1
|
Tian T, Yu Q, Yang D, Zhang X, Zhang C, Li J, Luo T, Zhang K, Lv X, Wang Y, Wang H, Li H. Endothelial α 1-adrenergic receptor activation improves cardiac function in septic mice via PKC-ERK/p38MAPK signaling pathway. Int Immunopharmacol 2024; 141:112937. [PMID: 39182270 DOI: 10.1016/j.intimp.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Cardiomyopathy is particularly common in septic patients. Our previous studies have shown that activation of the alpha 1 adrenergic receptor (α1-AR) on cardiomyocytes inhibits sepsis-induced myocardial dysfunction. However, the role of cardiac endothelial α1-AR in septic cardiomyopathy has not been determined. Here, we identified α1-AR expression in mouse and human endothelial cells and showed that activation of α1-AR with phenylephrine (PE) improved cardiac function and survival by preventing cardiac endothelial injury in septic mice. Mechanistically, activating α1-AR with PE decreased the expression of ICAM-1, VCAM-1, iNOS, E-selectin, and p-p38MAPK, while promoting PKC and ERK1/2 phosphorylation in LPS-treated endothelial cells. These effects were abolished by a PKC inhibitor or α1-AR antagonist. PE also reduced p65 nuclear translocation, but this suppression is not blocked by PKC inhibition. Treatment with U0126 (a specific ERK1/2 inhibitor) reversed the effects of PE on p38MAPK phosphorylation. Our results demonstrate that cardiac endothelial α1-AR activation prevents sepsis-induced myocardial dysfunction in mice by inhibiting the endothelial injury via PKC-ERK/p38MAPK signaling pathway and a PKC-independent inhibition of p65 nuclear translocation. These findings offer a new perspective for septic patients with cardiac dysfunction by inhibiting cardiac endothelial cell injury through α1-AR activation.
Collapse
Affiliation(s)
- Tian Tian
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qing Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Duomeng Yang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xue Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianling Li
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Gural B, Kirkland L, Hockett A, Sandroni P, Zhang J, Rosa-Garrido M, Swift SK, Chapski D, Flinn MA, O'Meara CC, Vondriska TM, Patterson M, Jensen BC, Rau CD. Novel Insights into Post-Myocardial Infarction Cardiac Remodeling through Algorithmic Detection of Cell-Type Composition Shifts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607400. [PMID: 39149394 PMCID: PMC11326268 DOI: 10.1101/2024.08.09.607400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Recent advances in single cell sequencing have led to an increased focus on the role of cell-type composition in phenotypic presentation and disease progression. Cell-type composition research in the heart is challenging due to large, frequently multinucleated cardiomyocytes that preclude most single cell approaches from obtaining accurate measurements of cell composition. Our in silico studies reveal that ignoring cell type composition when calculating differentially expressed genes (DEGs) can have significant consequences. For example, a relatively small change in cell abundance of only 10% can result in over 25% of DEGs being false positives. Methods We have implemented an algorithmic approach that uses snRNAseq datasets as a reference to accurately calculate cell type compositions from bulk RNAseq datasets through robust data cleaning, gene selection, and multi-sample cross-subject and cross-cell-type deconvolution. We applied our approach to cardiomyocyte-specific α1A adrenergic receptor (CM-α1A-AR) knockout mice. 8-12 week-old mice (either WT or CM-α1A-KO) were subjected to permanent left coronary artery (LCA) ligation or sham surgery (n=4 per group). Transcriptomes from the infarct border zones were collected 3 days later and analyzed using our algorithm to determine cell-type abundances, corrected differential expression calculations using DESeq2, and validated these findings using RNAscope. Results Uncorrected DEGs for the CM-α1A-KO X LCA interaction term featured many cell-type specific genes such as Timp4 (fibroblasts) and Aplnr (cardiomyocytes) and overall GO enrichment for terms pertaining to cardiomyocyte differentiation (P=3.1E-4). Using our algorithm, we observe a striking loss of cardiomyocytes and gain in fibroblasts in the α1A-KO + LCA mice that was not recapitulated in WT + LCA animals, although we did observe a similar increase in macrophage abundance in both conditions. This recapitulates prior results that showed a much more severe heart failure phenotype in CM-α1A-KO + LCA mice. Following correction for cell-type, our DEGs now highlight a novel set of genes enriched for GO terms such as cardiac contraction (P=3.7E-5) and actin filament organization (P=6.3E-5). Conclusions Our algorithm identifies and corrects for cell-type abundance in bulk RNAseq datasets opening new avenues for research on novel genes and pathways as well as an improved understanding of the role of cardiac cell types in cardiovascular disease.
Collapse
Affiliation(s)
- Brian Gural
- Department of Genetics and Computational Medicine Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Logan Kirkland
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, Division of Cardiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Abbey Hockett
- Department of Genetics and Computational Medicine Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peyton Sandroni
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Zhang
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, Division of Cardiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samantha K Swift
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Douglas Chapski
- Departments of Anesthesiology & Perioperative Medicine, Medicine/Cardiology, and Physiology, David Geffen School of Medicine; Molecular Biology Institute; University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Thomas M Vondriska
- Departments of Anesthesiology & Perioperative Medicine, Medicine/Cardiology, and Physiology, David Geffen School of Medicine; Molecular Biology Institute; University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michaela Patterson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Brian C Jensen
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, Division of Cardiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christoph D Rau
- Department of Genetics and Computational Medicine Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Underwood L, Jiang CS, Oh JY, Sato PY. Unheralded Adrenergic Receptor Signaling in Cellular Oxidative Stress and Death. CURRENT OPINION IN PHYSIOLOGY 2024; 40:100766. [PMID: 39070968 PMCID: PMC11271747 DOI: 10.1016/j.cophys.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Catecholamines (CAs) bind and activate adrenergic receptors (ARs), thus exuding a key role in cardiac adaptations to global physiological queues. Prolonged exposure to high levels of CAs promotes deleterious effects on the cardiovascular system, leading to organ dysfunction and heart failure (HF). In addition to the prominent role of ARs in inotropic and chronotropic responses, recent studies have delved into elucidating mechanisms contributing to CA toxicity and cell death. Central to this process is understanding the involvement of α1AR and βAR in cardiac remodeling and mechanisms of cellular survival. Here, we highlight the complexity of AR signaling and the fundamental need for a better understanding of its contribution to oxidative stress and cell death. This crucial informational nexus remains a barrier to the development of new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Lilly Underwood
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Chun-Sun Jiang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Joo-Yeun Oh
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Priscila Y Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Zhang J, Sandroni PB, Huang W, Gao X, Oswalt L, Schroder MA, Lee S, Shih YYI, Huang HYS, Swigart PM, Myagmar BE, Simpson PC, Rossi JS, Schisler JC, Jensen BC. Cardiomyocyte Alpha-1A Adrenergic Receptors Mitigate Postinfarct Remodeling and Mortality by Constraining Necroptosis. JACC Basic Transl Sci 2024; 9:78-96. [PMID: 38362342 PMCID: PMC10864988 DOI: 10.1016/j.jacbts.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 02/17/2024]
Abstract
Clinical studies have shown that α1-adrenergic receptor antagonists (α-blockers) are associated with increased heart failure risk. The mechanism underlying that hazard and whether it arises from direct inhibition of cardiomyocyte α1-ARs or from systemic effects remain unclear. To address these issues, we created a mouse with cardiomyocyte-specific deletion of the α1A-AR subtype and found that it experienced 70% mortality within 7 days of myocardial infarction driven, in part, by excessive activation of necroptosis. We also found that patients taking α-blockers at our center were at increased risk of death after myocardial infarction, providing clinical correlation for our translational animal models.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Peyton B. Sandroni
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Wei Huang
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xiaohua Gao
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Leah Oswalt
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Melissa A. Schroder
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - SungHo Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yen-Yu I. Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hsiao-Ying S. Huang
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Philip M. Swigart
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Bat E. Myagmar
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Paul C. Simpson
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Joseph S. Rossi
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan C. Schisler
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Su M, Wang J, Xiang G, Do HN, Levitz J, Miao Y, Huang XY. Structural basis of agonist specificity of α 1A-adrenergic receptor. Nat Commun 2023; 14:4819. [PMID: 37563160 PMCID: PMC10415349 DOI: 10.1038/s41467-023-40524-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
α1-adrenergic receptors (α1-ARs) play critical roles in the cardiovascular and nervous systems where they regulate blood pressure, cognition, and metabolism. However, the lack of specific agonists for all α1 subtypes has limited our understanding of the physiological roles of different α1-AR subtypes, and led to the stagnancy in agonist-based drug development for these receptors. Here we report cryo-EM structures of α1A-AR in complex with heterotrimeric G-proteins and either the endogenous common agonist epinephrine or the α1A-AR-specific synthetic agonist A61603. These structures provide molecular insights into the mechanisms underlying the discrimination between α1A-AR and α1B-AR by A61603. Guided by the structures and corresponding molecular dynamics simulations, we engineer α1A-AR mutants that are not responsive to A61603, and α1B-AR mutants that can be potently activated by A61603. Together, these findings advance our understanding of the agonist specificity for α1-ARs at the molecular level, opening the possibility of rational design of subtype-specific agonists.
Collapse
Affiliation(s)
- Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Hung Nguyen Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA.
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Olson AC, Butt AM, Christie NTM, Shelar A, Koelle MR. Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gα q and Gα s Activate the Caenorhabditis elegans Egg-Laying Muscles. J Neurosci 2023; 43:3789-3806. [PMID: 37055179 PMCID: PMC10219013 DOI: 10.1523/jneurosci.2301-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Individual neurons or muscle cells express many G-protein-coupled receptors (GPCRs) for neurotransmitters and neuropeptides, yet it remains unclear how cells integrate multiple GPCR signals that all must activate the same few G-proteins. We analyzed this issue in the Caenorhabditis elegans egg-laying system, where multiple GPCRs on muscle cells promote contraction and egg laying. We genetically manipulated individual GPCRs and G-proteins specifically in these muscle cells within intact animals and then measured egg laying and muscle calcium activity. Two serotonin GPCRs on the muscle cells, Gαq-coupled SER-1 and Gαs-coupled SER-7, together promote egg laying in response to serotonin. We found that signals produced by either SER-1/Gαq or SER-7/Gαs alone have little effect, but these two subthreshold signals combine to activate egg laying. We then transgenically expressed natural or designer GPCRs in the muscle cells and found that their subthreshold signals can also combine to induce muscle activity. However, artificially inducing strong signaling through just one of these GPCRs can be sufficient to induce egg laying. Knocking down Gαq and Gαs in the egg-laying muscle cells induced egg-laying defects that were stronger than those of a SER-1/SER-7 double knockout, indicating that additional endogenous GPCRs also activate the muscle cells. These results show that in the egg-laying muscles multiple GPCRs for serotonin and other signals each produce weak effects that individually do not result in strong behavioral outcomes. However, they combine to produce sufficient levels of Gαq and Gαs signaling to promote muscle activity and egg laying.SIGNIFICANCE STATEMENT How can neurons and other cells gather multiple independent pieces of information from the soup of chemical signals in their environment and compute an appropriate response? Most cells express >20 GPCRs that each receive one signal and transmit that information through three main types of G-proteins. We analyzed how this machinery generates responses by studying the egg-laying system of C. elegans, where serotonin and multiple other signals act through GPCRs on the egg-laying muscles to promote muscle activity and egg laying. We found that individual GPCRs within an intact animal each generate effects too weak to activate egg laying. However, combined signaling from multiple GPCR types reaches a threshold capable of activating the muscle cells.
Collapse
Affiliation(s)
- Andrew C Olson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Allison M Butt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Nakeirah T M Christie
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Ashish Shelar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
7
|
Perez DM. α 1-Adrenergic Receptors: Insights into Potential Therapeutic Opportunities for COVID-19, Heart Failure, and Alzheimer's Disease. Int J Mol Sci 2023; 24:4188. [PMID: 36835598 PMCID: PMC9963459 DOI: 10.3390/ijms24044188] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
α1-Adrenergic receptors (ARs) are members of the G-Protein Coupled Receptor superfamily and with other related receptors (β and α2), they are involved in regulating the sympathetic nervous system through binding and activation by norepinephrine and epinephrine. Traditionally, α1-AR antagonists were first used as anti-hypertensives, as α1-AR activation increases vasoconstriction, but they are not a first-line use at present. The current usage of α1-AR antagonists increases urinary flow in benign prostatic hyperplasia. α1-AR agonists are used in septic shock, but the increased blood pressure response limits use for other conditions. However, with the advent of genetic-based animal models of the subtypes, drug design of highly selective ligands, scientists have discovered potentially newer uses for both agonists and antagonists of the α1-AR. In this review, we highlight newer treatment potential for α1A-AR agonists (heart failure, ischemia, and Alzheimer's disease) and non-selective α1-AR antagonists (COVID-19/SARS, Parkinson's disease, and posttraumatic stress disorder). While the studies reviewed here are still preclinical in cell lines and rodent disease models or have undergone initial clinical trials, potential therapeutics discussed here should not be used for non-approved conditions.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Oda S, Nishiyama K, Furumoto Y, Yamaguchi Y, Nishimura A, Tang X, Kato Y, Numaga-Tomita T, Kaneko T, Mangmool S, Kuroda T, Okubo R, Sanbo M, Hirabayashi M, Sato Y, Nakagawa Y, Kuwahara K, Nagata R, Iribe G, Mori Y, Nishida M. Myocardial TRPC6-mediated Zn 2+ influx induces beneficial positive inotropy through β-adrenoceptors. Nat Commun 2022; 13:6374. [PMID: 36289215 PMCID: PMC9606288 DOI: 10.1038/s41467-022-34194-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates β-adrenoceptor (βAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated βAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting β-arrestin-mediated βAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.
Collapse
Affiliation(s)
- Sayaka Oda
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Kazuhiro Nishiyama
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yuka Furumoto
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yohei Yamaguchi
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Akiyuki Nishimura
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Xiaokang Tang
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Yuri Kato
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Takuro Numaga-Tomita
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Toshiyuki Kaneko
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Supachoke Mangmool
- grid.10223.320000 0004 1937 0490Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Takuya Kuroda
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Reishin Okubo
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Makoto Sanbo
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Masumi Hirabayashi
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Yoji Sato
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Yasuaki Nakagawa
- grid.258799.80000 0004 0372 2033Kyoto University Graduate School of Medicine, Kyoto, 606-8507 Japan
| | - Koichiro Kuwahara
- grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Ryu Nagata
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
| | - Gentaro Iribe
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Yasuo Mori
- grid.258799.80000 0004 0372 2033Graduate School of Engineering, Kyoto University, Kyoto, 615-8510 Japan
| | - Motohiro Nishida
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan ,grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
9
|
Wagner BM, Robinson JW, Healy CL, Gauthier M, Dickey DM, Yee SP, Osborn JW, O’Connell TD, Potter LR. Guanylyl cyclase-A phosphorylation decreases cardiac hypertrophy and improves systolic function in male, but not female, mice. FASEB J 2022; 36:e22069. [PMID: 34859913 PMCID: PMC8826535 DOI: 10.1096/fj.202100600rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Atrial natriuretic peptide (NP) and BNP increase cGMP, which reduces blood pressure and cardiac hypertrophy by activating guanylyl cyclase (GC)-A, also known as NPR-A or Npr1. Although GC-A is highly phosphorylated, and dephosphorylation inactivates the enzyme, the significance of GC-A phosphorylation to heart structure and function remains unknown. To identify in vivo processes that are regulated by GC-A phosphorylation, we substituted glutamates for known phosphorylation sites to make GC-A8E/8E mice that express an enzyme that cannot be inactivated by dephosphorylation. GC-A activity, but not protein, was increased in heart and kidney membranes from GC-A8E/8E mice. Activities were threefold higher in female compared to male cardiac ventricles. Plasma cGMP and testosterone were elevated in male and female GC-A8E/8E mice, but aldosterone was only increased in mutant male mice. Plasma and urinary creatinine concentrations were decreased and increased, respectively, but blood pressure and heart rate were unchanged in male GC-A8E/8E mice. Heart weight to body weight ratios for GC-A8E/8E male, but not female, mice were 12% lower with a 14% reduction in cardiomyocyte cross-sectional area. Subcutaneous injection of fsANP, a long-lived ANP analog, increased plasma cGMP and decreased aldosterone in male GC-AWT/WT and GC-A8E/8E mice at 15 min, but only GC-A8E/8E mice had elevated levels of plasma cGMP and aldosterone at 60 min. fsANP reduced ventricular ERK1/2 phosphorylation to a greater extent and for a longer time in the male mutant compared to WT mice. Finally, ejection fractions were increased in male but not female hearts from GC-A8E/8E mice. We conclude that increased phosphorylation-dependent GC-A activity decreases cardiac ERK activity, which results in smaller male hearts with improved systolic function.
Collapse
Affiliation(s)
- Brandon M. Wagner
- Department of Integrative Biology and Physiology, University of Minnesota, Medical School, Minneapolis, MN 55455 USA
| | - Jerid W. Robinson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Medical School, Minneapolis, MN 55455 USA
| | - Chastity L. Healy
- Department of Integrative Biology and Physiology, University of Minnesota, Medical School, Minneapolis, MN 55455 USA
| | - Madeline Gauthier
- Department of Integrative Biology and Physiology, University of Minnesota, Medical School, Minneapolis, MN 55455 USA
| | - Deborah M. Dickey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Medical School, Minneapolis, MN 55455 USA
| | - Siu-Pok Yee
- Department of Cell Biology at the University of Connecticut Health Center, Farmington, CT 06030 USA
| | - John W. Osborn
- Department of Surgery at the University of Minnesota, Medical School, Minneapolis, MN 55455 USA
| | - Timothy D. O’Connell
- Department of Integrative Biology and Physiology, University of Minnesota, Medical School, Minneapolis, MN 55455 USA,,Corresponding authors: Timothy D O’Connell , Lincoln R Potter
| | - Lincoln R. Potter
- Department of Integrative Biology and Physiology, University of Minnesota, Medical School, Minneapolis, MN 55455 USA,,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Medical School, Minneapolis, MN 55455 USA,,Corresponding authors: Timothy D O’Connell , Lincoln R Potter
| |
Collapse
|
10
|
Chen HH, Pan JY, Lu WH, Wu CJ, Tseng CJ. Prazosin improves neurogenic acute heart failure through downregulation of fibroblast growth factor 23 in rat hearts. CHINESE J PHYSIOL 2022; 65:179-186. [DOI: 10.4103/cjp.cjp_9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
The Antiarrhythmic Activity of Novel Pyrrolidin-2-one Derivative S-75 in Adrenaline-Induced Arrhythmia. Pharmaceuticals (Basel) 2021; 14:ph14111065. [PMID: 34832847 PMCID: PMC8625052 DOI: 10.3390/ph14111065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Arrhythmia is a quivering or irregular heartbeat that can often lead to blood clots, stroke, heart failure, and other heart-related complications. The limited efficacy and safety of antiarrhythmic drugs require the design of new compounds. Previous research indicated that pyrrolidin-2-one derivatives possess an affinity for α1-adrenergic receptors. The blockade of α1-adrenoceptor may play a role in restoring normal sinus rhythm; therefore, we aimed to verify the antiarrhythmic activity of novel pyrrolidin-2-one derivative S-75. In this study, we assessed the influence on sodium, calcium, potassium channels, and β1-adrenergic receptors to investigate the mechanism of action of S-75. Lack of affinity for β1-adrenoceptors and weak effects on ion channels decreased the role of these adrenoceptors and channels in the pharmacological activity of S-75. Next, we evaluated the influence of S-75 on normal ECG in rats and isolated rat hearts, and the tested derivative did not prolong the QTc interval, which may confirm the lack of the proarrhythmic potential. We tested antiarrhythmic activity in adrenaline-, aconitine- and calcium chloride-induced arrhythmia models in rats. The studied compound showed prophylactic antiarrhythmic activity in the adrenaline-induced arrhythmia, but no significant activity in the model of aconitine- or calcium chloride-induced arrhythmia. In addition, S-75 was not active in the model of post-reperfusion arrhythmias of the isolated rat hearts. Conversely, the compound showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia, reducing post-arrhythmogen heart rhythm disorders, and decreasing animal mortality. Thus, we suggest that the blockade of α1-adrenoceptor might be beneficial in restoring normal heart rhythm in adrenaline-induced arrhythmia.
Collapse
|
12
|
Enzan N, Matsushima S, Ide T, Kaku H, Tohyama T, Funakoshi K, Higo T, Tsutsui H. Sex Differences in Time-Dependent Changes in B-Type Natriuretic Peptide in Hypertrophic Cardiomyopathy. Circ Rep 2021; 3:594-603. [PMID: 34703937 PMCID: PMC8492405 DOI: 10.1253/circrep.cr-21-0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background:
Female sex is reported to be associated with poor prognosis in hypertrophic cardiomyopathy (HCM). The plasma B-type natriuretic peptide (BNP) concentration is a prognostic predictor in HCM. However, the effect of sex on BNP concentrations remains unclear among HCM patients. Methods and Results:
Patient records in the Clinical Personal Records of HCM national database of the Japanese Ministry of Health, Labour and Welfare from 2009 to 2014 were analyzed. Of 3,570 HCM patients, 611 in whom BNP concentrations were assessed at both baseline and the 2-year follow-up were included in this analysis. The mean age was 60.4 years and 254 (41.6%) patients were female. Median (interquartile range) BNP concentrations were higher in females than males at both baseline (320.3 [159.0–583.1] vs. 182.8 [86.1–363.9] pg/mL; P<0.001) and the 2-year follow-up (299.2 [147.0–535.3] vs. 161.0 [76.2–310.0] pg/mL; P<0.001). Female sex was associated with higher natural log-transformed BNP at the 2-year follow-up regardless of clinical characteristics, including echocardiographic findings and BNP concentrations at baseline (coefficient 0.31; 95% confidence interval 0.13–0.48; P<0.001). Cubic spline analysis showed that, among patients with high BNP concentrations at baseline, females had higher BNP concentrations at the 2-year follow-up than males. Conclusions:
In HCM, female sex was associated with higher BNP concentrations than male sex, independent of clinical characteristics, including BNP concentrations at baseline.
Collapse
Affiliation(s)
- Nobuyuki Enzan
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University Fukuoka Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University Fukuoka Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University Fukuoka Japan
| | - Hidetaka Kaku
- Department of Cardiology, Japan Community Healthcare Organization Kyushu Hospital Fukuoka Japan
| | - Takeshi Tohyama
- Center for Clinical and Translational Research, Kyushu University Hospital Fukuoka Japan
| | - Kouta Funakoshi
- Center for Clinical and Translational Research, Kyushu University Hospital Fukuoka Japan
| | - Taiki Higo
- Department of Cardiovascular Medicine, National Hospital Organization, Kyushu Medical Center Fukuoka Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University Fukuoka Japan
| |
Collapse
|
13
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
14
|
Wang H, Marrosu E, Brayson D, Wasala NB, Johnson EK, Scott CS, Yue Y, Hau KL, Trask AJ, Froehner SC, Adams ME, Zhang L, Duan D, Montanaro F. Proteomic analysis identifies key differences in the cardiac interactomes of dystrophin and micro-dystrophin. Hum Mol Genet 2021; 30:1321-1336. [PMID: 33949649 PMCID: PMC8255133 DOI: 10.1093/hmg/ddab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
ΔR4-R23/ΔCT micro-dystrophin (μDys) is a miniaturized version of dystrophin currently evaluated in a Duchenne muscular dystrophy (DMD) gene therapy trial to treat skeletal and cardiac muscle disease. In pre-clinical studies, μDys efficiently rescues cardiac histopathology, but only partially normalizes cardiac function. To gain insights into factors that may impact the cardiac therapeutic efficacy of μDys, we compared by mass spectrometry the composition of purified dystrophin and μDys protein complexes in the mouse heart. We report that compared to dystrophin, μDys has altered associations with α1- and β2-syntrophins, as well as cavins, a group of caveolae-associated signaling proteins. In particular, we found that membrane localization of cavin-1 and cavin-4 in cardiomyocytes requires dystrophin and is profoundly disrupted in the heart of mdx5cv mice, a model of DMD. Following cardiac stress/damage, membrane-associated cavin-4 recruits the signaling molecule ERK to caveolae, which activates key cardio-protective responses. Evaluation of ERK signaling revealed a profound inhibition, below physiological baseline, in the mdx5cv mouse heart. Expression of μDys in mdx5cv mice prevented the development of cardiac histopathology but did not rescue membrane localization of cavins nor did it normalize ERK signaling. Our study provides the first comparative analysis of purified protein complexes assembled in vivo by full-length dystrophin and a therapeutic micro-dystrophin construct. This has revealed disruptions in cavins and ERK signaling that may contribute to DMD cardiomyopathy. This new knowledge is important for ongoing efforts to prevent and treat heart disease in DMD patients.
Collapse
Affiliation(s)
- Hong Wang
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA.,Department of Pediatric Cardiology, China Medical University, Liaoning 110004, China
| | - Elena Marrosu
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Daniel Brayson
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Eric K Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA
| | - Charlotte S Scott
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kwan-Leong Hau
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Aaron J Trask
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Stan C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Neurology, School of Medicine, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Bioengineering, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Federica Montanaro
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA.,Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| |
Collapse
|
15
|
Kuzmin VS, Ivanova AD, Potekhina VM, Samoilova DV, Ushenin KS, Shvetsova AA, Petrov AM. The susceptibility of the rat pulmonary and caval vein myocardium to the catecholamine-induced ectopy changes oppositely in postnatal development. J Physiol 2021; 599:2803-2821. [PMID: 33823063 DOI: 10.1113/jp280485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The developmental changes of the caval (SVC) and pulmonary vein (PV) myocardium electrophysiology are traced throughout postnatal ontogenesis. The myocardium in SVC as well as in PV demonstrate age-dependent differences in the ability to maintain resting membrane potential, to manifest automaticity in a form of ectopic action potentials in basal condition and in responses to the adrenergic stimulation. Electrophysiological characteristics of two distinct types of thoracic vein myocardium change in an opposite manner during early postnatal ontogenesis with increased proarrhythmicity of pulmonary and decreased automaticity in caval veins. Predisposition of PV cardiac tissue to proarrhythmycity develops during ontogenesis in time correlation with the establishment of sympathetic innervation of the tissue. The electrophysiological properties of caval vein cardiac tissue shift from a pacemaker-like phenotype to atrial phenotype in accompaniment with sympathetic nerve growth and adrenergic receptor expression changes. ABSTRACT The thoracic vein myocardium is considered as a main source for atrial fibrillation initiation due to its high susceptibility to ectopic activity. The mechanism by which and when pulmonary (PV) and superior vena cava (SVC) became proarrhythmic during postnatal ontogenesis is still unknown. In this study, we traced postnatal changes of electrophysiology in a correlation with the sympathetic innervation and adrenergic receptor distribution to reveal developmental differences in proarrhythmicity occurrence in PV and SVC myocardium. A standard microelectrode technique was used to assess the changes in ability to maintain resting membrane potential (RMP), generate spontaneous action potentials (SAP) and adrenergically induced ectopy in multicellular SVC and PV preparations of rats of different postnatal ages. Immunofluorescence imaging was used to trace postnatal changes in sympathetic innervation, β1- and α1A-adrenergic receptor (AR) distribution. We revealed that the ability to generate SAP and susceptibility to adrenergic stimulation changes during postnatal ontogenesis in an opposite manner in PV and SVC myocardium. While SAP occurrence decreases with age in SVC myocardium, it significantly increases in PV cardiac tissue. PV myocardium starts to demonstrate RMP instability and proarrhythmic activity from the 14th day of postnatal life which correlates with the appearance of the sympathetic innervation of the thoracic veins. In addition, postnatal attenuation of SVC myocardium automaticity occurs concomitantly with sympathetic innervation establishment and increase in β1-ARs, but not α1A-AR levels. Our results support the contention that SVC and PV myocardium electrophysiology change during postnatal development, resulting in higher PV proarrhythmicity in adults.
Collapse
Affiliation(s)
- Vlad S Kuzmin
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitjanova 1, Moscow, 117997, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Cardiological Complex (NMRCC), Institute of Experimental Cardiology, Moscow, Russia
| | - Alexandra D Ivanova
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia
| | - Viktoria M Potekhina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia
| | - Daria V Samoilova
- N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | | | - Anastasia A Shvetsova
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia
| | - Alexey M Petrov
- Institute of Neuroscience, Kazan State Medial University, Butlerova st. 49, Kazan, 420012, Russia.,Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia
| |
Collapse
|
16
|
Liu Y, Xia P, Chen J, Bandettini WP, Kirschner LS, Stratakis CA, Cheng Z. PRKAR1A deficiency impedes hypertrophy and reduces heart size. Physiol Rep 2021; 8:e14405. [PMID: 32212257 PMCID: PMC7093752 DOI: 10.14814/phy2.14405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Protein kinase A (PKA) activity is pivotal for proper functioning of the human heart, and its dysregulation has been implicated in a variety of cardiac pathologies. PKA regulatory subunit 1α (R1α, encoded by the PRKAR1A gene) is highly expressed in the heart, and controls PKA kinase activity by sequestering PKA catalytic subunits. Patients with PRKAR1A mutations are often diagnosed with Carney complex (CNC) in early adulthood, and may die later in life from cardiac complications such as heart failure. However, it remains unknown whether PRKAR1A deficiency interferes with normal heart development. Here, we showed that left ventricular mass was reduced in young CNC patients with PRKAR1A mutations or deletions. Cardiac-specific heterozygous ablation of PRKAR1A in mice increased cardiac PKA activity, and reduced heart weight and cardiomyocyte size without altering contractile function at 3 months of age. Silencing of PRKAR1A, or stimulation with the PKA activator forskolin completely abolished α1-adrenergic receptor-mediated cardiomyocyte hypertrophy. Mechanistically, depletion of PRKAR1A provoked PKA-dependent inactivating phosphorylation of Drp1 at S637, leading to impaired mitochondrial fission. Pharmacologic inhibition of Drp1 with Mdivi 1 diminished hypertrophic growth of cardiomyocytes. In conclusion, PRKAR1A deficiency suppresses cardiomyocyte hypertrophy and impedes heart growth, likely through inhibiting Drp1-mediated mitochondrial fission. These findings provide a potential novel mechanism for the cardiac manifestations associated with CNC.
Collapse
Affiliation(s)
- Yuening Liu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Peng Xia
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - W Patricia Bandettini
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, NIH-Clinical Research Center, Bethesda, MD, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
17
|
Kaidonis X, Niu W, Chan AY, Kesteven S, Wu J, Iismaa SE, Vatner S, Feneley M, Graham RM. Adaptation to exercise-induced stress is not dependent on cardiomyocyte α 1A-adrenergic receptors. J Mol Cell Cardiol 2021; 155:78-87. [PMID: 33647309 DOI: 10.1016/j.yjmcc.2021.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
The 'fight or flight' response to physiological stress involves sympathetic nervous system activation, catecholamine release and adrenergic receptor stimulation. In the heart, this induces positive inotropy, previously attributed to the β1-adrenergic receptor subtype. However, the role of the α1A-adrenergic receptor, which has been suggested to be protective in cardiac pathology, has not been investigated in the setting of physiological stress. To explore this, we developed a tamoxifen-inducible, cardiomyocyte-specific α1A-adrenergic receptor knock-down mouse model, challenged mice to four weeks of endurance swim training and assessed cardiac outcomes. With 4-OH tamoxifen treatment, expression of the α1A-adrenergic receptor was knocked down by 80-89%, without any compensatory changes in the expression of other adrenergic receptors, or changes to baseline cardiac structure and function. Swim training caused eccentric hypertrophy, regardless of genotype, demonstrated by an increase in heart weight/tibia length ratio (30% and 22% in vehicle- and tamoxifen-treated animals, respectively) and an increase in left ventricular end diastolic volume (30% and 24% in vehicle- and tamoxifen-treated animals, respectively) without any change in the wall thickness/chamber radius ratio. Consistent with physiological hypertrophy, there was no increase in fetal gene program (Myh7, Nppa, Nppb or Acta1) expression. In response to exercise-induced volume overload, stroke volume (39% and 30% in vehicle- and tamoxifen-treated animals, respectively), cardiac output/tibia length ratio (41% in vehicle-treated animals) and stroke work (61% and 33% in vehicle- and tamoxifen-treated animals, respectively) increased, regardless of genotype. These findings demonstrate that cardiomyocyte α1A-adrenergic receptors are not necessary for cardiac adaptation to endurance exercise stress and their acute ablation is not deleterious.
Collapse
Affiliation(s)
- Xenia Kaidonis
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia
| | - Wenxing Niu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Medical Sciences, University of NSW, Kensington, NSW 2052, Australia
| | - Andrea Y Chan
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Scott Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia
| | - Jianxin Wu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia
| | - Stephen Vatner
- Cardiovascular Research Institute, Dept. of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Michael Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia.
| |
Collapse
|
18
|
Zhang J, Simpson PC, Jensen BC. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 320:H725-H733. [PMID: 33275531 DOI: 10.1152/ajpheart.00621.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α1-Adrenergic receptors (ARs) are catecholamine-activated G protein-coupled receptors (GPCRs) that are expressed in mouse and human myocardium and vasculature, and play essential roles in the regulation of cardiovascular physiology. Though α1-ARs are less abundant in the heart than β1-ARs, activation of cardiac α1-ARs results in important biologic processes such as hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) indicate that nonselectively blocking α1-ARs is associated with a twofold increase in adverse cardiac events, including heart failure and angina, suggesting that α1-AR activation might also be cardioprotective in humans. Mounting evidence implicates the α1A-AR subtype in these adaptive effects, including prevention and reversal of heart failure in animal models by α1A agonists. In this review, we summarize recent advances in our understanding of cardiac α1A-ARs.
Collapse
Affiliation(s)
- Jiandong Zhang
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Kaykı-Mutlu G, Papazisi O, Palmen M, Danser AHJ, Michel MC, Arioglu-Inan E. Cardiac and Vascular α 1-Adrenoceptors in Congestive Heart Failure: A Systematic Review. Cells 2020; 9:E2412. [PMID: 33158106 PMCID: PMC7694190 DOI: 10.3390/cells9112412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
As heart failure (HF) is a devastating health problem worldwide, a better understanding and the development of more effective therapeutic approaches are required. HF is characterized by sympathetic system activation which stimulates α- and β-adrenoceptors (ARs). The exposure of the cardiovascular system to the increased locally released and circulating levels of catecholamines leads to a well-described downregulation and desensitization of β-ARs. However, information on the role of α-AR is limited. We have performed a systematic literature review examining the role of both cardiac and vascular α1-ARs in HF using 5 databases for our search. All three α1-AR subtypes (α1A, α1B and α1D) are expressed in human and animal hearts and blood vessels in a tissue-dependent manner. We summarize the changes observed in HF regarding the density, signaling and responses of α1-ARs. Conflicting findings arise from different studies concerning the influence that HF has on α1-AR expression and function; in contrast to β-ARs there is no consistent evidence for down-regulation or desensitization of cardiac or vascular α1-ARs. Whether α1-ARs are a therapeutic target in HF remains a matter of debate.
Collapse
Affiliation(s)
- Gizem Kaykı-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; (G.K.-M.); (E.A.-I.)
| | - Olga Papazisi
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (O.P.); (M.P.)
| | - Meindert Palmen
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (O.P.); (M.P.)
| | - A. H. Jan Danser
- Department of Internal Medicine, Division of Pharmacology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; (G.K.-M.); (E.A.-I.)
| |
Collapse
|
20
|
Li E, Li X, Huang J, Xu C, Liang Q, Ren K, Bai A, Lu C, Qian R, Sun N. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy. Protein Cell 2020; 11:661-679. [PMID: 32277346 PMCID: PMC7452999 DOI: 10.1007/s13238-020-00713-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of circadian rhythms associates with cardiovascular disorders. It is known that deletion of the core circadian gene Bmal1 in mice causes dilated cardiomyopathy. However, the biological rhythm regulation system in mouse is very different from that of humans. Whether BMAL1 plays a role in regulating human heart function remains unclear. Here we generated a BMAL1 knockout human embryonic stem cell (hESC) model and further derived human BMAL1 deficient cardiomyocytes. We show that BMAL1 deficient hESC-derived cardiomyocytes exhibited typical phenotypes of dilated cardiomyopathy including attenuated contractility, calcium dysregulation, and disorganized myofilaments. In addition, mitochondrial fission and mitophagy were suppressed in BMAL1 deficient hESC-cardiomyocytes, which resulted in significantly attenuated mitochondrial oxidative phosphorylation and compromised cardiomyocyte function. We also found that BMAL1 binds to the E-box element in the promoter region of BNIP3 gene and specifically controls BNIP3 protein expression. BMAL1 knockout directly reduced BNIP3 protein level, causing compromised mitophagy and mitochondria dysfunction and thereby leading to compromised cardiomyocyte function. Our data indicated that the core circadian gene BMAL1 is critical for normal mitochondria activities and cardiac function. Circadian rhythm disruption may directly link to compromised heart function and dilated cardiomyopathy in humans.
Collapse
Affiliation(s)
- Ermin Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuya Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie Huang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qianqian Liang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Aobing Bai
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Di Bona A, Vita V, Costantini I, Zaglia T. Towards a clearer view of sympathetic innervation of cardiac and skeletal muscles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:80-93. [DOI: 10.1016/j.pbiomolbio.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
|
22
|
Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front Cardiovasc Med 2020; 6:194. [PMID: 32039239 PMCID: PMC6993588 DOI: 10.3389/fcvm.2019.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.
Collapse
Affiliation(s)
| | | | - Canan G. Nebigil
- Laboratory of CardioOncology and Therapeutic Innovation, CNRS, Illkirch, France
| |
Collapse
|
23
|
Abstract
GPCRs (G-protein [guanine nucleotide-binding protein]-coupled receptors) play a central physiological role in the regulation of cardiac function in both health and disease and thus represent one of the largest class of surface receptors targeted by drugs. Several antagonists of GPCRs, such as βARs (β-adrenergic receptors) and Ang II (angiotensin II) receptors, are now considered standard of therapy for a wide range of cardiovascular disease, such as hypertension, coronary artery disease, and heart failure. Although the mechanism of action for GPCRs was thought to be largely worked out in the 80s and 90s, recent discoveries have brought to the fore new and previously unappreciated mechanisms for GPCR activation and subsequent downstream signaling. In this review, we focus on GPCRs most relevant to the cardiovascular system and discuss traditional components of GPCR signaling and highlight evolving concepts in the field, such as ligand bias, β-arrestin-mediated signaling, and conformational heterogeneity.
Collapse
Affiliation(s)
- Jialu Wang
- From the Department of Medicine (J.W., C.G., H.A.R.)
| | | | - Howard A Rockman
- From the Department of Medicine (J.W., C.G., H.A.R.).,Department of Cell Biology (H.A.R.).,Department of Molecular Genetics and Microbiology (H.A.R.), Duke University Medical Center, Durham, NC
| |
Collapse
|
24
|
Myagmar BE, Ismaili T, Swigart PM, Raghunathan A, Baker AJ, Sahdeo S, Blevitt JM, Milla ME, Simpson PC. Coupling to Gq Signaling Is Required for Cardioprotection by an Alpha-1A-Adrenergic Receptor Agonist. Circ Res 2019; 125:699-706. [PMID: 31426700 DOI: 10.1161/circresaha.118.314416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Gq signaling in cardiac myocytes is classically considered toxic. Targeting Gq directly to test this is problematic, because cardiac myocytes have many Gq-coupled receptors. OBJECTIVE Test whether Gq coupling is required for the cardioprotective effects of an alpha-1A-AR (adrenergic receptor) agonist. METHODS AND RESULTS In recombinant cells, a mouse alpha-1A-AR with a 6-residue substitution in the third intracellular loop does not couple to Gq signaling. Here we studied a knockin mouse with this alpha-1A-AR mutation. Heart alpha-1A receptor levels and antagonist affinity in the knockin were identical to wild-type. In wild-type cardiac myocytes, the selective alpha-1A agonist A61603-stimulated phosphoinositide-phospholipase C and myocyte contraction. In myocytes with the alpha-1A knockin, both A61603 effects were absent, indicating that Gq coupling was absent. Surprisingly, A61603 activation of cardioprotective ERK (extracellular signal-regulated kinase) was markedly impaired in the KI mutant myocytes, and A61603 did not protect mutant myocytes from doxorubicin toxicity in vitro. Similarly, mice with the α1A KI mutation had increased mortality after transverse aortic constriction, and A61603 did not rescue cardiac function in mice with the Gq coupling-defective alpha-1A receptor. CONCLUSIONS Gq coupling is required for cardioprotection by an alpha-1A-AR agonist. Gq signaling can be adaptive.
Collapse
Affiliation(s)
- Bat-Erdene Myagmar
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.).,University of California, San Francisco (B.-E.M., A.J.B., P.C.S.)
| | - Taylor Ismaili
- Janssen Research and Development, San Diego, CA (T.I., S.S., J.M.B.)
| | - Philip M Swigart
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.)
| | - Anaha Raghunathan
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.)
| | - Anthony J Baker
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.).,University of California, San Francisco (B.-E.M., A.J.B., P.C.S.)
| | - Sunil Sahdeo
- Janssen Research and Development, San Diego, CA (T.I., S.S., J.M.B.)
| | | | | | - Paul C Simpson
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.).,University of California, San Francisco (B.-E.M., A.J.B., P.C.S.)
| |
Collapse
|
25
|
Chia LY, Evans BA, Mukaida S, Bengtsson T, Hutchinson DS, Sato M. Adrenoceptor regulation of the mechanistic target of rapamycin in muscle and adipose tissue. Br J Pharmacol 2019; 176:2433-2448. [PMID: 30740664 PMCID: PMC6592864 DOI: 10.1111/bph.14616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
A vital role of adrenoceptors in metabolism and energy balance has been well documented in the heart, skeletal muscle, and adipose tissue. It has been only recently demonstrated, however, that activation of the mechanistic target of rapamycin (mTOR) makes a significant contribution to various metabolic and physiological responses to adrenoceptor agonists. mTOR exists as two distinct complexes named mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) and has been shown to play a critical role in protein synthesis, cell proliferation, hypertrophy, mitochondrial function, and glucose uptake. This review will describe the physiological significance of mTORC1 and 2 as a novel paradigm of adrenoceptor signalling in the heart, skeletal muscle, and adipose tissue. Understanding the detailed signalling cascades of adrenoceptors and how they regulate physiological responses is important for identifying new therapeutic targets and identifying novel therapeutic interventions. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Bronwyn A. Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Saori Mukaida
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Dana S. Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
26
|
Docherty JR. The pharmacology of α 1-adrenoceptor subtypes. Eur J Pharmacol 2019; 855:305-320. [PMID: 31067439 DOI: 10.1016/j.ejphar.2019.04.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
This review examines the functions of α1-adrenoceptor subtypes, particularly in terms of contraction of smooth muscle. There are 3 subtypes of α1-adrenoceptor, α1A- α1B- and α1D-adrenoceptors. Evidence is presented that the postulated α1L-adrenoceptor is simply the native α1A-adrenoceptor at which prazosin has low potency. In most isolated tissue studies, smooth muscle contractions to exogenous agonists are mediated particularly by α1A-, with a lesser role for α1D-adrenoceptors, but α1B-adrenoceptors are clearly involved in contractions of some tissues, for example, the spleen. However, nerve-evoked responses are the most crucial physiologically, so that these studies of exogenous agonists may overestimate the importance of α1A-adrenoceptors. The major α1-adrenoceptors involved in blood pressure control by sympathetic nerves are the α1D- and the α1A-adrenoceptors, mediating peripheral vasoconstrictor actions. As noradrenaline has high potency at α1D-adrenceptors, these receptors mediate the fastest response and seem to be targets for neurally released noradrenaline especially to low frequency stimulation, with α1A-adrenoceptors being more important at high frequencies of stimulation. This is true in rodent vas deferens and may be true in vasopressor nerves controlling peripheral resistance and tissue blood flow. The αlA-adrenoceptor may act mainly through Ca2+ entry through L-type channels, whereas the α1D-adrenoceptor may act mainly through T-type channels and exhaustable Ca2+ stores. α1-Adrenoceptors may also act through non-G-protein linked second messenger systems. In many tissues, multiple subtypes of α-adrenoceptor are present, and this may be regarded as the norm rather than exception, although one receptor subtype is usually predominant.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
27
|
ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20092164. [PMID: 31052420 PMCID: PMC6539093 DOI: 10.3390/ijms20092164] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is an adaptive and compensatory mechanism preserving cardiac output during detrimental stimuli. Nevertheless, long-term stimuli incite chronic hypertrophy and may lead to heart failure. In this review, we analyze the recent literature regarding the role of ERK (extracellular signal-regulated kinase) activity in cardiac hypertrophy. ERK signaling produces beneficial effects during the early phase of chronic pressure overload in response to G protein-coupled receptors (GPCRs) and integrin stimulation. These functions comprise (i) adaptive concentric hypertrophy and (ii) cell death prevention. On the other hand, ERK participates in maladaptive hypertrophy during hypertension and chemotherapy-mediated cardiac side effects. Specific ERK-associated scaffold proteins are implicated in either cardioprotective or detrimental hypertrophic functions. Interestingly, ERK phosphorylated at threonine 188 and activated ERK5 (the big MAPK 1) are associated with pathological forms of hypertrophy. Finally, we examine the connection between ERK activation and hypertrophy in (i) transgenic mice overexpressing constitutively activated RTKs (receptor tyrosine kinases), (ii) animal models with mutated sarcomeric proteins characteristic of inherited hypertrophic cardiomyopathies (HCMs), and (iii) mice reproducing syndromic genetic RASopathies. Overall, the scientific literature suggests that during cardiac hypertrophy, ERK could be a “good” player to be stimulated or a “bad” actor to be mitigated, depending on the pathophysiological context.
Collapse
|
28
|
Li HM, Li KY, Xing Y, Tang XX, Yang DM, Dai XM, Lu DX, Wang HD. Phenylephrine Attenuated Sepsis-Induced Cardiac Inflammation and Mitochondrial Injury Through an Effect on the PI3K/Akt Signaling Pathway. J Cardiovasc Pharmacol 2019; 73:186-194. [PMID: 30839512 DOI: 10.1097/fjc.0000000000000651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether phenylephrine (PE) inhibits sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway. METHODS A rat model of sepsis was established by cecal ligation and puncture. PE and/or wortmannin (a PI3K inhibitor) were administered to investigate the role of PI3K/Akt signaling in mediating the effects of PE on inhibiting sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury. Hematoxylin-eosin staining, echocardiography, and Langendorff system were used to examine the myocardial injury and function. The concentrations of TNF-α and IL-6 were analyzed by enzyme-linked immunosorbent assay. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), myeloperoxidase, mitochondria-related fusion/fission proteins, and PI3K/Akt signaling pathway-associated proteins were analyzed by Western blotting. RESULTS PE improved the cardiac function and survival in septic rats. PE decreased TNF-α, IL-6, ICAM-1, VCAM-1, and myeloperoxidase contents in the myocardium of septic rats. Meanwhile, PE increased the fusion-related proteins and decreased the fission-related proteins in the myocardial mitochondria of septic rats. On the other hand, PE activated the PI3K/Akt signaling pathway in the cecal ligation and puncture-treated rats, and all the protective effects of PE were abolished by wortmannin. CONCLUSIONS PE attenuated sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ryu S, Chang Y, Kang J, Yun KE, Jung HS, Kim CW, Cho J, Lima JA, Sung KC, Shin H, Guallar E. Physical activity and impaired left ventricular relaxation in middle aged adults. Sci Rep 2018; 8:12461. [PMID: 30127508 PMCID: PMC6102302 DOI: 10.1038/s41598-018-31018-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/09/2018] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to examine the relationship between physical activity level and impaired left ventricular (LV) relaxation in a large sample of apparently healthy men and women. We conducted a cross-sectional study in 57,449 adults who underwent echocardiography as part of a comprehensive health examination between March 2011 and December 2014. Physical activity level was assessed using the Korean version of the International Physical Activity Questionnaire Short Form. The presence of impaired LV relaxation was determined based on echocardiographic findings. Physical activity levels were inversely associated with the prevalence of impaired LV relaxation. The multivariable-adjusted odds ratios (95% confidence interval) for impaired LV relaxation comparing minimally active and health-enhancing physically active groups to the inactive group were 0.84 (0.77–0.91) and 0.64 (0.58–0.72), respectively (P for trend < 0.001). These associations were modified by sex (p for interaction <0.001), with the inverse association observed in men, but not in women. This study demonstrated an inverse linear association between physical activity level and impaired LV relaxation in a large sample of middle-aged Koreans independent of potential confounders. Our findings suggest that increasing physical activity may be independently important in reducing the risk of impaired LV relaxation.
Collapse
Affiliation(s)
- Seungho Ryu
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea. .,Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea. .,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Yoosoo Chang
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Jeonggyu Kang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung Eun Yun
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun-Suk Jung
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chan-Won Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Juhee Cho
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Joao A Lima
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hocheol Shin
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eliseo Guallar
- Departments of Epidemiology and Medicine and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Geske JB, Ong KC, Siontis KC, Hebl VB, Ackerman MJ, Hodge DO, Miller VM, Nishimura RA, Oh JK, Schaff HV, Gersh BJ, Ommen SR. Women with hypertrophic cardiomyopathy have worse survival. Eur Heart J 2018; 38:3434-3440. [PMID: 29020402 DOI: 10.1093/eurheartj/ehx527] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023] Open
Abstract
Aims Sex differences in hypertrophic cardiomyopathy (HCM) remain unclear. We sought to characterize sex differences in a large HCM referral centre population. Methods and results Three thousand six hundred and seventy-three adult patients with HCM underwent evaluation between January 1975 and September 2012 with 1661 (45.2%) female. Kaplan-Meier survival curves were assessed via log-rank test. Cox proportional hazard regression analyses evaluated the relation of sex with survival. At index visit, women were older (59 ± 16 vs. 52 ± 15 years, P < 0.0001) had more symptoms [New York Heart Association (NYHA) Class III-IV 45.0% vs. 35.3%, P < 0.0001], more obstructive physiology (77.4% vs. 71.8%, P = 0.0001), more mitral regurgitation (moderate or greater in 56.1% vs. 43.9%, P < 0.0001), higher E/e' ratio (n = 1649, 20.6 vs. 15.6, P < 0.0001), higher estimated pulmonary artery systolic pressure (n = 1783, 40.8 ± 15.4 vs. 34.8 ± 10.8 mmHg, P < 0.0001), worse cardiopulmonary exercise performance (n = 1267; percent VO2 predicted 62.8 ± 20% vs. 65.8 ± 19.2%, P = 0.007), and underwent more frequent alcohol septal ablation (4.9% vs. 3.0%, P = 0.004) but similar frequency of myectomy (28% vs. 30%, P = 0.24). Median follow-up was 10.9 (IQR 7.4-16.2) years. Kaplan-Meier analysis demonstrated lower survival in women compared with men (P < 0.0001). In multivariable modelling, female sex remained independently associated with mortality (HR 1.13 [1.03-1.22], P = 0.01) when adjusted for age, NYHA Class III-IV symptoms, and cardiovascular comorbidities. Conclusion Women with HCM present at more advanced age, with more symptoms, worse cardiopulmonary exercise tolerance, and different haemodynamics than men. Sex is an important determinant in HCM management as women with HCM have worse survival. Women may require more aggressive diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jeffrey B Geske
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Kevin C Ong
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Konstantinos C Siontis
- Department of Internal Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Virginia B Hebl
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA.,Department of Pediatrics, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - David O Hodge
- Department of Biomedical Statistics and Informatics, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Virginia M Miller
- Women's Health Research Center, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Rick A Nishimura
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Jae K Oh
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Hartzell V Schaff
- Department of Cardiovascular Surgery, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Bernard J Gersh
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Steve R Ommen
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| |
Collapse
|
31
|
Zaglia T, Mongillo M. Cardiac sympathetic innervation, from a different point of (re)view. J Physiol 2018; 595:3919-3930. [PMID: 28240352 DOI: 10.1113/jp273120] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
The audience of basic and clinical scientists is familiar with the notion that the sympathetic nervous system controls heart function during stresses. However, evidence indicates that the neurogenic control of the heart spans from the maintenance of housekeeping functions in resting conditions to the recruitment of maximal performance, in the fight-or-flight responses, across a whole range of intermediate states. To perform such sophisticated functions, sympathetic ganglia integrate both peripheral and central inputs, and transmit information to the heart via 'motor' neurons, directly interacting with target cardiomyocytes. To date, the dynamics and mode of communication between these two cell types, which determine how neuronal information is adequately translated into the wide spectrum of cardiac responses, are still blurry. By combining the anatomical and structural information brought to light by recent imaging technologies and the functional evidence in cellular systems, we focus on the interface between neurons and cardiomyocytes, and advocate the existence of a specific 'neuro-cardiac junction', where sympathetic neurotransmission occurs in a 'quasi-synaptic' way. The properties of such junctional-type communication fit well with those of the physiological responses elicited by the cardiac sympathetic nervous system, and explain its ability to tune heart function with precision, specificity and elevated temporal resolution.
Collapse
Affiliation(s)
- Tania Zaglia
- Department of Cardiac, Thoracic and Vascular Sciences, via Giustiniani 2, 35128, University of Padova, Padova, Italy.,Department of Biomedical Sciences, via Ugo Bassi 58/B, 35131, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, via G.Orus, 2, 35129, Padova, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, via Ugo Bassi 58/B, 35131, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, via G.Orus, 2, 35129, Padova, Italy.,CNR institute of Neurosciences, viale Colombo 3, 35133, Padova, Italy
| |
Collapse
|
32
|
Martin RD, Sun Y, Bourque K, Audet N, Inoue A, Tanny JC, Hébert TE. Receptor- and cellular compartment-specific activation of the cAMP/PKA pathway by α 1-adrenergic and ETA endothelin receptors. Cell Signal 2018; 44:43-50. [PMID: 29329779 DOI: 10.1016/j.cellsig.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
The signalling functions of many G protein-coupled receptors (GPCRs) expressed in the myocardium are incompletely understood. Among these are the endothelin receptor (ETR) family and α1-adrenergic receptor (α1-AR), which are thought to couple to the G protein Gαq. In this study, we used transcriptome analysis to compare the signalling networks downstream of these receptors in primary neonatal rat cardiomyocytes. This analysis indicated increased expression of target genes of cAMP responsive element modulator (CREM) after 24 h treatment with the α1-AR agonist phenylephrine, but not the ETR agonist endothelin-1, suggesting a specific role for the α1-AR in promoting cAMP production in cardiomyocytes. To validate the difference observed between these two GPCRs, we used heterologous expression of the receptors and genetically encoded biosensors in HEK 293 cell lines. We validated that both α1A- and α1B-AR subtypes were able to lead to the accumulation of cAMP in response to phenylephrine in both the nucleus and cytoplasm in a Gαs-dependent manner. However, the ETR subtype ETA did not affect cAMP levels in either compartment. All three receptors were coupled to Gαq signalling as expected. Further, we showed that activation of PKA in different compartments was α1-AR subtype specific, with α1B-AR able to activate PKA in the cytoplasm and nucleus and α1A-AR only able to in the nucleus. We provide evidence for a pathway downstream of the α1-AR, and show that distinct pools of a receptor lead to differential activation of downstream effector proteins dependent on their cellular compartment.
Collapse
Affiliation(s)
- Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Yalin Sun
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Nicolas Audet
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
33
|
Yeh CC, Fan Y, Xu Y, Yang YL, Simpson PC, Mann MJ. Shift toward greater pathologic post-myocardial infarction remodeling with loss of the adaptive hypertrophic signaling of alpha1 adrenergic receptors in mice. PLoS One 2017; 12:e0188471. [PMID: 29216197 PMCID: PMC5720786 DOI: 10.1371/journal.pone.0188471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022] Open
Abstract
Rationale We have hypothesized that post-infarction cardiac remodeling can be influenced by shifts in the balance between intracellular mediators of “pathologic” and “physiologic” hypertrophy. Although alpha1 adrenergic receptors (alpha1-ARs) mediate pro-adaptive hypertrophy during pressure overload, little is known about their role or downstream mediators after myocardial infarction. Methods We performed loss-of-function experiments via coronary ligation in alpha1A-AR knockout (AKO) mice. Post-myocardial infarction (MI) remodeling was evaluated via echocardiography, quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of cardiac fetal gene expression, histologic analysis of myocyte size, post-MI fibrosis and apoptosis, and Western blot analysis of apoptotic regulators. Results Alpha1A-AR knockout paradoxically increased post-MI hypertrophy compared to wild type controls (WT), but also increased ventricular dilatation, fibrosis, apoptosis, and 4-week post-MI mortality (64% in AKO vs. 25% in WT, P = 0.02), suggesting a shift toward greater pathologic hypertrophy in the absence of pro-adaptive alpha1A effects. alpha1A-AR knockout increased phospho-p38 levels in the pre-MI myocardium compared to WT (0.55 ± 0.16 vs. 0.03 ± 0.01, P<0.05) but decreased phospho-ERK1/2 post-MI (0.49 ± 0.35 arbitrary units vs. 1.55 ± 0.43 in WT, P<0.05). Furthermore, expression of pro-apoptotic factor Bax was increased (1.19 ± 0.15 vs. 0.78 ± 0.08, P<0.05) and expression of anti-apoptotic factors Bcl2 was decreased (0.26 ± 0.01 vs. 0.55 ± 0.06, P<0.01) compared to WT. Conclusions Alpha1A-AR provides an important counterbalance to pathologic pathways during post-MI remodeling that may be mediated through ERK1/2 signaling; these observations provide support for further development of an alpha1A-AR/ERK-based molecular intervention for this chronic, often fatal disease.
Collapse
Affiliation(s)
- Che-Chung Yeh
- Cardiothoracic Translational Research Laboratory, University of California San Francisco, San Francisco, California, United States of America
| | - Yanying Fan
- Cardiothoracic Translational Research Laboratory, University of California San Francisco, San Francisco, California, United States of America
| | - Yanchun Xu
- Cardiothoracic Translational Research Laboratory, University of California San Francisco, San Francisco, California, United States of America
| | - Yi-Lin Yang
- Cardiothoracic Translational Research Laboratory, University of California San Francisco, San Francisco, California, United States of America
| | - Paul C. Simpson
- Division of Cardiology, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Michael J. Mann
- Cardiothoracic Translational Research Laboratory, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
In a recent paper published in Cell Research, Abdul-Ghani and colleagues show that the cytokine, cardiotrophin-1 (CT1), drives a protective form of reversible cardiac hypertrophy that acts through a nonapoptotic caspase-dependent mechanism. Since CT1 can be delivered as exogenous protein, these studies provide new biological insights and potential translational opportunities.
Collapse
|
35
|
Caso S, Maric D, Arambasic M, Cotecchia S, Diviani D. AKAP-Lbc mediates protection against doxorubicin-induced cardiomyocyte toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2336-2346. [PMID: 28923249 DOI: 10.1016/j.bbamcr.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOX) is a chemotherapic agent that is widely used to treat hematological and solid tumors. Despite its efficacy, DOX displays significant cardiac toxicity associated with cardiomyocytes death and heart failure. Cardiac toxicity is mainly associated with the ability of DOX to alter mitochondrial function. The current lack of treatments to efficiently prevent DOX cardiotoxicity underscores the need of new therapeutic approaches. Our current findings show that stimulation of cardiomyocytes with the α1-adrenergic receptor (AR) agonist phenylephrine (PE) significantly inhibits the apoptotic effect of DOX. Importantly, our results indicate that AKAP-Lbc is critical for transducing protective signals downstream of α1-ARs. In particular, we could show that suppression of AKAP-Lbc expression by infecting primary cultures of ventricular myocytes with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly impairs the ability of PE to reduce DOX-induced apoptosis. AKAP-Lbc-mediated cardiomyocyte protection requires the activation of anchored protein kinase D1 (PKD1)-dependent prosurvival pathways that promote the expression of the anti-apoptotic protein Bcl2 and inhibit the translocation of the pro-apoptotic protein Bax to mitochondria. In conclusion, AKAP-Lbc emerges as a coordinator of signals that protect cardiomyocytes against the toxic effects of DOX.
Collapse
Affiliation(s)
- Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Susanna Cotecchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| |
Collapse
|
36
|
Myagmar BE, Flynn JM, Cowley PM, Swigart PM, Montgomery MD, Thai K, Nair D, Gupta R, Deng DX, Hosoda C, Melov S, Baker AJ, Simpson PC. Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent. Circ Res 2017; 120:1103-1115. [PMID: 28219977 DOI: 10.1161/circresaha.117.310520] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE It is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), β1, β2, β3, α1A, and α1B. The β1 and β2 are thought to be the dominant myocyte ARs. OBJECTIVE Quantify the 5 cardiac ARs in individual ventricular myocytes. METHODS AND RESULTS We studied ventricular myocytes from wild-type mice, mice with α1A and α1B knockin reporters, and β1 and β2 knockout mice. Using individual isolated cells, we measured knockin reporters, mRNAs, signaling (phosphorylation of extracellular signal-regulated kinase and phospholamban), and contraction. We found that the β1 and α1B were present in all myocytes. The α1A was present in 60%, with high levels in 20%. The β2 and β3 were detected in only ≈5% of myocytes, mostly in different cells. In intact heart, 30% of total β-ARs were β2 and 20% were β3, both mainly in nonmyocytes. CONCLUSION The dominant ventricular myocyte ARs present in all cells are the β1 and α1B. The β2 and β3 are mostly absent in myocytes but are abundant in nonmyocytes. The α1A is in just over half of cells, but only 20% have high levels. Four distinct myocyte AR phenotypes are defined: 30% of cells with β1 and α1B only; 60% that also have the α1A; and 5% each that also have the β2 or β3. The results raise cautions in experimental design, such as receptor overexpression in myocytes that do not express the AR normally. The data suggest new paradigms in cardiac adrenergic signaling mechanisms.
Collapse
Affiliation(s)
- Bat-Erdene Myagmar
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - James M Flynn
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Patrick M Cowley
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Philip M Swigart
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Megan D Montgomery
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Kevin Thai
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Divya Nair
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Rumita Gupta
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - David X Deng
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Chihiro Hosoda
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Simon Melov
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Anthony J Baker
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.)
| | - Paul C Simpson
- From the Department of Medicine, VA Medical Center, San Francisco, CA (B.-E.M., P.M.C., P.M.S., M.D.M., K.T., D.N., R.G., D.X.D., C.H., A.J.B., P.C.S.); Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco (B.-E.M., P.M.C., M.D.M., D.X.D., C.H., A.J.B., P.C.S.); and Buck Institute for Research on Aging, Novato, CA (J.M.F., S.M.).
| |
Collapse
|
37
|
Abstract
There are 2 α1-ARs on cardiac myocytes: α1A and α1B. α1A adrenergic receptors serve important cardioprotective roles and do not mediate cardiac hypertrophy. Dabuzalgron, an oral α1A-AR agonist developed for the treatment of urinary incontinence and tolerated well in Phase 2 clinical trials, protects against doxorubicin-induced cardiotoxicity in vivo. Dabuzalgron enhances contractile function, regulates transcription of genes related to energy production and mitochondrial function, and preserves myocardial ATP content after doxorubicin. Activation of α1A-ARs on cardiomyocytes protects against doxorubicin cytotoxicity and enhances mitochondrial function in vitro. These cytoprotective effects likely are mediated by activation of ERK 1/2. Future studies will explore whether dabuzalgron, a well-tolerated oral α1A-AR agonist, might be repurposed to treat heart failure.
Alpha-1 adrenergic receptors (α1-ARs) play adaptive and protective roles in the heart. Dabuzalgron is an oral selective α1A-AR agonist that was well tolerated in multiple clinical trials of treatment for urinary incontinence, but has never been used to treat heart disease in humans or animal models. In this study, the authors administered dabuzalgron to mice treated with doxorubicin (DOX), a widely used chemotherapeutic agent with dose-limiting cardiotoxicity that can lead to heart failure (HF). Dabuzalgron protected against DOX-induced cardiotoxicity, likely by preserving mitochondrial function. These results suggest that activating cardiac α1A-ARs with dabuzalgron, a well-tolerated oral agent, might represent a novel approach to treating HF.
Collapse
|
38
|
Shi T, Papay RS, Perez DM. The role of α 1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation. J Recept Signal Transduct Res 2016; 37:124-132. [PMID: 27277698 DOI: 10.1080/10799893.2016.1193522] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of α1-adrenergic receptors (α1-ARs) and their subtypes in metabolism is not well known. Most previous studies were performed before the advent of transgenic mouse models and utilized transformed cell lines and poorly selective antagonists. We have now studied the metabolic regulation of the α1A- and α1B-AR subtypes in vivo using knock-out (KO) and transgenic mice that express a constitutively active mutant (CAM) form of the receptor, assessing subtype-selective functions. CAM mice increased glucose tolerance while KO mice display impaired glucose tolerance. CAM mice increased while KO decreased glucose uptake into white fat tissue and skeletal muscle with the CAM α1A-AR showing selective glucose uptake into the heart. Using indirect calorimetry, both CAM mice demonstrated increased whole body fatty acid oxidation, while KO mice preferentially oxidized carbohydrate. CAM α1A-AR mice displayed significantly decreased fasting plasma triglycerides and glucose levels while α1A-AR KO displayed increased levels of triglycerides and glucose. Both CAM mice displayed increased plasma levels of leptin while KO mice decreased leptin levels. Most metabolic effects were more efficacious with the α1A-AR subtype. Our results suggest that stimulation of α1-ARs results in a favorable metabolic profile of increased glucose tolerance, cardiac glucose uptake, leptin secretion and increased whole body lipid metabolism that may contribute to its previously recognized cardioprotective and neuroprotective benefits.
Collapse
Affiliation(s)
- Ting Shi
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| | - Robert S Papay
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| | - Dianne M Perez
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| |
Collapse
|
39
|
Clouet S, Di Pietrantonio L, Daskalopoulos EP, Esfahani H, Horckmans M, Vanorlé M, Lemaire A, Balligand JL, Beauloye C, Boeynaems JM, Communi D. Loss of Mouse P2Y6 Nucleotide Receptor Is Associated with Physiological Macrocardia and Amplified Pathological Cardiac Hypertrophy. J Biol Chem 2016; 291:15841-52. [PMID: 27231349 DOI: 10.1074/jbc.m115.684118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced postnatal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.
Collapse
Affiliation(s)
- Sophie Clouet
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Larissa Di Pietrantonio
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | | | - Hrag Esfahani
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Michael Horckmans
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Marion Vanorlé
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Anne Lemaire
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Jean-Luc Balligand
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Christophe Beauloye
- the Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 1200 Brussels
| | - Jean-Marie Boeynaems
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels, the Department of Laboratory Medicine, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Didier Communi
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels,
| |
Collapse
|
40
|
Abstract
Although convention dictates that G protein-coupled receptors localize to and signal at the plasma membrane, accumulating evidence suggests that G protein-coupled receptors localize to and signal at intracellular membranes, most notably the nucleus. In fact, there is now significant evidence indicating that endogenous alpha-1 adrenergic receptors (α1-ARs) localize to and signal at the nuclei in adult cardiac myocytes. Cumulatively, the data suggest that α1-ARs localize to the inner nuclear membrane, activate intranuclear signaling, and regulate physiologic function in adult cardiac myocytes. Although α1-ARs signal through Gαq, unlike other Gq-coupled receptors, α1-ARs mediate important cardioprotective functions including adaptive/physiologic hypertrophy, protection from cell death (survival signaling), positive inotropy, and preconditioning. Also unlike other Gq-coupled receptors, most, if not all, functional α1-ARs localize to the nuclei in adult cardiac myocytes, as opposed to the sarcolemma. Together, α1-AR nuclear localization and cardioprotection might suggest a novel model for compartmentalization of Gq-coupled receptor signaling in which nuclear Gq-coupled receptor signaling is cardioprotective.
Collapse
|
41
|
Puhl SL, Weeks KL, Ranieri A, Avkiran M. Assessing structural and functional responses of murine hearts to acute and sustained β-adrenergic stimulation in vivo. J Pharmacol Toxicol Methods 2016; 79:60-71. [PMID: 26836145 PMCID: PMC4840275 DOI: 10.1016/j.vascn.2016.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 11/18/2022]
Abstract
Introduction Given the importance of β-adrenoceptor signalling in regulating cardiac structure and function, robust protocols are required to assess potential alterations in such regulation in murine models in vivo. Methods Echocardiography was performed in naïve and stressed (isoprenaline; 30 μg/g/day s.c. for up to 14 days) mice, in the absence or presence of acute β-adrenergic stimulation (dobutamine 0.75 μg/g, i.p.). Controls received saline infusion and/or injection. Hearts were additionally analysed gravimetrically, histologically and biochemically. Results In naïve mice, acute β-adrenoceptor stimulation with dobutamine increased heart rate, left ventricular (LV) fractional shortening (LVFS), ejection fraction (LVEF) and wall thickness and decreased LV diameter (p < 0.05). In stressed mice, dobutamine failed to induce further inotropic and chronotropic responses. Furthermore, following dobutamine injection, these mice exhibited lower LVEF and LVFS at identical heart rates, relative to corresponding controls. Sustained isoprenaline infusion induced LV hypertrophy (increased heart weight, heart weight/body weight ratio, heart weight/tibia length ratio and LV wall thickness (p < 0.05)) by 3 days, with little further change at 14 days. In contrast, increases in LVEF and LVFS were seen only at 14 days (p < 0.05). Discussion We describe protocols for and illustrative data from the assessment of murine cardiac responses to acute and sustained β-adrenergic stimulation in vivo, which would be of value in determining the impact of genetic or pharmacological interventions on such responses. Additionally, our data indicate that acute dobutamine stimulation unmasks early signs of LV dysfunction in the remodelled heart, even at a stage when basal function is enhanced.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Kate L Weeks
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Antonella Ranieri
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Metin Avkiran
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| |
Collapse
|
42
|
Putting together the clues of the everlasting neuro-cardiac liaison. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1904-15. [PMID: 26778332 DOI: 10.1016/j.bbamcr.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
Abstract
Starting from the late embryonic development, the sympathetic nervous system extensively innervates the heart and modulates its activity during the entire lifespan. The distribution of myocardial sympathetic processes is finely regulated by the secretion of limiting amounts of pro-survival neurotrophic factors by cardiac cells. Norepinephrine release by the neurons rapidly modulates myocardial electrophysiology, and increases the rate and force of cardiomyocyte contractions. Sympathetic processes establish direct interaction with cardiomyocytes, characterized by the presence of neurotransmitter vesicles and reduced cell-cell distance. Whether such contacts have a functional role in both neurotrophin- and catecholamine-dependent communication between the two cell types, is poorly understood. In this review we will address the effects of the sympathetic neuron activity on the myocardium and the hypothesis that the direct neuro-cardiac contact might have a key role both in norepinephrine and neurotrophin mediated signaling. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
|
43
|
Eclov JA, Qian Q, Redetzke R, Chen Q, Wu SC, Healy CL, Ortmeier SB, Harmon E, Shearer GC, O'Connell TD. EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: potential role of free fatty acid receptor 4. J Lipid Res 2015; 56:2297-308. [PMID: 26435012 DOI: 10.1194/jlr.m062034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 01/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is half of all HF, but standard HF therapies are ineffective. Diastolic dysfunction, often secondary to interstitial fibrosis, is common in HFpEF. Previously, we found that supra-physiologic levels of ω3-PUFAs produced by 12 weeks of ω3-dietary supplementation prevented fibrosis and contractile dysfunction following pressure overload [transverse aortic constriction (TAC)], a model that resembles aspects of remodeling in HFpEF. This raised several questions regarding ω3-concentration-dependent cardioprotection, the specific role of EPA and DHA, and the relationship between prevention of fibrosis and contractile dysfunction. To achieve more clinically relevant ω3-levels and test individual ω3-PUFAs, we shortened the ω3-diet regimen and used EPA- and DHA-specific diets to examine remodeling following TAC. The shorter diet regimen produced ω3-PUFA levels closer to Western clinics. Further, EPA, but not DHA, prevented fibrosis following TAC. However, neither ω3-PUFA prevented contractile dysfunction, perhaps due to reduced uptake of ω3-PUFA. Interestingly, EPA did not accumulate in cardiac fibroblasts. However, FFA receptor 4, a G protein-coupled receptor for ω3-PUFAs, was sufficient and required to block transforming growth factor β1-fibrotic signaling in cultured cardiac fibroblasts, suggesting a novel mechanism for EPA. In summary, EPA-mediated prevention of fibrosis could represent a novel therapy for HFpEF.
Collapse
Affiliation(s)
- Julie A Eclov
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN
| | - Qingwen Qian
- Cardiovascular Research, Sanford Research, Sioux Falls, SD
| | - Rebecca Redetzke
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA
| | - Quanhai Chen
- Cardiovascular Research, Sanford Research, Sioux Falls, SD
| | - Steven C Wu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN
| | - Chastity L Healy
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN
| | | | - Erin Harmon
- Cardiovascular Research, Sanford Research, Sioux Falls, SD
| | - Gregory C Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA
| | - Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
44
|
Shi T, Papay RS, Perez DM. α1A-Adrenergic receptor prevents cardiac ischemic damage through PKCδ/GLUT1/4-mediated glucose uptake. J Recept Signal Transduct Res 2015; 36:261-70. [PMID: 26832303 DOI: 10.3109/10799893.2015.1091475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While α(1)-adrenergic receptors (ARs) have been previously shown to limit ischemic cardiac damage, the mechanisms remain unclear. Most previous studies utilized low oxygen conditions in addition to ischemic buffers with glucose deficiencies, but we discovered profound differences if the two conditions are separated. We assessed both mouse neonatal and adult myocytes and HL-1 cells in a series of assays assessing ischemic damage under hypoxic or low glucose conditions. We found that α(1)-AR stimulation protected against increased lactate dehydrogenase release or Annexin V(+) apoptosis under conditions that were due to low glucose concentration not to hypoxia. The α(1)-AR antagonist prazosin or nonselective protein kinase C (PKC) inhibitors blocked the protective effect. α(1)-AR stimulation increased (3)H-deoxyglucose uptake that was blocked with either an inhibitor to glucose transporter 1 or 4 (GLUT1 or GLUT4) or small interfering RNA (siRNA) against PKCδ. GLUT1/4 inhibition also blocked α(1)-AR-mediated protection from apoptosis. The PKC inhibitor rottlerin or siRNA against PKCδ blocked α(1)-AR stimulated GLUT1 or GLUT4 plasma membrane translocation. α(1)-AR stimulation increased plasma membrane concentration of either GLUT1 or GLUT4 in a time-dependent fashion. Transgenic mice overexpressing the α(1A)-AR but not α(1B)-AR mice displayed increased glucose uptake and increased GLUT1 and GLUT4 plasma membrane translocation in the adult heart while α(1A)-AR but not α(1B)-AR knockout mice displayed lowered glucose uptake and GLUT translocation. Our results suggest that α(1)-AR activation is anti-apoptotic and protective during cardiac ischemia due to glucose deprivation and not hypoxia by enhancing glucose uptake into the heart via PKCδ-mediated GLUT translocation that may be specific to the α(1A)-AR subtype.
Collapse
Affiliation(s)
- Ting Shi
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| | - Robert S Papay
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| | - Dianne M Perez
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| |
Collapse
|
45
|
Morris DP, Lei B, Longo LD, Bomsztyk K, Schwinn DA, Michelotti GA. Temporal Dissection of Rate Limiting Transcriptional Events Using Pol II ChIP and RNA Analysis of Adrenergic Stress Gene Activation. PLoS One 2015; 10:e0134442. [PMID: 26244980 PMCID: PMC4526373 DOI: 10.1371/journal.pone.0134442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
In mammals, increasing evidence supports mechanisms of co-transcriptional gene regulation and the generality of genetic control subsequent to RNA polymerase II (Pol II) recruitment. In this report, we use Pol II Chromatin Immunoprecipitation to investigate relationships between the mechanistic events controlling immediate early gene (IEG) activation following stimulation of the α1a-Adrenergic Receptor expressed in rat-1 fibroblasts. We validate our Pol II ChIP assay by comparison to major transcriptional events assessable by microarray and PCR analysis of precursor and mature mRNA. Temporal analysis of Pol II density suggests that reduced proximal pausing often enhances gene expression and was essential for Nr4a3 expression. Nevertheless, for Nr4a3 and several other genes, proximal pausing delayed the time required for initiation of productive elongation, consistent with a role in ensuring transcriptional fidelity. Arrival of Pol II at the 3’ cleavage site usually correlated with increased polyadenylated mRNA; however, for Nfil3 and probably Gprc5a expression was delayed and accompanied by apparent pre-mRNA degradation. Intragenic pausing not associated with polyadenylation was also found to regulate and delay Gprc5a expression. Temporal analysis of Nr4a3, Dusp5 and Nfil3 shows that transcription of native IEG genes can proceed at velocities of 3.5 to 4 kilobases/min immediately after activation. Of note, all of the genes studied here also used increased Pol II recruitment as an important regulator of expression. Nevertheless, the generality of co-transcriptional regulation during IEG activation suggests temporal and integrated analysis will often be necessary to distinguish causative from potential rate limiting mechanisms.
Collapse
Affiliation(s)
- Daniel P. Morris
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lawrence D. Longo
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California, United States of America
| | - Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Debra A. Schwinn
- Department of Anesthesiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Gregory A. Michelotti
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
46
|
Cotecchia S, Del Vescovo CD, Colella M, Caso S, Diviani D. The alpha1-adrenergic receptors in cardiac hypertrophy: signaling mechanisms and functional implications. Cell Signal 2015; 27:1984-93. [PMID: 26169957 DOI: 10.1016/j.cellsig.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/05/2023]
Abstract
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy.
| | - Cosmo Damiano Del Vescovo
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Matilde Colella
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Stefania Caso
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy; Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Dario Diviani
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| |
Collapse
|
47
|
Cowley PM, Wang G, Chang AN, Makwana O, Swigart PM, Lovett DH, Stull JT, Simpson PC, Baker AJ. The α1A-adrenergic receptor subtype mediates increased contraction of failing right ventricular myocardium. Am J Physiol Heart Circ Physiol 2015; 309:H888-96. [PMID: 26116709 DOI: 10.1152/ajpheart.00042.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/24/2015] [Indexed: 12/23/2022]
Abstract
Dysfunction of the right ventricle (RV) is closely related to prognosis for patients with RV failure. Therefore, strategies to improve failing RV function are significant. In a mouse RV failure model, we previously reported that α1-adrenergic receptor (α1-AR) inotropic responses are increased. The present study determined the roles of both predominant cardiac α1-AR subtypes (α1A and α1B) in upregulated inotropy in failing RV. We used the mouse model of bleomycin-induced pulmonary fibrosis, pulmonary hypertension, and RV failure. We assessed the myocardial contractile response in vitro to stimulation of the α1A-subtype (using α1A-subtype-selective agonist A61603) and α1B-subtype [using α1A-subtype knockout mice and nonsubtype selective α1-AR agonist phenylephrine (PE)]. In wild-type nonfailing RV, a negative inotropic effect of α1-AR stimulation with PE (force decreased ≈50%) was switched to a positive inotropic effect (PIE) with bleomycin-induced RV injury. Upregulated inotropy in failing RV occurred with α1A-subtype stimulation (force increased ≈200%), but not with α1B-subtype stimulation (force decreased ≈50%). Upregulated inotropy mediated by the α1A-subtype involved increased activator Ca(2+) transients and increased phosphorylation of myosin regulatory light chain (a mediator of increased myofilament Ca(2+) sensitivity). In failing RV, the PIE elicited by the α1A-subtype was appreciably less when the α1A-subtype was stimulated in combination with the α1B-subtype, suggesting functional antagonism between α1A- and α1B-subtypes. In conclusion, upregulation of α1-AR inotropy in failing RV myocardium requires the α1A-subtype and is opposed by the α1B-subtype. The α1A subtype might be a therapeutic target to improve the function of the failing RV.
Collapse
Affiliation(s)
- Patrick M Cowley
- Veterans Affairs Medical Center, San Francisco, and Department of Medicine, University California San Francisco, San Francisco, California; and
| | - Guanying Wang
- Veterans Affairs Medical Center, San Francisco, and Department of Medicine, University California San Francisco, San Francisco, California; and
| | - Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Om Makwana
- Veterans Affairs Medical Center, San Francisco, and Department of Medicine, University California San Francisco, San Francisco, California; and
| | - Philip M Swigart
- Veterans Affairs Medical Center, San Francisco, and Department of Medicine, University California San Francisco, San Francisco, California; and
| | - David H Lovett
- Veterans Affairs Medical Center, San Francisco, and Department of Medicine, University California San Francisco, San Francisco, California; and
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Paul C Simpson
- Veterans Affairs Medical Center, San Francisco, and Department of Medicine, University California San Francisco, San Francisco, California; and
| | - Anthony J Baker
- Veterans Affairs Medical Center, San Francisco, and Department of Medicine, University California San Francisco, San Francisco, California; and
| |
Collapse
|
48
|
Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 2014; 63:291-301. [PMID: 24145181 DOI: 10.1097/fjc.0000000000000032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.
Collapse
|
49
|
Wu SC, Dahl EF, Wright CD, Cypher AL, Healy CL, O'Connell TD. Nuclear localization of a1A-adrenergic receptors is required for signaling in cardiac myocytes: an “inside-out” a1-AR signaling pathway. J Am Heart Assoc 2014; 3:e000145. [PMID: 24772522 PMCID: PMC4187477 DOI: 10.1161/jaha.113.000145] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Recent studies indicate that α1‐adrenergic receptors (α1‐ARs) are cardioprotective by preventing cardiac myocyte death and augmenting contractility in heart failure. Although G‐protein‐coupled receptors are assumed to localize to and signal at the plasma membrane, we previously demonstrated that endogenous α1‐ARs localize to the nuclei in adult cardiac myocytes. However, the functional consequence of this nuclear localization remains unclear. Here, we attempted to reconcile nuclear localization of α1‐ARs with their physiologic function by examining α1‐AR‐induced contractility in adult cardiac myocytes. Methods and Results By measuring shortening in unloaded, cultured adult cardiac myocytes, we found that the α1A‐subtype regulated contractility through phosphorylation of cardiac troponin I (cTnI) at the protein kinase C (PKC) site, threonine 144. Reconstitution of an α1A‐subtype nuclear localization mutant in cardiac myocytes lacking α1‐ARs failed to rescue nuclear α1A‐mediated phosphorylation of cTnI and myocyte contractility. Leptomycin B, the nuclear export inhibitor, also blocked α1A‐mediated phosphorylation of cTnI. These data indicate that α1‐AR signaling originates in the nucleus. Consistent with these observations, we localized the α1A‐subtype to the inner nuclear membrane, identified PKCα, δ, and ε in the nucleus, and found that α1‐ARs activate PKCδ in nuclei isolated from adult cardiac myocytes. Finally, we found that a PKCδ nuclear localization mutant blunted α1‐induced phosphorylation of cTnI. Conclusions Together, our data identify a novel, “inside‐out” nuclear α1A‐subtype/PKCδ/cTnI‐signaling pathway that regulates contractile function in adult cardiac myocytes. Importantly, these data help resolve the discrepancy between nuclear localization of α1‐ARs and α1‐AR‐mediated physiologic function.
Collapse
Affiliation(s)
- Steven C. Wu
- Department of Integrative Biology and Physiology, The University of Minnesota, Minneapolis, MN (S.C.W., E.F.D., C.D.W., A.L.C., C.L.H., T.D.C.)
| | - Erika F. Dahl
- Department of Integrative Biology and Physiology, The University of Minnesota, Minneapolis, MN (S.C.W., E.F.D., C.D.W., A.L.C., C.L.H., T.D.C.)
| | - Casey D. Wright
- Department of Integrative Biology and Physiology, The University of Minnesota, Minneapolis, MN (S.C.W., E.F.D., C.D.W., A.L.C., C.L.H., T.D.C.)
- Novartis Animal Health US, Inc, 1447140th St, Larchwood, IA 51241
| | - Andrew L. Cypher
- Department of Integrative Biology and Physiology, The University of Minnesota, Minneapolis, MN (S.C.W., E.F.D., C.D.W., A.L.C., C.L.H., T.D.C.)
- Novartis Animal Health US, Inc, 1447140th St, Larchwood, IA 51241
| | - Chastity L. Healy
- Department of Integrative Biology and Physiology, The University of Minnesota, Minneapolis, MN (S.C.W., E.F.D., C.D.W., A.L.C., C.L.H., T.D.C.)
| | - Timothy D. O'Connell
- Department of Integrative Biology and Physiology, The University of Minnesota, Minneapolis, MN (S.C.W., E.F.D., C.D.W., A.L.C., C.L.H., T.D.C.)
| |
Collapse
|
50
|
Földes G, Matsa E, Kriston-Vizi J, Leja T, Amisten S, Kolker L, Kodagoda T, Dolatshad NF, Mioulane M, Vauchez K, Arányi T, Ketteler R, Schneider MD, Denning C, Harding SE. Aberrant α-adrenergic hypertrophic response in cardiomyocytes from human induced pluripotent cells. Stem Cell Reports 2014; 3:905-14. [PMID: 25418732 PMCID: PMC4235744 DOI: 10.1016/j.stemcr.2014.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022] Open
Abstract
Cardiomyocytes from human embryonic stem cells (hESC-CMs) and induced pluripotent stem cells (hiPSC-CMs) represent new models for drug discovery. Although hypertrophy is a high-priority target, we found that hiPSC-CMs were systematically unresponsive to hypertrophic signals such as the α-adrenoceptor (αAR) agonist phenylephrine (PE) compared to hESC-CMs. We investigated signaling at multiple levels to understand the underlying mechanism of this differential responsiveness. The expression of the normal α1AR gene, ADRA1A, was reversibly silenced during differentiation, accompanied by ADRA1B upregulation in either cell type. ADRA1B signaling was intact in hESC-CMs, but not in hiPSC-CMs. We observed an increased tonic activity of inhibitory kinase pathways in hiPSC-CMs, and inhibition of antihypertrophic kinases revealed hypertrophic increases. There is tonic suppression of cell growth in hiPSC-CMs, but not hESC-CMs, limiting their use in investigation of hypertrophic signaling. These data raise questions regarding the hiPSC-CM as a valid model for certain aspects of cardiac disease.
Collapse
Affiliation(s)
- Gabor Földes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; Heart and Vascular Center, Semmelweis University, Budapest H1122, Hungary.
| | - Elena Matsa
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - János Kriston-Vizi
- Bioinformatics Image Core, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Thomas Leja
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Stefan Amisten
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Oxford University, The Churchill Hospital, Oxford OX3 7LJ, UK
| | - Ljudmila Kolker
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; National Institute for Biological Standards and Controls, Cell Biology and Imaging, Hertfordshire EN6 3QG, UK
| | - Thusharika Kodagoda
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Nazanin F Dolatshad
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Maxime Mioulane
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Karine Vauchez
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Tamás Arányi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest H1113, Hungary
| | - Robin Ketteler
- Bioinformatics Image Core, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| |
Collapse
|