1
|
Shao Y, Yang WY, Nanayakkara G, Saaoud F, Ben Issa M, Xu K, Lu Y, Jiang X, Mohsin S, Wang H, Yang X. Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4 +Foxp3 + Regulatory T Cell Immunosuppression. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100022. [PMID: 39926714 PMCID: PMC11804271 DOI: 10.53941/ijddp.2024.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4+Foxp3+ regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.
Collapse
Affiliation(s)
- Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - William Y. Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Gayani Nanayakkara
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT84112, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Sadia Mohsin
- Aging + Cardiovascular Discovery Center (ACDC), Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| |
Collapse
|
2
|
Li J, Wei J, Fu P, Gu J. Identification of novel proteins for coronary artery disease by integrating GWAS data and human plasma proteomes. Heliyon 2024; 10:e38036. [PMID: 39386869 PMCID: PMC11462259 DOI: 10.1016/j.heliyon.2024.e38036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Most coronary artery disease (CAD) risk loci identified by genome-wide association studies (GWAS) are located in non-coding regions, hampering the interpretation of how they confer CAD risk. It is essential to integrate GWAS with molecular traits data to further explore the genetic basis of CAD. Methods We used the probabilistic Mendelian randomization (PMR) method to identify potential proteins involved in CAD by integrating CAD GWAS data (∼76,014 cases and ∼264,785 controls) and human plasma proteomes (N = 35,559). Then, Bayesian co-localization analysis, confirmatory PMR analysis using independent plasma proteome data (N = 7752), and gene expression data (N1 = 213, N2 = 670) were performed to validate candidate proteins. We further investigated the associations between candidate proteins and CAD-related traits and explored the rationality and biological functions of candidate proteins through disease enrichment, cell type-specific, GO, and KEGG enrichment analysis. Results This study inferred that the abundance of 30 proteins in the plasma was causally associated with CAD (P < 0.05/4408, Bonferroni correction), such as PLG, IL15RA, and CSNK2A1. PLG, PSCK9, COLEC11, ZNF180, ERP29, TCP1, FN1, CDH5, IL15RA, MGAT4B, TNFRSF6B, DNM2, and TGF1R were replicated in the confirmatory PMR (P < 0.05). PCSK9 (PP.H4 = 0.99), APOB (PP.H4 = 0.89), FN1 (PP.H4 = 0.87), and APOC1 (PP.H4 = 0.78) coding proteins shared one common variant with CAD. MTAP, TCP1, APOC2, ERP29, MORF4L1, C19orf80, PCSK9, APOC1, EPOR, DNM2, TNFRSF6B, CDKN2B, and LDLR were supported by PMR at the transcriptome level in whole blood and/or coronary arteries (P < 0.05). Enrichment analysis identified multiple pathways involved in cholesterol metabolism, regulation of lipoprotein levels and telomerase, such as cholesterol metabolism (hsa04979, P = 2.25E-7), plasma lipoprotein particle clearance (GO:0034381, P = 5.47E-5), and regulation of telomerase activity (GO:0051972, P = 2.34E-3). Conclusions Our integration analysis has identified 30 candidate proteins for CAD, which may provide important leads to design future functional studies and potential drug targets for CAD.
Collapse
Affiliation(s)
- Jiqing Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Jiate Wei
- Office of Hospital Management Research, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ping Fu
- Jinan Center for Disease Control and Prevention, Jinan, 250012, Shandong, China
| | - Jianhua Gu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
3
|
Deroissart J, Binder CJ, Porsch F. Role of Antibodies and Their Specificities in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2154-2168. [PMID: 39114917 DOI: 10.1161/atvbaha.124.319843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by innate and adaptive immunity including humoral immunity. Importantly, antibody alterations achieved by genetic means or active and passive immunization strategies in preclinical studies can improve or aggravate atherosclerosis. Additionally, a wide range of epidemiological data demonstrate not only an association between the total levels of different antibody isotypes but also levels of antibodies targeting specific antigens with atherosclerotic cardiovascular disease. Here, we discuss the potential role of atherogenic dyslipidemia on the antibody repertoire and review potential antibody-mediated effector mechanisms involved in atherosclerosis development highlighting the major atherosclerosis-associated antigens that trigger antibody responses.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| |
Collapse
|
4
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
5
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
6
|
Snijckers RPM, Foks AC. Adaptive immunity and atherosclerosis: aging at its crossroads. Front Immunol 2024; 15:1350471. [PMID: 38686373 PMCID: PMC11056569 DOI: 10.3389/fimmu.2024.1350471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptive immunity plays a profound role in atherosclerosis pathogenesis by regulating antigen-specific responses, inflammatory signaling and antibody production. However, as we age, our immune system undergoes a gradual functional decline, a phenomenon termed "immunosenescence". This decline is characterized by a reduction in proliferative naïve B- and T cells, decreased B- and T cell receptor repertoire and a pro-inflammatory senescence associated secretory profile. Furthermore, aging affects germinal center responses and deteriorates secondary lymphoid organ function and structure, leading to impaired T-B cell dynamics and increased autoantibody production. In this review, we will dissect the impact of aging on adaptive immunity and the role played by age-associated B- and T cells in atherosclerosis pathogenesis, emphasizing the need for interventions that target age-related immune dysfunction to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
7
|
Tan J, Liang Y, Yang Z, He Q, Tong J, Deng Y, Guo W, Liang K, Tang J, Shi W, Yu B. Single-Cell Transcriptomics Reveals Crucial Cell Subsets and Functional Heterogeneity Associated With Carotid Atherosclerosis and Cerebrovascular Events. Arterioscler Thromb Vasc Biol 2023; 43:2312-2332. [PMID: 37881939 PMCID: PMC10659258 DOI: 10.1161/atvbaha.123.318974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Carotid atherosclerosis is a chronic inflammatory disorder and is responsible for the vast majority of ischemic strokes. Inappropriate innate and adaptive immune responses synergize with malfunctional vascular wall cells to cause atherosclerotic lesions. Yet, functional characteristics of specific immune and endothelial cell subsets associated with atherosclerosis and cerebrovascular events are poorly understood. METHODS Here, using single-cell RNA sequencing, the unprecedentedly largest data set from 20 patients' carotid artery plaques and paired peripheral blood mononuclear cells was generated, with which an ultra-high-precision cellular landscape of the atherosclerotic microenvironment involving 372 070 cells was depicted. RESULTS Compared with peripheral blood mononuclear cells, 3 plaque-specific T-cell subsets exhibiting proatherogenic features of both activation and exhaustion were identified. Strikingly, usually antiatherogenic, CD4+FOXP3+ regulatory T cells from plaques of patients with symptomatic disease acquired proinflammatory properties by probably converting to T helper 17 and T helper 9 cells, while CD4+NR4A1+/C0 and CD8+SLC4A10+ T cells related to cerebrovascular events possessed atherogenic attributes including proinflammation, polarization, and exhaustion. In addition, monocyte-macrophage dynamics dominated innate immune response. Two plaque-specific monocyte subsets performed diametrically opposed functions, EREG+ monocytes promoted cerebrovascular events while C3+ monocytes are anti-inflammatory. Similarly, IGF1+ and HS3ST2+ macrophages with classical proinflammatory M1 macrophage features were annotated and contributed to cerebrovascular events. Moreover, SULF1+ (sulfatase-1) endothelial cells were also found to participate in cerebrovascular events through affecting plaque vulnerability. CONCLUSIONS This compendium of single-cell transcriptome data provides valuable insights into the cellular heterogeneity of the atherosclerotic microenvironment and the development of more precise cardiovascular immunotherapies.
Collapse
Affiliation(s)
- Jinyun Tan
- Vascular Surgery Division, General Surgery Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China (J. Tan, Q.H., W.G., K.L., W.S., B.Y.)
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J. Tan, Y.L., Z.Y., J. Tong, J. Tang, W.S., B.Y.)
- Fudan Zhangjiang Institute, Fudan University, Shanghai, China (J. Tan, Y.L., Y.D.)
| | - Yongjun Liang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China (Y.L., J. Tong, Y.D., J. Tang, B.Y.)
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J. Tan, Y.L., Z.Y., J. Tong, J. Tang, W.S., B.Y.)
- Fudan Zhangjiang Institute, Fudan University, Shanghai, China (J. Tan, Y.L., Y.D.)
| | - Zhou Yang
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J. Tan, Y.L., Z.Y., J. Tong, J. Tang, W.S., B.Y.)
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, China (Z.Y.)
| | - Qing He
- Vascular Surgery Division, General Surgery Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China (J. Tan, Q.H., W.G., K.L., W.S., B.Y.)
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China (Y.L., J. Tong, Y.D., J. Tang, B.Y.)
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J. Tan, Y.L., Z.Y., J. Tong, J. Tang, W.S., B.Y.)
| | - Ying Deng
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China (Y.L., J. Tong, Y.D., J. Tang, B.Y.)
- Fudan Zhangjiang Institute, Fudan University, Shanghai, China (J. Tan, Y.L., Y.D.)
| | - Wencheng Guo
- Vascular Surgery Division, General Surgery Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China (J. Tan, Q.H., W.G., K.L., W.S., B.Y.)
| | - Kun Liang
- Vascular Surgery Division, General Surgery Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China (J. Tan, Q.H., W.G., K.L., W.S., B.Y.)
| | - Jingdong Tang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China (Y.L., J. Tong, Y.D., J. Tang, B.Y.)
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J. Tan, Y.L., Z.Y., J. Tong, J. Tang, W.S., B.Y.)
| | - Weihao Shi
- Vascular Surgery Division, General Surgery Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China (J. Tan, Q.H., W.G., K.L., W.S., B.Y.)
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J. Tan, Y.L., Z.Y., J. Tong, J. Tang, W.S., B.Y.)
| | - Bo Yu
- Vascular Surgery Division, General Surgery Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China (J. Tan, Q.H., W.G., K.L., W.S., B.Y.)
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China (Y.L., J. Tong, Y.D., J. Tang, B.Y.)
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J. Tan, Y.L., Z.Y., J. Tong, J. Tang, W.S., B.Y.)
| |
Collapse
|
8
|
Cetin E, Mazzarino M, González-Mateo GT, Kopytina V, Meran S, Fraser D, López-Cabrera M, Labéta MO, Raby AC. Calprotectin blockade inhibits long-term vascular pathology following peritoneal dialysis-associated bacterial infection. Front Cell Infect Microbiol 2023; 13:1285193. [PMID: 38094743 PMCID: PMC10716465 DOI: 10.3389/fcimb.2023.1285193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Bacterial infections and the concurrent inflammation have been associated with increased long-term cardiovascular (CV) risk. In patients receiving peritoneal dialysis (PD), bacterial peritonitis is a common occurrence, and each episode further increases late CV mortality risk. However, the underlying mechanism(s) remains to be elucidated before safe and efficient anti-inflammatory interventions can be developed. Damage-Associated Molecular Patterns (DAMPs) have been shown to contribute to the acute inflammatory response to infections, but a potential role for DAMPs in mediating long-term vascular inflammation and CV risk following infection resolution in PD, has not been investigated. We found that bacterial peritonitis in mice that resolved within 24h led to CV disease-promoting systemic and vascular immune-mediated inflammatory responses that were maintained up to 28 days. These included higher blood proportions of inflammatory leukocytes displaying increased adhesion molecule expression, higher plasma cytokines levels, and increased aortic inflammatory and atherosclerosis-associated gene expression. These effects were also observed in infected nephropathic mice and amplified in mice routinely exposed to PD fluids. A peritonitis episode resulted in elevated plasma levels of the DAMP Calprotectin, both in PD patients and mice, here the increase was maintained up to 28 days. In vitro, the ability of culture supernatants from infected cells to promote key inflammatory and atherosclerosis-associated cellular responses, such as monocyte chemotaxis, and foam cell formation, was Calprotectin-dependent. In vivo, Calprotectin blockade robustly inhibited the short and long-term peripheral and vascular consequences of peritonitis, thereby demonstrating that targeting of the DAMP Calprotectin is a promising therapeutic strategy to reduce the long-lasting vascular inflammatory aftermath of an infection, notably PD-associated peritonitis, ultimately lowering CV risk.
Collapse
Affiliation(s)
- Esra Cetin
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Morgane Mazzarino
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Guadalupe T. González-Mateo
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa – Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
- Premium Research, S.L., Guadalajara, Spain
| | - Valeria Kopytina
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa – Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Soma Meran
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Donald Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa – Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Mario O. Labéta
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anne-Catherine Raby
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Zhang Y, Liu T, Deng Z, Fang W, Zhang X, Zhang S, Wang M, Luo S, Meng Z, Liu J, Sukhova GK, Li D, McKenzie ANJ, Libby P, Shi G, Guo J. Group 2 Innate Lymphoid Cells Protect Mice from Abdominal Aortic Aneurysm Formation via IL5 and Eosinophils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206958. [PMID: 36592421 PMCID: PMC9982556 DOI: 10.1002/advs.202206958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Development of abdominal aortic aneurysms (AAA) enhances lesion group-2 innate lymphoid cell (ILC2) accumulation and blood IL5. ILC2 deficiency in Rorafl/fl Il7rCre/+ mice or induced ILC2 depletion in Icosfl-DTR-fl/+ Cd4Cre/+ mice expedites AAA growth, increases lesion inflammation, but leads to systemic IL5 and eosinophil (EOS) deficiency. Mechanistic studies show that ILC2 protect mice from AAA formation via IL5 and EOS. IL5 or ILC2 from wild-type (WT) mice, but not ILC2 from Il5-/- mice induces EOS differentiation in bone-marrow cells from Rorafl/fl Il7rCre/+ mice. IL5, IL13, and EOS or ILC2 from WT mice, but not ILC2 from Il5-/- and Il13-/- mice block SMC apoptosis and promote SMC proliferation. EOS but not ILC2 from WT or Il5-/- mice block endothelial cell (EC) adhesion molecule expression, angiogenesis, dendritic cell differentiation, and Ly6Chi monocyte polarization. Reconstitution of WT EOS and ILC2 but not Il5-/- ILC2 slows AAA growth in Rorafl/fl Il7rCre/+ mice by increasing systemic EOS. Besides regulating SMC pathobiology, ILC2 play an indirect role in AAA protection via the IL5 and EOS mechanism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Tianxiao Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Guangdong Provincial Geriatrics InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhiyong Deng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Department of GeriatricsNational Key Clinic SpecialtyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Wenqian Fang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Xian Zhang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Shuya Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Minjie Wang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Songyuan Luo
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Zhaojie Meng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Jing Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Galina K. Sukhova
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Dazhu Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Andrew N. J. McKenzie
- Division of Protein & Nucleic Acid ChemistryMRC Laboratory of Molecular BiologyCambridgeCB2 0QHUK
| | - Peter Libby
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
| |
Collapse
|
11
|
Manta CP, Leibing T, Friedrich M, Nolte H, Adrian M, Schledzewski K, Krzistetzko J, Kirkamm C, David Schmid C, Xi Y, Stojanovic A, Tonack S, de la Torre C, Hammad S, Offermanns S, Krüger M, Cerwenka A, Platten M, Goerdt S, Géraud C. Targeting of Scavenger Receptors Stabilin-1 and Stabilin-2 Ameliorates Atherosclerosis by a Plasma Proteome Switch Mediating Monocyte/Macrophage Suppression. Circulation 2022; 146:1783-1799. [PMID: 36325910 DOI: 10.1161/circulationaha.121.058615] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, β-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Calin-Petru Manta
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Mirco Friedrich
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Hendrik Nolte
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Biology of Ageing, Cologne, Germany (H.N.)
| | - Monica Adrian
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christof Kirkamm
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christian David Schmid
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Yannick Xi
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Ana Stojanovic
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sarah Tonack
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Carolina de la Torre
- Centre for Medical Research (ZMF) (C.d.l.T.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Seddik Hammad
- Department of Medicine II (S.H.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Marcus Krüger
- Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Adelheid Cerwenka
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael Platten
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
12
|
Taylor JA, Hutchinson MA, Gearhart PJ, Maul RW. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun Ageing 2022; 19:59. [PMID: 36461105 PMCID: PMC9717479 DOI: 10.1186/s12979-022-00316-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
The sequestering of oxidation-modified low-density lipoprotein by macrophages results in the accumulation of fatty deposits within the walls of arteries. Necrosis of these cells causes a release of intercellular epitopes and the activation of the adaptive immune system, which we predict leads to robust autoantibody production. T cells produce cytokines that act in the plaque environment and further stimulate B cell antibody production. B cells in atherosclerosis meanwhile have a mixed role based on subclass. The current model is that B-1 cells produce protective IgM antibodies in response to oxidation-specific epitopes that work to control plaque formation, while follicular B-2 cells produce class-switched antibodies (IgG, IgA, and IgE) which exacerbate the disease. Over the course of this review, we discuss further the validation of these protective antibodies while evaluating the current dogma regarding class-switched antibodies in atherosclerosis. There are several contradictory findings regarding the involvement of class-switched antibodies in the disease. We hypothesize that this is due to antigen-specificity, and not simply isotype, being important, and that a closer evaluation of these antibodies' targets should be conducted. We propose that specific antibodies may have therapeutical potential in preventing and controlling plaque development within a clinical setting.
Collapse
Affiliation(s)
- Joshua A. Taylor
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark A. Hutchinson
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Patricia J. Gearhart
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Robert W. Maul
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| |
Collapse
|
13
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
14
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
15
|
Razeghian-Jahromi I, Karimi Akhormeh A, Razmkhah M, Zibaeenezhad MJ. Immune system and atherosclerosis: Hostile or friendly relationship. Int J Immunopathol Pharmacol 2022; 36:3946320221092188. [PMID: 35410514 PMCID: PMC9009140 DOI: 10.1177/03946320221092188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coronary artery disease has remained a major health challenge despite enormous
progress in prevention, diagnosis, and treatment strategies. Formation of
atherosclerotic plaque is a chronic process that is developmentally influenced
by intrinsic and extrinsic determinants. Inflammation triggers atherosclerosis,
and the fundamental element of inflammation is the immune system. The immune
system involves in the atherosclerosis process by a variety of immune cells and
a cocktail of mediators. It is believed that almost all main components of this
system possess a profound contribution to the atherosclerosis. However, they
play contradictory roles, either protective or progressive, in different stages
of atherosclerosis progression. It is evident that monocytes are the first
immune cells appeared in the atherosclerotic lesion. With the plaque growth,
other types of the immune cells such as mast cells, and T lymphocytes are
gradually involved. Each cell releases several cytokines which cause the
recruitment of other immune cells to the lesion site. This is followed by
affecting the expression of other cytokines as well as altering certain
signaling pathways. All in all, a mix of intertwined interactions determine the
final outcome in terms of mild or severe manifestations, either clinical or
subclinical. Therefore, it is of utmost importance to precisely understand the
kind and degree of contribution which is made by each immune component in order
to stop the growing burden of cardiovascular morbidity and mortality. In this
review, we present a comprehensive appraisal on the role of immune cells in the
atherosclerosis initiation and development.
Collapse
Affiliation(s)
- Iman Razeghian-Jahromi
- Cardiovascular Research Center, 571605Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Karimi Akhormeh
- Cardiovascular Research Center, 571605Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
16
|
Cai Y, Zeng Q, Liu Y, Zhu R, Yu K, Xu W, Wang Y, Ding Y, Yu J, Pan C, Peng Y, Mao Y, Cheng P, Huang L, Mao X, Zhong Y. GARP and GARP-Treated tDC Prevented the Formation of Atherosclerotic Plaques in ApoE -/- Mice. J Inflamm Res 2021; 14:3465-3479. [PMID: 34326655 PMCID: PMC8314935 DOI: 10.2147/jir.s308963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aims to clarify the specific mechanism by which GARP affects the atherosclerotic plaques in ApoE−/- mice and the effect of GARP-tDC on atherosclerosis. Methods The mice were randomly divided into three groups: the control group, the GARP-overexpressed group and the GARP-inhibited group. After 12 weeks, all the mice were euthanized, and the specimens were collected. In vitro, experiments were conducted to observe the effect of GARP on DC phenotype and the changes of the proportion of CD4+CD25+Foxp3+ Treg cells when GARP-tDCs were co-cultured with CD4+ T cells. Furthermore, adoptive transmission of GARP-tDCs was used to observe the effect on atherosclerotic plaque in mice. Results The GARP-overexpressed group enhanced the biological activity of Foxp3+ CD4+CD25+ Tregs and resulted in increased expression of LAP in T cells. In addition, the GARP-overexpressed group significantly suppressed the function of Th1 and Th17, and decreased the secretion of INF-γ and IL-17A. Thus, GARP had a protective effect on atherosclerosis. In vitro, we found that GARP-tDC had a tolerance-inducing phenotype, and GARP-tDC also had the ability to induce tolerance when co-cultured with CD4+ T cells. More importantly, adoptive transmission of GARP-tDCs reduced the size of atherosclerotic plaques. Conclusion GARP and the GARP-tDC play protective roles in atherosclerosis. The protective effect of GARP on atherosclerosis is achieved by increasing CD4+CD25+Foxp3+ Treg cells and inhibiting the production of IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yuzhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Ruirui Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wenbin Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yudong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yi Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Peng Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Lun Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaobo Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yucheng Zhong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
17
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun 2021; 12:3754. [PMID: 34145241 PMCID: PMC8213756 DOI: 10.1038/s41467-021-23909-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4+ T cells display impaired Th1 polarization, as reflected by reduced interferon-γ production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c+ dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-γ concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway.
Collapse
|
19
|
Pandher K, Ghamrawi RI, Heron CE, Feldman SR. Controversial cardiovascular and hematologic comorbidities in atopic dermatitis. Arch Dermatol Res 2021; 314:317-324. [PMID: 33973062 DOI: 10.1007/s00403-021-02240-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 01/17/2023]
Abstract
Atopic dermatitis' (AD) systemic involvement is wide-reaching. The cardiovascular and hematological comorbidities of AD have potential for considerable economic and physical burden; however, data surrounding the association between these comorbidities and AD is controversial. This review discusses the cardiovascular and hematological comorbidities of AD, detailing the conflicting evidence, pathophysiology, and connection to medications. A PubMed search was conducted for studies detailing the association of cardiovascular and hematological comorbidities with AD, providing approximately 30 results. Additional searches were conducted for studies discussing the pathophysiology of these comorbidities and possible connections to AD medications. Various studies highlight either positive, negative, or no association of AD with hypertension, stroke, myocardial infarction, heart failure, and thrombosis. Coronary heart disease, angina, peripheral artery disease, and anemia are consistently positively associated with AD. However, the attributable risks of AD for stroke, myocardial infarction, heart failure, and atrial fibrillation are low (25 per 100,000 persons [99% CI 6-44], 12 per 100,000 persons [99% CI - 4-27], 40 per 100,000 persons [99% CI 22-57], and 37 per 100,000 persons [99% CI 15-55]), respectively. The pathophysiology underlying these potential associations is not entirely clear. Corticosteroids, cyclosporine, and antimetabolites, all used to treat AD, may also be associated with many of these comorbidities. AD's controversial associations with cardiovascular and hematological diseases complicates management as it is difficult to define recommendations for screening of these comorbidities. A better understanding may help lessen the economic and physical burden of these comorbidities in AD patients.
Collapse
Affiliation(s)
- Karan Pandher
- Department of Dermatology, Wake Forest School of Medicine, Center for Dermatology Research, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA.
| | - Rima I Ghamrawi
- Department of Dermatology, Wake Forest School of Medicine, Center for Dermatology Research, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA
| | - Courtney E Heron
- Department of Dermatology, Wake Forest School of Medicine, Center for Dermatology Research, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA
| | - Steven R Feldman
- Department of Dermatology, Wake Forest School of Medicine, Center for Dermatology Research, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Social Sciences & Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Dermatology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Inflammation-Related Risk Loci in Genome-Wide Association Studies of Coronary Artery Disease. Cells 2021; 10:cells10020440. [PMID: 33669721 PMCID: PMC7921935 DOI: 10.3390/cells10020440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Although the importance of inflammation in atherosclerosis is now well established, the exact molecular processes linking inflammation to the development and course of the disease are not sufficiently understood. In this context, modern genetics—as applied by genome-wide association studies (GWAS)—can serve as a comprehensive and unbiased tool for the screening of potentially involved pathways. Indeed, a considerable proportion of loci discovered by GWAS is assumed to affect inflammatory processes. Despite many well-replicated association findings, however, translating genomic hits to specific molecular mechanisms remains challenging. This review provides an overview of the currently most relevant inflammation-related GWAS findings in coronary artery disease and explores their potential clinical perspectives.
Collapse
|
21
|
Hong LZ, Xue Q, Shao H. Inflammatory Markers Related to Innate and Adaptive Immunity in Atherosclerosis: Implications for Disease Prediction and Prospective Therapeutics. J Inflamm Res 2021; 14:379-392. [PMID: 33628042 PMCID: PMC7897977 DOI: 10.2147/jir.s294809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence have linked a dysregulated inflammatory setting to the pathogenesis of atherosclerosis, which is a form of chronic vascular inflammation. Various inflammatory biomarkers have been associated with inflammation and are recognized as potential tools to monitor the progression of atherosclerosis. A well-studied inflammatory marker in the context of cardiovascular diseases is C-reactive protein (CRP) or, more accurately, highly sensitive-CRP (hs-CRP), which has been established as an inflammatory biomarker for atherosclerotic events. In addition, a growing body of investigations has attempted to disclose the potential of inflammatory cytokines, enzymes, and genetic polymorphisms related to innate and adaptive immunity as biomarkers for predicting the development of atherosclerosis. In this review article, we clarify both traditional and novel inflammatory biomarkers related to components of the innate and adaptive immune system that may mirror the progression or phases of atherosclerotic inflammation/lesions. Furthermore, the contribution of the inflammatory biomarkers in developing potential therapeutics against atherosclerotic treatment will be discussed.
Collapse
Affiliation(s)
- Ling-Zhi Hong
- Emergency Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, 311700, Zhejiang Province, People’s Republic of China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| |
Collapse
|
22
|
Functional Role of B Cells in Atherosclerosis. Cells 2021; 10:cells10020270. [PMID: 33572939 PMCID: PMC7911276 DOI: 10.3390/cells10020270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.
Collapse
|
23
|
Yi X, Wang Y, Jia Z, Hiller S, Nakamura J, Luft JC, Tian S, DeSimone JM. Retinoic Acid-Loaded Poly(lactic- co-glycolic acid) Nanoparticle Formulation of ApoB-100-Derived Peptide 210 Attenuates Atherosclerosis. J Biomed Nanotechnol 2020; 16:467-480. [PMID: 32970979 DOI: 10.1166/jbn.2020.2905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We developed a vaccine formulation containing ApoB derived P210 peptides as autoantigens, retinoic acid (RA) as an immune enhancer, both of which were delivered using PLGA nanoparticles. The formula was used to induce an immune response in 12-week-old male Apoe-/- mice with pre-existing atherosclerotic lesions. The nanotechnology platform PRINT® was used to fabricate PLGA nanoparticles that encapsulated RA inside and adsorbed the P210 onto the particle surface. In this study, we demonstrated that immunization of Apoe-/- mice with the formulation was able to considerably attenuate atherosclerotic lesions, accompanied by increased P210 specific IgM and another oxidized lipid derived autoantigen, M2AA, specific IgG autoantibodies, and decreased the inflammatory response, as compared to the P210 group with Freund's adjuvant. Our formulation represents an exciting technology to enhance the efficacy of the P210 vaccine.
Collapse
|
24
|
Franke K, Pillai SY, Hoogenboezem M, Gijbels MJJ, Matlung HL, Geissler J, Olsman H, Pottgens C, van Gorp PJ, Ozsvar-Kozma M, Saito Y, Matozaki T, Kuijpers TW, Hendriks RW, Kraal G, Binder CJ, de Winther MPJ, van den Berg TK. SIRPα on Mouse B1 Cells Restricts Lymphoid Tissue Migration and Natural Antibody Production. Front Immunol 2020; 11:570963. [PMID: 33162986 PMCID: PMC7581795 DOI: 10.3389/fimmu.2020.570963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023] Open
Abstract
The inhibitory immunoreceptor SIRPα is expressed on myeloid and neuronal cells and interacts with the broadly expressed CD47. CD47-SIRPα interactions form an innate immune checkpoint and its targeting has shown promising results in cancer patients. Here, we report expression of SIRPα on B1 lymphocytes, a subpopulation of murine B cells responsible for the production of natural antibodies. Mice defective in SIRPα signaling (SIRPαΔCYT mice) displayed an enhanced CD11b/CD18 integrin-dependent B1 cell migration from the peritoneal cavity to the spleen, local B1 cell accumulation, and enhanced circulating natural antibody levels, which was further amplified upon immunization with T-independent type 2 antigen. As natural antibodies are atheroprotective, we investigated the involvement of SIRPα signaling in atherosclerosis development. Bone marrow (SIRPαΔCYT>LDLR−/−) chimaeric mice developed reduced atherosclerosis accompanied by increased natural antibody production. Collectively, our data identify SIRPα as a unique B1 cell inhibitory receptor acting to control B1 cell migration, and imply SIRPα as a potential therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Katka Franke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Mark Hoogenboezem
- Sanquin Research and Landsteiner Laboratory, Department of Plasma Protein, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marion J J Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hugo Olsman
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Chantal Pottgens
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Patrick J van Gorp
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria Ozsvar-Kozma
- Department of Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Georg Kraal
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Christoph J Binder
- Department of Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
25
|
Sun L, Zhang W, Zhao Y, Wang F, Liu S, Liu L, Zhao L, Lu W, Li M, Xu Y. Dendritic Cells and T Cells, Partners in Atherogenesis and the Translating Road Ahead. Front Immunol 2020; 11:1456. [PMID: 32849502 PMCID: PMC7403484 DOI: 10.3389/fimmu.2020.01456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic process associated with arterial inflammation, the accumulation of lipids, plaque formation in vessel walls, and thrombosis with late mortal complications such as myocardial infarction and ischemic stroke. Immune and inflammatory responses have significant effects on every phase of atherosclerosis. Increasing evidence has shown that both innate and adaptive “arms” of the immune system play important roles in regulating the progression of atherosclerosis. Accumulating evidence suggests that a unique type of innate immune cell, termed dendritic cells (DCs), play an important role as central instigators, whereas adaptive immune cells, called T lymphocytes, are crucial as active executors of the DC immunity in atherogenesis. These two important immune cell types work in pairs to establish pro-atherogenic or atheroprotective immune responses in vascular tissues. Therefore, understanding the role of DCs and T cells in atherosclerosis is extremely important. Here, in this review, we will present a complete overview, based on existing knowledge of these two cell types in the atherosclerotic microenvironment, and discuss some of the novel means of targeting DCs and T cells as therapeutic tactics for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Shan Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wei Lu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Minghui Li
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
26
|
Biswas TK, VanderLaan PA, Que X, Gonen A, Krishack P, Binder CJ, Witztum JL, Getz GS, Reardon CA. CD1d Selectively Down Regulates the Expression of the Oxidized Phospholipid-Specific E06 IgM Natural Antibody in Ldlr-/- Mice. Antibodies (Basel) 2020; 9:antib9030030. [PMID: 32635160 PMCID: PMC7551411 DOI: 10.3390/antib9030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Natural antibodies (NAbs) are important regulators of tissue homeostasis and inflammation and are thought to have diverse protective roles in a variety of pathological states. E06 is a T15 idiotype IgM NAb exclusively produced by B-1 cells, which recognizes the phosphocholine (PC) head group in oxidized phospholipids on the surface of apoptotic cells and in oxidized LDL (OxLDL), and the PC present on the cell wall of Streptococcus pneumoniae. Here we report that titers of the E06 NAb are selectively increased several-fold in Cd1d-deficient mice, whereas total IgM and IgM antibodies recognizing other oxidation specific epitopes such as in malondialdehyde-modified LDL (MDA-LDL) and OxLDL were not increased. The high titers of E06 in Cd1d-deficient mice are not due to a global increase in IgM-secreting B-1 cells, but they are specifically due to an expansion of E06-secreting splenic B-1 cells. Thus, CD1d-mediated regulation appeared to be suppressive in nature and specific for E06 IgM-secreting cells. The CD1d-mediated regulation of the E06 NAb generation is a novel mechanism that regulates the production of this specific oxidation epitope recognizing NAb.
Collapse
Affiliation(s)
- Tapan K. Biswas
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
| | - Paul A. VanderLaan
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (X.Q.); (A.G.); (J.L.W.)
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (X.Q.); (A.G.); (J.L.W.)
| | - Paulette Krishack
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria;
| | - Joseph L. Witztum
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (X.Q.); (A.G.); (J.L.W.)
| | - Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
- Correspondence: (G.S.G.); (C.A.R.)
| | - Catherine A. Reardon
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
- Correspondence: (G.S.G.); (C.A.R.)
| |
Collapse
|
27
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Shi L, Ji Q, Liu L, Shi Y, Lu Z, Ye J, Zeng T, Xue Y, Yang Z, Liu Y, Lu J, Huang X, Qin Q, Li T, Lin Y. IL-22 produced by Th22 cells aggravates atherosclerosis development in ApoE -/- mice by enhancing DC-induced Th17 cell proliferation. J Cell Mol Med 2020; 24:3064-3078. [PMID: 32022386 PMCID: PMC7077608 DOI: 10.1111/jcmm.14967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Th22 cells are a novel subset of CD4+ T cells that primarily mediate biological effects through IL-22, with both Th22 cells and IL-22 being closely associated with multiple autoimmune and chronic inflammatory diseases. In this study, we investigated whether and how Th22 cells affect atherosclerosis. ApoE-/- mice and age-matched C57BL/6J mice were fed a Western diet for 0, 4, 8 or 12 weeks. The results of dynamic analyses showed that Th22 cells, which secrete the majority of IL-22 among the known CD4+ cells, play a major role in atherosclerosis. ApoE-/- mice fed a Western diet for 12 weeks and administered recombinant mouse IL-22 (rIL-22) developed substantially larger plaques in both the aorta and aortic root and higher levels of CD3+ T cells, CD68+ macrophages, collagen, IL-6, Th17 cells, dendritic cells (DCs) and pSTAT3 but lower smooth muscle cell (SMC) α-actin expression than the control mice. Treatment with a neutralizing anti-IL-22 monoclonal antibody (IL-22 mAb) reversed the above effects. Bone marrow-derived DCs exhibited increased differentiation into mature DCs following rIL-22 and ox-LDL stimulation. IL-17 and pSTAT3 were up-regulated after stimulation with IL-22 and ox-LDL in cells cocultured with CD4+ T cells and mature DC supernatant, but this up-regulation was significantly inhibited by IL-6mAb or the cell-permeable STAT3 inhibitor S31-201. Thus, Th22 cell-derived IL-22 aggravates atherosclerosis development through a mechanism that is associated with IL-6/STAT3 activation, DC-induced Th17 cell proliferation and IL-22-stimulated SMC dedifferentiation into a synthetic phenotype.
Collapse
Affiliation(s)
- Lei Shi
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qingwei Ji
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ling Liu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ying Shi
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zhengde Lu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jing Ye
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tao Zeng
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yan Xue
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zicong Yang
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yu Liu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jianyong Lu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xinshun Huang
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qiuwen Qin
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tianzhu Li
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ying‐zhong Lin
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
29
|
Wu Y, Zhang F, Lu R, Feng Y, Li X, Zhang S, Hou W, Tian J, Kong X, Sun L. Functional lncRNA-miRNA-mRNA networks in rabbit carotid atherosclerosis. Aging (Albany NY) 2020; 12:2798-2813. [PMID: 32045883 PMCID: PMC7041763 DOI: 10.18632/aging.102778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is one of the most common clinical cardiovascular disorders. Accumulating evidence indicates that lncRNAs exert critical functions in atherosclerosis; however, their functional roles and regulatory mechanisms remain unclear. In this study, we induced atherosclerotic plaques in three rabbit carotid arteries through an atherogenic diet and balloon injury; three age-matched rabbits were fed normal chow and served as controls. We thoroughly investigated the RNA (mRNA, lncRNA and miRNA) expression profiles in atherosclerotic rabbit carotid models with deep RNA sequencing. We identified several significantly differentially expressed RNAs. The corresponding lncRNA-miRNA-mRNA network was constructed, and the significantly dysregulated network was selected. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the mRNAs in the network were involved in leukocyte activation, cell proliferation, cell adhesion molecules and cytokine-cytokine receptor interaction. After rigorous screening, we obtained a differentially expressed lncRNA-miRNA-mRNA interaction network associated with atherosclerosis. In the network, XLOC_054118 and XLOC_030217 upregulate the CHI3L1, SOAT, CTSB and CAPG genes by competitively binding to the miRNA ocu-miR-96-5p. XLOC_062719 and XLOC_063297 upregulate CTSS, CTSB and EDNRA genes by competitively binding to the miRNA ocu-miR-185-5p.
Collapse
Affiliation(s)
- Yingnan Wu
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Feng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Rui Lu
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yanan Feng
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoying Li
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shuang Zhang
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Wenying Hou
- Department of Ultrasound, Xuanwu Hospital Capital University, Beijing 100053, China
| | - Jiawei Tian
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xianchao Kong
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Litao Sun
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
- Department of Ultrasound, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| |
Collapse
|
30
|
Upadhye A, Sturek JM, McNamara CA. 2019 Russell Ross Memorial Lecture in Vascular Biology: B Lymphocyte-Mediated Protective Immunity in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:309-322. [PMID: 31852222 PMCID: PMC7398219 DOI: 10.1161/atvbaha.119.313064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022]
Abstract
Atherosclerosis-the major underlying pathology of cardiovascular disease-is characterized by accumulation and subsequent oxidative modification of lipoproteins within the artery wall, leading to inflammatory cell infiltration and lesion formation that can over time result in arterial stenosis, ischemia, and downstream adverse events. The contribution of innate and adaptive immunity to atherosclerosis development is well established, and B cells have emerged as important modulators of both pro- and anti-inflammatory effects in atherosclerosis. Murine B cells can broadly be divided into 2 subsets: (1) B-2 cells, which are bone marrow derived and include conventional follicular and marginal zone B cells, and (2) B-1 cells, which are largely fetal liver derived and persist in adults through self-renewal. B-cell subsets are developmentally, functionally, and phenotypically distinct with unique subset-specific contributions to atherosclerosis development. Mechanisms whereby B cells regulate vascular inflammation and atherosclerosis will be discussed with a particular emphasis on B-1 cells. B-1 cells have a protective role in atherosclerosis that is mediated in large part by IgM antibody production. Accumulating evidence over the last several years has pointed to a previously underappreciated heterogeneity in B-1 cell populations, which may have important implications for understanding atherosclerosis development and potential targeted therapeutic approaches. This heterogeneity within atheroprotective innate B-cell subsets will be highlighted.
Collapse
Affiliation(s)
- Aditi Upadhye
- From the Robert M. Berne Cardiovascular Research Center (A.U., C.A.M.), University of Virginia School of Medicine, Charlottesville
| | - Jeffrey M Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine (J.M.S.), University of Virginia School of Medicine, Charlottesville
| | - Coleen A McNamara
- From the Robert M. Berne Cardiovascular Research Center (A.U., C.A.M.), University of Virginia School of Medicine, Charlottesville
- Division of Cardiovascular Medicine (C.A.M.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
31
|
Mantani PT, Dunér P, Ljungcrantz I, Nilsson J, Björkbacka H, Fredrikson GN. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol 2019; 20:47. [PMID: 31823769 PMCID: PMC6905041 DOI: 10.1186/s12865-019-0330-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/02/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Expansion of type 2 innate lymphoid cells (ILC2s) in hypercholesterolaemic mice protects against atherosclerosis while different ILC2 subsets have been described (natural, inflammatory) based on their suppression of tumorigenicity 2 (ST2) and killer-cell lectin like receptor G1 (KLRG1) expression. The aim of the current study is to characterize the interleukin 25 (IL25)-induced splenic ILC2 population (Lin-CD45+IL17RB+ICOS+IL7raintermediate) and address its direct role in experimental atherosclerosis by its adoptive transfer to hypercholesterolaemic apolipoprotein E deficient (apoE-/-) mice. RESULTS Immunomagnetically enriched, FACS-sorted ILC2s from the spleens of IL-25 treated apoE-/- mice were stained for KLRG1 and ST2 directly upon cell obtainment or in vitro cell expansion for flow cytometric analysis. IL25-induced splenic ILC2s express high levels of both KLRG1 and ST2. However, both markers are downregulated upon in vitro cell expansion. In vitro expanded splenic ILC2s were intraperitoneally transferred to apoE-/- recipients on high fat diet. ApoE-/- mice that received in vitro expanded splenic ILC2s had decreased lipid content in subvalvular heart and brachiocephalic artery (BCA) plaques accompanied by increased peritoneal B1 cells, activated eosinophils and alternatively activated macrophages (AAMs) as well as anti-phosphorylcholine (PC) immunoglobulin (Ig) M in plasma. CONCLUSIONS With the current data we designate the IL25-induced ILC2 population to decrease the lipid content of atherosclerotic lesions in apoE-/- mice and we directly link the induction of B1 cells and the atheroprotective anti-PC IgM antibodies with ILC2s.
Collapse
Affiliation(s)
- Polyxeni T Mantani
- Department of Clinical Sciences, Skåne University Hospital Malmö, CRC, Building 91:12, Jan Waldenströms gata 35, 20502, Malmö, Sweden. .,Lund University, Lund, Sweden.
| | - Pontus Dunér
- Department of Clinical Sciences, Skåne University Hospital Malmö, CRC, Building 91:12, Jan Waldenströms gata 35, 20502, Malmö, Sweden.,Lund University, Lund, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences, Skåne University Hospital Malmö, CRC, Building 91:12, Jan Waldenströms gata 35, 20502, Malmö, Sweden.,Lund University, Lund, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Skåne University Hospital Malmö, CRC, Building 91:12, Jan Waldenströms gata 35, 20502, Malmö, Sweden.,Lund University, Lund, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences, Skåne University Hospital Malmö, CRC, Building 91:12, Jan Waldenströms gata 35, 20502, Malmö, Sweden.,Lund University, Lund, Sweden
| | - Gunilla Nordin Fredrikson
- Department of Clinical Sciences, Skåne University Hospital Malmö, CRC, Building 91:12, Jan Waldenströms gata 35, 20502, Malmö, Sweden. .,Lund University, Lund, Sweden.
| |
Collapse
|
32
|
Knutsson A, Björkbacka H, Dunér P, Engström G, Binder CJ, Nilsson AH, Nilsson J. Associations of Interleukin-5 With Plaque Development and Cardiovascular Events. JACC Basic Transl Sci 2019; 4:891-902. [PMID: 31909299 PMCID: PMC6939009 DOI: 10.1016/j.jacbts.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Experimental studies have suggested an atheroprotective role of interleukin (IL)-5 through the stimulation of natural immunoglobulin M antibody expression. In the present study we show that there are no associations between baseline levels of IL-5 and risk for development of coronary events or stroke during a 15.7 ± 6.3 years follow-up of 696 subjects randomly sampled from the Malmö Diet and Cancer study. However, presence of a plaque at the carotid bifurcation was associated with lower IL-5 and IL-5 deficiency resulted in increased plaque development at sites of oscillatory blood flow in Apoe -/- mice suggesting a protective role for IL-5 in plaque development.
Collapse
Affiliation(s)
- Anki Knutsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
33
|
CC chemokine CCL1 receptor CCR8 mediates conversion of mesenchymal stem cells to embryoid bodies expressing FOXP3+CCR8+ regulatory T cells. PLoS One 2019; 14:e0218944. [PMID: 31314754 PMCID: PMC6636727 DOI: 10.1371/journal.pone.0218944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/28/2019] [Indexed: 12/01/2022] Open
Abstract
Embryoid bodies (EBs) are three dimensional aggregates of pluripotent stem cells primarily used to investigate morphogenesis and cell toxicity, are also attractive tools in regenerative medicine. While embryonic stem cells (ESCs) and induced pluripotent cells (IPSCs) have been shown to form EBs in mouse, primate and humans, EB formation have not been previously demonstrated in mesenchymal stem cells (MSCs). Here we show that rat MSCs form EBs; which express regulatory T cell (Treg) marker Foxp3 and CC chemokine CCL1 receptor CCR8. We show a novel method for formation of EBs from MSCs under stress and demonstrate that the induction of FoxP3+ CCR8+ EBs is dependent upon CCL1 gradients which mediate cell proliferation, migration and invasion of mTregs. The identification of EBs and novel FoxP3+ CCR8+ regulatory T cells (mTregs) for selective conversion and isolation of bone marrow derived MSCs offers novel avenues for research, diagnosis and treatment.
Collapse
|
34
|
Li X, Lin S, Chen X, Huang W, Li Q, Zhang H, Chen X, Yang S, Jin K, Shao B. The Prognostic Value of Serum Cytokines in Patients with Acute Ischemic Stroke. Aging Dis 2019; 10:544-556. [PMID: 31164999 PMCID: PMC6538221 DOI: 10.14336/ad.2018.0820] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
The inflammatory response is an unavoidable process and contributes to the destruction of cerebral tissue during the acute ischemic stroke (AIS) phase and has not been addressed fully to date. Insightful understanding of correlation of inflammatory mediators and stroke outcome may provide new biomarkers or therapeutic approaches for ischemic stroke. Here, we prospectively recruited 180 first-ever AIS patients within 72 hrs after stroke onset. We used the National Institutes of Health Stroke Scale (NIHSS) to quantify stroke severity and modified Rankin scale (mRS) to assess the 3-month outcome for AIS patients. Initially, we screened 35 cytokines, chemokines, and growth factors in sera from 75 AIS patients and control subjects. Cytokines that were of interest were further investigated in the 180 AIS patients and 14 heathy controls. We found that IL-1RA, IL-1β, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-13, IL-15, EGF, G-CSF, Flt-3L, GM-CSF and Fractalkine levels were significantly decreased in severe stroke patients. In particular, IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-15, G-CSF and GM-CSF were significantly reduced in AIS patients with poor outcome, compared to those with good prognosis. IL-6 was notably higher in the poor outcome group. Only IL-9 level decreased in the large infarct volume group. After adjusting for confounders, we found that IL-5 was an independent protective factor for prognosis in AIS patients with an adjusted OR of 0.042 (P = 0.007), whereas IL-6 was an independent risk predictor for AIS patients with an adjusted OR of 1.293 (P = 0.003). Our study suggests the levels of serum cytokines are related to stroke severity, short-term prognosis and cerebral infarct volume in AIS patients.
Collapse
Affiliation(s)
- Xianmei Li
- 1Department of Rehabilitation, Wenzhou People's Hospital, Wenzhou, China
| | - Siyang Lin
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoli Chen
- 1Department of Rehabilitation, Wenzhou People's Hospital, Wenzhou, China
| | - Wensi Huang
- 3Department of Neurology, The People's Hospital of Pingyang, Wenzhou, China
| | - Qian Li
- 4Department of Neurology, Jinhua Municipal Central Hospital, Wenzhou, China
| | - Hongxia Zhang
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xudong Chen
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaohua Yang
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Kunlin Jin
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Bei Shao
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
You J, Feng L, Bao L, Xin M, Ma D, Feng J. Potential Applications of Remote Limb Ischemic Conditioning for Chronic Cerebral Circulation Insufficiency. Front Neurol 2019; 10:467. [PMID: 31130914 PMCID: PMC6509171 DOI: 10.3389/fneur.2019.00467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic cerebral circulation insufficiency (CCCI) refers to a chronic decrease in cerebral blood perfusion, which may lead to cognitive impairment, psychiatric disorders such as depression, and acute ischemic stroke. Remote limb ischemic conditioning (RLIC), in which the limbs are subjected to a series of transient ischemic attacks, can activate multiple endogenous protective mechanisms to attenuate fatal ischemic injury to distant organs due to acute ischemia, such as ischemic stroke. Recent studies have also reported that RLIC can alleviate dysfunction in distant organs caused by chronic, non-fatal reductions in blood supply (e.g., CCCI). Indeed, research has indicated that RLIC may exert neuroprotective effects against CCCI through a variety of potential mechanisms, including attenuated glutamate excitotoxicity, improved endothelial function, increased cerebral blood flow, regulation of autophagy and immune responses, suppression of apoptosis, the production of protective humoral factors, and attenuated accumulation of amyloid-β. Verification of these findings is necessary to improve prognosis and reduce the incidence of acute ischemic stroke/cognitive impairment in patients with CCCI.
Collapse
Affiliation(s)
- Jiulin You
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Liyang Bao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meiying Xin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Huang Y, Hu H, Liu L, Ye J, Wang Z, Que B, Liu W, Shi Y, Zeng T, Shi L, Ji Q, Chang C, Lin Y. Interleukin-12p35 Deficiency Reverses the Th1/Th2 Imbalance, Aggravates the Th17/Treg Imbalance, and Ameliorates Atherosclerosis in ApoE-/- Mice. Mediators Inflamm 2019; 2019:3152040. [PMID: 31093011 PMCID: PMC6481022 DOI: 10.1155/2019/3152040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
Interleukin- (IL-) 35, a novel functional cytokine of regulatory T cells (Treg) comprised of the IL-12p35 subunit and the other subunit Epstein-Barr virus-induced gene 3 (EBI3), regulates the activity of CD4+ T cells and macrophages, thereby playing a critical role in inflammatory and autoimmune diseases. Previous studies demonstrated that both recombinant mice and human IL-35 attenuated atherosclerosis in ApoE-/- mice. Additionally, EBI3 deficiency enhanced the activation of macrophages and increased atherosclerotic lesions in LDLR-/- mice. This study generated double-deficient mice for ApoE and IL-12p35 (ApoE-/- IL-12p35-/- mice) and investigated the effect of IL-12p35 deficiency on atherosclerosis. IL-12p35 deficiency alleviated Th1/Th2 imbalance, aggravated Th17/Treg imbalance, and attenuated atherosclerotic plaque formation in ApoE-/- mice. Additionally, exogenous rIL-35 treatment reversed the imbalance of Th17/Treg and attenuated atherosclerosis in ApoE-/- mice. These findings suggest that IL-12p35 deficiency ameliorates atherosclerosis in ApoE-/- mice, partially, via attenuating the Th1/Th2 imbalance, although IL-12p35 deficiency aggravates the Th17/Treg imbalance.
Collapse
Affiliation(s)
- Ying Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Ultrasound, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Haiying Hu
- Department of Cardiology, Handan First Hospital, Handan 056002, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Ye
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute, Wuhan University and Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute, Wuhan University and Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bin Que
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Wenjing Liu
- Department of Cardiology, Handan First Hospital, Handan 056002, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tao Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Chao Chang
- Department of Cardiology, Handan First Hospital, Handan 056002, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
37
|
Bénézech C, Jackson-Jones LH. ILC2 Orchestration of Local Immune Function in Adipose Tissue. Front Immunol 2019; 10:171. [PMID: 30792718 PMCID: PMC6374325 DOI: 10.3389/fimmu.2019.00171] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/21/2019] [Indexed: 01/21/2023] Open
Abstract
ILC2s were originally identified as IL-5 and IL-13 secreting "natural helper cells" present within the fat-associated lymphoid clusters of the mesenteries in both mouse and man. The presence of ILCs in adipose tissue has more recently expanded to include all ILC groups. Since their initial discovery, our knowledge of these cells and their role in adipose immune responses has expanded significantly. In this review we summarize the current literature on the role that ILC2s play in orchestrating adipose tissue function in both lean and obese states. We go on to address new data detailing interactions of adipose ILCs with innate like B-cells (IBC) and discuss how this interaction results in localized protection of mucosal sites during infection and inflammation via the production of innate antibodies.
Collapse
Affiliation(s)
- Cécile Bénézech
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Helen Jackson-Jones
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
38
|
Abstract
Defective clearance of apoptotic cells in MFG-E8 deficient mice results in lupus-like disease in the mixed B6x129, but not pure B6 background. The lack of overt autoimmunity in MFG-E8-/- B6 mice suggests that accumulation of apoptotic cells is not sufficient to break central tolerance. However, the delayed clearance of apoptotic cells in the follicles of MFG-E8-/- B6 mice provides an excellent opportunity to investigate how B cells respond to excessive apoptotic cells in the periphery under relatively non-inflammatory conditions. In MFG-E8-/- B6 mice, we found increased IgG2c production against apoptotic cells and oxidized LDL. Apoptotic cell induced antibody responses depended on MyD88 signal and T cell help. In addition, MFG-E8-/- B6 mice had enlarged MZ B cell compartments as well as an enhanced antibody response to NP-Ficoll. Moreover, a significant percentage of MZ B cells in aged MFG-E8-/- B6 mice migrated into follicles. Injecting apoptotic cells or oxidized LDL into wild type mice as well as physiological accumulation of LDL in ApoE-/- mice recapitulated the translocation of MZ B cells. To determine how MFG-E8 deficiency affects the functions of autoreactive B cells specific for nucleic acids in the periphery under non-inflammatory conditions, we utilized BCR transgenic mice to bypass central selection and compared the differentiation of TLR9 dependent anti-dsDNA 56R B cells and TLR7 dependent anti-ssRNA H564 B cells in MFG-E8-/- mice. In MFG-E8-/- 56R mice, anti-dsDNA specific 56R/Vκ38c B cells differentiated into MZ B cells but not AFCs. On the contrary, in MFG-E8-/-H564 mice, anti-ssRNA specific H564 B cells further differentiated into GC B cells and AFCs. Adoptive transfer of activated autoreactive B cells confirmed that H564 B cells were more sensitive to apoptotic cell antigens than 56R B cells. Our observations provide new insights about the MZ B cell translocation in lupus patients as well as the dichotomy of TLR9 and TLR7 signals in the pathogenesis of lupus.
Collapse
Affiliation(s)
- YuFeng Peng
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
39
|
Agrawal S, Abud EM, Snigdha S, Agrawal A. IgM response against amyloid-beta in aging: a potential peripheral protective mechanism. ALZHEIMERS RESEARCH & THERAPY 2018; 10:81. [PMID: 30115117 PMCID: PMC6097437 DOI: 10.1186/s13195-018-0412-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The immune system plays a major role in the pathogenesis of age-related dementia, including Alzheimer's disease (AD). An insight into age-associated changes in the immune response to amyloid-beta (Aβ) in individuals without AD may be beneficial in identifying mechanisms preventing accumulation of Aβ. METHODS We examined the response of human monocyte-derived dendritic cells (DCs), T cells, and peripheral blood mononuclear cells (PBMCs) from healthy aged and young subjects to Aβ peptide 1-42, Aβ fibrils, and recombinant, nonaggregated tau-4 protein with a view to understand the role of peripheral immunity in AD. RESULTS Our studies revealed that DCs from healthy aged subjects display weak reactivity towards the Aβ peptide and no reactivity towards Aβ fibrils and tau compared with their young counterparts. An analysis of old and young PBMCs revealed that there is no significant T-cell memory against Aβ peptide, fibrils, or tau. Remarkably, the plasma levels of IgM antibodies specific to Aβ peptide 1-42 were significantly increased in aged subjects compared with young subjects, while IgG levels were comparable. Aβ peptide-specific IgM and IgG levels were also determined in the plasma of AD subjects compared with age-matched controls to demonstrate that the immune response against Aβ is stronger in AD patients. A decline in Aβ peptide-specific IgM antibodies was observed in AD patients compared with age-matched controls. In contrast, the levels of IgG as well as interleukin-21, the major cytokine involved in class switching, were increased in AD and patients with mild cognitive impairment, indicating a strong immune response against Aβ. CONCLUSIONS Collectively, low immunogenicity of Aβ in healthy controls may prevent inflammation while the generation of specific IgM antibodies may help in the clearance of Aβ in healthy subjects.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Edsel M Abud
- UCI-MIND, University of California, Irvine, Irvine, CA, 92697, USA
| | - Shikha Snigdha
- UCI-MIND, University of California, Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
40
|
Nie SF, Zha LF, Fan Q, Liao YH, Zhang HS, Chen QW, Wang F, Tang TT, Xia N, Xu CQ, Zhang JY, Lu YZ, Zeng ZP, Jiao J, Li YY, Xie T, Zhang WJ, Wang D, Wang CC, Fa JJ, Xiong HB, Ye J, Yang Q, Wang PY, Tian SH, Lv QL, Li QX, Qian J, Li B, Wu G, Wu YX, Yang Y, Yang XP, Hu Y, Wang QK, Cheng X, Tu X. Genetic Regulation of the Thymic Stromal Lymphopoietin (TSLP)/TSLP Receptor (TSLPR) Gene Expression and Influence of Epistatic Interactions Between IL-33 and the TSLP/TSLPR Axis on Risk of Coronary Artery Disease. Front Immunol 2018; 9:1775. [PMID: 30123216 PMCID: PMC6085432 DOI: 10.3389/fimmu.2018.01775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The thymic stromal lymphopoietin (TSLP)/TSLP receptor (TSLPR) axis is involved in multiple inflammatory immune diseases, including coronary artery disease (CAD). To explore the causal relationship between this axis and CAD, we performed a three-stage case-control association analysis with 3,628 CAD cases and 3,776 controls using common variants in the genes TSLP, interleukin 7 receptor (IL7R), and TSLPR. Three common variants in the TSLP/TSLPR axis were significantly associated with CAD in a Chinese Han population [rs3806933T in TSLP, Padj = 4.35 × 10-5, odds ratio (OR) = 1.18; rs6897932T in IL7R, Padj = 1.13 × 10-7, OR = 1.31; g.19646A>GA in TSLPR, Padj = 2.04 × 10-6, OR = 1.20]. Reporter gene analysis demonstrated that rs3806933 and rs6897932 could influence TSLP and IL7R expression, respectively. Furthermore, the "T" allele of rs3806933 might increase plasma TSLP levels (R2 = 0.175, P < 0.01). In a stepwise procedure, the risk for CAD increased by nearly fivefold compared with the maximum effect of any single variant (Padj = 6.99 × 10-4, OR = 4.85). In addition, the epistatic interaction between TSLP and IL33 produced a nearly threefold increase in the risk of CAD in the combined model of rs3806933TT-rs7025417TT (Padj = 3.67 × 10-4, OR = 2.98). Our study illustrates that the TSLP/TSLPR axis might be involved in the pathogenesis of CAD through upregulation of mRNA or protein expression of the referenced genes and might have additive effects on the CAD risk when combined with IL-33 signaling.
Collapse
Affiliation(s)
- Shao-Fang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Feng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Innovation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Fan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Hua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Song Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Wen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Ting-Ting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Qi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao-Yue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Zhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Peng Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Juan Zhang
- Department of Geriatrics, the Central Hospital of Wuhan, Tongji Medica College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Chu-Chu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Fa
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bo Xiong
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Yun Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-Hua Tian
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu-Lun Lv
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Qing-Xian Li
- Jining Medical College Affiliated Hospital, Jining, China
| | - Jin Qian
- Suizhou Central Hospital, Suizhou, China
| | - Bin Li
- Xiangyang Central Hospital, Xiangyang, China
| | - Gang Wu
- Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Yan Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Que X, Hung MY, Yeang C, Gonen A, Prohaska TA, Sun X, Diehl C, Määttä A, Gaddis DE, Bowden K, Pattison J, MacDonald JG, Ylä-Herttuala S, Mellon PL, Hedrick CC, Ley K, Miller YI, Glass CK, Peterson KL, Binder CJ, Tsimikas S, Witztum JL. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 2018; 558:301-306. [PMID: 29875409 PMCID: PMC6033669 DOI: 10.1038/s41586-018-0198-8] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022]
Abstract
Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.
Collapse
Affiliation(s)
- Xuchu Que
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ming-Yow Hung
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Calvin Yeang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Thomas A Prohaska
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoli Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Cody Diehl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Brigham Young University Idaho, Rexburg, ID, USA
| | - Antti Määttä
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Dalia E Gaddis
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Karen Bowden
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Pattison
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Pamela L Mellon
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christopher K Glass
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kirk L Peterson
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph L Witztum
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Meier LA, Binstadt BA. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front Immunol 2018; 9:911. [PMID: 29755478 PMCID: PMC5934424 DOI: 10.3389/fimmu.2018.00911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and resulting tissue damage underlie the vast majority of acquired cardiovascular disease (CVD), a general term encompassing a widely diverse array of conditions. Both innate and adaptive immune mechanisms contribute to chronic inflammation in CVD. Although maladies, such as atherosclerosis and cardiac fibrosis, are commonly conceptualized as disorders of inflammation, the cellular and molecular mechanisms that promote inflammation during the natural history of these diseases in human patients are not fully defined. Autoantibodies (AAbs) with specificity to self-derived epitopes accompany many forms of CVD in humans. Both adaptive/induced iAAbs (generated following cognate antigen encounter) and also autoantigen-reactive natural antibodies (produced independently of infection and in the absence of T cell help) have been demonstrated to modulate the natural history of multiple forms of CVD including atherosclerosis (atherosclerotic cardiovascular disease), dilated cardiomyopathy, and valvular heart disease. Despite the breadth of experimental evidence for the role of AAbs in CVD, there is a lack of consensus regarding their specific functions, primarily due to disparate conclusions reached, even when similar approaches and experimental models are used. In this review, we seek to summarize the current understanding of AAb function in CVD through critical assessment of the clinical and experimental evidence in this field. We additionally highlight the difficulty in translating observations made in animal models to human physiology and disease and provide a summary of unresolved questions that are critical to address in future studies.
Collapse
Affiliation(s)
- Lee A Meier
- Center for Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bryce A Binstadt
- Center for Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
43
|
Mantani PT, Dunér P, Bengtsson E, Ljungcrantz I, Sundius L, To F, Nilsson J, Björkbacka H, Fredrikson GN. Interleukin-25 (IL-25) has a protective role in atherosclerosis development in the aortic arch in mice. J Biol Chem 2018; 293:6791-6801. [PMID: 29572351 DOI: 10.1074/jbc.ra117.000292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the entrapment of apolipoprotein B-containing lipoproteins in the arterial intima, leading to local inflammation. T helper (Th) cell 1-mediated immune responses have been associated with atherosclerosis, and the cytokine interleukin-25 (IL-25 or IL-17E) has been reported to potentially regulate Th1 cell- and Th17 cell-related immune responses. In this study, we evaluated the effects of complete IL-25 deficiency or of a temporal IL-25 blockade on atherosclerosis development in apolipoprotein E-deficient (Apoe-/-) mice. Mice deficient in both apolipoprotein E and IL-25 (Apoe-/-/IL-25-/-) had more Th1 cells in the spleen, along with elevated plasma levels of IL-17 and an increased release of splenic interferon-γ (INF-γ). In support of this observation, a 4-week-long treatment of young Apoe-/- mice (at 10-14 weeks of age) with an IL-25-blocking antibody increased the release of Th1/Th17-associated cytokines in the spleen. In both mouse models, these findings were associated with increased atherosclerotic plaque formation in the aortic arch. We conclude that complete IL-25 deficiency and a temporal IL-25 blockade during early plaque development aggravate atherosclerosis development in the aortic arch of Apoe-/- mice, accompanied by an increase in Th1/Th17-mediated immune responses. Our finding that endogenous IL-25 has an atheroprotective role in the murine aortic arch has potential implications for atherosclerosis development and management in humans.
Collapse
Affiliation(s)
- Polyxeni T Mantani
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Pontus Dunér
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Eva Bengtsson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Irena Ljungcrantz
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Lena Sundius
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Fong To
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Jan Nilsson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Harry Björkbacka
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Gunilla Nordin Fredrikson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| |
Collapse
|
44
|
Schmitz C, Noels H, El Bounkari O, Straussfeld E, Megens RTA, Sternkopf M, Alampour-Rajabi S, Krammer C, Tilstam PV, Gerdes N, Bürger C, Kapurniotu A, Bucala R, Jankowski J, Weber C, Bernhagen J. Mif-deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis. FASEB J 2018. [PMID: 29543531 DOI: 10.1096/fj.201800058r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory cytokine macrophage migration-inhibitory factor (MIF) promotes atherosclerosis via lesional monocyte and T-cell recruitment. B cells have emerged as important components in atherogenesis, but the interaction between MIF and B cells in atherogenesis is unknown. Here, we investigated the atherosclerotic phenotype of Mif-gene deletion in Apoe-/- mice. Apoe-/- Mif-/- mice fed a Western diet exhibited strongly reduced atherosclerotic lesions in brachiocephalic artery (BC) and abdominal aorta compared with controls. This phenotype was accompanied by reduced circulating B cells. Flow cytometry revealed a B-cell developmental defect with increased premature and immature B-cell counts in bone marrow (BM) of Apoe-/- Mif-/- mice and diminished B-cell numbers in spleen. This finding was linked with a decreased expression of Baff-R and differentiation-driving transcription factors at the immature B-cell stage, whereas peritoneal B cells exhibited unchanged CD80 and CD86 expression but vastly decreased CD9 and elevated CD23 levels, indicating that the developmental block favors the generation of immature, egressing, and reactive B cells. Mif deficiency did not affect absolute B-cell numbers in the vessel wall but favored a relative increase of B cells in the atheroprone BC region and the appearance of periadventitial B-cell-rich clusters. Of note, Mif-/- mice exhibited a significant increase in oxidized low-density lipoprotein (oxLDL)-specific antibodies after the injection of oxLDL, indicating that Mif deficiency is associated with higher sensitivity of B cells against natural-occurring antigens such as oxLDL. Importantly, Apoe-/- mice adoptively transplanted with Apoe-/-Mif-/- BM showed reduced peripheral B cells compared with Apoe-/- BM transplantation but no atheroprotection in the BC; also, whereas there was a selective increase in atheroprotective IgM-anti-oxLDL-antibodies in global Mif deficiency, BM-specific Mif deficiency also led to elevated proatherogenic anti-oxLDL-IgG. Together, these findings reveal a novel link between MIF and B cells in atherogenesis. Protection from atherosclerosis by Mif deficiency is associated with enhanced B-cell hypersensitivity, which in global but not BM-restricted Mif deficiency favors an atheroprotective autoantibody profile in atherosclerotic mice. Targeting MIF may induce protective B-cell responses in atherosclerosis.-Schmitz, C., Noels, H., El Bounkari, O., Straussfeld, E., Megens, R. T. A., Sternkopf, M., Alampour-Rajabi, S., Krammer, C., Tilstam, P. V., Gerdes, N., Bürger, C., Kapurniotu, A., Bucala, R., Jankowski, J., Weber, C., Bernhagen, J. Mif-deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis.
Collapse
Affiliation(s)
- Corinna Schmitz
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Eva Straussfeld
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Setareh Alampour-Rajabi
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Christine Krammer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Pathricia V Tilstam
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Bürger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Richard Bucala
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; and.,SyNergy Excellence Cluster, Munich, Germany
| |
Collapse
|
45
|
Immunization with gingipain A hemagglutinin domain of Porphyromonas gingivalis induces IgM antibodies binding to malondialdehyde-acetaldehyde modified low-density lipoprotein. PLoS One 2018; 13:e0191216. [PMID: 29329335 PMCID: PMC5766137 DOI: 10.1371/journal.pone.0191216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022] Open
Abstract
Treatment of periodontitis has beneficial effects on systemic inflammation markers that relate to progression of atherosclerosis. We aimed to investigate whether immunization with A hemagglutinin domain (Rgp44) of Porphyromonas gingivalis (Pg), a major etiologic agent of periodontitis, would lead to an antibody response cross-reacting with oxidized low-density lipoprotein (OxLDL) and how it would affect the progression of atherosclerosis in low-density lipoprotein receptor-deficient (LDLR-/-) mice. The data revealed a prominent IgM but not IgG response to malondialdehyde-acetaldehyde modified LDL (MAA-LDL) after Rgp44 and Pg immunizations, implying that Rgp44/Pg and MAA adducts may share cross-reactive epitopes that prompt IgM antibody production and consequently confer atheroprotection. A significant negative association was observed between atherosclerotic lesion and plasma IgA to Rgp44 in Rgp44 immunized mice, supporting further the anti-atherogenic effect of Rgp44 immunization. Plasma IgA levels to Rgp44 and to Pg in both Rgp44- and Pg-immunized mice were significantly higher than those in saline control, suggesting that IgA to Rgp44 could be a surrogate marker of immunization in Pg-immunized mice. Distinct antibody responses in plasma IgA levels to MAA-LDL, to Pg lipopolysaccharides (Pg-LPS), and to phosphocholine (PCho) were observed after Rgp44 and Pg immunizations, indicating that different immunogenic components between Rpg44 and Pg may behave differently in regard of their roles in the development of atherosclerosis. Immunization with Rgp44 also displayed atheroprotective features in modulation of plaque size through association with plasma levels of IL-1α whereas whole Pg bacteria achieved through regulation of anti-inflammatory cytokine levels of IL-5 and IL-10. The present study may contribute to refining therapeutic approaches aiming to modulate immune responses and inflammatory/anti-inflammatory processes in atherosclerosis.
Collapse
|
46
|
Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 18:ijms18102034. [PMID: 28937652 PMCID: PMC5666716 DOI: 10.3390/ijms18102034] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, smooth muscle cell proliferation, cell apoptosis, necrosis, fibrosis, and local inflammation. Immune and inflammatory responses have significant effects on every phase of atherosclerosis, and increasing evidence shows that immunity plays a more important role in atherosclerosis by tightly regulating its progression. Therefore, understanding the relationship between immune responses and the atherosclerotic microenvironment is extremely important. This article reviews existing knowledge regarding the pathogenesis of immune responses in the atherosclerotic microenvironment, and the immune mechanisms involved in atherosclerosis formation and activation.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung 807, Taiwan.
- Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
47
|
McKay JT, Haro MA, Daly CA, Yammani RD, Pang B, Swords WE, Haas KM. PD-L2 Regulates B-1 Cell Antibody Production against Phosphorylcholine through an IL-5-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2017; 199:2020-2029. [PMID: 28768724 DOI: 10.4049/jimmunol.1700555] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
B-1 cells produce natural Abs which provide an integral first line of defense against pathogens while also performing important homeostatic housekeeping functions. In this study, we demonstrate that programmed cell death 1 ligand 2 (PD-L2) regulates the production of natural Abs against phosphorylcholine (PC). Naive PD-L2-deficient (PD-L2-/-) mice produced significantly more PC-reactive IgM and IgA. This afforded PD-L2-/- mice with selectively enhanced protection against PC-expressing nontypeable Haemophilus influenzae, but not PC-negative nontypeable Haemophilus influenzae, relative to wild-type mice. PD-L2-/- mice had significantly increased PC-specific CD138+ splenic plasmablasts bearing a B-1a phenotype, and produced PC-reactive Abs largely of the T15 Id. Importantly, PC-reactive B-1 cells expressed PD-L2 and irradiated chimeras demonstrated that B cell-intrinsic PD-L2 expression regulated PC-specific Ab production. In addition to increased PC-specific IgM, naive PD-L2-/- mice and irradiated chimeras reconstituted with PD-L2-/- B cells had significantly higher levels of IL-5, a potent stimulator of B-1 cell Ab production. PD-L2 mAb blockade of wild-type B-1 cells in culture significantly increased CD138 and Blimp1 expression and PC-specific IgM, but did not affect proliferation. PD-L2 mAb blockade significantly increased IL-5+ T cells in culture. Both IL-5 neutralization and STAT5 inhibition blunted the effects of PD-L2 mAb blockade on B-1 cells. Thus, B-1 cell-intrinsic PD-L2 expression inhibits IL-5 production by T cells and thereby limits natural Ab production by B-1 cells. These findings have broad implications for the development of therapeutic strategies aimed at altering natural Ab levels critical for protection against infectious disease, autoimmunity, allergy, cancer, and atherosclerosis.
Collapse
Affiliation(s)
- Jerome T McKay
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Marcela A Haro
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Christina A Daly
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rama D Yammani
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Bing Pang
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
48
|
Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat Cell Biol 2017; 19:974-987. [PMID: 28737771 DOI: 10.1038/ncb3578] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
Obesity is associated with chronic, low-grade inflammation, which can disrupt homeostasis within tissue microenvironments. Given the correlation between obesity and relative risk of death from cancer, we investigated whether obesity-associated inflammation promotes metastatic progression. We demonstrate that obesity causes lung neutrophilia in otherwise normal mice, which is further exacerbated by the presence of a primary tumour. The increase in lung neutrophils translates to increased breast cancer metastasis to this site, in a GM-CSF- and IL5-dependent manner. Importantly, weight loss is sufficient to reverse this effect, and reduce serum levels of GM-CSF and IL5 in both mouse models and humans. Our data indicate that special consideration of the obese patient population is critical for effective management of cancer progression.
Collapse
|
49
|
Al Zarzour RH, Ahmad M, Asmawi MZ, Kaur G, Saeed MAA, Al-Mansoub MA, Saghir SAM, Usman NS, Al-Dulaimi DW, Yam MF. Phyllanthus Niruri Standardized Extract Alleviates the Progression of Non-Alcoholic Fatty Liver Disease and Decreases Atherosclerotic Risk in Sprague-Dawley Rats. Nutrients 2017; 9:E766. [PMID: 28718838 PMCID: PMC5537880 DOI: 10.3390/nu9070766] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the major global health issues, strongly correlated with insulin resistance, obesity and oxidative stress. The current study aimed to evaluate anti-NAFLD effects of three different extracts of Phyllanthus niruri (P. niruri). NAFLD was induced in male Sprague-Dawley rats using a special high-fat diet (HFD). A 50% methanolic extract (50% ME) exhibited the highest inhibitory effect against NAFLD progression. It significantly reduced hepatomegaly (16%) and visceral fat weight (22%), decreased NAFLD score, prevented fibrosis, and reduced serum total cholesterol (TC) (48%), low-density lipoprotein (LDL) (65%), free fatty acids (FFAs) (25%), alanine aminotransferase (ALT) (45%), alkaline phosphatase (ALP) (38%), insulin concentration (67%), homeostatic model assessment of insulin resistance (HOMA-IR) (73%), serum atherogenic ratios TC/high-density lipoprotein (HDL) (29%), LDL/HDL (66%) and (TC-HDL)/HDL (64%), hepatic content of cholesterol (43%), triglyceride (29%) and malondialdehyde (MDA) (40%) compared to a non-treated HFD group. In vitro, 50% ME of P. niruri inhibited α-glucosidase, pancreatic lipase enzymes and cholesterol micellization. It also had higher total phenolic and total flavonoid contents compared to other extracts. Ellagic acid and phyllanthin were identified as major compounds. These results suggest that P. niruri could be further developed as a novel natural hepatoprotective agent against NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Raghdaa Hamdan Al Zarzour
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mariam Ahmad
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mohd Zaini Asmawi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mohammed Ali Ahmed Saeed
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Majed Ahmed Al-Mansoub
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Sultan Ayesh Mohammed Saghir
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nasiba Salisu Usman
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Dhamraa W Al-Dulaimi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mun Fei Yam
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
50
|
Newland SA, Mohanta S, Clément M, Taleb S, Walker JA, Nus M, Sage AP, Yin C, Hu D, Kitt LL, Finigan AJ, Rodewald HR, Binder CJ, McKenzie ANJ, Habenicht AJ, Mallat Z. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat Commun 2017; 8:15781. [PMID: 28589929 PMCID: PMC5467269 DOI: 10.1038/ncomms15781] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/27/2017] [Indexed: 01/06/2023] Open
Abstract
Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr−/− mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5−/− or Il13−/− ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet. Type-2 innate lymphoid cells (ILC2) affect adipose tissue metabolism and function. Here the authors show that the ILC2 are present in para-aortic adipose tissue and represent a major source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet.
Collapse
Affiliation(s)
- Stephen A Newland
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Marc Clément
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Soraya Taleb
- Institut National de la Santé et de la Recherche Médicale, U970 Paris, France
| | - Jennifer A Walker
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Meritxell Nus
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Andrew P Sage
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Desheng Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, Fujian 361102, China
| | - Lauren L Kitt
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alison J Finigan
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andrew N J McKenzie
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Andreas J Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0SZ, UK.,Institut National de la Santé et de la Recherche Médicale, U970 Paris, France
| |
Collapse
|