1
|
Huang Y, Li B, Gui Z, Gao E, Yuan Y, Yang J, Hekmatyar K, Mishra F, Chan P, Liu Z. Extracellular PKM2 Preserves Cardiomyocytes and Reduces Cardiac Fibrosis During Myocardial Infarction. Int J Mol Sci 2024; 25:13246. [PMID: 39769010 PMCID: PMC11675365 DOI: 10.3390/ijms252413246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Substantial loss of cardiomyocytes during heart attacks and onset of other cardiovascular diseases is a major cause of mortality. Preservation of cardiomyocytes during cardiac injury would be the most effective strategy to manage these diseases in clinic. However, there is no effective treatment strategy that is able to prevent cardiomyocyte loss. We demonstrate here that the systemic administration of a recombinant PKM2 mutant (G415R) preserves cardiomyocytes and reduces cardiac fibrosis during myocardial infarction. G415R preserves cardiomyocytes by protecting the cardiomyocytes from dying and by promoting cardiomyocyte proliferation. Preservation of cardiomyocytes by extracellular PKM2 (EcPKM2) reduces cardiac fibrosis because of the decreased activation of cardiac fibroblasts. Our experiments show that EcPKM2 (G415R) exerts its action by interacting with integrin avb3 on cardiomyocytes. EcPKM2(G415R) activates the integrin-FAK-PI3K signaling axis, which subsequently suppresses PTEN expression and consequently regulates cardiomyocyte apoptosis resistance and proliferation under hypoxia and oxidative stress conditions. Our studies uncover an important cardiomyocyte protection mechanism. More importantly, the activity/action of EcPKM2 (G415R) in preserving cardiomyocyte suggesting a possible therapeutic strategy and target for the treatment of heart attacks and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yang Huang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.H.); (B.L.); (Y.Y.); (F.M.); (P.C.)
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.H.); (B.L.); (Y.Y.); (F.M.); (P.C.)
| | - Zongxiang Gui
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (Z.G.); (J.Y.); (K.H.)
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.H.); (B.L.); (Y.Y.); (F.M.); (P.C.)
| | - Jenny Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (Z.G.); (J.Y.); (K.H.)
| | - Khan Hekmatyar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (Z.G.); (J.Y.); (K.H.)
| | - Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.H.); (B.L.); (Y.Y.); (F.M.); (P.C.)
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.H.); (B.L.); (Y.Y.); (F.M.); (P.C.)
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.H.); (B.L.); (Y.Y.); (F.M.); (P.C.)
| |
Collapse
|
2
|
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36:e23047. [PMID: 35297126 DOI: 10.1002/jbt.23047] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Sirtuins (SIRT1-7) are distinct histone deacetylases (HDACs) whose activity is determined by cellular metabolic status andnicotinamide adenine dinucleotide (NAD+ ) levels. HDACs of class III are the members of the SIRT's protein family. SIRTs are the enzymes that modulate mitochondrial activity and energy metabolism. SIRTs have been linked to a number of clinical and physiological operations, such as energy responses to low-calorie availability, aging, stress resistance, inflammation, and apoptosis. Mammalian SIRT2 orthologs have been identified as SIRT1-7 that are found in several subcellular sections, including the cytoplasm (SIRT1, 2), mitochondrial matrix (SIRT3, 4, 5), and the core (SIRT1, 2, 6, 7). For their deacetylase or ADP-ribosyl transferase action, all SIRTs require NAD+ and are linked to cellular energy levels. Evolutionarily, SIRT1 is related to yeast's SIRT2 as well as received primary attention in the circulatory system. An endogenous protein, SIRT1 is involved in the development of heart failure and plays a key role in cell death and survival. SIRT2 downregulation protects against ischemic-reperfusion damage. Increase in human longevity is caused by an increase in SIRT3 expression. Cardiomyocytes are also protected by SIRT3 from oxidative damage and aging, as well as suppressing cardiac hypertrophy. SIRT4 and SIRT5 perform their roles in the heart. SIRT6 has also been linked to a reduction in heart hypertrophy. SIRT7 is known to be involved in the regulation of stress responses and apoptosis in the heart.
Collapse
Affiliation(s)
- Ammara Afzaal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
3
|
Jagielska B, Ozdowska P, Gepner K, Kubala S, Siedlecki JA, Sarnowski TJ, Sarnowska E. Cardiotoxicity danger in immunotherapy. IUBMB Life 2020; 72:1160-1167. [PMID: 32359132 DOI: 10.1002/iub.2299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) is currently broadly used in the treatment of different types of cancer. The treatment targeting programmed cell death protein 1/programmed death-ligand 1 axis is already approved by Food and Drug Administration for numerous cancers. These kinds of therapy brought spectacular results in the treatment of non-small cell lung cancer where systemic therapy was ineffective. However, a wide range of applied therapies based on ICIs in the clinic have led to unexpected side effects, such as severe cardiotoxicity. It needs to be underlined that the molecular mechanism of myocarditis in response to ICIs is still not fully understood. Lack of sufficient knowledge, especially concerning the kind of risk factors increasing probability of myocarditis, poses currently a large clinical problem. Continuous cardiac monitoring of patients who undergo ICI treatment presents another problem as it is cost-ineffective for the healthcare system. Herein, we highlight the risks of use of anticancer therapy based on ICIs. We also stress that detailed monitoring of any event of cardiotoxicity following ICIs treatment should be carefully investigated and registered to give a global overview of the frequency of myocarditis occurrence. Moreover, we propose that the extension of molecular and systemic knowledge of etiology of myocarditis as a side effect, including the role of protein kinases, will be highly beneficial for the medical field. Last but not least, better understanding of mechanisms of cardiotoxicity induction will improve the safety of cancer patients and will help clinicians in prediction of unexpected side effect occurrence.
Collapse
Affiliation(s)
- Beata Jagielska
- Department of Oncology and Internal Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Patrycja Ozdowska
- Department of Oncology and Internal Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Gepner
- Department of Oncology and Internal Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Szymon Kubala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz A Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
4
|
Dalal S, Connelly B, Singh M, Singh K. NF2 signaling pathway plays a pro-apoptotic role in β-adrenergic receptor stimulated cardiac myocyte apoptosis. PLoS One 2018; 13:e0196626. [PMID: 29709009 PMCID: PMC5927447 DOI: 10.1371/journal.pone.0196626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022] Open
Abstract
β-adrenergic receptor (β-AR) stimulation induces cardiac myocyte apoptosis in vitro and in vivo. Neurofibromin 2 (NF2) is a member of the ezrin/radixin/moesin (ERM) family of proteins. Post-translational modifications such as phosphorylation and sumoylation affect NF2 activity, subcellular localization and function. Here, we tested the hypothesis that β-AR stimulation induces post-translational modifications of NF2, and NF2 plays a pro-apoptotic role in β-AR-stimulated myocyte apoptosis.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Barbara Connelly
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, United States of America
- James H Quillen Veterans Affairs Medical Center, Mountain Home, TN, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tan PM, Buchholz KS, Omens JH, McCulloch AD, Saucerman JJ. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling. PLoS Comput Biol 2017; 13:e1005854. [PMID: 29131824 PMCID: PMC5703578 DOI: 10.1371/journal.pcbi.1005854] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/27/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Mechanical strain is a potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. Here, we constructed and validated a predictive computational model of the cardiac mechano-signaling network in order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that while these regulators maintain mostly independent control over distinct groups of transcription factors, synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene transcription and hypertrophy. We also identify a PKG-dependent mechanism by which valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a network-wide combinatorial search. Common stresses such as high blood pressure or heart attack can lead to heart failure, which afflicts over 25 million people worldwide. These stresses cause cardiomyocytes to grow and remodel, which may initially be beneficial but ultimately worsen heart function. Current heart failure drugs such as beta-blockers counteract biochemical cues prompting cardiomyocyte growth, yet mechanical cues to cardiomyocytes such as stretch are just as important in driving cardiac dysfunction. However, no pharmacological treatments have yet been approved that specifically target mechano-signaling, in part because it is not clear how cardiomyocytes integrate signals from multiple mechano-responsive sensors and pathways into their decision to grow. To address this challenge, we built a systems-level computational model that represents 125 interactions between 94 stretch-responsive signaling molecules. The model correctly predicts 134 of 172 previous independent experimental observations, and identifies the key regulators of stretch-induced cardiomyocyte remodeling. Although cardiomyocytes have many mechano-signaling pathways that function largely independently, we find that cooperation between them is necessary to cause growth and remodeling. We identify mechanisms by which a recently approved heart failure drug pair affects mechano-signaling, and we further predict additional pairs of drug targets that could be used to help reverse heart failure.
Collapse
Affiliation(s)
- Philip M. Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kyle S. Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey H. Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Andrew D. McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ellison-Hughes GM, Madeddu P. Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. Pharmacol Ther 2017; 171:1-12. [PMID: 27916652 PMCID: PMC5636619 DOI: 10.1016/j.pharmthera.2016.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischaemic diseases remain a major cause of morbidity and mortality despite continuous advancements in medical and interventional treatments. Moreover, available drugs reduce symptoms associated with tissue ischaemia, without providing a definitive repair. Cardiovascular regenerative medicine is an expanding field of research that aims to improve the treatment of ischaemic disorders through restorative methods, such as gene therapy, stem cell therapy, and tissue engineering. Stem cell transplantation has salutary effects through direct and indirect actions, the latter being attributable to growth factors and cytokines released by stem cells and influencing the endogenous mechanisms of repair. Autologous stem cell therapies offer less scope for intellectual property coverage and have limited scalability. On the other hand, off-the-shelf cell products and derivatives from the stem cell secretome have a greater potential for large-scale distribution, thus enticing commercial investors and reciprocally producing more significant medical and social benefits. This review focuses on the paracrine properties of cardiac stem cells and pericytes, two stem cell populations that are increasingly attracting the attention of regenerative medicine operators. It is likely that new cardiovascular drugs are introduced in the next future by applying different approaches based on the refinement of the stem cell secretome.
Collapse
Affiliation(s)
- Georgina M Ellison-Hughes
- Centre of Human & Aerospace Physiological Sciences, Centre for Stem Cells and Regenerative Medicine, Faculty of Medicine & Life Sciences, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - Paolo Madeddu
- Chair Experimental Cardiovascular Medicine, Bristol Heart Institute, School of Clinical Sciences University of Bristol Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
7
|
Abstract
Heart failure remains a frequent cause of death and is the leading reason for hospitalization in Germany although therapeutic options have significantly increased over the past years particularly in heart failure with reduced ejection fraction. Clinical symptoms are usually preceded by cardiac remodeling, which was originally defined only by left ventricular dilatation and depressed function but is also associated with typical cellular and molecular processes. Healing after acute myocardial infarction is characterized by inflammation, cellular migration and scar formation. Cardiac remodeling is accompanied by adaptive changes of the peripheral cardiovascular system. Since prevention is the primary goal, rapid diagnosis and treatment of myocardial infarction are mandatory. Early reperfusion therapy limits infarct size and enables the best possible preservation of left ventricular function. Standard pharmacotherapy includes angiotensin-converting enzyme inhibitors, angiotensin-1-receptor blockers and beta blockers. In addition, mineralocorticoid receptor antagonists have proven beneficial. Compounds specifically targeting infarct healing processes are currently under development.
Collapse
|
8
|
Sager HB, Hulsmans M, Lavine KJ, Moreira MB, Heidt T, Courties G, Sun Y, Iwamoto Y, Tricot B, Khan OF, Dahlman JE, Borodovsky A, Fitzgerald K, Anderson DG, Weissleder R, Libby P, Swirski FK, Nahrendorf M. Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circ Res 2016; 119:853-64. [PMID: 27444755 DOI: 10.1161/circresaha.116.309001] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE Macrophages reside in the healthy myocardium, participate in ischemic heart disease, and modulate myocardial infarction (MI) healing. Their origin and roles in post-MI remodeling of nonischemic remote myocardium, however, remain unclear. OBJECTIVE This study investigated the number, origin, phenotype, and function of remote cardiac macrophages residing in the nonischemic myocardium in mice with chronic heart failure after coronary ligation. METHODS AND RESULTS Eight weeks post MI, fate mapping and flow cytometry revealed that a 2.9-fold increase in remote macrophages results from both increased local macrophage proliferation and monocyte recruitment. Heart failure produced by extensive MI, through activation of the sympathetic nervous system, expanded medullary and extramedullary hematopoiesis. Circulating Ly6C(high) monocytes rose from 64±5 to 108±9 per microliter of blood (P<0.05). Cardiac monocyte recruitment declined in Ccr2(-/-) mice, reducing macrophage numbers in the failing myocardium. Mechanical strain of primary murine and human macrophage cultures promoted cell cycle entry, suggesting that the increased wall tension in post-MI heart failure stimulates local macrophage proliferation. Strained cells activated the mitogen-activated protein kinase pathway, whereas specific inhibitors of this pathway reduced macrophage proliferation in strained cell cultures and in the failing myocardium (P<0.05). Steady-state cardiac macrophages, monocyte-derived macrophages, and locally sourced macrophages isolated from failing myocardium expressed different genes in a pattern distinct from the M1/M2 macrophage polarization paradigm. In vivo silencing of endothelial cell adhesion molecules curbed post-MI monocyte recruitment to the remote myocardium and preserved ejection fraction (27.4±2.4 versus 19.1±2%; P<0.05). CONCLUSIONS Myocardial failure is influenced by an altered myeloid cell repertoire.
Collapse
Affiliation(s)
- Hendrik B Sager
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.).
| | - Maarten Hulsmans
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Kory J Lavine
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Marina B Moreira
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Timo Heidt
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Gabriel Courties
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Yuan Sun
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Yoshiko Iwamoto
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Benoit Tricot
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Omar F Khan
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - James E Dahlman
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Anna Borodovsky
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Kevin Fitzgerald
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Daniel G Anderson
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Ralph Weissleder
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Peter Libby
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Filip K Swirski
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Department of Imaging (H.B.S., M.H., T.H., G.C., Y.S., Y.I., B.T., R.W., F.K.S., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MS (K.J.L.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (M.B.M., P.L.); Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (T.H.); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (O.F.K., J.E.D., D.G.A.); David H. Koch Institute for Integrative Cancer Research (O.F.K., J.E.D., D.G.A.) and Department of Chemical Engineering (D.G.A.), Massachusetts Institute of Technology, Cambridge; Alnylam Pharmaceuticals, Cambridge, MA (A.B., K.F.); and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.).
| |
Collapse
|
9
|
Chery J, Wong J, Huang S, Wang S, Si MS. Regenerative Medicine Strategies for Hypoplastic Left Heart Syndrome. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:459-469. [PMID: 27245633 DOI: 10.1089/ten.teb.2016.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoplastic left heart syndrome (HLHS), the most severe and common form of single ventricle congenital heart lesions, is characterized by hypoplasia of the mitral valve, left ventricle (LV), and all LV outflow structures. While advances in surgical technique and medical management have allowed survival into adulthood, HLHS patients have severe morbidities, decreased quality of life, and a shortened lifespan. The single right ventricle (RV) is especially prone to early failure because of its vulnerability to chronic pressure overload, a mode of failure distinct from ischemic cardiomyopathy encountered in acquired heart disease. As these patients enter early adulthood, an emerging epidemic of RV failure has become evident. Regenerative medicine strategies may help preserve or boost RV function in children and adults with HLHS by promoting angiogenesis and mitigating oxidative stress. Rescuing a RV in decompensated failure may also require the creation of new, functional myocardium. Although considerable hurdles remain before their clinical translation, stem cell therapy and cardiac tissue engineering possess revolutionary potential in the treatment of pediatric and adult patients with HLHS who currently have very limited long-term treatment options.
Collapse
Affiliation(s)
- Josue Chery
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Joshua Wong
- 2 Department of Pediatric Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Shan Huang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Shuyun Wang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Ming-Sing Si
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
10
|
Jose Corbalan J, Vatner DE, Vatner SF. Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 2016; 111:31. [PMID: 27043720 DOI: 10.1007/s00395-016-0549-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Since the discovery of a novel mechanism of cell death that differs from traditional necrosis, i.e., apoptosis, there have been numerous studies concluding that increased apoptosis augments myocardial infarction and heart failure and that limiting apoptosis protects the heart. Importantly, the vast majority of cells in the heart are non-myocytes with only roughly 30 % myocytes, yet almost the entire field studying apoptosis in the heart has disregarded non-myocyte apoptosis, e.g., only 4.7 % of 423 studies on myocardial apoptosis in the past 3 years quantified non-myocyte apoptosis. Accordingly, we reviewed the history of apoptosis in the heart focusing first on myocyte apoptosis, followed by the history of non-myocyte apoptosis in myocardial infarction and heart failure. Apoptosis of several of the major non-myocyte cell types in the heart (cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, macrophages and leukocytes) may actually be responsible for affecting the severity of myocardial infarction and heart failure. In summary, even though it is now known that the majority of apoptosis in the heart occurs in non-myocytes, very little work has been done to elucidate the mechanisms by which non-myocyte apoptosis might be responsible for the adverse effects of apoptosis in myocardial infarction and heart failure. The goal of this review is to provide an impetus for future work in this field on non-myocyte apoptosis that will be required for a better understanding of the role of apoptosis in the heart.
Collapse
Affiliation(s)
- J Jose Corbalan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
11
|
Chang YM, Chang HH, Kuo WW, Lin HJ, Yeh YL, Padma Viswanadha V, Tsai CC, Chen RJ, Chang HN, Huang CY. Anti-Apoptotic and Pro-Survival Effect of Alpinate Oxyphyllae Fructus (AOF) in a d-Galactose-Induced Aging Heart. Int J Mol Sci 2016; 17:466. [PMID: 27043531 PMCID: PMC4848922 DOI: 10.3390/ijms17040466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Aging, a natural biological/physiological phenomenon, is accelerated by reactive oxygen species (ROS) accumulation and identified by a progressive decrease in physiological function. Several studies have shown a positive relationship between aging and chronic heart failure (HF). Cardiac apoptosis was found in age-related diseases. We used a traditional Chinese medicine, Alpinate Oxyphyllae Fructus (AOF), to evaluate its effect on cardiac anti-apoptosis and pro-survival. Male eight-week-old Sprague–Dawley (SD) rats were segregated into five groups: normal control group (NC), d-Galactose-Induced aging group (Aging), and AOF of 50 (AL (AOF low)), 100 (AM (AOF medium)), 150 (AH (AOF high)) mg/kg/day. After eight weeks, hearts were measured by an Hematoxylin–Eosin (H&E) stain, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-assays and Western blotting. The experimental results show that the cardiomyocyte apoptotic pathway protein expression increased in the d-Galactose-Induced aging groups, with dose-dependent inhibition in the AOF treatment group (AL, AM, and AH). Moreover, the expression of the pro-survival p-Akt (protein kinase B (Akt)), Bcl-2 (B-cell lymphoma 2), anti-apoptotic protein (Bcl-xL) protein decreased significantly in the d-Galactose-induced aging group, with increased performance in the AOF treatment group with levels of p-IGFIR and p-PI3K (Phosphatidylinositol-3′ kinase (PI3K)) to increase by dosage and compensatory performance. On the other hand, the protein of the Sirtuin 1 (SIRT1) pathway expression decreased in the aging groups and showed improvement in the AOF treatment group. Our results suggest that AOF strongly works against ROS-induced aging heart problems.
Collapse
Affiliation(s)
- Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
- 1PT Biotechnology Co., Ltd., Taichung 433, Taiwan.
| | - Hen-Hong Chang
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan.
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40447, Taiwan.
| | - Hung-Jen Lin
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Lan Yeh
- Department of pathology, Changhua Christian Hospital, Changhua 50506, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35665, Taiwan.
| | | | - Chin-Chuan Tsai
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| | - Hsin-Nung Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
12
|
Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol 2015; 309:H1375-89. [PMID: 26232232 DOI: 10.1152/ajpheart.00053.2015] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022]
Abstract
Modification of histones is one of the important mechanisms of epigenetics, in which genetic control is determined by factors other than an individual's DNA sequence. Sirtuin family proteins, which are class III histone deacetylases, were originally identified as gene silencers that affect the mating type of yeast, leading to the name "silent mating-type information regulation 2" (SIR2). They are characterized by their requirement of nicotinamide adenine dinucleotide for their enzyme activity, unlike other classes of histone deacetylases. Sirtuins have been traditionally linked to longevity and the beneficial effects of calorie restriction and DNA damage repair. Recently, sirtuins have been shown to be involved in a wide range of physiological and pathological processes, including aging, energy responses to low calorie availability, and stress resistance, as well as apoptosis and inflammation. Sirtuins can also regulate mitochondrial biogenesis and circadian clocks. Seven sirtuin family proteins (Sirt1-7) have been identified as mammalian SIR2 orthologs, localized in different subcellular compartments, namely, the cytoplasm (Sirt1, 2), the mitochondria (Sirt3, 4, 5), and the nucleus (Sirt1, 2, 6, 7). Sirt1 is evolutionarily close to yeast SIR2 and has been the most intensively investigated in the cardiovascular system. Endogenous Sirt1 plays a pivotal role in mediating the cell death/survival process and has been implicated in the pathogenesis of cardiovascular disease. Downregulation of Sirt2 is protective against ischemic-reperfusion injury. Increased Sirt3 expression has been shown to correlate with longevity in humans. In addition, Sirt3 protects cardiomyocytes from aging and oxidative stress and suppresses cardiac hypertrophy. Sirt6 has also recently been demonstrated to attenuate cardiac hypertrophy, and Sirt7 is known to regulate apoptosis and stress responses in the heart. On the other hand, the roles of Sirt4 and Sirt5 in the heart remain largely uncharacterized.
Collapse
Affiliation(s)
- Shouji Matsushima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; and Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; and
| |
Collapse
|
13
|
Milasinovic D, Mohl W. Contemporary perspective on endogenous myocardial regeneration. World J Stem Cells 2015; 7:793-805. [PMID: 26131310 PMCID: PMC4478626 DOI: 10.4252/wjsc.v7.i5.793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/01/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Considering the complex nature of the adult heart, it is no wonder that innate regenerative processes, while maintaining adequate cardiac function, fall short in myocardial jeopardy. In spite of these enchaining limitations, cardiac rejuvenation occurs as well as restricted regeneration. In this review, the background as well as potential mechanisms of endogenous myocardial regeneration are summarized. We present and analyze the available evidence in three subsequent steps. First, we examine the experimental research data that provide insights into the mechanisms and origins of the replicating cardiac myocytes, including cell populations referred to as cardiac progenitor cells (i.e., c-kit+ cells). Second, we describe the role of clinical settings such as acute or chronic myocardial ischemia, as initiators of pathways of endogenous myocardial regeneration. Third, the hitherto conducted clinical studies that examined different approaches of initiating endogenous myocardial regeneration in failing human hearts are analyzed. In conclusion, we present the evidence in support of the notion that regaining cardiac function beyond cellular replacement of dysfunctional myocardium via initiation of innate regenerative pathways could create a new perspective and a paradigm change in heart failure therapeutics. Reinitiating cardiac morphogenesis by reintroducing developmental pathways in the adult failing heart might provide a feasible way of tissue regeneration. Based on our hypothesis “embryonic recall”, we present first supporting evidence on regenerative impulses in the myocardium, as induced by developmental processes.
Collapse
|
14
|
Hsieh YL, Tsai YL, Shibu MA, Su CC, Chung LC, Pai P, Kuo CH, Yeh YL, Viswanadha VP, Huang CY. ZAK induces cardiomyocyte hypertrophy and brain natriuretic peptide expression via p38/JNK signaling and GATA4/c-Jun transcriptional factor activation. Mol Cell Biochem 2015; 405:1-9. [PMID: 25869677 DOI: 10.1007/s11010-015-2389-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/26/2015] [Indexed: 01/19/2023]
Abstract
Cardiomyocyte hypertrophy is an adaptive response of heart to various stress conditions. During the period of stress accumulation, transition from physiological hypertrophy to pathological hypertrophy results in the promotion of heart failure. Our previous studies found that ZAK, a sterile alpha motif and leucine zipper containing kinase, was highly expressed in infarcted human hearts and demonstrated that overexpression of ZAK induced cardiac hypertrophy. This study evaluates, cellular events associated with the expression of two doxycycline (Dox) inducible Tet-on ZAK expression systems, a Tet-on ZAK WT (wild-type), and a Tet-on ZAK DN (mutant, Dominant-negative form) in H9c2 myoblast cells; Tet-on ZAK WT was found to increase cell size and hypertrophic marker BNP in a dose-dependent manner. To ascertain the mechanism of ZAK-mediated hypertrophy, expression analysis with various inhibitors of the related upstream and downstream proteins was performed. Tet-on ZAK WT expression triggered the p38 and JNK pathway and also activated the expression and nuclear translocation of p-GATA4 and p-c-Jun transcription factors, without the involvement of p-ERK or NFATc3. However, Tet-on ZAK DN showed no effect on the p38 and JNK signaling cascade. The results showed that the inhibitors of JNK1/2 and p38 significantly suppressed ZAK-induced BNP expression. The results show the role of ZAK and/or the ZAK downstream events such as JNK and p38 phosphorylation, c-Jun, and GATA-4 nuclear translocation in cardiac hypertrophy. ZAK and/or the ZAK downstream p38, and JNK pathway could therefore be potential targets to ameliorate cardiac hypertrophy symptoms in ZAK-overexpressed patients.
Collapse
Affiliation(s)
- You-Liang Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Very young mammals have an impressive cardiac regeneration capacity. In contrast, cardiac regeneration is very limited in adult humans. The hearts of young children have a higher regenerative capacity compared with adults, as, for example, seen after surgical correction of an anomalous left coronary artery arising from the pulmonary artery or in children with univentricular hearts, who present enormous morphological changes after volume unloading. In addition, the enormous regenerative potential of growing children's hearts is reflected in the spontaneous courses of children with severely deteriorated cardiac function (e.g., patients with dilated cardiomyopathy). The extent of this regenerative capacity and its time dependency remain to be elucidated in the future and should be exploited to improve the treatment of children with severe heart insufficiency.
Collapse
Affiliation(s)
- Stefan Rupp
- Pediatric Heart Center, University of Giessen and Marburg, Feulgenstrasse 12, 35390, Giessen, Germany,
| | | |
Collapse
|
16
|
Abstract
Alcoholic cardiomyopathy (ACM) is a specific heart muscle disease found in individuals with a history of long-term heavy alcohol consumption. ACM is associated with a number of adverse histological, cellular, and structural changes within the myocardium. Several mechanisms are implicated in mediating the adverse effects of ethanol, including the generation of oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, derangements in fatty acid metabolism and transport, and accelerated protein catabolism. In this review, we discuss the evidence for such mechanisms and present the potential importance of drinking patterns, genetic susceptibility, nutritional factors, race, and sex. The purpose of this review is to provide a mechanistic paradigm for future research in the area of ACM.
Collapse
Affiliation(s)
- Mariann R. Piano
- Professor and Department Head, Department of Biobehavioral Health Science (MC 807), University of Illinois at Chicago, 845 S. Damen Ave., Chicago, IL 60612, 312-413-0132 (TEL), 312-996-4979,
| | - Shane A. Phillips
- Associate Professor and Associate Department Head, Department of Physical Therapy, University of Illinois at Chicago, 1919 W. Taylor St. (MC 898), Chicago, IL 60612, 312-355-0277 (TEL),
| |
Collapse
|
17
|
Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, Shih CC, Hsu CP. Downregulation of Sirt1 as aging change in advanced heart failure. J Biomed Sci 2014; 21:57. [PMID: 24913149 PMCID: PMC4113120 DOI: 10.1186/1423-0127-21-57] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background In congestive heart failure the balance between cell death and cell survival in cardiomyocytes is compromised. Sirtuin 1 (Sirt1) activates cell survival machinery and has been shown to be protective against ischemia/reperfusion injury in murine heart. The role of Sirt1 in heart failure, especially in human hearts is not clear. Results The expression of Sirt1 and other (associated) downstream molecules in human cardiomyocytes from patients with advanced heart failure was examined. Sirt1 was down-regulated (54.92% ± 7.80% in advanced heart failure samples compared with healthy control cardiomyocytes). The modulation of molecules involved in cardiomyocyte survival and death in advanced heart failure were also examined. The expression of Mn-superoxide dismutase and thioredoxin1, as well as an antiapoptotic molecule, Bcl-xL, were all significantly reduced in advanced heart failure cardiomyoctes (0.71 ± 0.02-fold, 0.61 ± 0.05-fold, and 0.53 ± 0.08-fold vs. control, respectively); whereas the expression of proapoptotic molecule Bax was significantly increased (1.62 ± 0.18-fold vs. control). Increased TUNEL-positive number of cardiomyocytes and oxidative stress, confirmed by 8-hydorxydeoxyguanosine staining, were associated with advanced heart failure. The AMPK-Nampt-Sirt1 axis also showed inhibition in advanced heart failure in addition to severely impaired AMPK activation. Increased p53 (acetyl form) and decreased FoxO1 translocation in the nucleus may be the mechanism of down-regulation of antioxidants and up-regulation of proapoptotic molecules due to low expression of Sirt1. Conclusion In advanced heart failure, low Sirt1 expression, like aging change may be a significant contributing factor in the downregulation of antioxidants and upregulation of proapoptotic molecules through the p53, FoxO1, and oxidative stress pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chiao-Po Hsu
- National Yang-Ming University, Institute of Clinical Medicine, School of Medicine, Taipei, Taiwan.
| |
Collapse
|
18
|
Rnd3 haploinsufficient mice are predisposed to hemodynamic stress and develop apoptotic cardiomyopathy with heart failure. Cell Death Dis 2014; 5:e1284. [PMID: 24901055 PMCID: PMC4611712 DOI: 10.1038/cddis.2014.235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 01/12/2023]
Abstract
Rho family guanosine triphosphatase (GTPase) 3 (Rnd3), a member of the small Rho GTPase family, has been suggested to regulate cell actin cytoskeleton dynamics, cell migration, and apoptosis through the Rho kinase-dependent signaling pathway. The biological function of Rnd3 in the heart is unknown. The downregulation of small GTPase Rnd3 transcripts was found in patients with end-stage heart failure. The pathological significance of Rnd3 loss in the transition to heart failure remains unexplored. To investigate the functional consequence of Rnd3 downregulation and the associated molecular mechanism, we generated Rnd3+/− haploinsufficient mice to mimic the downregulation of Rnd3 observed in the failing human heart. Rnd3+/− mice were viable; however, the mice developed heart failure after pressure overload by transverse aortic constriction (TAC). Remarkable apoptosis, increased caspase-3 activity, and elevated Rho kinase activity were detected in the Rnd3+/− haploinsufficient animal hearts. Pharmacological inhibition of Rho kinase by fasudil treatment partially improved Rnd3+/− mouse cardiac functions and attenuated myocardial apoptosis. To determine if Rho-associated coiled-coil kinase 1 (ROCK1) was responsible for Rnd3 deficiency-mediated apoptotic cardiomyopathy, we established a double-knockout mouse line, the Rnd3 haploinsufficient mice with ROCK1-null background (Rnd3+/−/ROCK1−/−). Again, genetic deletion of ROCK1 partially but not completely rescued Rnd3 deficiency-mediated heart failure phenotype. These data suggest that downregulation of Rnd3 correlates with cardiac loss of function as in heart failure patients. Animals with Rnd3 haploinsufficiency are predisposed to hemodynamic stress. Hyperactivation of Rho kinase activity is responsible in part for the apoptotic cardiomyopathy development. Further investigation of ROCK1-independent mechanisms in Rnd3-mediated cardiac remodeling should be the focus for future study.
Collapse
|
19
|
Lerchenmüller C, Rosenzweig A. Mechanisms of exercise-induced cardiac growth. Drug Discov Today 2014; 19:1003-9. [PMID: 24637046 DOI: 10.1016/j.drudis.2014.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/02/2023]
Abstract
Exercise is a well-established intervention for the prevention and treatment of cardiovascular disease. Increase in cardiomyocyte size is likely to be the central mechanism of exercise-induced cardiac growth, but recent research also supports a role for the generation of new cardiomyocytes as a contributor to physiological cardiac growth. Other cardiac cell types also respond to exercise. For example, endothelial cells are important for the regulation of large vessels and expansion of microvasculature in meeting demands of the growing heart. Cardiac fibroblasts are known to generate and respond to important signals from their environment, but their role in exercise is less well defined. Therefore, cardiac growth relies on complex, finely regulated and interdependent signaling pathways as well as cross-talk among cardiac cell types.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anthony Rosenzweig
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Dalal S, Zha Q, Daniels CR, Steagall RJ, Joyner WL, Gadeau AP, Singh M, Singh K. Osteopontin stimulates apoptosis in adult cardiac myocytes via the involvement of CD44 receptors, mitochondrial death pathway, and endoplasmic reticulum stress. Am J Physiol Heart Circ Physiol 2014; 306:H1182-91. [PMID: 24531809 DOI: 10.1152/ajpheart.00954.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increased osteopontin (OPN) expression associates with increased myocyte apoptosis and myocardial dysfunction. The objective of this study was to identify the receptor for OPN and get insight into the mechanism by which OPN induces cardiac myocyte apoptosis. Adult rat ventricular myocytes (ARVMs) and transgenic mice expressing OPN in a myocyte-specific manner were used for in vitro and in vivo studies. Treatment with purified OPN (20 nM) protein or adenoviral-mediated OPN expression induced apoptosis in ARVMs. OPN co-immunoprecipitated with CD44 receptors, not with β1 or β3 integrins. Proximity ligation assay confirmed interaction of OPN with CD44 receptors. Neutralizing anti-CD44 antibodies inhibited OPN-stimulated apoptosis. OPN activated JNKs and increased expression of Bax and levels of cytosolic cytochrome c, suggesting involvement of mitochondrial death pathway. OPN increased endoplasmic reticulum (ER) stress, as evidenced by increased expression of Gadd153 and activation of caspase-12. Inhibition of JNKs using SP600125 or ER stress using salubrinal or caspase-12 inhibitor significantly reduced OPN-stimulated apoptosis. Expression of OPN in adult mouse heart in myocyte-specific manner associated with decreased left ventricular function and increased myocyte apoptosis. In the heart, OPN expression increased JNKs and caspase-12 activities, and expression of Bax and Gadd153. Thus, OPN, acting via CD44 receptors, induces apoptosis in myocytes via the involvement of mitochondrial death pathway and ER stress.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fiedler LR, Maifoshie E, Schneider MD. Mouse models of heart failure: cell signaling and cell survival. Curr Top Dev Biol 2014; 109:171-247. [PMID: 24947238 DOI: 10.1016/b978-0-12-397920-9.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heart failure is one of the paramount global causes of morbidity and mortality. Despite this pandemic need, the available clinical counter-measures have not altered substantially in recent decades, most notably in the context of pharmacological interventions. Cell death plays a causal role in heart failure, and its inhibition poses a promising approach that has not been thoroughly explored. In previous approaches to target discovery, clinical failures have reflected a deficiency in mechanistic understanding, and in some instances, failure to systematically translate laboratory findings toward the clinic. Here, we review diverse mouse models of heart failure, with an emphasis on those that identify potential targets for pharmacological inhibition of cell death, and on how their translation into effective therapies might be improved in the future.
Collapse
Affiliation(s)
- Lorna R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Evie Maifoshie
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
22
|
Recent advancements in tissue engineering for stem cell-based cardiac therapies. Ther Deliv 2013; 4:503-16. [PMID: 23557290 DOI: 10.4155/tde.13.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in cardiac tissue engineering have recently focused on utilizing stem cells to regenerate infarcted and scarred myocardium. Due to their proliferative nature and tremendous potential for differentiation, stem cells are presently being investigated for clinical applications. Unfortunately, limiting factors such as massive cell death and poor retention have hampered clinical outcomes. Consequently, the development of an efficient delivery system for stem cells to the target site is essential. The use of innovative tissue engineering techniques has opened up new horizons within the field of cellular cardiomyoplasty. This paper will present a comprehensive overview of the recent advancements in stem cell technology destined for myocardial tissue repair. In addition, the multidisciplinary approach to tissue engineering presented here will provide the reader with insight into the clinical realization of cellular cardiomyoplasty.
Collapse
|
23
|
Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013; 465:669-85. [PMID: 23525672 DOI: 10.1007/s00424-013-1255-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
Abstract
Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal female. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca(2+) sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
24
|
A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 2012; 6:22-30. [PMID: 23229562 DOI: 10.1007/s12265-012-9423-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 01/05/2023]
Abstract
Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.
Collapse
|
25
|
Hou J, Kang YJ. Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets. Pharmacol Ther 2012; 135:337-54. [PMID: 22750195 DOI: 10.1016/j.pharmthera.2012.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/05/2023]
Abstract
Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming.
Collapse
Affiliation(s)
- Jianglong Hou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
26
|
Eschenhagen T, Eder A, Vollert I, Hansen A. Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 2012; 303:H133-43. [PMID: 22582087 DOI: 10.1152/ajpheart.00007.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac tissue engineering aims at repairing the diseased heart and developing cardiac tissues for basic research and predictive toxicology applications. Since the first description of engineered heart tissue 15 years ago, major development steps were directed toward these three goals. Technical innovations led to improved three-dimensional cardiac tissue structure and near physiological contractile force development. Automation and standardization allow medium throughput screening. Larger constructs composed of many small engineered heart tissues or stacked cell sheet tissues were tested for cardiac repair and were associated with functional improvements in rats. Whether these approaches can be simply transferred to larger animals or the human patients remains to be tested. The availability of an unrestricted human cardiac myocyte cell source from human embryonic stem cells or human-induced pluripotent stem cells is a major breakthrough. This review summarizes current tissue engineering techniques with their strengths and limitations and possible future applications.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center Hamburg, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
27
|
Abstract
The epicardium, the tissue layer covering the cardiac muscle (myocardium), develops from the proepicardium, a mass of coelomic progenitors located at the venous pole of the embryonic heart. Proepicardium cells attach to and spread over the myocardium to form the primitive epicardial epithelium. The epicardium subsequently undergoes an epithelial-to-mesenchymal transition to give rise to a population of epicardium-derived cells, which in turn invade the heart and progressively differentiate into various cell types, including cells of coronary blood vessels and cardiac interstitial cells. Epicardial cells and epicardium-derived cells signal to the adjacent cardiac muscle in a paracrine fashion, promoting its proliferation and expansion. Recently, high expectations have been raised about the epicardium as a candidate source of cells for the repair of the damaged heart. Because of its developmental importance and therapeutic potential, current research on this topic focuses on the complex signals that control epicardial biology. This review describes the signaling pathways involved in the different stages of epicardial development and discusses the potential of epicardial signals as targets for the development of therapies to repair the diseased heart.
Collapse
|
28
|
Levin M, Stevenson CG. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng 2012; 14:295-323. [PMID: 22809139 PMCID: PMC10472538 DOI: 10.1146/annurev-bioeng-071811-150114] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Achieving control over cell behavior and pattern formation requires molecular-level understanding of regulatory mechanisms. Alongside transcriptional networks and biochemical gradients, there functions an important system of cellular communication and control: transmembrane voltage gradients (V(mem)). Bioelectrical signals encoded in spatiotemporal changes of V(mem) control cell proliferation, migration, and differentiation. Moreover, endogenous bioelectrical gradients serve as instructive cues mediating anatomical polarity and other organ-level aspects of morphogenesis. In the past decade, significant advances in molecular physiology have enabled the development of new genetic and biophysical tools for the investigation and functional manipulation of bioelectric cues. Recent data implicate V(mem) as a crucial epigenetic regulator of patterning events in embryogenesis, regeneration, and cancer. We review new conceptual and methodological developments in this fascinating field. Bioelectricity offers a novel way of quantitatively understanding regulation of growth and form in vivo, and it reveals tractable, powerful control points that will enable truly transformative applications in bioengineering, regenerative medicine, and synthetic biology.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
29
|
Lluís M, Fernández-Solà J, Castellví-Bel S, Sacanella E, Estruch R, Urbano-Márquez A. Evaluation of myocyte proliferation in alcoholic cardiomyopathy: telomerase enzyme activity (TERT) compared with Ki-67 expression. Alcohol Alcohol 2011; 46:534-41. [PMID: 21733836 DOI: 10.1093/alcalc/agr071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Although the human heart was classically considered a terminal organ, recent studies have reported a myocyte proliferation response versus some aggressions. Excessive ethanol consumption induces development of cardiomyopathy (CMP) through myocyte apoptosis. We evaluated myocyte proliferation response in the heart of chronic alcoholic donors with telomerase activity (telomerase reverse transcriptase (TERT)) compared with Ki-67 nuclear expression. METHODS Heart samples were prospectively obtained from organ donors on life support. We included donors with (1) high lifetime alcohol consumption (n = 15), (2) longstanding hypertension (n = 14), (3) other causes of CMP (valve, coronary or idiopathic) (n = 8) and (4) previously healthy donors (n = 6). Groups 2 and 3 were subdivided according to the presence of CMP. Evaluation comprised parameters of ethanol consumption, left ventricular function by chest X-ray and 2D echocardiography, and histology and immunohistochemical studies. Myocyte proliferation was evaluated using an assay for Ki-67 expression and measuring telomerase gene activity by real-time PCR. RESULTS Forty-three donors were included in the study, 35 having CMP. Nuclear Ki-67 activity was low in healthy controls and significantly increased in the other groups, mainly in those with CMP. Alcoholics with CMP had a non-significantly lower proliferation response than the other CMP groups. No proliferation activity was detected with TERT in any case. CONCLUSION Heart Ki-67 proliferation activity increases in organ donors with CMP, independently of its origin. Alcoholics presented non-significant lower myocyte proliferation capacity compared with the other groups of CMP. TERT activity was not a useful marker of proliferation in this model. Ki-67 is a better procedure to evaluate proliferation than TERT expression in alcohol-induced heart damage.
Collapse
Affiliation(s)
- Meritxell Lluís
- Alcohol Research Unit, Department of Internal Medicine, Institut d'Investigació August Pi i Sunyer, Hospital Clínic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Fernández-Solà J, Lluis M, Sacanella E, Estruch R, Antúnez E, Urbano-Márquez A. Increased myostatin activity and decreased myocyte proliferation in chronic alcoholic cardiomyopathy. Alcohol Clin Exp Res 2011; 35:1220-9. [PMID: 21463333 DOI: 10.1111/j.1530-0277.2011.01456.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Apoptosis mediates in alcohol-induced heart damage leading to cardiomyopathy (CMP). Myocyte proliferation may compensate for myocyte loss. Myostatin is upregulated after cardiac damage and by alcohol consumption thereby decreasing myocyte renewal. We assess the potential role of alcohol in inducing myocyte apoptosis as well as in inhibiting myocyte proliferation. METHODS Heart samples were obtained from organ donors, including 22 high alcohol consumers, 22 with hypertension, 8 with other causes of CMP, and 10 healthy donors. Evaluation included medical record with data on daily, recent and lifetime ethanol consumption, chest X-ray, left ventricular (LV) function assessed by two-dimensional echocardiography, and LV histology and immunohistochemistry. Apoptosis was evaluated by TUNEL, BAX, and BCL-2 assays. Myocyte proliferation was evaluated with Ki-67 assay. Myostatin activity was measured with a specific immunohistochemical assay. CMP was assessed by functional and histological criteria. RESULTS Alcoholic and hypertensive donors with CMP showed higher apoptotic indices than did their partners without CMP. Myostatin activity was higher in alcoholics than in controls, mainly in those with CMP. The increase in myostatin expression in alcoholic CMP was higher than in other groups. The Ki-67 proliferation index increased in all groups with CMP compared to those without CMP, with alcoholics showing a lower increase in this proliferation response. CONCLUSIONS Alcohol produces cardiac myocyte loss through apoptosis but also partially inhibits myocyte proliferation through myostatin up-regulation. The final result may suppose an imbalance in myocyte homeostasis, with a net loss in total ventricular myocyte mass and progressive ventricular dysfunction.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Research Unit, Hospital Clinic, Institut d'Investigació August Pi i Sunyer, Department of Medicine, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
31
|
Xie Y, Yang D, He Q, Songyang Z. Zebrafish as a model system to study the physiological function of telomeric protein TPP1. PLoS One 2011; 6:e16440. [PMID: 21311760 PMCID: PMC3032778 DOI: 10.1371/journal.pone.0016440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/16/2010] [Indexed: 01/08/2023] Open
Abstract
Telomeres are specialized chromatin structures at the end of chromosomes. Telomere dysfunction can lead to chromosomal abnormalities, DNA damage responses, and even cancer. In mammalian cells, a six-protein complex (telosome/shelterin) is assembled on the telomeres through the interactions between various domain structures of the six telomere proteins (POT1, TPP1, TIN2, TRF1, TRF2 and RAP1), and functions in telomere maintenance and protection. Within the telosome, TPP1 interacts directly with POT1 and TIN2 and help to mediate telosome assembly. Mechanisms of telomere regulation have been extensively studied in a variety of model organisms. For example, the physiological roles of telomere-targeted proteins have been assessed in mice through homozygous inactivation. In these cases, early embryonic lethality has prevented further studies of these proteins in embryogenesis and development. As a model system, zebrafish offers unique advantages such as genetic similarities with human, rapid developmental cycles, and ease of manipulation of its embryos. In this report, we detailed the identification of zebrafish homologues of TPP1, POT1, and TIN2, and showed that the domain structures and interactions of these telosome components appeared intact in zebrafish. Importantly, knocking down TPP1 led to multiple abnormalities in zebrafish embryogenesis, including neural death, heart malformation, and caudal defect. And these embryos displayed extensive apoptosis. These results underline the importance of TPP1 in zebrafish embryogenesis, and highlight the feasibility and advantages of investigating the signaling pathways and physiological function of telomere proteins in zebrafish.
Collapse
Affiliation(s)
- Yiying Xie
- Verna and Marrs McLean Department of Biochemistry and Molecular biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dong Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhou Songyang
- State Key laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
32
|
Mormile R, De Michele M, Squarcia U, Quaini F. Hypertrophic cardiomyopathy in neonates of diabetic mothers: Indirect evidence for a model of apoptotic reversibility by survivin? Int J Cardiol 2011; 146:244-5. [DOI: 10.1016/j.ijcard.2010.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/23/2010] [Indexed: 11/26/2022]
|
33
|
Wykrzykowska JJ, Rosinberg A, Lee SU, Voisine P, Wu G, Appelbaum E, Boodhwani M, Sellke FW, Laham RJ. Autologous cardiomyotissue implantation promotes myocardial regeneration, decreases infarct size, and improves left ventricular function. Circulation 2010; 123:62-9. [PMID: 21173354 DOI: 10.1161/circulationaha.108.832469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cell therapy for myocardial infarction (MI) may be limited by poor cell survival and lack of transdifferentiation. We report a novel technique of implanting whole autologous myocardial tissue from preserved myocardial regions into infarcted regions. METHODS AND RESULTS Fourteen rats were used to optimize cardiomyotissue size with peritoneal wall implantation (300 μm identified as optimal size). Thirty-nine pigs were used to investigate cardiomyotissue implantation in MI induced by left anterior descending balloon occlusion (10 animals died; male-to-female transplantation for tracking with in situ hybridization for Y chromosome, n=4 [2 donors and 2 MI animals]; acute MI implantation cohort at 1 hour, n=13; and healed MI implantation at 2 weeks, n=12). Assessment included echocardiography, magnetic resonance imaging, hemodynamics, triphenyltetrazolium chloride staining, and histological and molecular analyses. Tracking studies demonstrated viable implants with donor cells interspersed in the adjacent myocardium with gap junctions and desmosomes. In the acute MI cohort, treated animals compared with controls had improved perfusion by magnetic resonance imaging (1.2±0.01 versus 0.86±0.05; P<0.01), decreased MI size (magnetic resonance imaging: left ventricle, 2.2±0.5% versus 5.4±1.5%, P=0.04; triphenyltetrazolium chloride: anterior wall, 10.3±4.6% versus 28.9±5.8%, P<0.03), and improved contractility (dP/dt, 1235±215 versus 817±817; P<0.05). In the healed MI cohort, treated animals had less decline in ejection fraction between 2 and 4 week assessment (-3±4% versus -13±-4%; P<0.05), less decline in ±dP/dt, and smaller MI (triphenyltetrazolium chloride, 21±11% versus 3±8%; P=0.006) than control animals. Infarcts in the treated animals contained more mdr-1(+) cells and fewer c-kit(+) cells with a trend for decreased expression of matrix metalloproteinase-2 and increased expression of tissue inhibitor of metalloproteinase-2. CONCLUSION Autologous cardiomyotissue implanted in an MI area remains viable, exhibits electromechanical coupling, decreases infarct size, and improves left ventricular function.
Collapse
Affiliation(s)
- Joanna J Wykrzykowska
- Cardiology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang KTE, Taylor GP, Meschino WS, Kantor PF, Cutz E. Mitogenic cardiomyopathy: a lethal neonatal familial dilated cardiomyopathy characterized by myocyte hyperplasia and proliferation. Hum Pathol 2010; 41:1002-8. [PMID: 20303141 DOI: 10.1016/j.humpath.2009.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 12/13/2009] [Accepted: 12/18/2009] [Indexed: 11/15/2022]
Abstract
Pediatric cardiomyopathies are a heterogenous group of conditions of which dilated cardiomyopathies are the most common clinicomorphologic subtype. However, the etiology and pathogenesis of many cases of dilated cardiomyopathies remain unknown. We describe a series of 5 cases of a rare but clinically and histologically distinctive dilated cardiomyopathy that was uniformly lethal in early infancy. The 5 cases include 2 pairs of siblings. There was parental consanguinity in 1 of the 2 pairs of siblings. Death occurred in early infancy (range, 22-67 days; mean, 42 days) after a short history of general lethargy, decreased feeding, respiratory distress, or cyanosis. There was no specific birth or early neonatal problems. Autopsy revealed congestive cardiac failure and enlarged, dilated hearts with ventricular dilatation more pronounced than atrial dilatation, and endocardial fibroelastosis. Histology showed prominent hypertrophic nuclear changes of cardiac myofibers and markedly increased myocyte mitotic activity including occasional atypical mitoses. Immunohistochemical staining for Mib1 showed a markedly increased proliferative index of 10% to 20%. Ancillary investigations, including molecular studies, did not reveal a primary cause for the cardiomyopathies. This distinctive dilated cardiomyopathy characterized by unusual histologic features of myocyte nuclear hypertrophy and marked mitotic activity is lethal in early infancy. Its occurrence in 2 pairs of siblings suggests familial inheritance. Although the underlying molecular pathogenesis remains to be elucidated, it is important to recognize this distinctive entity for purposes of genetic counseling.
Collapse
Affiliation(s)
- Kenneth T E Chang
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.
| | | | | | | | | |
Collapse
|
35
|
Al-Lamki RS, Brookes AP, Wang J, Reid MJ, Parameshwar J, Goddard MJ, Tellides G, Wan T, Min W, Pober JS, Bradley JR. TNF receptors differentially signal and are differentially expressed and regulated in the human heart. Am J Transplant 2009; 9:2679-96. [PMID: 19788501 PMCID: PMC3517885 DOI: 10.1111/j.1600-6143.2009.02831.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tumor necrosis factor (TNF) utilizes two receptors, TNFR1 and 2, to initiate target cell responses. We assessed expression of TNF, TNFRs and downstream kinases in cardiac allografts, and compared TNF responses in heart organ cultures from wild-type ((WT)C57BL/6), TNFR1-knockout ((KO)), TNFR2(KO), TNFR1/2(KO) mice. In nonrejecting human heart TNFR1 was strongly expressed coincidentally with inactive apoptosis signal-regulating kinase-1 (ASK1) in cardiomyocytes (CM) and vascular endothelial cells (VEC). TNFR2 was expressed only in VEC. Low levels of TNF localized to microvessels. Rejecting cardiac allografts showed increased TNF in microvessels, diminished TNFR1, activation of ASK1, upregulated TNFR2 co-expressed with activated endothelial/epithelial tyrosine kinase (Etk), increased apoptosis and cell cycle entry in CM. Neither TNFR was expressed significantly by cardiac fibroblasts. In (WT)C57BL/6 myocardium, TNF activated both ASK1 and Etk, and increased both apoptosis and cell cycle entry. TNF-treated TNFR1(KO) myocardium showed little ASK1 activation and apoptosis but increased Etk activation and cell cycle entry, while TNFR2(KO) myocardium showed little Etk activation and cell cycle entry but increased ASK1 activation and apoptosis. These observations demonstrate independent regulation and differential functions of TNFRs in myocardium, consistent with TNFR1-mediated cell death and TNFR2-mediated repair.
Collapse
Affiliation(s)
- RS Al-Lamki
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge
| | - AP Brookes
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge
| | - Jun Wang
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge
| | - MJ Reid
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge
| | - J Parameshwar
- Department of Transplantation, Papworth Hospital, Papworth Everard, Cambridge, UK
| | - MJ Goddard
- Department of Pathology, Papworth Hospital, Papworth Everard, Cambridge, UK
| | - G Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - T Wan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - W Min
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - JS Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - JR Bradley
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge
| |
Collapse
|
36
|
Ventéo L, Bourlet T, Renois F, Douche-Aourik F, Mosnier JF, Maison GLDLG, Pluot M, Pozzetto B, Andreoletti L. Enterovirus-related activation of the cardiomyocyte mitochondrial apoptotic pathway in patients with acute myocarditis. Eur Heart J 2009; 31:728-36. [PMID: 19933281 DOI: 10.1093/eurheartj/ehp489] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS We examined the impact of enterovirus (EV) cardiac replication activity on the endomyocardial mitochondrial pathway in patients with acute myocarditis. METHODS AND RESULTS Levels of apoptotic cardiomyocytes were determined by TUNEL and ligation-mediated polymerase chain reaction (PCR) assays and EV replication activity was assessed by immunostaining of EV VP1 capsid protein in ventricular myocytes of patients with acute myocarditis (n = 25), and healthy heart controls (n = 15). Ratio of cytosolic/mitochondrial cytochrome c concentrations was determined by ELISA assay, levels of active caspase-9 were determined by western blot analysis and Bax/Bcl2 mRNA ratio was assessed by real-time reverse transcription-polymerase chain reaction (RT-PCR) in the same cardiac tissues. Patients with EV-associated acute myocarditis (n = 15) exhibited a significantly higher number of apoptotic cardiomyocytes than those with non-EV-associated acute myocarditis (n = 10) and controls (n = 15) (P < 0.001). Endomyocardial ratio of cytosolic/mitochondrial cytochrome c concentrations and levels of active caspase-9 protein were significantly increased in EV than in non-EV-related myocarditis patients (P < 0.001). Moreover, Bax/Bcl2 mRNA ratio was significantly increased in EV than in non-EV-related myocarditis patients (P < 0.001). CONCLUSION Our findings evidence an EV-related activation of the cardiomyocyte mitochondrial apoptotic pathway in patients with acute myocarditis. Moreover, our results indicate that this EV-induced pro-apoptotic mechanism could be partly related to an up-regulation of Bax expression, and suggest that inhibition of this cell death process may constitute the basis for novel therapies.
Collapse
Affiliation(s)
- Lydie Ventéo
- Laboratoire de Virologie médicale et moléculaire Hôpital Robert Debré, IFR 53/EA4303, CHU et Faculté de Médecine de Reims, Avenue du Général Koenig, 51092 REIMS Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Portig I, Sandmoeller A, Kreilinger S, Maisch B. HLA-DQB1* polymorphism and associations with dilated cardiomyopathy, inflammatory dilated cardiomyopathy and myocarditis†. Autoimmunity 2009; 42:33-40. [DOI: 10.1080/08916930802258651] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Levin M. Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Semin Cell Dev Biol 2009; 20:543-56. [PMID: 19406249 DOI: 10.1016/j.semcdb.2009.04.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/22/2009] [Indexed: 01/14/2023]
Abstract
Regenerative biology has focused largely on chemical factors and transcriptional networks. However, endogenous ion flows serve as key epigenetic regulators of cell behavior. Bioelectric signaling involves feedback loops, long-range communication, polarity, and information transfer over multiple size scales. Understanding the roles of endogenous voltage gradients, ion flows, and electric fields will contribute to the basic understanding of numerous morphogenetic processes and the means by which they can robustly restore pattern after perturbation. By learning to modulate the bioelectrical signals that control cell proliferation, migration, and differentiation, we gain a powerful set of new techniques with which to manipulate growth and patterning in biomedical contexts. This chapter reviews the unique properties of bioelectric signaling, surveys molecular strategies and reagents for its investigation, and discusses the opportunities made available for regenerative medicine.
Collapse
Affiliation(s)
- Michael Levin
- Tufts Center for Regenerative and Developmental Biology, Biology Department, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
39
|
Zeng L, Chen R, Liang F, Tsuchiya H, Murai H, Nakahashi T, Iwai K, Takahashi T, Kanda T, Morimoto S. Silent information regulator, Sirtuin 1, and age-related diseases. Geriatr Gerontol Int 2009; 9:7-15. [DOI: 10.1111/j.1447-0594.2008.00504.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK. IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res 2009; 82:59-66. [PMID: 19181934 DOI: 10.1093/cvr/cvp040] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS We have recently reported that tumour necrosis factor-alpha (TNF-alpha) increases oxidative stress and apoptosis in cardiomyocytes by upregulating p38 mitogen-activated protein (MAP) kinase (MAPK) phosphorylation. Interleukin-10 (IL-10) blocked these effects of TNF-alpha by upregulating extracellular signal-regulated kinase 1/2 (ERK 1/2) MAPK phosphorylation. However, the precise site of this IL-10 action is still unknown, and this is investigated in the present study. METHODS AND RESULTS Cardiomyocytes isolated from adult Sprague-Dawley rats were exposed to TNF-alpha (10 ng/mL), IL-10 (10 ng/mL), and IL-10+TNF-alpha (ratio 1) for 4 h. Hydrogen peroxide and antioxidant trolox were used as positive controls. Exposure to TNF-alpha resulted in an increase in the production of reactive oxygen species, the number of apoptotic cells, caspase-3 activation, and poly-ADP ribose polymerase (PARP) cleavage. Increased oxidative stress by using hydrogen peroxide also caused apoptosis. The changes due to TNF-alpha were associated with an increase in the inhibitor of kappaB kinase (IKK) and nuclear factor kappa-B (NF kappaB) phosphorylation. IL-10 by itself had no effect, but it prevented the above mentioned TNF-alpha-induced changes. Trolox also mitigated TNF-alpha induced changes. Pre-exposure of cells to an IKK inhibitor (PS-1145) prevented TNF-alpha-induced caspase-3 and PARP cleavage. Inhibition of ERK 1/2 MAPK with PD98059 attenuated the protective role of IL-10 against TNF-alpha-induced activation of IKK and NF kappaB as well as cardiomyocyte apoptosis. CONCLUSION The present study shows that TNF-alpha-induced activation of the NF kappaB pathway plays a critical role in cardiomyocyte apoptosis. IL-10 prevents TNF-alpha-induced NF kappaB activation and pro-apoptotic changes in cardiomyocytes by inhibiting IKK phosphorylation through the activation of ERK 1/2 MAPK.
Collapse
Affiliation(s)
- Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Center, 351 Tache Avenue, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
41
|
Rupp S, Koyanagi M, Iwasaki M, Bauer J, von Gerlach S, Schranz D, Zeiher AM, Dimmeler S. Characterization of long-term endogenous cardiac repair in children after heart transplantation. Eur Heart J 2008; 29:1867-72. [DOI: 10.1093/eurheartj/ehn223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
42
|
Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol 2008; 17:349-74. [PMID: 18402842 DOI: 10.1016/j.carpath.2008.02.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/30/2007] [Accepted: 02/04/2008] [Indexed: 02/07/2023] Open
Abstract
During post-natal maturation of the mammalian heart, proliferation of cardiomyocytes essentially ceases as cardiomyocytes withdraw from the cell cycle and develop blocks at the G0/G1 and G2/M transition phases of the cell cycle. As a result, the response of the myocardium to acute stress is limited to various forms of cardiomyocyte injury, which can be modified by preconditioning and reperfusion, whereas the response to chronic stress is dominated by cardiomyocyte hypertrophy and myocardial remodeling. Acute myocardial ischemia leads to injury and death of cardiomyocytes and nonmyocytic stromal cells by oncosis and apoptosis, and possibly by a hybrid form of cell death involving both pathways in the same ischemic cardiomyocytes. There is increasing evidence for a slow, ongoing turnover of cardiomyocytes in the normal heart involving death of cardiomyocytes and generation of new cardiomyocytes. This process appears to be accelerated and quantitatively increased as part of myocardial remodeling. Cardiomyocyte loss involves apoptosis, autophagy, and oncosis, which can occur simultaneously and involve different individual cardiomyocytes in the same heart undergoing remodeling. Mitotic figures in myocytic cells probably represent maturing progeny of stem cells in most cases. Mitosis of mature cardiomyocytes that have reentered the cell cycle appears to be a rare event. Thus, cardiomyocyte renewal likely is mediated primarily by endogenous cardiac stem cells and possibly by blood-born stem cells, but this biological phenomenon is limited in capacity. As a consequence, persistent stress leads to ongoing remodeling in which cardiomyocyte death exceeds cardiomyocyte renewal, resulting in progressive heart failure. Intense investigation currently is focused on cell-based therapies aimed at retarding cardiomyocyte death and promoting myocardial repair and possibly regeneration. Alteration of pathological remodeling holds promise for prevention and treatment of heart failure, which is currently a major cause of morbidity and mortality and a major public health problem. However, a deeper understanding of the fundamental biological processes is needed in order to make lasting advances in clinical therapeutics in the field.
Collapse
|
43
|
Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirt1 protects the heart from aging and stress. Biol Chem 2008; 389:221-31. [DOI: 10.1515/bc.2008.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The prevalence of heart diseases, such as coronary artery disease and congestive heart failure, increases with age. Optimal therapeutic interventions that antagonize aging may reduce the occurrence and mortality of adult heart diseases. We discuss here how molecular mechanisms mediating life span extension affect aging of the heart and its resistance to pathological insults. In particular, we review our recent findings obtained from transgenic mice with cardiac-specific overexpression of Sirt1, which demonstrated delayed aging and protection against oxidative stress in the heart. We propose that activation of known longevity mechanisms in the heart may represent a novel cardioprotection strategy against aging and certain types of cardiac stress, such as oxidative stress.
Collapse
|
44
|
|
45
|
González A, Ravassa S, López B, Loperena I, Querejeta R, Díez J. Apoptosis in hypertensive heart disease: a clinical approach. Curr Opin Cardiol 2008; 21:288-94. [PMID: 16755196 DOI: 10.1097/01.hco.0000231397.64362.70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW It is widely accepted that there are two principal forms of cell death, namely, necrosis and apoptosis. According to the classical view, necrosis is the major mechanism of cardiomyocyte death in cardiac diseases. RECENT DEVELOPMENTS In the past few years observations have been made showing that cardiomyocyte apoptosis occurs in diverse conditions including hypertensive heart disease, and that apoptosis may be a contributing cause of loss and functional abnormalities of cardiomyocytes in this condition. SUMMARY This review will summarize recent evidence demonstrating the potential contribution of cardiomyocyte apoptosis to heart failure in hypertensive patients. In addition, some strategies aimed to detect and prevent apoptosis of cardiomyocytes will be considered.
Collapse
Affiliation(s)
- Arantxa González
- Division of Cardiovascular Sciences, Centre for Applied Medical Research, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol 2007; 103:265-73. [PMID: 18087667 DOI: 10.1007/s00395-007-0690-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 11/08/2007] [Indexed: 12/15/2022]
Abstract
OBJECTIVE It was reported that there are cardiac stem cells (CSCs) in the rat heart, and they could reconstitute well-differentiated myocardium that are formed by blood-carrying new vessels and myocytes. However, how do the CSCs migrate into the peri-infarcted areas after myocardial infarction (MI)? It remains entirely unknown about the signal transduction involved in the migration of CSCs. METHODS AND RESULTS Rat heart MI was induced by left coronary artery ligation. Both immunohistochemical staining and Western blotting analysis was performed to detect the expression of SCF protein, and RT-PCR was conducted for the expression of SCF mRNA. Cardiac stem cells were isolated from rat hearts, and a cardiac stem cell migration assay was performed using a 48-well chemotaxis chamber system. On day 5 after MI in rats, the expression of stem cell factor (SCF) mRNA and protein was significantly increased in the peri-infarcted area, which was matched with more accumulation of CSCs in the region and improvement of cardiac function, which was blocked by p38 MAPK selective inhibitor SB203580. In in vitro experiments, SCF induced CSC migration in a concentration-dependent manner, and the antibody against SCF receptor (c-kit) blocked the SCF-induced CSC migration. Western blot analysis showed that the phosphorylated p38 MAPK (Phospho-p38 MAPK) was highly increased in the SCF-treated CSCs, and the inhibition of p38 MAPK activity significantly attenuated SCF-induced the migration of CSCs. CONCLUSION It demonstrated that SCF/c-kit signaling may mediate the migration of CSCs via activation of p38 MAPK.
Collapse
|
47
|
Korzick DH, Kostyak JC, Hunter JC, Saupe KW. Local delivery of PKCepsilon-activating peptide mimics ischemic preconditioning in aged hearts through GSK-3beta but not F1-ATPase inactivation. Am J Physiol Heart Circ Physiol 2007; 293:H2056-63. [PMID: 17675573 DOI: 10.1152/ajpheart.00403.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In adult heart, selective PKCepsilon activation limits ischemia (I)-reperfusion (R) damage and mimics the protection associated with ischemic preconditioning. We sought to determine whether local delivery of PKCepsilon activator peptide psiepsilon-receptor for activated C-kinase (psiepsilon-RACK) is sufficient to produce a similarly protected phenotype in aged hearts. Langendorff-perfused hearts isolated from adult (5 mo; n = 9) and aged (24 mo; n = 9) male Fisher 344 rats were perfused with psiepsilon-RACK conjugated to Tat (500 nM) or Tat only (500 nM) for 10 min before global 31-min ischemia. Western blotting was used to measure mitochondrial targeting of PKCepsilon, PKCdelta, phospho (p)-GSK-3beta (Ser(9)) and GSK-3beta in hearts snap-frozen during I. Recovery of left ventricular developed pressure was significantly improved by psiepsilon-RACK (P < 0.01) and infarct size reduced in 24-mo rats vs. age-matched controls (60% vs. 34%; P < 0.01). Mitochondrial PKCepsilon levels were 30% greater during I with psiepsilon-RACK in aged vs. control rats (P < 0.01). Interestingly, mitochondrial GSK-3beta levels were threefold greater in aged vs. adult rats during I, and psiepsilon-RACK prevented this increase (P < 0.01). Mitochondrial p-GSK-3beta levels were also greater in aged rats after psiepsilon-RACK (P < 0.01), and subsequent inhibition of GSK-3beta with SB-216763 (3 muM) before I/R elicited protection similar to that of psiepsilon-RACK (n = 3/group). Mitochondrial proteomic analysis further identified group differences in the F(1)-ATPase beta-subunit, and coimmunoprecipitation studies revealed a novel interaction with PKCepsilon. F(1)-ATPase-PKCepsilon association was affected by psiepsilon-RACK in adult but not aged rats. Our results provide evidence, for the first time, for PKCepsilon-mediated protection in aged rat heart after I/R and suggest a central role for mitochondrial GSK-3beta but not F(1)-ATPase as a potential target of PKCepsilon to limit I/R damage with aging.
Collapse
Affiliation(s)
- Donna H Korzick
- Intercollege Program in Physiology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
48
|
Beneficial effects of endoventricular circular patch plasty in patients with left ventricular systolic dysfunction and left ventricular dyskinetic or akinetic apical segment. Indian J Thorac Cardiovasc Surg 2007. [DOI: 10.1007/s12055-007-0004-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
49
|
Ellison GM, Torella D, Karakikes I, Purushothaman S, Curcio A, Gasparri C, Indolfi C, Cable NT, Goldspink DF, Nadal-Ginard B. Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem 2007; 282:11397-409. [PMID: 17237229 PMCID: PMC2276680 DOI: 10.1074/jbc.m607391200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A hyperadrenergic state is a seminal aspect of chronic heart failure. Also, "Takotsubo stress cardiomyopathy," is associated with increased plasma catecholamine levels. The mechanisms of myocyte damage secondary to excess catecholamine exposure as well as the consequence of this neurohumoral burst on cardiac stem cells (CSCs) are unknown. Cardiomyocytes and CSCs were exposed to high doses of isoproterenol (ISO), in vivo and in vitro. Male Wistar rats received a single injection of ISO (5 mg kg-1) and were sacrificed 1, 3, and 6 days later. In comparison with controls, LV function was impaired in rats 1 day after ISO and started to improve at 3 days. The fraction of dead myocytes peaked 1 day after ISO and decreased thereafter. ISO administration resulted in significant ryanodine receptor 2 (RyR2) hyperphosphorylation and RyR2-calstabin dissociation. JTV519, a RyR2 stabilizer, prevented the ISO-induced death of adult myocytes in vitro. In contrast, CSCs were resistant to the acute neurohumoral overload. Indeed, CSCs expressed a decreased and inverted complement of beta1/beta2-adrenoreceptors and absence of RyR2, which may explain their survival to ISO insult. Thus, a single injection of ISO causes diffuse myocyte death through Ca2+ leakage secondary to the acutely dysfunctional RyR2. CSCs are resistant to the noxious effects of an acute hyperadrenergic state and through their activation participate in the response to the ISO-induced myocardial injury. The latter could contribute to the ability of the myocardium to rapidly recover from acute hyperadrenergic damage.
Collapse
Affiliation(s)
- Georgina M. Ellison
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York 10029
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom
| | - Daniele Torella
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Ioannis Karakikes
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York 10029
| | - Saranya Purushothaman
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York 10029
| | - Antonio Curcio
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Cosimo Gasparri
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Ciro Indolfi
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, 88100 Catanzaro, Italy
| | - N. Tim Cable
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom
| | - David F. Goldspink
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom
| | - Bernardo Nadal-Ginard
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York 10029
- Centro Nacional de Investigaciones Cardiovasculares, E-28029 Madrid, Spain
- To whom correspondence should be addressed: Zena and Michael A. Wiener Cardiovascular Institute and Marie-Jose and Henry R. Kravis Center for Cardiovascular Health, Box 1030, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029. Tel.: 212-241-6543; Fax: 212-241-1873; E-mail:
| |
Collapse
|
50
|
|