1
|
Xu C, Wang G, Jin G, Fei X, Liu C, Tang L, Fu L, Yu J. Genetic association between inflammatory factors and abdominal aortic aneurysm: Insights from a genome-wide association study. Int J Cardiol 2025; 421:132905. [PMID: 39662749 DOI: 10.1016/j.ijcard.2024.132905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a fatal vascular disorder. The current primary treatment for AAA remains restricted to surgical intervention during advanced stages of the disease, with no efficacious pharmaceutical options available for early-stage AAA patients. Inflammation is known to play a substantial role in the development of AAA, with various inflammatory factors implicated in its pathogenesis. However, conflicting findings have been reported in studies investigating the roles of these inflammatory factors in AAA, making it challenging to establish definitive causal relationships between inflammatory factors and AAA. METHODS The research conducted a bidirectional Mendelian randomization (MR) study using genetic variants. Inflammatory factors were obtained from a genome-wide association study (GWAS), while AAA were sourced from the FinnGen consortium. The primary method employed was inverse-variance weighted (IVW), with MR-Egger, weighted median, and MR-PRESSO approaches used as supplementary analyses. RESULTS According to the IVW method, hepatocyte growth factor (HGF), matrix metalloproteinase-7 (MMP-7), MMP-12, and NF-kappa-B essential modulator (NEMO/ IKKγ) were associated with a potential increased risk of AAA, while platelet-derived growth factor BB (PDGFbb), interleukin-4 (IL-4), IL-12p70, IL-10, IL-6Rα, and myeloperoxidase (MPO) were associated with a potential decreased risk of AAA. In the reverse MR analysis, no causal relationship was observed between AAA and any of the inflammatory factors. CONCLUSIONS This study provides evidence supporting a causal relationship between inflammatory factors and AAA. It suggests that targeting and modulating these specific inflammatory factors may serve as a potential approach for the prevention and noninvasive treatment of AAA.
Collapse
Affiliation(s)
- Chao Xu
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Guohua Wang
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Gan Jin
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Xiaozhou Fei
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Chunjiang Liu
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Liming Tang
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Leihua Fu
- Department of Hematology, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Jieni Yu
- Department of Hematology, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Chen B, Wang X, Jiang B, Xin S. Advancements in the study of T lymphocytes in thoracic aortic aneurysm and aortic dissection. Tissue Cell 2025; 93:102768. [PMID: 39923647 DOI: 10.1016/j.tice.2025.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Thoracic aortic aneurysms and dissection (TAAD) is a critical, life-threatening cardiovascular condition characterized by immune-mediated inflammatory infiltration and structural degradation of the aorta wall, which are pivotal in its etiology. In recent years, the significance of T lymphocytes in TAAD has increasingly garnered scientific attention. TAAD is a multifaceted vascular disorder characterized by the involvement of many immune cells, with T lymphocytes playing a pivotal role, particularly in the modulation of inflammatory responses, immunological control, and tissue damage. A comprehensive understanding of the T lymphocyte activation process in TAAD is crucial for the advancement of novel preventative and therapy strategies. This article evaluates the recent research advancements on the function of T lymphocytes in TAAD, aiming to offer novel insights for the future prevention and treatment of TAAD.
Collapse
Affiliation(s)
- Baolin Chen
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China; Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Xueling Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China; Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China; Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China; Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Zhu J, Meganathan I, MacAruthur R, Kassiri Z. Inflammation in Abdominal Aortic Aneurysm: Cause or Comorbidity? Can J Cardiol 2024; 40:2378-2391. [PMID: 39181326 DOI: 10.1016/j.cjca.2024.08.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Aortic aneurysm is a potentially deadly disease. It is chronic degeneration of the aortic wall that involves an inflammatory response and the immune system, aberrant remodelling of the extracellular matrix, and maladaptive transformation of the aortic cells. This review article focuses on the role of the inflammatory cells in abdominal aortic aneurysm. Studies in human aneurysmal specimens and animal models have identified various inflammatory cell types that could contribute to formation or expansion of aneurysms. These include the commonly studied leukocytes (neutrophils and macrophages) as well as the less commonly explored natural killer cells, dendritic cells, T cells, and B cells. Despite the well-demonstrated contribution of inflammatory cells and the related signalling pathways to development and expansion of aneurysms, anti-inflammatory therapy approaches have demonstrated limitations and may require additional considerations such as a combinational approach in targeting multiple pathways for significant beneficial outcomes.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ilamaran Meganathan
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacAruthur
- Department of Cardiac Surgery, Mazankowski Alberta Heart Institute, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Xie M, Li X, Qi C, Zhang Y, Li G, Xue Y, Chen G. Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms. Front Cardiovasc Med 2024; 11:1497170. [PMID: 39600608 PMCID: PMC11588672 DOI: 10.3389/fcvm.2024.1497170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Objective Abdominal aortic aneurysm (AAA) is a life-threatening vascular condition. This study aimed to discover new indicators for the early detection of AAA and explore the possible involvement of immune cell activity in its development. Methods Sourced from the Gene Expression Omnibus, the AAA microarray datasets GSE47472 and GSE57691 were combined to generate the training set. Additionally, a separate dataset (GSE7084) was designated as the validation set. Enrichment analyses were carried out to explore the underlying biological mechanisms using Disease Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology. We then utilized weighted gene co-expression network analysis (WGCNA) along with 3 machine learning techniques: least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest, to identify feature genes for AAA. Moreover, data were validated using the receiver operating characteristic (ROC) curve, with feature genes defined as those having an area under the curve above 85% and a p-value below 0.05. Finally, the single sample gene set enrichment analysis algorithm was applied to probe the immune landscape in AAA and its connection to the selected feature genes. Results We discovered 72 differentially expressed genes (DEGs) when comparing healthy and AAA samples, including 36 upregulated and 36 downregulated genes. Functional enrichment analysis revealed that the DEGs associated with AAA are primarily involved in inflammatory regulation and immune response. By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. The diagnostic performance of all these genes was strong, as revealed by the ROC analysis. A significant increase in 15 immune cell types in AAA samples was observed, based on the analysis of immune cell infiltration. In addition, the 3 feature genes show a strong linkage with different types of immune cells. Conclusion Three feature genes (MRAP2, PPP1R14A, and PLN) related to the development of AAA were identified. These genes are linked to immune cell activity and the inflammatory microenvironment, providing potential biomarkers for early detection and a basis for further research into AAA progression.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Congwei Qi
- Department of Pharmacy, Jianhu County People’s Hospital, Jianhu, Jiangsu, China
| | - Yufeng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
- Postdoctoral Workstation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Yong Xue
- Department of Cardiology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Guobao Chen
- Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| |
Collapse
|
5
|
Carmona-Berrio D, Adarve-Rengifo I, Marshall AG, Vue Z, Hall DD, Miller-Fleming TW, Actkins KV, Beasley HK, Almonacid PM, Barturen-Larrea P, Wells QS, Lopez MG, Garza-Lopez E, Dai DF, Shao J, Neikirk K, Billings FT, Curci JA, Cox NJ, Gama V, Hinton A, Gomez JA. SOX6 expression and aneurysms of the thoracic and abdominal aorta. iScience 2024; 27:110436. [PMID: 39262802 PMCID: PMC11388018 DOI: 10.1016/j.isci.2024.110436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 09/13/2024] Open
Abstract
Abdominal and thoracic aortic aneurysms (AAAs, TAAs) remain a major cause of deaths worldwide, in part due to the lack of reliable prognostic markers or early warning signs. Sox6 has been found to regulate renin controlling blood pressure. We hypothesized that Sox6 may serve as an important regulator of the mechanisms contributing to hypertension-induced aortic aneurysms. Phenotype and laboratory-wide association scans in a clinical cohort found that SOX6 gene expression is associated with aortic aneurysm in subjects of European ancestry. Sox6 and tumor necrosis factor alpha (TNF-α) expression were upregulated in aortic tissues from patients affected by either AAA or TAA. In Sox6 knockout mice with angiotensin-II-induced AAA, we found that Sox6 plays critical role in the development and progression of AAA. Our data support a regulatory role of SOX6 in the development of hypertension-induced AAA, suggesting that Sox6 may be a therapeutic target for the treatment of aortic aneurysms.
Collapse
Affiliation(s)
- David Carmona-Berrio
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Isabel Adarve-Rengifo
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Duane D Hall
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tyne W Miller-Fleming
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ky'Era V Actkins
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Paula M Almonacid
- Department of Economics, EAFIT University, Medellín, Antioquia, Columbia
| | - Pierina Barturen-Larrea
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Quinn S Wells
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marcos G Lopez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Dao-Fu Dai
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52242, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Frederic T Billings
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John A Curci
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vivian Gama
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jose A Gomez
- Department of Medicine / Clinical Pharmacology Division. Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Kenawy DM, Stafford JF, Amari F, Campbell D, Abdel-Rasoul M, Leight J, Chun Y, Tillman BW. A porcine model of thoracic aortic aneurysms created with a retrievable drug infusion stent graft mirrors human aneurysm pathophysiology. JVS Vasc Sci 2024; 5:100212. [PMID: 39188992 PMCID: PMC11345694 DOI: 10.1016/j.jvssci.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/08/2024] [Indexed: 08/28/2024] Open
Abstract
Objective Aneurysm pathophysiology remains poorly understood, in part from the disparity of murine models with human physiology and the requirement for invasive aortic exposure to apply agents used to create aneurysm models. A retrievable drug infusion stent graft (RDIS) was developed to isolate the aortic wall intraluminally for drug exposure. We hypothesized that an RDIS could deliver aneurysm-promoting enzymes to create a porcine model of thoracic aneurysms without major surgical exposure. Methods Retrievable nitinol stent graft frames were designed with an isolated drug delivery chamber, covered with polytetrafluoroethylene, and connected to a delivery wire with a drug infusion catheter installed to the outer chamber. Institutional Animal Care and Use Committee-approved Yorkshire pigs (n = 5) underwent percutaneous access of the femoral artery, baseline aortogram and stent placement in the thoracic aorta followed by 30-minute exposure to a cocktail of elastase, collagenase, and trypsin. After aspiration of excess drug, stent retrieval, and femoral artery repair, animals were recovered, with angiograms at 1 and 4 weeks followed by explant. Histological analysis, in situ zymography, and multiplex cytokine assays were performed. Results The RDIS isolated a segment of anterior aorta angiographically, while the center lumen preserved distal perfusion during drug treatment (baseline femoral mean arterial pressure, 70 ± 14 mm Hg; after RDIS, 75 ± 12; P = .55). Endovascular induction of thoracic aneurysms did not require prior mechanical injury and animals revealed no evidence of toxicity. Within 1 week, significant aneurysmal growth was observed in all five animals (1.4 ± 0.1 cm baseline to 2.9 ± 0.7 cm; P = .002) and only within the treated region of the aorta. Aneurysms persisted out to 4 weeks. Aneurysm histology demonstrated loss of elastin and collagen that was otherwise preserved in untreated aorta. Proinflammatory cytokines and increased matrix metalloproteinase activity were increased significantly within the aneurysm. Conclusions An RDIS achieves isolated drug delivery while preserving distal perfusion to achieve an endovascular porcine model of thoracic aneurysms without major surgery. This model may have value for surgical training, device testing, and to better understand aneurysm pathogenesis. Most important, although the RDIS was used to simulate aortic pathology, this tool offers intriguing horizons for focused therapeutic drug delivery directly to aneurysms and, more broadly, focused locoregional drug delivery to vessels and vascular beds.
Collapse
Affiliation(s)
- Dahlia M. Kenawy
- Division of Vascular Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jordan F. Stafford
- Division of Vascular Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Foued Amari
- Division of Vascular Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | | | - Jennifer Leight
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Youngjae Chun
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Bryan W. Tillman
- Division of Vascular Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
7
|
Kuntschar S, Cardamone G, Klann K, Bauer R, Meyer SP, Raue R, Rappl P, Münch C, Brüne B, Schmid T. Mmp12 Is Translationally Regulated in Macrophages during the Course of Inflammation. Int J Mol Sci 2023; 24:16981. [PMID: 38069304 PMCID: PMC10707645 DOI: 10.3390/ijms242316981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.
Collapse
Affiliation(s)
- Silvia Kuntschar
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Giulia Cardamone
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Peter Rappl
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
8
|
Gong W, Tian Y, Li L. T cells in abdominal aortic aneurysm: immunomodulation and clinical application. Front Immunol 2023; 14:1240132. [PMID: 37662948 PMCID: PMC10471798 DOI: 10.3389/fimmu.2023.1240132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is characterized by inflammatory cell infiltration, extracellular matrix (ECM) degradation, and vascular smooth muscle cell (SMC) dysfunction. The inflammatory cells involved in AAA mainly include immune cells including macrophages, neutrophils, T-lymphocytes and B lymphocytes and endothelial cells. As the blood vessel wall expands, more and more lymphocytes infiltrate into the outer membrane. It was found that more than 50% of lymphocytes in AAA tissues were CD3+ T cells, including CD4+, CD8+T cells, γδ T cells and regulatory T cells (Tregs). Due to the important role of T cells in inflammatory response, an increasing number of researchers have paid attention to the role of T cells in AAA and dug into the relevant mechanism. Therefore, this paper focuses on reviewing the immunoregulatory role of T cells in AAA and their role in immunotherapy, seeking potential targets for immunotherapy and putting forward future research directions.
Collapse
Affiliation(s)
| | | | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
9
|
Stepien KL, Bajdak-Rusinek K, Fus-Kujawa A, Kuczmik W, Gawron K. Role of Extracellular Matrix and Inflammation in Abdominal Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms231911078. [PMID: 36232377 PMCID: PMC9569530 DOI: 10.3390/ijms231911078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is one of the most dangerous cardiovascular diseases, occurring mainly in men over the age of 55 years. As it is asymptomatic, patients are diagnosed very late, usually when they suffer pain in the abdominal cavity. The late detection of AAA contributes to the high mortality rate. Many environmental, genetic, and molecular factors contribute to the development and subsequent rupture of AAA. Inflammation, apoptosis of smooth muscle cells, and degradation of the extracellular matrix in the AAA wall are believed to be the major molecular processes underlying AAA formation. Until now, no pharmacological treatment has been implemented to prevent the formation of AAA or to cure the disease. Therefore, it is important that patients are diagnosed at a very early stage of the disease. Biomarkers contribute to the assessment of the concentration level, which will help to determine the level and rate of AAA development. The potential biomarkers today include homocysteine, cathepsins, osteopontin, and osteoprotegerin. In this review, we describe the major aspects of molecular processes that take place in the aortic wall during AAA formation. In addition, biomarkers, the monitoring of which will contribute to the prompt diagnosis of AAA patients over the age of 55 years, are described.
Collapse
Affiliation(s)
- Karolina L. Stepien
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8388
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Wacław Kuczmik
- Department of General, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, Katowice, Ziolowa 45/47 Street, 40-635 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| |
Collapse
|
10
|
Lu S, White JV, Nwaneshiudu I, Nwaneshiudu A, Monos DS, Solomides CC, Oleszak EL, Platsoucas CD. Human abdominal aortic aneurysm (AAA): Evidence for an autoimmune antigen-driven disease. Clin Exp Rheumatol 2022; 21:103164. [PMID: 35926768 DOI: 10.1016/j.autrev.2022.103164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
Abdominal aortic aneurism (AAA) is a complex immunological disease with a strong genetic component, and one of the ten leading causes of death of individuals 55-74 years old worldwide. Strong evidence has been accumulated suggesting that AAA is an autoimmune specific antigen-driven disease. Mononuclear cells infiltrating AAA lesions comprised of T and B lymphocytes and other cells expressing early-, intermediate- and late-activation antigens, and the presence of antigen-presenting cells have been documented, demonstrating an ongoing immune response. The three components of the trimolecular complex, T-cell receptor (TCR)/peptide (antigen)/HLA have been identified in AAA, and specifically: (i) clonal expansions of T-cell clones in AAA lesions; (ii) the association of AAA with particular HLA Class I and Class II; and (iii) self or nonself putative AAA-associated antigens. IgG autoantibodies recognizing proteins present in normal aortic tissue have been reported in patients with AAA. Molecular mimicry, defined as the sharing of antigenic epitopes between microorganisms (bacteria, viruses) and self antigens, maybe is responsible for T-cell responses and antibody production in AAA. Also, the frequency and the suppressor activity of CD4 + CD25 + FOXP3+ Tregs and the expression of FOXP3 transcripts and protein have been reported to be significantly impaired in AAA patients vs normal donors.
Collapse
Affiliation(s)
- Song Lu
- Mon Health Medical Center, Department of Pathology, Morgantown, WV, USA
| | - John V White
- Department of Surgery, Advocate Lutheran General Hospital & University of Illinois School of Medicine, Park Ridge, IL, USA
| | - Ifeyinwa Nwaneshiudu
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Adaobi Nwaneshiudu
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA; Cutis Wellness Dermatology and Dermatopathology PLLC, Laredo, TX, USA
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charalambos C Solomides
- Department of Pathology & Laboratory Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Emilia L Oleszak
- Department of Biological Sciences and Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Chris D Platsoucas
- Department of Biological Sciences and Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
11
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Zhang F, King MW. Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft. Adv Healthc Mater 2022; 11:e2200045. [PMID: 35286778 PMCID: PMC11468936 DOI: 10.1002/adhm.202200045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease leads to the highest morbidity worldwide. There is an urgent need to solve the lack of a viable arterial graft for patients requiring coronary artery bypass surgery. The current gold standard is to use the patient's own blood vessel, such as a saphenous vein graft. However, some patients do not have appropriate vessels to use because of systemic disease or secondary surgery. On the other hand, there is no commercially available synthetic vascular graft available on the market for small diameter (<6 mm) blood vessels like coronary, carotid, and peripheral popliteal arteries. Tissue-engineered vascular grafts (TEVGs) are studied in recent decades as a promising alternative to synthetic arterial prostheses. Yet only a few studies have proceeded to a clinical trial. Recent studies have uncovered that the host immune response can be directed toward increasing the success of a TEVG by shedding light on ways to modulate the macrophage response and improve the tissue regeneration outcome. In this review, the basic concepts of vascular tissue engineering and immunoengineering are considered. The state-of-art of TEVGs is summarized and the role of macrophages in TEVG regeneration is analyzed. Current immunomodulatory strategies based on biomaterials are also discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| |
Collapse
|
13
|
Mitchell RN. Do Not Go Gentle…Random Walks, Mentorship, and the State of Pathology Education in the 21st Century. Cardiovasc Pathol 2022; 60:107431. [DOI: 10.1016/j.carpath.2022.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
|
14
|
Puchenkova OA, Soldatov VO, Belykh AE, Bushueva O, Piavchenko GA, Venediktov AA, Shakhpazyan NK, Deykin AV, Korokin MV, Pokrovskiy MV. Cytokines in Abdominal Aortic Aneurysm: Master Regulators With Clinical Application. Biomark Insights 2022; 17:11772719221095676. [PMID: 35492378 PMCID: PMC9052234 DOI: 10.1177/11772719221095676] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/04/2022] [Indexed: 01/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially life-threatening disorder with a mostly asymptomatic course where the abdominal aorta is weakened and bulged. Cytokines play especially important roles (both positive and negative) among the molecular actors of AAA development. All the inflammatory cascades, extracellular matrix degradation and vascular smooth muscle cell apoptosis are driven by cytokines. Previous studies emphasize an altered expression and a changed epigenetic regulation of key cytokines in AAA tissue samples. Such cytokines as IL-6, IL-10, IL-12, IL-17, IL-33, IL-1β, TGF-β, TNF-α, IFN-γ, and CXCL10 seem to be crucial in AAA pathogenesis. Some data obtained in animal studies show a protective function of IL-10, IL-33, and canonical TGF-β signaling, as well as a dual role of IL-4, IFN-γ and CXCL10, while TNF-α, IL-1β, IL-6, IL-12/IL-23, IL-17, CCR2, CXCR2, CXCR4 and the TGF-β noncanonical pathway are believed to aggravate the disease. Altogether data highlight significance of cytokines as informative markers and predictors of AAA. Pathologic serum/plasma concentrations of IL-1β, IL-2, IL-6, TNF-α, IL-10, IL-8, IL-17, IFN-γ, and PDGF have been already found in AAA patients. Some of the changes correlate with the size of aneurysms. Moreover, the risk of AAA is associated with polymorphic variants of genes encoding cytokines and their receptors: CCR2 (rs1799864), CCR5 (Delta-32), IL6 (rs1800796 and rs1800795), IL6R (rs12133641), IL10 (rs1800896), TGFB1 (rs1800469), TGFBR1 (rs1626340), TGFBR2 (rs1036095, rs4522809, rs1078985), and TNFA (rs1800629). Finally, 5 single-nucleotide polymorphisms in gene coding latent TGF-β-binding protein (LTBP4) and an allelic variant of TGFB3 are related to a significantly slower AAA annual growth rate.
Collapse
Affiliation(s)
- Olesya A Puchenkova
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Vladislav O Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Department of Pathophysiology, Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - OlgaYu Bushueva
- Department of Biology, Medical Genetics and Ecology, Laboratory of Genomic Research at the Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Gennadii A Piavchenko
- Department of Histology, Cytology and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Cell Pathology in Critical State, State Research Institute of General Reanimatology, Moscow, Russia
| | - Artem A Venediktov
- Department of Histology, Cytology and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| |
Collapse
|
15
|
Bierman-Chow S, Freeman AF, Holland SM, Lynch J, Cho HJ. Cerebral aneurysm in three pediatric patients with STAT1 gain-of-function mutations. J Neurol 2022; 269:5638-5642. [DOI: 10.1007/s00415-022-11131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
|
16
|
Wang L, Zhou S, Liu Y, Li Y, Sun X. Bibliometric analysis of the inflammatory mechanism in aortic disease. Rev Cardiovasc Med 2022; 23:67. [PMID: 35229558 DOI: 10.31083/j.rcm2302067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND In view of the key role of inflammation in the pathogenesis of aortic disease, we visually analyzed the research hotspots of inflammatory mechanism in aortic disease in this work through the method of bibliometrics from the Web of Science (WOS) Core database over the past three decades. METHODS A visual bibliometric network of research articles on inflammatory mechanisms in aortic disease was obtained from VOSviewer and Citespace based on the WOS Core Collection. RESULTS A total of 1278 documents from January 1990 to February 2021 were selected for analysis. The United States and China had the highest percentage of articles, comprising 34.01% and 24.92% of articles worldwide, respectively. Harvard University has published the most articles in this field, followed by the University of Michigan and Huazhong University of Science and Technology. The top 3 research hotspots were atherosclerosis, oxidative stress, and macrophages. The journal with the most articles in this area was Arteriosclerosis Thrombosis and Vascular Biology, followed by Atherosclerosis and PLOS One. The research trend on inflammatory mechanisms in the aortic system has 5 distinct directions: (1) atherosclerosis, NF-κB, expression, smooth muscle cell, and oxidative stress; (2) coronary artery disease, C-reactive protein, risk factors, endothelial dysfunction, and aortic stenosis; (3) abdominal aortic aneurysm, matrix metalloproteinases, macrophage, and pathogenesis; (4) cholesterol, metabolism, low-density lipoprotein, gene expression, and a therosclerotic lesions; and (5) calcific aortic valve disease, interstitial cells, calcification, and stenosis. CONCLUSIONS Inflammatory mechanism research has shown a tendency to rise gradually in the aortic field. Numerous studies have explored the role of inflammatory responses in aortic disease, which may increase the risk of endothelial dysfunction (aortic fibrosis and stiffness) and induce plaque formation. Among them, NFκB activation, nitric-oxide synthase expression, and oxidative stress are particularly essential.
Collapse
Affiliation(s)
- Luchen Wang
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Sangyu Zhou
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yanxiang Liu
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yunfeng Li
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
- Shandong University, Qilu Hospital, 250012 Jinan, Shandong, China
| | - Xiaogang Sun
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| |
Collapse
|
17
|
Li D, Li J, Liu H, Zhai L, Hu W, Xia N, Tang T, Jiao J, Lv B, Nie S, Hu D, Liao Y, Yang X, Shi G, Cheng X. Pathogenic Tconvs promote inflammatory macrophage polarization through GM‐CSF and exacerbate abdominal aortic aneurysm formation. FASEB J 2022; 36:e22172. [PMID: 35133017 PMCID: PMC9303938 DOI: 10.1096/fj.202101576r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Abdominal aortic aneurysms (AAAs) elicit massive inflammatory leukocyte recruitment to the aorta. CD4+ T cells, which include regulatory T cells (Tregs) and conventional T cells (Tconvs), are involved in the progression of AAA. Tregs have been reported to limit AAA formation. However, the function and phenotype of the Tconvs found in AAAs remain poorly understood. We characterized aortic Tconvs by bulk RNA sequencing and discovered that Tconvs in aortic aneurysm highly expressed Cxcr6 and Csf2. Herein, we determined that the CXCR6/CXCL16 signaling axis controlled the recruitment of Tconvs to aortic aneurysms. Deficiency of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), encoded by Csf2, markedly inhibited AAA formation and led to a decrease of inflammatory monocytes, due to a reduction of CCL2 expression. Conversely, the exogenous administration of GM‐CSF exacerbated inflammatory monocyte infiltration by upregulating CCL2 expression, resulting in worsened AAA formation. Mechanistically, GM‐CSF upregulated the expression of interferon regulatory factor 5 to promote M1‐like macrophage differentiation in aortic aneurysms. Importantly, we also demonstrated that the GM‐CSF produced by Tconvs enhanced the polarization of M1‐like macrophages and exacerbated AAA formation. Our findings revealed that GM‐CSF, which was predominantly derived from Tconvs in aortic aneurysms, played a pathogenic role in the progression of AAAs and may represent a potential target for AAA treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jingyong Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Henan Liu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Luna Zhai
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Wangling Hu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Ni Xia
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Tingting Tang
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jiao Jiao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Bingjie Lv
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Shaofang Nie
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Institute of Hematology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Xiangping Yang
- School of Basic Medicine Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Guo‐Ping Shi
- Department of Medicine Brigham and Women’s Hospital and Harvard Medical School Boston Massachusetts USA
| | - Xiang Cheng
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
18
|
Tanaka H, Xu B, Xuan H, Ge Y, Wang Y, Li Y, Wang W, Guo J, Zhao S, Glover KJ, Zheng X, Liu S, Inuzuka K, Fujimura N, Furusho Y, Ikezoe T, Shoji T, Wang L, Fu W, Huang J, Unno N, Dalman RL. Recombinant Interleukin-19 Suppresses the Formation and Progression of Experimental Abdominal Aortic Aneurysms. J Am Heart Assoc 2021; 10:e022207. [PMID: 34459250 PMCID: PMC8649236 DOI: 10.1161/jaha.121.022207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Interleukin-19 is an immunosuppressive cytokine produced by immune and nonimmune cells, but its role in abdominal aortic aneurysm (AAA) pathogenesis is not known. This study aimed to investigate interleukin-19 expression in, and influences on, the formation and progression of experimental AAAs. Methods and Results Human specimens were obtained at aneurysm repair surgery or from transplant donors. Experimental AAAs were created in 10- to 12-week-old male mice via intra-aortic elastase infusion. Influence and potential mechanisms of interleukin-19 treatment on AAAs were assessed via ultrasonography, histopathology, flow cytometry, and gene expression profiling. Immunohistochemistry revealed augmented interleukin-19 expression in both human and experimental AAAs. In mice, interleukin-19 treatment before AAA initiation via elastase infusion suppressed aneurysm formation and progression, with attenuation of medial elastin degradation, smooth-muscle depletion, leukocyte infiltration, neoangiogenesis, and matrix metalloproteinase 2 and 9 expression. Initiation of interleukin-19 treatment after AAA creation limited further aneurysmal degeneration. In additional experiments, interleukin-19 treatment inhibited murine macrophage recruitment following intraperitoneal thioglycolate injection. In classically or alternatively activated macrophages in vitro, interleukin-19 downregulated mRNA expression of inducible nitric oxide synthase, chemokine C-C motif ligand 2, and metalloproteinases 2 and 9 without apparent effect on cytokine-expressing helper or cytotoxic T-cell differentiation, nor regulatory T cellularity, in the aneurysmal aorta or spleen of interleukin-19-treated mice. Interleukin-19 also suppressed AAAs created via angiotensin II infusion in hyperlipidemic mice. Conclusions Based on human evidence and experimental modeling observations, interleukin-19 may influence the development and progression of AAAs.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA.,Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Baohui Xu
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Haojun Xuan
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Yingbin Ge
- Department of Physiology Nanjing Medical University Nanjing Jiangsu China
| | - Yan Wang
- Peking University Third HospitalMedical Research Center Haidian Beijing China
| | - Yankui Li
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Wei Wang
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Jia Guo
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Sihai Zhao
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Keith J Glover
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Xiaoya Zheng
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Shuai Liu
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Kazunori Inuzuka
- Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Naoki Fujimura
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Yuko Furusho
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Toru Ikezoe
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Takahiro Shoji
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Lixin Wang
- Department of Vascular Surgery Zhongshan HospitalFudan University Shanghai China
| | - Weiguo Fu
- Department of Vascular Surgery Zhongshan HospitalFudan University Shanghai China
| | - Jianhua Huang
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Naoki Unno
- Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Ronald L Dalman
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| |
Collapse
|
19
|
Huang Y, Deng H, Zhang J, Sun H, Li W, Li C, Zhang Y, Sun D. A photoelectrochemical immunosensor based on ReS2 nanosheets for determination of collagen III related to abdominal aortic aneurysm. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Liu CL, Ren J, Wang Y, Zhang X, Sukhova GK, Liao M, Santos M, Luo S, Yang D, Xia M, Inouye K, Hotamisligil GS, Lu G, Upchurch GR, Libby P, Guo J, Zhang J, Shi GP. Adipocytes promote interleukin-18 binding to its receptors during abdominal aortic aneurysm formation in mice. Eur Heart J 2021; 41:2456-2468. [PMID: 31821481 DOI: 10.1093/eurheartj/ehz856] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
AIMS Obesity is a risk factor of abdominal aortic aneurysm (AAA). Inflammatory cytokine interleukin-18 (IL18) has two receptors: IL18 receptor (IL18r) and Na-Cl co-transporter (NCC). In human and mouse AAA lesions, IL18 colocalizes to its receptors at regions rich in adipocytes, suggesting a role of adipocytes in promoting IL18 actions in AAA development. METHODS AND RESULTS We localized both IL18r and NCC in human and mouse AAA lesions. Murine AAA development required both receptors. In mouse AAA lesions, IL18 binding to these receptors increased at regions enriched in adipocytes or adjacent to perivascular adipose tissue. 3T3-L1 adipocytes enhanced IL18 binding to macrophages, aortic smooth muscle cells (SMCs), and endothelial cells by inducing the expression of both IL18 receptors on these cells. Adipocytes also enhanced IL18r and IL18 expression from T cells and macrophages, AAA-pertinent protease expression from macrophages, and SMC apoptosis. Perivascular implantation of adipose tissue from either diet-induced obese mice or lean mice but not that from leptin-deficient ob/ob mice exacerbated AAA development in recipient mice. Further experiments established an essential role of adipocyte leptin and fatty acid-binding protein 4 (FABP4) in promoting IL18 binding to macrophages and possibly other inflammatory and vascular cells by inducing their expression of IL18, IL18r, and NCC. CONCLUSION Interleukin-18 uses both IL18r and NCC to promote AAA formation. Lesion adipocyte and perivascular adipose tissue contribute to AAA pathogenesis by releasing leptin and FABP4 that induce IL18, IL18r, and NCC expression and promote IL18 actions.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou 450052, China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Jingyuan Ren
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA.,Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yunzhe Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou 450052, China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Xian Zhang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Mengyang Liao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Marcela Santos
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Dafeng Yang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Mingcan Xia
- Division of Allergy & Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Inouye
- Department of Genetics and Complex Diseases, Sabri Ülker Center for Metabolic Research, Harvard TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Sabri Ülker Center for Metabolic Research, Harvard TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Guanyi Lu
- Department of Surgery, University of Florida Health System, Gainesville, FL 32611, USA
| | - Gilbert R Upchurch
- Department of Surgery, University of Florida Health System, Gainesville, FL 32611, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Junli Guo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA.,Institute of Cardiovascular Research, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou 450052, China
| | - Guo-Ping Shi
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou 450052, China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| |
Collapse
|
21
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2020. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
22
|
Chewcharat A, Hamaya R, Thongprayoon C, Cato LD, Mao MA, Cheungpasitporn W. The association between simple renal cyst and aortic diseases: A systematic review and meta-analysis of observational studies. J Evid Based Med 2020; 13:265-274. [PMID: 32452169 DOI: 10.1111/jebm.12385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The objective of this meta-analysis of observational studies was to evaluate the association between simple renal cysts (SRC) and presence of aortic pathology such as aortic aneurysms and dissection. METHODS We conducted searches in Ovid MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials from January 1960 to August 2019 to identify observational studies that examined the association between SRCs and any aortic diseases, including aortic aneurysms and dissection. Two reviewers independently extracted the data and assessed the risk of bias. The meta-analysis was performed by STATA 14.1. RESULTS In total, 11 observational studies with 19 719 participants were included in this meta-analysis. Compared to individuals without SRCs, patients with SRCs had higher odds of abdominal aortic aneurysm (AAA) (adjusted OR = 2.61, 95% CI 2.34-2.91, P < 0.001, I2 = 0%), ascending thoracic aortic aneurysm (TAA) (adjusted OR = 1.98, 95% CI 1.09-3.63, P = 0.03, I2 = 90.1%), descending TAA (adjusted OR = 3.44, 95% CI, 2.67-4.43, P < 0.001, I2 = 0%), type A aortic dissection (AD) (adjusted OR = 1.98, 95% CI 1.32-2.96, P = 0.001, I2 = 12.9%), and type B AD (adjusted OR = 2.55, 95% CI, 1.31-4.96, P = 0.006, I2 = 76.2%). There was a higher average in the sum of diameter of SRCs among AAA compared to patients without AAA (WMD = 19.80 mm, 95% CI 13.92-25.67, P < 0.001, I2 = 63.8%). CONCLUSION SRC is associated with higher odds of aortic diseases including AAA, ascending and descending TAA, type A and type B dissection even after adjusting for confounders.
Collapse
Affiliation(s)
- Api Chewcharat
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Rikuta Hamaya
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Liam D Cato
- Department of Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Michael A Mao
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
23
|
Knappich C, Spin JM, Eckstein HH, Tsao PS, Maegdefessel L. Involvement of Myeloid Cells and Noncoding RNA in Abdominal Aortic Aneurysm Disease. Antioxid Redox Signal 2020; 33:602-620. [PMID: 31989839 PMCID: PMC7455479 DOI: 10.1089/ars.2020.8035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Abdominal aortic aneurysm (AAA) is a potentially fatal condition, featuring the possibility of high-mortality rupture. To date, prophylactic surgery by means of open surgical repair or endovascular aortic repair at specific thresholds is considered standard therapy. Both surgical options hold different risk profiles of short- and long-term morbidity and mortality. Targeting early stages of AAA development to decelerate disease progression is desirable. Recent Advances: Understanding the pathomechanisms that initiate formation, maintain growth, and promote rupture of AAA is crucial to developing new medical therapeutic options. Inflammatory cells, in particular macrophages, have been investigated for their contribution to AAA disease for decades, whereas evidence on lymphocytes, mast cells, and neutrophils is sparse. Recently, there has been increasing interest in noncoding RNAs (ncRNAs) and their involvement in disease development, including AAA. Critical Issues: The current evidence on myeloid cells and ncRNAs in AAA largely originates from small animal models, making clinical extrapolation difficult. Although it is feasible to collect surgical human AAA samples, these tissues reflect end-stage disease, preventing examination of critical mechanisms behind early AAA formation. Future Directions: Gaining more insight into how myeloid cells and ncRNAs contribute to AAA disease, particularly in early stages, might suggest nonsurgical AAA treatment options. The utilization of large animal models might be helpful in this context to help bridge translational results to humans.
Collapse
Affiliation(s)
- Christoph Knappich
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
24
|
Depletion of CD11c+ cell attenuates progression of abdominal aortic aneurysm. Clin Sci (Lond) 2020; 134:33-37. [PMID: 31898748 DOI: 10.1042/cs20191083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022]
Abstract
Chronic inflammation of the arterial wall has been implicated in the development of abdominal aortic aneurysm (AAA). However, the detailed molecular mechanism(s) by which inflammatory cells contributes to AAA pathogenesis remains largely unclear. In their article in Clinical Science, Krishna et al. have reported that depletion of CD11c+ dendritic cells inhibited experimental AAA formation in mice. The authors also demonstrated a decrease in CD4 and CD8 positive T cells in the circulation, lower plasma neutrophil elastase activity, and aortic matrix remodeling. These novel findings will help clarify the underlying mechanisms of AAA progression and may provide a new target for future therapeutic research in AAA formation.
Collapse
|
25
|
Piacentini L, Werba JP, Bono E, Saccu C, Tremoli E, Spirito R, Colombo GI. Genome-Wide Expression Profiling Unveils Autoimmune Response Signatures in the Perivascular Adipose Tissue of Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2019; 39:237-249. [PMID: 30567485 DOI: 10.1161/atvbaha.118.311803] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Perivascular adipose tissue (PVAT) is thought to play a role in vascular homeostasis and in the pathogenesis of large vessel diseases, including abdominal aortic aneurysm (AAA). Herein, we tested the hypothesis that locally restricted transcriptional profiles characterize PVAT surrounding AAA, indicating specific dysfunctions associated with the disease. Approach and Results- Using a paired sample design to limit the effects of interindividual variation, we performed a microarray-based investigation of the PVAT transcriptome in 30 patients with AAA, comparing the adipose layer of the dilated abdominal aorta with that of the not-dilated aortic neck in each patient. Furthermore, we used a state-of-the-art data mining procedure to remove the effect of confounders produced by high-throughput gene expression techniques. We found substantial differences in PVAT gene expression clearly distinguishing the dilated from the not-dilated aorta, which increased in number and magnitude with increasing AAA diameter. Comparisons with other adipose depots (omental or subcutaneous fat) confirmed that gene expression changes are locally restricted. We dissected putative mechanisms associated with AAA PVAT dysfunction through a functional enrichment network analysis: both innate and adaptive immune-response genes along with genes related to cell-death pathways, metabolic processes of collagen, sphingolipids, aminoglycans, and extracellular matrix degradation were strongly overrepresented in PVAT of AAA compared with PVAT of the not-dilated aorta. Conclusions- Our results support a possible function of PVAT in AAA pathogenesis and suggest that AAA is an immunologic disease with an underlying autoimmune component. Interfering with these disease-specific pathways would clarify their precise role in AAA pathogenesis.
Collapse
Affiliation(s)
- Luca Piacentini
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - José Pablo Werba
- Atherosclerosis Prevention Unit (J.P.W.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Elisa Bono
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Claudio Saccu
- Department of Cardiovascular Surgery of the University of Milan (C.S., R.S.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Elena Tremoli
- Scientific Direction (E.T.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Rita Spirito
- Department of Cardiovascular Surgery of the University of Milan (C.S., R.S.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gualtiero Ivanoe Colombo
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
26
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
27
|
Zhang L, Wu JH, Huang TQ, Nepliouev I, Brian L, Zhang Z, Wertman V, Rudemiller NP, McMahon TJ, Shenoy SK, Miller FJ, Crowley SD, Freedman NJ, Stiber JA. Drebrin regulates angiotensin II-induced aortic remodelling. Cardiovasc Res 2019; 114:1806-1815. [PMID: 29931051 DOI: 10.1093/cvr/cvy151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/14/2018] [Indexed: 01/07/2023] Open
Abstract
Aims The actin-binding protein Drebrin is up-regulated in response to arterial injury and reduces smooth muscle cell (SMC) migration and proliferation through its interaction with the actin cytoskeleton. We, therefore, tested the hypothesis that SMC Drebrin inhibits angiotensin II-induced remodelling of the proximal aorta. Methods and results Angiotensin II was administered via osmotic minipumps at 1000 ng/kg/min continuously for 28 days in SM22-Cre+/Dbnflox/flox (SMC-Dbn-/-) and control mice. Blood pressure responses to angiotensin II were assessed by telemetry. After angiotensin II infusion, we assessed remodelling in the proximal ascending aorta by echocardiography and planimetry of histological cross sections. Although the degree of hypertension was equivalent in SMC-Dbn-/- and control mice, SMC-Dbn-/- mice nonetheless exhibited 60% more proximal aortic medial thickening and two-fold more outward aortic remodelling than control mice in response to angiotensin II. Proximal aortas demonstrated greater cellular proliferation and matrix deposition in SMC-Dbn-/- mice than in control mice, as evidenced by a higher prevalence of proliferating cell nuclear antigen-positive nuclei and higher levels of collagen I. Compared with control mouse aortas, SMC-Dbn-/- aortas demonstrated greater angiotensin II-induced NADPH oxidase activation and inflammation, evidenced by higher levels of Ser-536-phosphorylated NFκB p65 subunits and higher levels of vascular cell adhesion molecule-1, matrix metalloproteinase-9, and adventitial macrophages. Conclusions We conclude that SMC Drebrin deficiency augments angiotensin II-induced inflammation and adverse aortic remodelling.
Collapse
Affiliation(s)
- Lisheng Zhang
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Jiao-Hui Wu
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Tai-Qin Huang
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Igor Nepliouev
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Leigh Brian
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Zhushan Zhang
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Virginia Wertman
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Nathan P Rudemiller
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Timothy J McMahon
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Francis J Miller
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Steven D Crowley
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Neil J Freedman
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| | - Jonathan A Stiber
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC, USA
| |
Collapse
|
28
|
Deletion of interleukin-18 attenuates abdominal aortic aneurysm formation. Atherosclerosis 2019; 289:14-20. [PMID: 31445353 DOI: 10.1016/j.atherosclerosis.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/04/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is a common disease; however, its exact pathogenesis remains unknown, and no specific medical therapies are available. Interleukin (IL)-18 plays a crucial role in atherosclerotic plaque destabilization and is a strong predictor of cardiovascular death. Here, we investigated the role of IL-18 in AAA pathogenesis using an experimental mouse model. METHODS AND RESULTS After infusion of angiotensin II (Ang II) for 4 weeks and β-aminopropionitrile (BAPN) for 2 weeks, 58% of C57/6J wild-type (WT) mice developed AAA associated with enhanced expression of IL-18; however, disease incidence was significantly lower in IL-18-/- mice than in WT mice (p < 0.01), although no significant difference was found in systolic blood pressure between WT mice and IL-18-/- mice in this model. Additionally, IL-18 deletion significantly attenuated Ang II/BAPN-induced macrophage infiltration, macrophage polarization into inflammatory M1 phenotype, and matrix metalloproteinase (MMP) activation in abdominal aortas, which is associated with reduced expression of osteopontin (OPN). CONCLUSIONS These findings indicate that IL-18 plays an important role in the development of AAA by enhancing OPN expression, macrophage recruitment, and MMP activation. Moreover, IL-18 represents a previously unrecognized therapeutic target for the prevention of AAA formation.
Collapse
|
29
|
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12:ph12030118. [PMID: 31390798 PMCID: PMC6789891 DOI: 10.3390/ph12030118] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.
Collapse
|
30
|
Liang ES, Bai WW, Wang H, Zhang JN, Zhang F, Ma Y, Jiang F, Yin M, Zhang MX, Chen XM, Qin WD. PARP-1 (Poly[ADP-Ribose] Polymerase 1) Inhibition Protects From Ang II (Angiotensin II)-Induced Abdominal Aortic Aneurysm in Mice. Hypertension 2019; 72:1189-1199. [PMID: 30354818 DOI: 10.1161/hypertensionaha.118.11184] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a common vascular degenerative disease. PARP-1 (poly[ADP-ribose] polymerase 1) is a nuclear enzyme, which plays a critical role in vascular diseases. We hypothesized that PARP-1 inhibition might have protective effects on AAA. In vivo, Ang II (angiotensin II) was continuously infused by a micropump for 28 days to induce AAA in mice. In vitro, aortic endothelial cells and smooth muscle cells were stimulated by Ang II for 24 hours. Ang II infusion increased PARP-1 expression and activity and successfully induced AAA formation partly with a hemorrhage in ApoE-/- mice. Genetic deletion of PARP-1 markedly reduced the AAA incidence, abdominal aortic diameter, macrophage infiltration, ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular adhesion molecule 1) expression, and MMP (matrix metalloproteinase) expression, as well as MMP activity; but increased smooth muscle cells content and collagens expression in AAA. PARP-1 inhibition by PJ-34 also exerted a protective effect on AAA in mice. In aortic endothelial cells, Ang II-induced oxidative stress and DNA damage, resulting in increased PARP-1 expression and activity. Compared with the control, Ang II increased TNF-α (tumor necrosis factor α) and IL-6 (interleukin-6) secretions, ICAM-1 expression and THP-1 (human acute monocytic leukemia cell line) cells adhesion, while PARP-1 inhibition by siRNA reduced the inflammatory response probably through inhibition of the phosphorylation of ERK (extracellular signal-regulated kinase), NF-κB (nuclear factor-κB), and Akt signaling pathways. In smooth muscle cells, Ang II promoted cell migration, proliferation, and apoptosis, reduced collagens expression, but increased MMPs expression, while PARP-1 deletion alleviated these effects partly by reducing NF-κB-targeted MMP-9 expression. PARP-1 inhibition might be a feasible strategy for the treatment of AAA.
Collapse
Affiliation(s)
- Er-Shun Liang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.)
| | - Wen-Wu Bai
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China (W.-w.B.)
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Jian-Ning Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Yang Ma
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Fan Jiang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.).,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (F.J.).,Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China (F.J.)
| | - Mei Yin
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China (M.Y.)
| | - Ming-Xiang Zhang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.)
| | - Xiao-Mei Chen
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Wei-Dong Qin
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| |
Collapse
|
31
|
Rey K, Manku S, Enns W, Van Rossum T, Bushell K, Morin RD, Brinkman FSL, Choy JC. Disruption of the Gut Microbiota With Antibiotics Exacerbates Acute Vascular Rejection. Transplantation 2019. [PMID: 29538261 DOI: 10.1097/tp.0000000000002169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The gut microbiota influences many immunological processes but how its disruption affects transplant rejection is poorly understood. METHODS Interposition grafting of aortic segments was used to examine vascular rejection. The gut microbiota was disrupted in graft recipients using an antibiotic cocktail (ampicillin, vancomycin, metronidazole, neomycin sulfate) in their drinking water. RESULTS Treatment of mice with antibiotics severely reduced total bacterial content in the intestine and disrupted the bacterial composition. Short-term treatment of mice for only the first 3 weeks of life resulted in the population of the intestine in mature mice with bacterial communities that were mildly different from untreated mice, containing slightly more Clostridia and less Bacteroides. Antibiotic disruption of the gut microbiota of graft recipients, either for their entire life or only during the first 3 weeks of life, resulted in increased medial injury of allograft arteries that is reflective of acute vascular rejection but did not affect intimal thickening reflective of transplant arteriosclerosis. Exacerbated vascular rejection resulting from disruption of the gut microbiota was related to increased infiltration of allograft arteries by neutrophils. CONCLUSIONS Disruption of the gut microbiota early in life results in exacerbation of immune responses that cause acute vascular rejection.
Collapse
Affiliation(s)
- Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sukhbir Manku
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Winnie Enns
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thea Van Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin Bushell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
32
|
Téo FH, de Oliveira RTD, Villarejos L, Mamoni RL, Altemani A, Menezes FH, Blotta MHSL. Characterization of CD4 + T Cell Subsets in Patients with Abdominal Aortic Aneurysms. Mediators Inflamm 2018; 2018:6967310. [PMID: 30686933 PMCID: PMC6327259 DOI: 10.1155/2018/6967310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/28/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mediators produced by CD4+ T lymphocytes are involved in the pathogenesis of aneurysmal lesions in abdominal aortic aneurysm (AAA) patients. The aim of this study was to identify and characterize the CD4+ T cell subsets involved in human AAA. METHODS The CD4+ T cell subsets in 30 human aneurysmal lesions were determined using flow cytometry (FC) and immunohistochemistry (IHC). The peripheral blood mononuclear cells (PBMCs) from patients with AAA were also analyzed by FC and compared with control subjects. RESULTS Human aneurysmal lesions contained IFN-γ, IL-12p35, IL-4, IL-23p19, IL-17R, and IL-22 positive cells. PBMCs from AAA patients had higher expression levels of IFN-γ, TNF-α, IL-4, and IL-22 when compared to controls. CONCLUSIONS Our results show the presence of TH1, TH2, TH17, and TH22 subsets in aneurysmal lesions of AAA patients and suggest that these cells may be mainly activated in situ, where they can induce tissue degradation and contribute to the pathogenesis of AAA.
Collapse
Affiliation(s)
- Fábio Haach Téo
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Rômulo Tadeu Dias de Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Liana Villarejos
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Ronei Luciano Mamoni
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
- Faculty of Medicine of Jundiai, Jundiai, São Paulo 13202-550, Brazil
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Fabio Husemann Menezes
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Maria Heloisa Souza Lima Blotta
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| |
Collapse
|
33
|
Kwun J, Park J, Yi JS, Farris AB, Kirk AD, Knechtle SJ. IL-21 Biased Alemtuzumab Induced Chronic Antibody-Mediated Rejection Is Reversed by LFA-1 Costimulation Blockade. Front Immunol 2018; 9:2323. [PMID: 30374350 PMCID: PMC6196291 DOI: 10.3389/fimmu.2018.02323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
Despite its excellent efficacy in controlling T cell mediated acute rejection, lymphocyte depletion may promote a humoral response. While T cell repopulation after depletion has been evaluated in many aspects, the B cell response has not been fully elucidated. We tested the hypothesis that the mechanisms also involve skewed T helper phenotype after lymphocytic depletion. Post-transplant immune response was measured from alemtuzumab treated hCD52Tg cardiac allograft recipients with or without anti-LFA-1 mAb. Alemtuzumab induction promoted serum DSA, allo-B cells, and CAV in humanized CD52 transgenic (hCD52Tg) mice after heterotopic heart transplantation. Additional anti-LFA-1 mAb treatment resulted in reduced DSA (Fold increase 4.75 ± 6.9 vs. 0.7 ± 0.5; p < 0.01), allo-specific B cells (0.07 ± 0.06 vs. 0.006 ± 0.002 %; p < 0.01), neo-intimal hyperplasia (56 ± 14% vs. 23 ± 13%; p < 0.05), arterial disease (77.8 ± 14.2 vs. 25.8 ± 20.1%; p < 0.05), and fibrosis (15 ± 23.3 vs. 4.3 ± 1.65%; p < 0.05) in this alemtuzumab-induced chronic antibody-mediated rejection (CAMR) model. Surprisingly, elevated serum IL-21 levels in alemtuzumab-treated mice was reduced with LFA-1 blockade. In accordance with the increased serum IL-21 level, alemtuzumab treated mice showed hyperplastic germinal center (GC) development, while the supplemental anti-LFA-1 mAb significantly reduced the GC frequency and size. We report that the incomplete T cell depletion inside of the GC leads to a systemic IL-21 dominant milieu with hyperplastic GC formation and CAMR. Conventional immunosuppression, such as tacrolimus and rapamycin, failed to reverse AMR, while co-stimulation blockade with LFA-1 corrected the GC hyperplastic response. The identification of IL-21 driven chronic AMR elucidates a novel mechanism that suggests a therapeutic approach with cytolytic induction.
Collapse
Affiliation(s)
- Jean Kwun
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Jaeberm Park
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Alton B Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allan D Kirk
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
34
|
Recombinant leptin attenuates abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2018; 503:1450-1456. [DOI: 10.1016/j.bbrc.2018.07.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
|
35
|
Khambhati J, Engels M, Allard-Ratick M, Sandesara PB, Quyyumi AA, Sperling L. Immunotherapy for the prevention of atherosclerotic cardiovascular disease: Promise and possibilities. Atherosclerosis 2018; 276:1-9. [PMID: 30006321 DOI: 10.1016/j.atherosclerosis.2018.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease remains the leading cause of death worldwide with coronary atherosclerotic heart disease being the largest contributor. The mechanisms behind the presence and progression of atherosclerosis remain an area of intense scientific focus. Immune dysregulation and inflammation are key contributors to the development of an atherosclerotic plaque and its progression to acute coronary syndromes. Increased circulating levels of biomarkers of systemic inflammation including hsCRP are correlated with a higher cardiovascular risk. Targeting specific inflammatory pathways implicated in atherosclerotic plaque formation is an exciting area of ongoing research. Target specific therapies directed at pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and CCL2 have demonstrated slowing in the progression of atherosclerosis in animal models and improved cardiovascular outcomes in human subjects. Most notably, treatment with the monoclonal antibody canakinumab, which directly targets and neutralizes IL-1β, was recently shown to be associated with reduced risk of adverse cardiovascular events compared to placebo in a randomized, placebo-controlled trial. Several other therapies including colchicine, methotrexate and leukotriene inhibitors demonstrate the potential for lowering cardiovascular risk through immunomodulation, though further studies are needed. Understanding the role of inflammation in atherosclerosis and the development of targeted immunotherapies continues to be an evolving area of research that is rapidly becoming clinically relevant for the 21st century cardiac patient.
Collapse
Affiliation(s)
- Jay Khambhati
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Marc Engels
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Marc Allard-Ratick
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Pratik B Sandesara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Laurence Sperling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
36
|
Libby P. Biologically-Based Therapies for Aortic Diseases: Why the Long Lag in Translation? J Am Coll Cardiol 2018; 72:58-61. [PMID: 29957232 DOI: 10.1016/j.jacc.2018.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
37
|
Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. J Immunol Res 2018; 2018:7213760. [PMID: 29967801 PMCID: PMC6008668 DOI: 10.1155/2018/7213760] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Collapse
|
38
|
Abstract
Abdominal aortic aneurysm (AAA) is most commonly defined as a maximal diameter of the abdominal aorta in excess of 3 cm in either anterior-posterior or transverse planes or, alternatively, as a focal dilation ≥ 1.5 times the diameter of the normal adjacent arterial segment. Risk factors for the development of AAA include age > 60, tobacco use, male gender, Caucasian race, and family history of AAA. Aneurysm growth and rupture risk appear to be associated with persistent tobacco use, female gender, and chronic pulmonary disease. The majority of AAAs are asymptomatic and detected incidentally on various imaging studies, including abdominal ultrasound, and computed tomographic angiography. Symptoms associated with AAA may include abdominal or back pain, thromboembolization, atheroembolization, aortic rupture, or development of an arteriovenous or aortoenteric fistula. The Screening Abdominal Aortic Aneurysms Efficiently (SAAAVE) Act provides coverage for a one-time screening abdominal ultrasound at age 65 for men who have smoked at least 100 cigarettes and women who have family history of AAA disease. Medical management is recommended for asymptomatic patients with AAAs < 5 cm in diameter and focuses on modifiable risk factors, including smoking cessation and blood pressure control. Primary indications for intervention in patients with AAA include development of symptoms, rupture, rapid aneurysm growth (> 5 mm/6 months), or presence of a fusiform aneurysm with maximum diameter of 5.5 cm or greater. Intervention for AAA includes conventional open surgical repair and endovascular aortic stent graft repair.
Collapse
|
39
|
Kusters PJH, Seijkens TTP, Beckers L, Lievens D, Winkels H, de Waard V, Duijvestijn A, Lindquist Liljeqvist M, Roy J, Daugherty A, Newby A, Gerdes N, Lutgens E. CD40L Deficiency Protects Against Aneurysm Formation. Arterioscler Thromb Vasc Biol 2018. [PMID: 29519940 DOI: 10.1161/atvbaha.117.310640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The mechanisms underlying formation of arterial aneurysms remain incompletely understood. Because inflammation is a common feature during the progressive degeneration of the aortic wall, we studied the role of the costimulatory molecule CD40L, a major driver of inflammation, in aneurysm formation. APPROACH AND RESULTS Transcriptomics data obtained from human abdominal aortic aneurysms and normal aortas revealed increased abundance of both CD40L and CD40 in media of thrombus-free and thrombus-covered human abdominal aortic aneurysms samples. To further unravel the role of CD40L in aneurysm formation, apolipoprotein E-deficient (Apoe-/-) and Cd40l-/-Apoe-/- mice were infused with angiotensin II for 7 and 28 days. Only a minority of Cd40l-/-Apoe-/- mice (33% and 17%) developed (dissecting) aneurysms compared with 75% and 67% of Apoe-/- littermates after 7 and 28 days of infusion, respectively. Total vessel area of the aorta at the suprarenal level was 52% smaller in angiotensin II-infused Cd40l-/-Apoe-/- mice compared with that in angiotensin II-infused Apoe-/- mice. Chimeric Apoe-/- mice repopulated with Cd40l-/-Apoe-/- bone marrow afforded a similar protection against dissecting aneurysm formation. Moreover, lack of CD40L protected mice from fatal aneurysm rupture. T helper cell and macrophage accumulation in aneurysmal tissue was reduced in Cd40l-/-Apoe-/- mice with a concomitant decrease in expression of proinflammatory chemo- and cytokines. In addition, aneurysms of Cd40l-/-Apoe-/- mice displayed reduced abundance of matrix metalloproteinase-13 and an increase in tissue inhibitor of metalloproteinase-3 while activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 was diminished. CONCLUSIONS Deficiency of (hematopoietic) CD40L protects against dissecting aneurysm formation and reduces the incidence of fatal rupture. This is associated with a decreased accumulation and activation of inflammatory cells and a dampened protease activity in the arterial wall.
Collapse
Affiliation(s)
- Pascal J H Kusters
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.)
| | - Tom T P Seijkens
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.).,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.)
| | - Linda Beckers
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.)
| | - Dirk Lievens
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.).,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.)
| | - Holger Winkels
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.).,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.)
| | - Vivian de Waard
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.)
| | | | - Moritz Lindquist Liljeqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (M.L.L., J.R.)
| | - Joy Roy
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (M.L.L., J.R.)
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Andrew Newby
- Bristol Heart Institute, University of Bristol, United Kingdom (A.N.)
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.).,Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.)
| | - Esther Lutgens
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.) .,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.)
| |
Collapse
|
40
|
van Puijvelde GHM, Foks AC, van Bochove RE, Bot I, Habets KLL, de Jager SC, ter Borg MND, van Osch P, Boon L, Vos M, de Waard V, Kuiper J. CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice. PLoS One 2018; 13:e0190962. [PMID: 29346401 PMCID: PMC5773169 DOI: 10.1371/journal.pone.0190962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/22/2017] [Indexed: 11/19/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II). We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr-/-CD1d-/- mice) results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr-/- mice. In addition, we show that Ang II amplifies the activation of NKT cells both in vivo and in vitro. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.
Collapse
Affiliation(s)
- Gijs H. M. van Puijvelde
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- * E-mail:
| | - Amanda C. Foks
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rosemarie E. van Bochove
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Kim L. L. Habets
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Saskia C. de Jager
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mariëtte N. D. ter Borg
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Puck van Osch
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Mariska Vos
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
41
|
Ohno T, Aoki H, Ohno S, Nishihara M, Furusho A, Hiromatsu S, Akashi H, Fukumoto Y, Tanaka H. Cytokine Profile of Human Abdominal Aortic Aneurysm: Involvement of JAK/STAT Pathway. Ann Vasc Dis 2018; 11:84-90. [PMID: 29682112 PMCID: PMC5882349 DOI: 10.3400/avd.oa.17-00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) is characterized by inflammation and destruction of normal tissue architecture. The present study aimed to evaluate the inflammatory signaling cascade by analyzing the cytokines of AAA tissue. Materials and Methods: We analyzed the comprehensive cytokine secretion profiles of 52 cytokines from human AAA in four patients with AAA using fluorescent beads-based multiplex assay. Further, the effect of janus kinase (JAK) inhibition by pyridone 6 on cytokine profiles was also evaluated. Results: Cytokine secretion profiles were found to be similar among the four patients. A high level of JAK/signal transducers and activator of transcription (STAT) pathway activity in AAA tissue in culture was maintained, which may be attributed to the secretion of endogenous JAK-activating cytokines. Inhibition of JAK by pyridone 6 resulted in the suppression of STAT3 phosphorylation and secretion of a subset of chemokines and JAK-activating cytokines. However, the inhibition of JAK had no effect on the secretion of matrix metalloproteinase (MMP)-2, MMP-9, or TGF-β family that is responsible for the metabolism of extracellular matrix. Conclusion: The findings of the present study suggested that AAA tissue exhibits a stereotypical profile of cytokine secretion, where JAK/STAT pathway may play a role in regulating a subset of cytokines. Identification of such a cytokine profile may reveal potential diagnostic markers and therapeutic targets for AAA.
Collapse
Affiliation(s)
- Tomokazu Ohno
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Satoko Ohno
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Michihide Nishihara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Aya Furusho
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shinichi Hiromatsu
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hidetoshi Akashi
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroyuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
42
|
Chiu CW, Huang WH, Kuo HS, Tsai MJ, Chen CJ, Lee MJ, Cheng H. Local inhibition of matrix metalloproteinases reduced M2 macrophage activity and impeded recovery in spinal cord transected rats after treatment with fibroblast growth factor-1 and nerve grafts. Neural Regen Res 2018; 13:1447-1454. [PMID: 30106058 PMCID: PMC6108206 DOI: 10.4103/1673-5374.235302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited more M2 macrophages and improved partial functional recovery in spinal cord transected rats. The migration of macrophages is matrix metalloproteinase (MMP) dependent. We used a general inhibitor of MMPs to influence macrophage migration, and we examined the migration of macrophage populations and changes in spinal function. Rat spinal cords were completely transected at T8, and 5 mm of spinal cord was removed (group T). In group R, spinal cord-transected rats received treatment with fibroblast growth factor-1 and peripheral nerve grafts. In group RG, rats received the same treatment as group R with the addition of 200 μM GM6001 (an MMP inhibitor) to the fibrin mix. We found that MMP-9, but not MMP-2, was upregulated in the graft area of rats in group R. Local application of the MMP inhibitor resulted in a reduction in the ratio of arginase-1 (M2 macrophage subset)/inducible nitric oxide synthase-postive cells. When the MMP inhibitor was applied at 8 weeks postoperation, the partial functional recovery observed in group R was lost. This effect was accompanied by a decrease in brain-derived neurotrophic factor levels in the nerve graft. These results suggested that the arginase-1 positive population in spinal cord transected rats is a migratory cell population rather than the phenotypic conversion of early iNOS+ cells and that the migration of the arginase-1+ population could be regulated locally. Simultaneous application of MMP inhibitors or promotion of MMP activity for spinal cord injury needs to be considered if the coadministered treatment involves M2 recruitment.
Collapse
Affiliation(s)
- Chuan-Wen Chiu
- Department and Institute of Pharmacology, National Yang-Ming University; Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, China
| | - Wen-Hung Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, China
| | - Huai-Sheng Kuo
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, China
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, China
| | - Ching-Jung Chen
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, China
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, China
| | - Henrich Cheng
- Department and Institute of Pharmacology, National Yang-Ming University; Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital; Center for Neural Regeneration, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, China
| |
Collapse
|
43
|
Wang G, Bi L, Wang G, Huang F, Lu M, Zhu K. Microarray analysis to identify the similarities and differences of pathogenesis between aortic occlusive disease and abdominal aortic aneurysm. Vascular 2017; 26:301-314. [PMID: 29087237 DOI: 10.1177/1708538117736695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives Expression profile of GSE57691 was analyzed to identify the similarities and differences between aortic occlusive disease and abdominal aortic aneurysm. Methods The expression profile of GSE57691 was downloaded from Gene Expression Omnibus database, including 20 small abdominal aortic aneurysm samples, 29 large abdominal aortic aneurysm samples, 9 aortic occlusive disease samples, and 10 control samples. Using the limma package in R, the differentially expressed genes were screened. Followed by enrichment analysis was performed for the differentially expressed genes using database for annotation, visualization, and integrated discovery online tool. Based on string online tool and Cytoscape software, protein-protein interaction network and module analyses were carried out. Moreover, integrated TF platform database and Cytoscape software were used for constructing transcriptional regulatory networks. Results As a result, 1757, 354, and 396 differentially expressed genes separately were identified in aortic occlusive disease, large abdominal aortic aneurysm, and small abdominal aortic aneurysm samples. UBB was significantly enriched in proteolysis related pathways with a high degree in three groups. SPARCL1 was another gene shared by these groups and regulated by NFIA, which had a high degree in transcriptional regulatory network. ACTB, a significant upregulated gene in abdominal aortic aneurysm samples, could be regulated by CLIC4, which was significantly enriched in cell motions. ACLY and NFIB were separately identified in aortic occlusive disease and small abdominal aortic aneurysm samples, and separately enriched in lipid metabolism and negative regulation of cell proliferation. Conclusions The downregulated UBB, NFIA, and SPARCL1 might play key roles in both aortic occlusive disease and abdominal aortic aneurysm, while the upregulated ACTB might only involve in abdominal aortic aneurysm. ACLY and NFIB were specifically involved in aortic occlusive disease and small abdominal aortic aneurysm separately.
Collapse
Affiliation(s)
- Guofu Wang
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Lechang Bi
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Gaofeng Wang
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Feilai Huang
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Mingjing Lu
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Kai Zhu
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| |
Collapse
|
44
|
Meng X, Zhang K, Kong J, Xu L, An G, Qin W, Li J, Zhang Y. Deletion of resistin-like molecule-beta attenuates angiotensin II-induced abdominal aortic aneurysm. Oncotarget 2017; 8:104171-104181. [PMID: 29262630 PMCID: PMC5732796 DOI: 10.18632/oncotarget.22042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
In the present study, we want to test whether deletion of resistin-like molecule-beta (RELMβ) attenuates angiotensin II (Ang II)-induced formation of abdominal aortic aneurysm (AAA). RELMβ gene expression was inhibited by siRNA both in vivo and in vitro. Apolipoprotein E-knockout (ApoE−/−) mice were randomly divided into saline, Ang II, siRNA negative control (si-NC) and siRNA RELMβ (si-RELMβ) groups (n=15 each), and mice in the last three groups underwent Ang II infusion for 4 weeks to induce AAA. RELMβ gene deficiency significantly decreased AAA incidence and severity, which was associated with reduced macrophage accumulation and decreased expression of proinflammatory cytokines (monocyte chemoattractant protein 1 and interleukin 6), matrix metalloproteinase 2 (MMP-2) and MMP-9 in the aortic wall. In cultured macrophages, RELMβ deficiency blunted the response of macrophages to Ang II and downregulated the levels of proinflammatory cytokines, MMP-2 and MMP-9. Recombinant RELMβ promoted the secretion of proinflammatory cytokines, MMP-2 and MMP-9 in macrophages and activated extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) signaling, which was reversed with pretreatment with inhibitors of ERK1/2 and JNK. Deletion of RELMβ attenuated Ang II-induced AAA formation in ApoE−/− mice. The inherent mechanism may involve the reduced expression of proinflammatory cytokines, MMP-2 and MMP-9, which was mediated by ERK1/2 and JNK activation. Therefore, inhibiting RELMβ secretion may be a novel approach for anti-aneurysm treatment.
Collapse
Affiliation(s)
- Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Long Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Guipeng An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Weidong Qin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jifu Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| |
Collapse
|
45
|
Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 18:ijms18102034. [PMID: 28937652 PMCID: PMC5666716 DOI: 10.3390/ijms18102034] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, smooth muscle cell proliferation, cell apoptosis, necrosis, fibrosis, and local inflammation. Immune and inflammatory responses have significant effects on every phase of atherosclerosis, and increasing evidence shows that immunity plays a more important role in atherosclerosis by tightly regulating its progression. Therefore, understanding the relationship between immune responses and the atherosclerotic microenvironment is extremely important. This article reviews existing knowledge regarding the pathogenesis of immune responses in the atherosclerotic microenvironment, and the immune mechanisms involved in atherosclerosis formation and activation.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung 807, Taiwan.
- Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
46
|
Hayashi T, Sasaki N, Yamashita T, Mizoguchi T, Emoto T, Amin HZ, Yodoi K, Matsumoto T, Kasahara K, Yoshida N, Tabata T, Kitano N, Fukunaga A, Nishigori C, Rikitake Y, Hirata KI. Ultraviolet B Exposure Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice by Expanding CD4 +Foxp3 + Regulatory T Cells. J Am Heart Assoc 2017; 6:JAHA.117.007024. [PMID: 28860231 PMCID: PMC5634315 DOI: 10.1161/jaha.117.007024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Pathogenic immune responses are known to play an important role in abdominal aortic aneurysm (AAA) development. Ultraviolet B (UVB) irradiation has been demonstrated to have therapeutic potential not only for cutaneous diseases but also for systemic inflammatory diseases in mice by suppressing immunoinflammatory responses. We investigated the effect of UVB irradiation on experimental AAA. Methods and Results We used an angiotensin II–induced AAA model in apolipoprotein E–deficient mice fed a high‐cholesterol diet. Mice aged 10 weeks were irradiated with 5 kJ/m2UVB once weekly for 6 weeks (UVB‐irradiated, n=38; nonirradiated, n=42) and were euthanized for evaluation of AAA formation at 16 weeks. Overall, 93% of angiotensin II–infused mice developed AAA, with 60% mortality possibly because of aneurysm rupture. UVB irradiation significantly decreased the incidence (66%) and mortality (29%) of AAA (P=0.004 and P=0.006, respectively). UVB‐irradiated mice had significantly smaller diameter AAA (P=0.008) and fewer inflammatory cells in the aortic aneurysm tissue than nonirradiated mice, along with systemic expansion of CD4+Foxp3+ regulatory T cells and decreased effector CD4+CD44highCD62Llow T cells in para‐aortic lymph nodes. Genetic depletion of regulatory T cells abrogated these beneficial effects of UVB treatment, demonstrating a critical role of regulatory T cells. Conclusions Our data suggest that UVB‐dependent expansion of regulatory T cells has beneficial effects on experimental AAA and may provide a novel strategy for the treatment of AAA.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan .,Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taiji Mizoguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hilman Zulkifli Amin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan.,Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Keiko Yodoi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Matsumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuyuki Kasahara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tokiko Tabata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Kitano
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Rikitake
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
47
|
Libby P, Sukhova GK, Ozaki CK, Shi GP. Tilting at the tilted protease balance in arterial aneurysmal disease. Cardiovasc Res 2017; 113:1279-1281. [DOI: 10.1093/cvr/cvx140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Xuan H, Xu B, Wang W, Tanaka H, Fujimura N, Miyata M, Michie SA, Dalman RL. Inhibition or deletion of angiotensin II type 1 receptor suppresses elastase-induced experimental abdominal aortic aneurysms. J Vasc Surg 2017; 67:573-584.e2. [PMID: 28434702 DOI: 10.1016/j.jvs.2016.12.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/15/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Angiotensin (Ang) II type 1 receptor (AT1) activation is essential for the development of exogenous Ang II-induced abdominal aortic aneurysms (AAAs) in hyperlipidemic animals. Experimental data derived from this modeling system, however, provide limited insight into the role of endogenous Ang II in aneurysm pathogenesis. Consequently, the potential translational value of AT1 inhibition in clinical AAA disease management remains incompletely understood on the basis of the existing literature. METHODS AAAs were created in wild-type (WT) and AT1a knockout (KO) mice by intra-aortic infusion of porcine pancreatic elastase (PPE). WT mice were treated with the AT1 receptor antagonist telmisartan, 10 mg/kg/d in chow, or the peroxisome proliferator-activated receptor γ (PPARγ) antagonist GW9662, 3 mg/kg/d through oral gavage, beginning 1 week before or 3 days after PPE infusion. Influences on aneurysm progression as well as mechanistic insights into AT1-mediated pathogenic processes were determined using noninvasive ultrasound imaging, histopathology, aortic gene expression profiling, and flow cytometric analysis. RESULTS After PPE infusion, aortic enlargement was almost completely abrogated in AT1a KO mice compared with WT mice. As defined by a ≥50% increase in aortic diameter, no PPE-infused, AT1a KO mouse actually developed an AAA. On histologic evaluation, medial smooth muscle cellularity and elastic lamellae were preserved in AT1a KO mice compared with WT mice, with marked attenuation of mural angiogenesis and leukocyte infiltration. In WT mice, telmisartan administration effectively suppressed aneurysm pathogenesis after PPE infusion as well, regardless of whether treatment was initiated before or after aneurysm creation or continued for a limited or extended time. Telmisartan treatment was associated with reduced messenger RNA levels for CCL5 and matrix metalloproteinases 2 and 9 in aneurysmal aortae, with no apparent effect on PPARγ-regulated gene expression. Administration of the PPARγ antagonist GW9662 failed to "rescue" the aneurysm phenotype in telmisartan-treated, PPE-infused WT mice. Neither effector T-cell differentiation nor regulatory T-cell cellularity was affected by telmisartan treatment status. CONCLUSIONS Telmisartan effectively suppresses the progression of elastase-induced AAAs without apparent effect on PPARγ activation or T-cell differentiation. These findings reinforce the critical importance of endogenous AT1 activation in experimental AAA pathogenesis and reinforce the translational potential of AT1 inhibition in medical aneurysm disease management.
Collapse
Affiliation(s)
- Haojun Xuan
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif; Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Wei Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Hiroki Tanaka
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Naoki Fujimura
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Masaaki Miyata
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sara A Michie
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Ronald L Dalman
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
49
|
Towler DA. "Osteotropic" Wnt/LRP Signals: High-Wire Artists in a Balancing Act Regulating Aortic Structure and Function. Arterioscler Thromb Vasc Biol 2017; 37:392-395. [PMID: 28228445 PMCID: PMC5324723 DOI: 10.1161/atvbaha.116.308915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dwight A Towler
- From the Department of Internal Medicine, Endocrine Division, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
50
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|