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| | - John L. VandeBerg
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| | - Jeff T. Williams
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| | - James N. Mubiru
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| | - Gene B. Hubbard
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| |
Collapse
|
46
|
Donaldson C, Eder S, Baker C, Aronovitz MJ, Weiss AD, Hall-Porter M, Wang F, Ackerman A, Karas RH, Molkentin JD, Patten RD. Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor-dependent pathway that increases calcineurin degradation. Circ Res 2008; 104:265-75, 11p following 275. [PMID: 19074476 DOI: 10.1161/circresaha.108.190397] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Left ventricular (LV) hypertrophy commonly develops in response to chronic hypertension and is a significant risk factor for heart failure and death. The serine-threonine phosphatase calcineurin (Cn)A plays a critical role in the development of pathological hypertrophy. Previous experimental studies in murine models show that estrogen limits pressure overload-induced hypertrophy; our purpose was to explore further the mechanisms underlying this estrogen effect. Wild-type, ovariectomized female mice were treated with placebo or 17beta-estradiol (E2), followed by transverse aortic constriction (TAC), to induce pressure overload. At 2 weeks, mice underwent physiological evaluation, immediate tissue harvest, or dispersion of cardiomyocytes. E2 replacement limited TAC-induced LV and cardiomyocyte hypertrophy while attenuating deterioration in LV systolic function and contractility. These E2 effects were associated with reduced abundance of CnA. The primary downstream targets of CnA are the nuclear factor of activated T-cell (NFAT) family of transcription factors. In transgenic mice expressing a NFAT-activated promoter/luciferase reporter gene, E2 limited TAC-induced activation of NFAT. Moreover, the inhibitory effects of E2 on LV hypertrophy were absent in CnA knockout mice, supporting the notion that CnA is an important target of E2-mediated inhibition. In cultured rat cardiac myocytes, E2 inhibited agonist-induced hypertrophy while also decreasing CnA abundance and NFAT activation. Agonist stimulation also reduced CnA ubiquitination and degradation that was prevented by E2; all in vitro effects of estrogen were reversed by an estrogen receptor (ER) antagonist. These data support that E2 reduces pressure overload induced hypertrophy by an ER-dependent mechanism that increases CnA degradation, unveiling a novel mechanism by which E2 and ERs regulate pathological LV and cardiomyocyte growth.
Collapse
Affiliation(s)
- Cameron Donaldson
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Witt H, Schubert C, Jaekel J, Fliegner D, Penkalla A, Tiemann K, Stypmann J, Roepcke S, Brokat S, Mahmoodzadeh S, Brozova E, Davidson MM, Ruiz Noppinger P, Grohé C, Regitz-Zagrosek V. Sex-specific pathways in early cardiac response to pressure overload in mice. J Mol Med (Berl) 2008; 86:1013-24. [PMID: 18665344 PMCID: PMC2517094 DOI: 10.1007/s00109-008-0385-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/30/2008] [Accepted: 06/18/2008] [Indexed: 11/07/2022]
Abstract
Pressure overload (PO) first causes cardiac hypertrophy and then heart failure (HF), which are associated with sex differences in cardiac morphology and function. We aimed to identify genes that may cause HF-related sex differences. We used a transverse aortic constriction (TAC) mouse model leading to hypertrophy without sex differences in cardiac function after 2 weeks, but with sex differences in hypertrophy 6 and 9 weeks after TAC. Cardiac gene expression was analyzed 2 weeks after surgery. Deregulated genes were classified into functional gene ontology (GO) categories and used for pathway analysis. Classical marker genes of hypertrophy were similarly upregulated in both sexes (α-actin, ANP, BNP, CTGF). Thirty-five genes controlling mitochondrial function (PGC-1, cytochrome oxidase, carnitine palmitoyl transferase, acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase) had lower expression in males compared to females after TAC. Genes encoding ribosomal proteins and genes associated with extracellular matrix remodeling exhibited relative higher expression in males (collagen 3, matrix metalloproteinase 2, TIMP2, and TGFβ2, all about twofold) after TAC. We confirmed 87% of the gene expression by real-time polymerase chain reaction. By GO classification, female-specific genes were related to mitochondria and metabolism and males to matrix and biosynthesis. Promoter studies confirmed the upregulation of PGC-1 by E2. Less downregulation of metabolic genes in female hearts and increased protein synthesis capacity and deregulation of matrix remodeling in male hearts characterize the sex-specific early response to PO. These differences could contribute to subsequent sex differences in cardiac function and HF.
Collapse
Affiliation(s)
- Henning Witt
- Berlin Institute of Gender in Medicine (GiM), Charité-Universitaetsmedizin Berlin, Luisenstrasse 65, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Patten RD, Pourati I, Aronovitz MJ, Alsheikh-Ali A, Eder S, Force T, Mendelsohn ME, Karas RH. 17 Beta-estradiol differentially affects left ventricular and cardiomyocyte hypertrophy following myocardial infarction and pressure overload. J Card Fail 2008; 14:245-53. [PMID: 18381189 DOI: 10.1016/j.cardfail.2007.10.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 09/25/2007] [Accepted: 10/31/2007] [Indexed: 12/01/2022]
Abstract
BACKGROUND We have shown previously that 17beta-estradiol (E2) increases left ventricular (LV) and cardiomyocyte hypertrophy after myocardial infarction (MI). However, E2 decreases hypertrophy in pressure overload models. We hypothesized that the effect of estrogen on cardiac hypertrophy was dependent on the type of hypertrophic stimulus. METHODS AND RESULTS Ovariectomized wild-type female mice (n = 192) were given vehicle or E2 treatment followed by coronary ligation (MI), transverse aortic constriction (TAC), or sham operation. Signaling pathway activation was studied at 3, 24, and 48 hours, whereas echocardiography and hemodynamic studies were performed at 14 days. MI induced early but transient activation of p38 and p42/44 MAPK pathways, whereas TAC induced sustained activation of both pathways. E2 had no effect on these pathways, but increased Stat3 activation after MI while decreasing Stat3 activation after TAC. MI caused LV dilation and decreased fractional shortening (FS) that were unaltered by E2. TAC caused LV dilation, reduced FS, and increased LV mass, but in this model, E2 improved these parameters. After MI, E2 led to increases in myocyte cross-sectional area, atrial natriuretic peptide (ANP) and beta-myosin heavy chain (MHC) gene expression, but E2 diminished TAC-induced increases ANP and beta-MHC gene expression. CONCLUSIONS These data demonstrate that the effects of E2 on LV and myocyte remodeling depend on the nature of the hypertrophic stimulus. The opposing influence of E2 on hypertrophy in these models may, in part, result from differential effects of E2 on Stat3 activation. Further work will be necessary to explore this and other potential mechanisms by which estrogen affects hypertrophy in these models.
Collapse
Affiliation(s)
- Richard D Patten
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Patel KM, Lahm T, Crisostomo PR, Herring C, Markel T, Wang M, Meldrum DR. The effects of endogenous sex hormones and acute hypoxia on vasoconstriction in isolated rat pulmonary artery rings. J Surg Res 2008; 146:121-6. [PMID: 18243242 DOI: 10.1016/j.jss.2007.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/30/2007] [Accepted: 05/01/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Studies have noted gender differences in various models but have not investigated whether hormone depletion will abolish these differences. Therefore, we measured isometric force displacement in normal males, castrated males, normal females, and ovarectomized females. MATERIALS AND METHODS Adult male, adult female, castrated male, and ovarectomized female (250-350 g) Sprague Dawley rat pulmonary arteries (n = 7-8/group) were isolated and suspended in physiological organ baths. Force displacement was continuously recorded for 60 min of hypoxia. Data (mean +/- SEM) was analyzed with two-way analysis of variance with post-hoc Bonferroni test or Student's t-test. RESULTS Maximum vasodilation of normal males was -79.47 +/- 3.34%, while normal adult females exhibited a maximum vasodilation of -88.70 +/- 6.21% (P = 0.8149). In addition, delayed, phase II vasoconstriction of male pulmonary arteries rings was 89.79 +/- 7.25%, while adult females demonstrated a maximum phase II vasoconstriction of 95.90 +/- 14.23% (P = 0.9342). Hormone depletion of males exhibited a maximum vasodilation of -70.45 +/- 5.08% for castrated males as compared to -79.47 +/- 3.34% for normal adult males (P = 0.3805). Castrated males exhibited a maximum phase II vasoconstriction of 86.20 +/- 15.76% compared to 89.79 +/- 7.25% exhibited by normal adult males (P = 0.9516). CONCLUSIONS Hormone depletion in males and females did not alter pulmonary vasoreactivity in acute hypoxia.
Collapse
Affiliation(s)
- Ketan M Patel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Jane-wit D, Altuntas CZ, Monti J, Johnson JM, Forsthuber TG, Tuohy VK. Sex-defined T-cell responses to cardiac self determine differential outcomes of murine dilated cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:11-21. [PMID: 18063702 DOI: 10.2353/ajpath.2008.070324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Idiopathic dilated cardiomyopathy (DCM) is a disease of putative autoimmune origin that kills males at a twofold to threefold greater frequency than females. The reasons underlying these differential outcomes may be related to sex-divergent self-recognition. Here we examined sex-specific autoimmune responses to cardiac self and their impact on DCM development. We found that males immunized to the p406-425 peptide derived from mouse cardiac alpha-myosin heavy chain preferentially develop a predominant Th17 lineage response that provides sustained T-cell memory and a high DCM incidence whereas females preferentially develop a predominant Th1 lineage response that becomes anergized to cardiac self resulting in compensatory protection against DCM. The distinct sex-defined disease phenotypes are interchangeable after in vivo manipulation of Th1 (interleukin-2) and Th17 (interleukin-17) cytokines. Our study shows that male and female SWXJ mice differentially respond to cardiac self in ways that lead to distinct autoimmune outcomes and implies that optimized therapy for autoimmunity may require consideration of the qualitatively different ways that males and females engage self.
Collapse
Affiliation(s)
- Daniel Jane-wit
- Cleveland Clinic, Lerner Research Institute, Department of Immunology, NB30, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|