1
|
Yildiz S, Moolhuijsen LME, Visser JA. The Role of Anti-Müllerian Hormone in Ovarian Function. Semin Reprod Med 2024; 42:15-24. [PMID: 38781987 DOI: 10.1055/s-0044-1786732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Anti-Müllerian hormone (AMH) is a member of the transforming growth factor β (TGFβ) superfamily, whose actions are restricted to the endocrine-reproductive system. Initially known for its role in male sex differentiation, AMH plays a role in the ovary, acting as a gatekeeper in folliculogenesis by regulating the rate of recruitment and growth of follicles. In the ovary, AMH is predominantly expressed by granulosa cells of preantral and antral follicles (i.e., post primordial follicle recruitment and prior to follicle-stimulating hormone (FSH) selection). AMH signals through a BMP-like signaling pathway in a manner distinct from other TGFβ family members. In this review, the latest insights in AMH processing, signaling, its regulation of spatial and temporal expression pattern, and functioning in folliculogenesis are summarized. In addition, effects of AMH variants on ovarian function are reviewed.
Collapse
Affiliation(s)
- Sena Yildiz
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Abstract
Many members of the American Thyroid Association played prominent roles in discovering the various aspects of the hypothalamic-pituitary-thyroid axis. This axis is fundamental for maintaining the normal serum levels of circulating thyroid hormones (THs) and thus the euthyroid state. The pituitary glycoprotein hormone, thyrotropin (TSH), controls the activity of the thyroid gland. Thyrotropin-releasing hormone and the negative feedback mechanism of circulating TH regulate the synthesis and the secretion of TSH. The dynamic interplay of these two dominant mechanisms has essential effects on TSH release. Therefore, the finding of abnormal serum levels of TSH often indicates the presence of a disorder of thyroid gland function. A summary of key historical discoveries in the understanding of the hypothalamic-pituitary axis is presented.
Collapse
|
3
|
Mazzilli R, Medenica S, Di Tommaso AM, Fabozzi G, Zamponi V, Cimadomo D, Rienzi L, Ubaldi FM, Watanabe M, Faggiano A, La Vignera S, Defeudis G. The role of thyroid function in female and male infertility: a narrative review. J Endocrinol Invest 2023; 46:15-26. [PMID: 35945393 PMCID: PMC9829629 DOI: 10.1007/s40618-022-01883-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE We herein aimed to review the new insights into the impact of impaired thyroid function on male and female fertility, spacing from spontaneous pregnancy to ART, with the objective of providing an updated narrative revision of the literature. METHODS This narrative review was performed for all available prospective, retrospective and review articles, published up to 2021 in PubMed. Data were extracted from the text and from the tables of the manuscript. RESULTS Thyroid dysfunction is frequently associated with female infertility, whereas its link with male infertility is debated. Female wise, impaired function is detrimental to obstetric and fetal outcomes both in spontaneous pregnancies and in those achieved thanks to assisted reproduction technologies (ART). Furthermore, the reference range of TSH in natural pregnancy and ART procedures has recently become a matter of debate following recent reports in this field. On the other hand, the impact of thyroid function on the male reproductive system is less clear, although a possible role is suggested via modulation of Sertoli and Leydig cells function and spermatogenesis. CONCLUSION Thyroid function should be carefully monitored in both male and female, in couples seeking spontaneous pregnancy as well as ART, as treatment is generally immediate and likely to improve chances of success.
Collapse
Affiliation(s)
- R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - S Medenica
- Department of Endocrinology, Internal Medicine Clinic, Clinical Center of Montenegro, School of Medicine, University of Montenegro, Podgorica, Montenegro
| | - A M Di Tommaso
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | - G Fabozzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | - V Zamponi
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - D Cimadomo
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | - L Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | - F M Ubaldi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | - M Watanabe
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 328, 00161, Rome, Italy.
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - S La Vignera
- Department of Clinical and Experimental Medicine, Policlinico "G. Rodolico, " University of Catania, Catania, Italy
| | - G Defeudis
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
4
|
Tang Q, Liu Q, Li J, Yan J, Jing X, Zhang J, Xia Y, Xu Y, Li Y, He J. MANF in POMC Neurons Promotes Brown Adipose Tissue Thermogenesis and Protects Against Diet-Induced Obesity. Diabetes 2022; 71:2344-2359. [PMID: 35972224 PMCID: PMC9630086 DOI: 10.2337/db21-1128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/07/2022] [Indexed: 01/25/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an emerging regulator in metabolic control. Hypothalamic proopiomelanocortin (POMC) neurons play critical roles in maintaining whole-body energy homeostasis. Whether MANF in POMC neurons is required for the proper regulation of energy balance remains unknown. Here, we showed that mice lacking MANF in POMC neurons were more prone to develop diet-induced obesity. In addition, the ablation of MANF induced endoplasmic reticulum (ER) stress and leptin resistance in the hypothalamus, reduced POMC expression and posttranslational processing, and ultimately decreased sympathetic nerve activity and thermogenesis in brown adipose tissue (BAT). Conversely, MANF overexpression in hypothalamic POMC neurons attenuated ER stress, increased POMC expression and processing, and then stimulated sympathetic innervation and activity in BAT, resulting in increased BAT thermogenesis, thus protecting mice against dietary obesity. Overall, our findings provide evidence that MANF is required for POMC neurons to combat obesity.
Collapse
Affiliation(s)
- Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamin Yan
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiandan Jing
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Xia
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Corresponding author: Jinhan He,
| |
Collapse
|
5
|
Ni Y, Chen X, Sun Y, Pan J, Tang C, Yuan T. Modulation of PC1/3 activity by a rare double-site homozygous mutation. Front Pediatr 2022; 10:1026707. [PMID: 36389395 PMCID: PMC9659753 DOI: 10.3389/fped.2022.1026707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Preprotein convertase 1/3 deficiency is a rare autosomal recessive disorder in which patients present with malabsorptive diarrhea and a series of symptoms of endocrine disorders such as polydipsia, reactive hypoglycemia, growth hormone deficiency, hypothyroidism, adrenal insufficiency, and early onset obesity. In its essence, pituitary hormone deficiency is caused by insufficient cleavage of pituitary prohormones. Here, we describe a female child with a rare double-site homozygous mutation in PCSK1 (Proprotein convertase subtilisin/kexin-type 1) gene, and thereby intend to investigate the relationship between these novel mutation sites and changes in protein synthesis and function. METHODS We tested this patient's blood and urine fecal indicators of infection, blood electrolytes, and relevant endocrine hormone levels in the laboratory. Next Generation Sequencing was applied to screen the patient's DNA. Western Blot was performed to evaluate the mutant protein's expression. The enzymatic activity was measured as the rate of cleavage of a synthetic fluorogenic substrate in a specific solution. RESULTS We found that this patient presented shortly after birth with uncorrectable diarrhea and symptoms of metabolic acidosis with hypothyroidism. Next Generation Sequencing revealed that a rare double-site homozygous missense mutation, c.763G > A (p.G255R) and c.758C > T (p.S253L), were detected in exon 7 of PCSK1 (Proprotein convertase subtilisin/kexin-type 1) gene on chromosome 5 of the patient. Western blotting revealed that there was no significant decrease in protein synthesis levels in the mutant phenotype compared to the wild type. Compared with WT type, the proteins expressed by the mutations showed a significant decrease in the enzyme activity towards the fluorescent substrates. However, neither the single site mutation p.S253L or p.G255R, nor the double-site mutation of both, all showed no significant differences from each other. CONCLUSIONS These two missense mutations have not been reported before, and it is even rarer to find homozygous variation of two sites in one patient. This study identifies two novel mutations for the first time and further investigates the changes in protein synthesis and enzyme activity, providing a new pathway to continue to explore the pathogenesis of diseases associated with the function of PC1/3.
Collapse
Affiliation(s)
- Yanyan Ni
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiangxiang Chen
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Sun
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiarong Pan
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianming Yuan
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
6
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Campos AMP, Wasinski F, Klein MO, Bittencourt JC, Metzger M, Donato J. Fasting reduces the number of TRH immunoreactive neurons in the hypothalamic paraventricular nucleus of male rats, but not in mice. Neurosci Lett 2021; 752:135832. [PMID: 33746008 DOI: 10.1016/j.neulet.2021.135832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023]
Abstract
During fasting or weight loss, the fall in leptin levels leads to suppression of thyrotropin-releasing hormone (TRH) expression in the paraventricular nucleus of the hypothalamus (PVH) and, consequently, inhibition of the hypothalamic-pituitary-thyroid (HPT) axis. However, differently than rats, just few PVHTRH neurons express the leptin receptor in mice. In the present study, male adult rats and mice were submitted to 48 -h fasting to evaluate the consequences on proTRH peptide expression at the PVH level. Additionally, the proTRH peptide expression was also assessed in the brains of leptin-deficient (Lepob/ob) mice. We observed that approximately 50 % of PVHTRH neurons of leptin-injected rats exhibited phosphorylation of the signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor activation. In contrast, very few PVHTRH neurons of leptin-injected mice exhibited pSTAT3. Rats submitted to 48 -h fasting showed a significant reduction in the number of PVHTRH immunoreactive neurons, as compared to fed rats. On the other hand, no changes in the number of PVHTRH immunoreactive neurons were observed between fasted and fed mice. Next, the number of TRH immunoreactive cells was determined in the PVH, dorsomedial nucleus of the hypothalamus and nucleus raphe pallidus of Lepob/ob and wild-type mice and no significant differences were observed, despite reduced plasma T4 levels in Lepob/ob mice. Taken together, these findings provide additional evidence of the important species-specific differences in the mechanisms used by fasting and/or leptin to regulate the HPT axis.
Collapse
Affiliation(s)
- Ana M P Campos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Marianne O Klein
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, Sao Paulo, Brazil
| | - Jackson C Bittencourt
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, Sao Paulo, Brazil
| | - Martin Metzger
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil.
| |
Collapse
|
8
|
HECHT FABIO, CAZARIN JULIANA, ROSSETTI CAMILAL, ROSENTHAL DORIS, ARAUJO RENATAL, CARVALHO DENISEP. Leptin negatively regulates thyroid function of Wistar rats. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120201551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- FABIO HECHT
- Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Campos AMP, Teixeira PDS, Wasinski F, Klein MO, Bittencourt JC, Metzger M, Donato J. Differences between rats and mice in the leptin action on the paraventricular nucleus of the hypothalamus: Implications for the regulation of the hypothalamic-pituitary-thyroid axis. J Neuroendocrinol 2020; 32:e12895. [PMID: 32840013 DOI: 10.1111/jne.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Previous studies indicate that leptin regulates the hypothalamic-pituitary-thyroid (HPT) axis via direct and indirect mechanisms. The indirect mechanism involves leptin action in pro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurones. These cells innervate the paraventricular nucleus of the hypothalamus (PVH) where they modulate hypophysiotrophic thyrotrophin-releasing hormone (TRH)-producing neurones. The direct mechanism involves the expression of leptin receptor (LepR) in a subpopulation of PVH TRH neurones. However, to our knowledge, the existence of LepR in PVH TRH neurones of mice has not been clearly confirmed. Therefore, we investigated possible species-specific differences between rats and mice with respect to the mechanisms recruited by leptin to regulate the HPT axis. We observed that an acute leptin injection induced phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin-responsive cells, in 46.2 ± 8.0% of PVH proTRH immunoreactive neurones in rats. By contrast, an insignificant number of proTRH positive neurones in the mouse PVH co-expressed leptin-induced pSTAT3 or LepR. Similarly, central leptin injection increased the percentage of PVH proTRH neurones containing cAMP response element-binding protein phosphorylation in rats, but not in mice. We investigated the innervation of AgRP and POMC axons in the PVH and observed that rats exhibited a denser POMC innervation in the PVH compared to mice, whereas rats and mice showed similar density of AgRP axons in the PVH. In conclusion, rats and mice exhibit important species-specific differences in the direct and indirect mechanisms used by leptin to regulate the HPT axis.
Collapse
Affiliation(s)
- Ana M P Campos
- Departamento de Fisiologia e Biofísica, Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Sao Paulo, Brazil
| | - Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Sao Paulo, Brazil
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofísica, Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Sao Paulo, Brazil
| | - Marianne O Klein
- Departamento de Anatomia, Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Sao Paulo, Brazil
| | - Jackson C Bittencourt
- Departamento de Anatomia, Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Sao Paulo, Brazil
| | - Martin Metzger
- Departamento de Fisiologia e Biofísica, Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Sao Paulo, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Sao Paulo, Brazil
| |
Collapse
|
10
|
Lee J, Kim K, Cho JH, Bae JY, O'Leary TP, Johnson JD, Bae YC, Kim EK. Insulin synthesized in the paraventricular nucleus of the hypothalamus regulates pituitary growth hormone production. JCI Insight 2020; 5:135412. [PMID: 32644973 PMCID: PMC7455129 DOI: 10.1172/jci.insight.135412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Evidence has mounted that insulin can be synthesized in various brain regions, including the hypothalamus. However, the distribution and functions of insulin-expressing cells in the hypothalamus remain elusive. Herein, we show that in the mouse hypothalamus, the perikarya of insulin-positive neurons are located in the paraventricular nucleus (PVN) and their axons project to the median eminence; these findings define parvocellular neurosecretory PVN insulin neurons. Contrary to corticotropin-releasing hormone expression, insulin expression in the PVN was inhibited by restraint stress (RS) in both adult and young mice. Acute RS–induced inhibition of PVN insulin expression in adult mice decreased both pituitary growth hormone (Gh) mRNA level and serum GH concentration, which were attenuated by overexpression of PVN insulin. Notably, PVN insulin knockdown or chronic RS in young mice hindered normal growth via the downregulation of GH gene expression and secretion, whereas PVN insulin overexpression in young mice prevented chronic RS–induced growth retardation by elevating GH production. Our results suggest that in both normal and stressful conditions, insulin synthesized in the parvocellular PVN neurons plays an important role in the regulation of pituitary GH production and body length, unveiling a physiological function of brain-derived insulin. Insulin produced in the paraventricular nucleus regulates body length by modulating pituitary growth hormone expression and secretion under both normal and stress conditions.
Collapse
Affiliation(s)
- Jaemeun Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Kyungchan Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jae Hyun Cho
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jin Young Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Timothy P O'Leary
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
11
|
Hypothalamic extended synaptotagmin-3 contributes to the development of dietary obesity and related metabolic disorders. Proc Natl Acad Sci U S A 2020; 117:20149-20158. [PMID: 32747560 DOI: 10.1073/pnas.2004392117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C2 domain containing protein extended synaptotagmin (E-Syt) plays important roles in both lipid homeostasis and the intracellular signaling; however, its role in physiology remains largely unknown. Here, we show that hypothalamic E-Syt3 plays a critical role in diet-induced obesity (DIO). E-Syt3 is characteristically expressed in the hypothalamic nuclei. Whole-body or proopiomelanocortin (POMC) neuron-specific ablation of E-Syt3 ameliorated DIO and related comorbidities, including glucose intolerance and dyslipidemia. Conversely, overexpression of E-Syt3 in the arcuate nucleus moderately promoted food intake and impaired energy expenditure, leading to increased weight gain. Mechanistically, E-Syt3 ablation led to increased processing of POMC to α-melanocyte-stimulating hormone (α-MSH), increased activities of protein kinase C and activator protein-1, and enhanced expression of prohormone convertases. These findings reveal a previously unappreciated role for hypothalamic E-Syt3 in DIO and related metabolic disorders.
Collapse
|
12
|
Cakir I, Nillni EA. Endoplasmic Reticulum Stress, the Hypothalamus, and Energy Balance. Trends Endocrinol Metab 2019; 30:163-176. [PMID: 30691778 DOI: 10.1016/j.tem.2019.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023]
Abstract
Overweight and obesity pose significant health problems globally, and are causatively linked to metabolic dysregulation. The hypothalamus integrates neural, nutritional, and hormonal cues to regulate homeostasis, including circadian rhythm, body temperature, thirst, food intake, energy expenditure, and glucose metabolism. Hypothalamic neuropeptides play a fundamental role in these processes. Studies during the past two decades suggest a role of central endoplasmic reticulum (ER) stress in the pathophysiology of obesity. This review covers recent findings on the role of ER stress and neuropeptide processing in the central regulation of energy homeostasis, with special emphasis on proopiomelanocortin (POMC)-encoding neurons. In addition, the role of neuroinflammation in the context of obesity is briefly discussed.
Collapse
Affiliation(s)
- Isin Cakir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eduardo A Nillni
- Department of Medicine, Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
13
|
Papathanasiou AE, Nolen-Doerr E, Farr OM, Mantzoros CS. GEOFFREY HARRIS PRIZE LECTURE 2018: Novel pathways regulating neuroendocrine function, energy homeostasis and metabolism in humans. Eur J Endocrinol 2019; 180:R59-R71. [PMID: 30475221 PMCID: PMC6378110 DOI: 10.1530/eje-18-0847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
The discovery of leptin, an adipocyte-secreted hormone, set the stage for unraveling the mechanisms dictating energy homeostasis, revealing adipose tissue as an endocrine system that regulates appetite and body weight. Fluctuating leptin levels provide molecular signals to the brain regarding available energy reserves modulating energy homeostasis and neuroendocrine response in states of leptin deficiency and to a lesser extent in hyperleptinemic states. While leptin replacement therapy fails to provide substantial benefit in common obesity, it is an effective treatment for congenital leptin deficiency and states of acquired leptin deficiency such as lipodystrophy. Current evidence suggests that regulation of eating behavior in humans is not limited to homeostatic mechanisms and that the reward, attention, memory and emotion systems are involved, participating in a complex central nervous system network. It is critical to study these systems for the treatment of typical obesity. Although progress has been made, further studies are required to unravel the physiology, pathophysiology and neurobehavioral mechanisms underlying potential treatments for weight-related problems in humans.
Collapse
Affiliation(s)
| | - Eric Nolen-Doerr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Olivia M. Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Christos S. Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
14
|
Kirwan P, Kay RG, Brouwers B, Herranz-Pérez V, Jura M, Larraufie P, Jerber J, Pembroke J, Bartels T, White A, Gribble FM, Reimann F, Farooqi IS, O'Rahilly S, Merkle FT. Quantitative mass spectrometry for human melanocortin peptides in vitro and in vivo suggests prominent roles for β-MSH and desacetyl α-MSH in energy homeostasis. Mol Metab 2018; 17:82-97. [PMID: 30201275 PMCID: PMC6197775 DOI: 10.1016/j.molmet.2018.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The lack of pro-opiomelanocortin (POMC)-derived melanocortin peptides results in hypoadrenalism and severe obesity in both humans and rodents that is treatable with synthetic melanocortins. However, there are significant differences in POMC processing between humans and rodents, and little is known about the relative physiological importance of POMC products in the human brain. The aim of this study was to determine which POMC-derived peptides are present in the human brain, to establish their relative concentrations, and to test if their production is dynamically regulated. METHODS We analysed both fresh post-mortem human hypothalamic tissue and hypothalamic neurons derived from human pluripotent stem cells (hPSCs) using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the sequence and quantify the production of hypothalamic neuropeptides, including those derived from POMC. RESULTS In both in vitro and in vivo hypothalamic cells, LC-MS/MS revealed the sequence of hundreds of neuropeptides as a resource for the field. Although the existence of β-melanocyte stimulating hormone (MSH) is controversial, we found that both this peptide and desacetyl α-MSH (d-α-MSH) were produced in considerable excess of acetylated α-MSH. In hPSC-derived hypothalamic neurons, these POMC derivatives were appropriately trafficked, secreted, and their production was significantly (P < 0.0001) increased in response to the hormone leptin. CONCLUSIONS Our findings challenge the assumed pre-eminence of α-MSH and suggest that in humans, d-α-MSH and β-MSH are likely to be the predominant physiological products acting on melanocortin receptors.
Collapse
Affiliation(s)
- Peter Kirwan
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Richard G Kay
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Bas Brouwers
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, 46980 Valencia, Spain; Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Magdalena Jura
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Pierre Larraufie
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Julie Jerber
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK; Open Targets, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jason Pembroke
- LGC Ltd., Newmarket Road, Fordham, Cambridgeshire, CB7 5WW, UK
| | - Theresa Bartels
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen O'Rahilly
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Florian T Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK.
| |
Collapse
|
15
|
Ramos-Molina B, Molina-Vega M, Fernández-García JC, Creemers JW. Hyperphagia and Obesity in Prader⁻Willi Syndrome: PCSK1 Deficiency and Beyond? Genes (Basel) 2018; 9:genes9060288. [PMID: 29880780 PMCID: PMC6027271 DOI: 10.3390/genes9060288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/31/2023] Open
Abstract
Prader–Willi syndrome (PWS) is a complex genetic disorder that, besides cognitive impairments, is characterized by hyperphagia, obesity, hypogonadism, and growth impairment. Proprotein convertase subtilisin/kexin type 1 (PCSK1) deficiency, a rare recessive congenital disorder, partially overlaps phenotypically with PWS, but both genetic disorders show clear dissimilarities as well. The recent observation that PCSK1 is downregulated in a model of human PWS suggests that overlapping pathways are affected. In this review we will not only discuss the mechanisms by which PWS and PCSK1 deficiency could lead to hyperphagia but also the therapeutic interventions to treat obesity in both genetic disorders.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
| | - María Molina-Vega
- Department of Endocrinology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
| | - José C Fernández-García
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
- Department of Endocrinology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - John W Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
16
|
Wueest S, Laesser CI, Böni-Schnetzler M, Item F, Lucchini FC, Borsigova M, Müller W, Donath MY, Konrad D. IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion. Diabetes 2018; 67:36-45. [PMID: 29066599 DOI: 10.2337/db17-0637] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/15/2017] [Indexed: 11/13/2022]
Abstract
We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 (Pcsk1) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity.
Collapse
Affiliation(s)
- Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Céline I Laesser
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department Biomedicine, University of Basel, Basel, Switzerland
| | - Flurin Item
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Aoyama K, Bhadhprasit W, Watabe M, Wang F, Matsumura N, Nakaki T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin. FASEB J 2017; 32:330-341. [PMID: 28904020 DOI: 10.1096/fj.201700421r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons provide α-melanocyte-stimulating hormone (α-MSH), which stimulates melanocortin 4 receptor to induce hypophagia by AMPK inhibition in the hypothalamus. α-MSH is produced by POMC cleavage in secretory granules and released. However, it is not known yet whether any posttranscriptional regulatory mechanism of POMC signaling exists upstream of the secretory granules in neurons. Here we show that glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein that retains interacting proteins in the endoplasmic reticulum, is a critical regulator of food intake and body weight by interacting with POMC. GTRAP3-18-deficient mice showed hypophagia, lean bodies, and lower blood glucose, insulin, and leptin levels with increased serum and brain α-MSH levels, leading to AMPK inhibition. Intraperitoneal glucose tolerance tests revealed significantly decreased blood glucose levels and areas under the curve in GTRAP3-18-deficient mice compared to wild-type mice. An intracerebroventricular infusion of a selective melanocortin 4 receptor antagonist to GTRAP3-18-deficient mice significantly increased their food intake and body weight. A fluorescence resonance energy transfer study showed an interaction between GTRAP3-18 and POMC in vitro These findings suggest that activation of the melanocortin pathway by modulating GTRAP3-18/POMC interaction could be an alternative strategy for obesity and/or type 2 diabetes.-Aoyama, K., Bhadhprasit, W., Watabe, M., Wang, F., Matsumura, N., Nakaki, T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Masahiko Watabe
- General Medical Education Center (G-MEC), Teikyo University School of Medicine, Tokyo, Japan
| | - Fan Wang
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Nobuko Matsumura
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan;
| |
Collapse
|
18
|
Korevaar TIM, de Rijke YB, Chaker L, Medici M, Jaddoe VWV, Steegers EAP, Visser TJ, Peeters RP. Stimulation of Thyroid Function by Human Chorionic Gonadotropin During Pregnancy: A Risk Factor for Thyroid Disease and a Mechanism for Known Risk Factors. Thyroid 2017; 27:440-450. [PMID: 28049387 DOI: 10.1089/thy.2016.0527] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Thyroid autoimmunity is a major risk factor for gestational thyroid disease, and recently various other risk factors have been identified, including maternal age, body mass index (BMI) and parity. Human chorionic gonadotropin (hCG) is an important determinant of gestational thyroid function, yet it is unknown to what extent differences in hCG concentration affect the risk for thyroid disease. We have recently shown that thyroperoxidase antibody positivity impairs the thyroidal response to hCG stimulation, which may suggest that this is a mechanism through which thyroid autoimmunity acts as a risk factor for thyroid disease. OBJECTIVE The purpose of this study is to determine whether hCG is a risk factor for thyroid disease entities and whether recently identified risk factors for thyroid disease may influence the thyroidal response to hCG stimulation. METHODS Human chorionic gonadotropin, thyrotropin (TSH), and free thyroxine (FT4) were measured in 5435 pregnant women participating in a prospective cohort. The association of hCG with thyroid disease entities, and the association of known risk factors with thyroidal response to hCG stimulation were studied using multivariable linear regression models. RESULTS Higher hCG concentrations were associated with a higher risk of subclinical and overt hyperthyroidism. Lower hCG concentrations were associated with a higher risk of hypothyroxinemia. In contrast, hCG concentrations were not associated with subclinical hypothyroidism. Further analyses showed that in women with hypothyroxinemia, high hCG concentrations still suppressed TSH. However, in women with subclinical hypothyroidism, high hCG concentrations were not associated with higher FT4. Higher BMI, male fetal sex, and maternal parity >2 were associated with a lower thyroidal response to hCG stimulation. CONCLUSIONS Human chorionic gonadotropin is associated with the risk of (subclinical) hyperthyroidism and hypothyroxinemia, but not with the risk of (subclinical) hypothyroidism. Women with hypothyroxinemia have a normal response to thyroidal stimulation by hCG, but this was abnormal in women with subclinical hypothyroidism. Known risk factors for thyroid dysfunction (BMI and parity), and also male fetal sex, are associated with a lower thyroidal response to hCG stimulation.
Collapse
Affiliation(s)
- Tim I M Korevaar
- 1 The Generation R Study Group, Erasmus Medical Center , Rotterdam, The Netherlands
- 2 Department of Internal Medicine, Erasmus Medical Center , Rotterdam, The Netherlands
- 3 Academic Center for Thyroid Diseases, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Yolanda B de Rijke
- 4 Department of Clinical Chemistry, Erasmus Medical Center - Sophia Children's Hospital , Rotterdam, The Netherlands
| | - Layal Chaker
- 1 The Generation R Study Group, Erasmus Medical Center , Rotterdam, The Netherlands
- 2 Department of Internal Medicine, Erasmus Medical Center , Rotterdam, The Netherlands
- 3 Academic Center for Thyroid Diseases, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Marco Medici
- 1 The Generation R Study Group, Erasmus Medical Center , Rotterdam, The Netherlands
- 2 Department of Internal Medicine, Erasmus Medical Center , Rotterdam, The Netherlands
- 3 Academic Center for Thyroid Diseases, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- 1 The Generation R Study Group, Erasmus Medical Center , Rotterdam, The Netherlands
- 5 Department of Pediatrics, Erasmus Medical Center - Sophia Children's Hospital , Rotterdam, The Netherlands
- 6 Department of Epidemiology, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Eric A P Steegers
- 7 Department of Obstetrics and Gynecology, Erasmus Medical Center - Sophia Children's Hospital , Rotterdam, The Netherlands
| | - Theo J Visser
- 1 The Generation R Study Group, Erasmus Medical Center , Rotterdam, The Netherlands
- 2 Department of Internal Medicine, Erasmus Medical Center , Rotterdam, The Netherlands
- 3 Academic Center for Thyroid Diseases, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Robin P Peeters
- 1 The Generation R Study Group, Erasmus Medical Center , Rotterdam, The Netherlands
- 2 Department of Internal Medicine, Erasmus Medical Center , Rotterdam, The Netherlands
- 3 Academic Center for Thyroid Diseases, Erasmus Medical Center , Rotterdam, The Netherlands
| |
Collapse
|
19
|
Maddila SC, Busch-Dienstfertig M, Stein C. B Lymphocytes Express Pomc mRNA, Processing Enzymes and β-Endorphin in Painful Inflammation. J Neuroimmune Pharmacol 2016; 12:180-186. [DOI: 10.1007/s11481-016-9715-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/20/2016] [Indexed: 01/31/2023]
|
20
|
Abstract
Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones.
Collapse
Affiliation(s)
- Georgios A Triantafyllou
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST 820, Boston, MA 02215, USA
| | - Stavroula A Paschou
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST 820, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST 820, Boston, MA 02215, USA.
| |
Collapse
|
21
|
Duntas L. NEW INSIGHTS INTO THE HYPOTHALAMIC-PITUITARY-THYROID AXIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2016; 12:125-129. [PMID: 31149076 PMCID: PMC6535279 DOI: 10.4183/aeb.2016.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The discovery of thyrotropin releasing hormone (TRH) in 1969 was the definitive step in decoding the hypothalamic-pituitary thyroid (HPT) axis, thereby opening up the era of neuroendocrinology, while it also revolutionized the diagnostic and therapeutic approach to patients with thyroid diseases. TRH, produced in the hypothalamus, is the central regulator of the HPT. It functions via neurons originating in the paraventricular nucleus (PVN), which integrates multiple neuronal and humoral signals and resets the HPT axis according to variations of external and internal environmental conditions. The TRH activates TSH in the pituitary that stimulates the secretion of thyroxine from thyroid which, in turn, exerts a negative feedback on TSH and TRH secretion. However, various factors are involved in the regulation of the HPT axis. Leptin has both indirect and direct effects on TRH regulation, the former by regulating agouti-related peptide (AGRP) in the arcuate nucleus (ARN) that antagonizes the α-MSH stimulatory activity on pro-TRH gene expression in the PVN, and the latter by stimulating hypothalamic TRH expression, TRH transcription via stimulation of pro-convertase 1 and 2 expression, which lead to enhanced processing of pro-TRH into TRH. The interplay of TRH with leptin and the recently reported influence of ghrelin on the HPT axis can alter the setpoint of the axis. The polyphenol resveratrol, as recently observed, exerts an anxiolytic and antidepressant activity in subclinical hypothyroid (SCH) rats. Resveratrol, by decreasing both TSH and TRH mRNA expression, regulates the HPT axis, while in parallel it regulates the Wnt/β-catenin pathway in the hippocampus. These findings open up possibilities for the therapeutic use of resveratrol as coadjuvant, especially in overt and SCH states marked by anxiety and depression. The clinician should be aware of clinical changes that can invalidate the normal regulation of the HPT axis, the most commonly observed being medications and comorbidities.
Collapse
Affiliation(s)
- L.H. Duntas
- University of Athens, Evgenideion Hospital, Unit of Endocrinology, Diabetes and Metabolism, Thyroid Section, Athens, Greece
| |
Collapse
|
22
|
Toorie AM, Cyr NE, Steger JS, Beckman R, Farah G, Nillni EA. The Nutrient and Energy Sensor Sirt1 Regulates the Hypothalamic-Pituitary-Adrenal (HPA) Axis by Altering the Production of the Prohormone Convertase 2 (PC2) Essential in the Maturation of Corticotropin-releasing Hormone (CRH) from Its Prohormone in Male Rats. J Biol Chem 2016; 291:5844-5859. [PMID: 26755731 DOI: 10.1074/jbc.m115.675264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/13/2022] Open
Abstract
Understanding the role of hypothalamic neuropeptides and hormones in energy balance is paramount in the search for approaches to mitigate the obese state. Increased hypothalamic-pituitary-adrenal axis activity leads to increased levels of glucocorticoids (GC) that are known to regulate body weight. The axis initiates the production and release of corticotropin-releasing hormone (CRH) from the paraventricular nucleus (PVN) of the hypothalamus. Levels of active CRH peptide are dependent on the processing of its precursor pro-CRH by the action of two members of the family of prohormone convertases 1 and 2 (PC1 and PC2). Here, we propose that the nutrient sensor sirtuin 1 (Sirt1) regulates the production of CRH post-translationally by affecting PC2. Data suggest that Sirt1 may alter the preproPC2 gene directly or via deacetylation of the transcription factor Forkhead box protein O1 (FoxO1). Data also suggest that Sirt1 may alter PC2 via a post-translational mechanism. Our results show that Sirt1 levels in the PVN increase in rats fed a high fat diet for 12 weeks. Furthermore, elevated Sirt1 increased PC2 levels, which in turn increased the production of active CRH and GC. Collectively, this study provides the first evidence supporting the hypothesis that PVN Sirt1 activates the hypothalamic-pituitary-adrenal axis and basal GC levels by enhancing the production of CRH through an increase in the biosynthesis of PC2, which is essential in the maturation of CRH from its prohormone, pro-CRH.
Collapse
Affiliation(s)
- Anika M Toorie
- From the Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903,; the Graduate Program in Pathobiology and
| | - Nicole E Cyr
- From the Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903,; the Biology Department and Neuroscience Program, Stonehill College, Easton, Massachusetts 02357
| | - Jennifer S Steger
- From the Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903
| | - Ross Beckman
- From the Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903
| | - George Farah
- the Biology Department and Neuroscience Program, Stonehill College, Easton, Massachusetts 02357
| | - Eduardo A Nillni
- From the Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903,; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, and.
| |
Collapse
|
23
|
Drobniak A, Kanecki K, Grymowicz M, Radowicki S. Serum leptin concentration in women of reproductive age with euthyroid autoimmune thyroiditis. Gynecol Endocrinol 2016; 32:128-31. [PMID: 26440361 DOI: 10.3109/09513590.2015.1092512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Autoimmune thyroid disease (AITD) with elevated anti-thyroid peroxidase antibody (aTPO) levels appears in 12-25% of all women, apart from thyroid dysfunction. High titers of aTPO are more common in women with polycystic ovary syndrome and endometriosis. Elevated aTPO has been associated with infertility and poorer quality of life among euthyroid women, and may be related to other factors. OBJECTIVES The aim of the study was to measure differences in serum leptin concentration between AITD+ and AITD- patients. Setting, patients and main outcome measures: The sample was comprised of 74 women who were hospitalized in the Department of Gynecological Endocrinology, Medical University of Warsaw. Data collected included age, body mass index (BMI), and serum aTPO, serum thyroid stimulating hormone (TSH), serum fT4, serum follitropin (FSH), serum estradiol and serum leptin. AITD positive status was defined as serum aTPO greater than 5.6 mIU/ml. RESULTS Serum leptin concentrations were significantly higher in AITD+ patients compared to AITD- patients (17.13 ng/ml [SD 7.66] versus 12.78 ng/ml [SD 7.28]; p < 0.05). No differences by AITD status were found in age, BMI, TSH, FSH, estradiol and fT4. CONCLUSIONS Serum leptin concentrations were higher in patients with AITD than in patients without AITD.
Collapse
Affiliation(s)
| | - Krzysztof Kanecki
- b Department of Health Care , Medical University of Warsaw , Warsaw , Poland
| | | | | |
Collapse
|
24
|
Lazcano I, Cabral A, Uribe RM, Jaimes-Hoy L, Perello M, Joseph-Bravo P, Sánchez-Jaramillo E, Charli JL. Fasting Enhances Pyroglutamyl Peptidase II Activity in Tanycytes of the Mediobasal Hypothalamus of Male Adult Rats. Endocrinology 2015; 156:2713-23. [PMID: 25942072 DOI: 10.1210/en.2014-1885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fasting down-regulates the hypothalamus-pituitary-thyroid (HPT) axis activity through a reduction of TRH synthesis in neurons of the parvocellular paraventricular nucleus of the hypothalamus (PVN). These TRH neurons project to the median eminence (ME), where TRH terminals are close to the cytoplasmic extensions of β2 tanycytes. Tanycytes express pyroglutamyl peptidase II (PPII), the TRH-degrading ectoenzyme that controls the amount of TRH that reaches the anterior pituitary. We tested the hypothesis that regulation of ME PPII activity is another mechanism by which fasting affects the activity of the HPT axis. Semiquantitative in situ hybridization histochemistry data indicated that PPII and deiodinase 2 mRNA levels increased in tanycytes after 48 hours of fasting. This increase was transitory, followed by an increase of PPII activity in the ME, and a partial reversion of the reduction in PVN pro-TRH mRNA levels and the number of TRH neurons detected by immunohistochemistry. In fed animals, adrenalectomy and corticosterone treatment did not change ME PPII activity 72 hours later. Methimazole-induced hypothyroidism produced a profound drop in tanycytes PPII mRNA levels, which was reverted by 3 days of treatment with T4. The activity of thyroliberinase, the serum isoform of PPII, was increased at most fasting time points studied. We conclude that delayed increases in both the ME PPII as well as the thyroliberinase activities in fasted male rats may facilitate the maintenance of the deep down-regulation of the HPT axis function, despite a partial reactivation of TRH expression in the PVN.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Agustina Cabral
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Mario Perello
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Edith Sánchez-Jaramillo
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular (I.L., R.M.U., L.J.-H., P.J.-B., J.-L.C.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México; Laboratory of Neurophysiology (A.C., M.P.), Multidisciplinary Institute of Cell Biology (Argentine Research Council and Scientific Research Commission, Province of Buenos Aires), La Plata, Buenos Aires 1900, Argentina; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México D.F. 14370, México
| |
Collapse
|
25
|
Cyr NE, Steger JS, Toorie AM, Yang JZ, Stuart R, Nillni EA. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology 2015; 156:961-74. [PMID: 25549049 PMCID: PMC4330311 DOI: 10.1210/en.2014-1970] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the periphery, the nutrient-sensing enzyme Sirtuin 1 (silent mating type information regulation 2 homolog 1 [Sirt1]) reduces body weight in diet-induced obese (DIO) rodents. However, the role of hypothalamic Sirt1 in body weight and energy balance regulation is debated. The first studies to reveal that central Sirt1 regulates body weight came from experiments in our laboratory using Sprague-Dawley rats. Central inhibition of Sirt1 decreased body weight and food intake as a result of a forkhead box protein O1 (FoxO1)-mediated increase in the anorexigenic proopiomelanocortin (POMC) and decrease in the orexigenic Agouti-related peptide in the hypothalamic arcuate nucleus. Here, we demonstrate that central inhibition of Sirt1 in DIO decreased body weight and increased energy expenditure at higher levels as compared with the lean counterpart. Brain Sirt1 inhibition in DIO increased acetylated FoxO1, which in turn increased phosphorylated FoxO1 via improved insulin/phosphorylated AKT signaling. Elevated acetylated FoxO1 and phosphorylated FoxO1 increased POMC along with the α-melanocyte-stimulating hormone (α-MSH) maturation enzyme carboxypeptidase E, which resulted in more of the bioactive POMC product α-MSH released into the paraventricular nucleus. Increased in α-MSH led to augmented TRH levels and circulating T3 levels (triiodothyronine, thyroid hormone). These results indicate that inhibiting hypothalamic Sirt1 in DIO enhances the activity of the hypothalamic-pituitary-thyroid axis, which stimulates energy expenditure. Because we show that blocking central Sirt1 causes physiological changes that promote a negative energy balance in an obese individual, our results support brain Sirt1 as a significant target for weight loss therapeutics.
Collapse
Affiliation(s)
- Nicole E Cyr
- Division of Endocrinology (N.E.C., J.S.S., A.M.T., J.Z.Y., R.S., E.A.N.), Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903; and Department of Molecular Biology, Cell Biology, and Biochemistry (E.A.N.), Brown University, Providence, Rhode Island 02912
| | | | | | | | | | | |
Collapse
|
26
|
Kuhla B, Laeger T, Husi H, Mullen W. Cerebrospinal Fluid Prohormone Processing and Neuropeptides Stimulating Feed Intake of Dairy Cows during Early Lactation. J Proteome Res 2015; 14:823-8. [DOI: 10.1021/pr500872k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Björn Kuhla
- Institute of Nutritional
Physiology “Oskar Kellner”, Leibniz Institute for Farm
Animal Biology (FBN), Wilhelm-Stahl-Allee
2, 18196 Dummerstorf, Germany
| | - Thomas Laeger
- Institute of Nutritional
Physiology “Oskar Kellner”, Leibniz Institute for Farm
Animal Biology (FBN), Wilhelm-Stahl-Allee
2, 18196 Dummerstorf, Germany
| | - Holger Husi
- College
of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - William Mullen
- College
of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
27
|
Park HK, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015; 64:24-34. [PMID: 25199978 PMCID: PMC4267898 DOI: 10.1016/j.metabol.2014.08.004] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/01/2014] [Accepted: 08/08/2014] [Indexed: 12/24/2022]
Abstract
Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Hyeong-Kyu Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, and the Institute for Diabetes, Obesity and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism. Metabolism 2015; 64:105-13. [PMID: 25497343 PMCID: PMC4532332 DOI: 10.1016/j.metabol.2014.10.021] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 01/17/2023]
Abstract
Leptin was initially best known for its role in energy homeostasis and regulation of energy expenditure. In the past few years we have realized that leptin also plays a major role in neuroendocrine regulation and bone metabolism. Here, we review the literature the indirect and direct pathways through which leptin acts to influence bone metabolism and discuss bone abnormalities related to leptin deficiency in both animal and human studies. The clinical utility of leptin in leptin deficient individuals and its potential to improve metabolic bone disease are also discussed. We are beginning to understand the critical role leptin plays in bone metabolism; future randomized studies are needed to fully assess the potential and risk-benefit of leptin's use in metabolic bone disease particularly in leptin deficient individuals.
Collapse
Affiliation(s)
- Jagriti Upadhyay
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215.
| | - Olivia M Farr
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
| | - Christos S Mantzoros
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
29
|
Stieg MR, Sievers C, Farr O, Stalla GK, Mantzoros CS. Leptin: A hormone linking activation of neuroendocrine axes with neuropathology. Psychoneuroendocrinology 2015; 51:47-57. [PMID: 25290346 DOI: 10.1016/j.psyneuen.2014.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 11/24/2022]
Abstract
Leptin, a peptide hormone secreted by adipocytes, plays a central role in controlling appetite and weight in both rodents and humans. Basic science and clinical research suggest that this hormone not only affects the regulation of the neuroendocrine axes, but also exerts effects on the central nervous system with subsequent alterations in psychological functions. For instance, leptin suppresses cortisol secretion during stress-related activation of the adrenal axis. As psychiatric disorders like depression are associated with hypercortisolism, leptin is proposed to exert anti-depressant-like effects due to its inhibition of chronically overactive hypothalamo-pituitary-adrenal axis function. Moreover, leptin status of depressed patients could serve as a prognostic marker for therapy response. Besides its influence on neuroendocrine pathways leptin seems to have direct central effects on brain development and neuroplasticity. Low leptin levels have been shown to be associated with increased risk of developing dementia, supporting the idea of a pro-cognitive effect of leptin. These areas may have direct clinical implications and deserve to be studied further in the future.
Collapse
Affiliation(s)
- Mareike R Stieg
- Max-Planck-Institute of Psychiatry, Kreapelinstr. 2-10, 80804 Munich, Germany.
| | - Caroline Sievers
- Max-Planck-Institute of Psychiatry, Kreapelinstr. 2-10, 80804 Munich, Germany
| | - Olivia Farr
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, Boston VA Healthcare System, Boston, USA
| | - Günter K Stalla
- Max-Planck-Institute of Psychiatry, Kreapelinstr. 2-10, 80804 Munich, Germany
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, Boston VA Healthcare System, Boston, USA.
| |
Collapse
|
30
|
Cyr NE, Steger JS, Toorie AM, Yang JZ, Stuart R, Nillni EA. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology 2014; 155:2423-35. [PMID: 24773342 PMCID: PMC4060185 DOI: 10.1210/en.2013-1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the periphery, the nutrient-sensing enzyme Sirtuin 1 (silent mating type information regulation 2 homolog 1 [Sirt1]) reduces body weight in diet-induced obese (DIO) rodents. However, the role of Sirt1 in the brain, particularly the hypothalamus, in body weight and energy balance regulation is debated. Among the first studies to reveal that central Sirt1 regulates body weight came from experiments in our laboratory using Sprague Dawley rats. In that study, central inhibition of Sirt1 decreased body weight and food intake as a result of a Forkhead box protein O1 (FoxO1)-mediated increase in the anorexigenic proopiomelanocortin (POMC) and decrease in the orexigenic Agouti-related peptide in the hypothalamic arcuate nucleus. Here, we demonstrate that central inhibition of Sirt1 in DIO decreased body weight and increased energy expenditure at higher levels as compared with the lean counterpart. Brain Sirt1 inhibition in DIO increased acetylated FoxO1, which, in turn, increased phosphorylated FoxO1 via improved insulin/pAKT signaling. Elevated acetylated FoxO1 and phosphorylated FoxO1 increased POMC along with the α-MSH maturation enzyme carboxypeptidase E, which resulted in more of the bioactive POMC product α-MSH released into the paraventricular nucleus. Increased in α-MSH led to augmented TRH levels and circulating T3 levels (thyroid hormone). These results indicate that inhibiting hypothalamic Sirt1 in DIO enhances the activity of the hypothalamic-pituitary-thyroid axis, which stimulates energy expenditure. Because we show that blocking central Sirt1 causes physiological changes that promote a negative energy balance in an obese individual, our results support brain Sirt1 as a significant target for weight loss therapeutics.
Collapse
Affiliation(s)
- Nicole E Cyr
- Division of Endocrinology (N.E.C, J.S.S., A.M.T., J.Z.Y, R.S., E.A.N.), Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903; and Department of Molecular Biology, Cell Biology and Biochemistry (E.A.N.), Brown University, Providence, Rhode Island 02912
| | | | | | | | | | | |
Collapse
|
31
|
Toorie AM, Nillni EA. Minireview: Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Mol Endocrinol 2014; 28:1423-34. [PMID: 24947673 DOI: 10.1210/me.2014-1115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In developed nations, the prevalence of obesity and its associated comorbidities continue to prevail despite the availability of numerous treatment strategies. Accumulating evidence suggests that multiple inputs from the periphery and within the brain act in concert to maintain energy metabolism at a constant rate. At the central level, the hypothalamus is the primary component of the nervous system that interprets adiposity or nutrient-related inputs; it delivers hormonal and behavioral responses with the ultimate purpose of regulating energy intake and energy consumption. At the molecular level, enzymes called nutrient energy sensors mediate metabolic responses of those tissues involved in energy balance ( 1 ). Two key energy/nutrient sensors, mammalian target of rapamycin and AMP-activated kinase, are involved in the control of food intake in the hypothalamus as well as in peripheral tissues ( 2 , 3 ). The third more recently discovered nutrient sensor, Sirtuin1 (Sirt1), a nicotinamide adenine dinucleotide-dependent deacetylase, functions to maintain whole-body energy homeostasis. Several studies have highlighted a role for both peripheral and central Sirt1 in regulating body metabolism, but its central role is still heavily debated. Owing to the opaqueness of central Sirt1's role in energy balance are its cell-specific functions. Because of its robust central expression, targeting cell-specific downstream mediators of Sirt1 signaling may help to combat obesity. However, when placed in the context of a physiologically relevant model, there is compelling evidence that central Sirt1 inhibition in itself is sufficient to promote negative energy balance in both the lean and diet-induced obese state.
Collapse
Affiliation(s)
- Anika M Toorie
- Division of Endocrinology (A.M.T., E.A.N.), Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903; and Department of Molecular Biology, Cell Biology, and Biochemistry (E.A.N.), Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
32
|
Xia T, Zhang Q, Xiao Y, Wang C, Yu J, Liu H, Liu B, Zhang Y, Chen S, Liu Y, Chen Y, Guo F. CREB/TRH pathway in the central nervous system regulates energy expenditure in response to deprivation of an essential amino acid. Int J Obes (Lond) 2014; 39:105-13. [PMID: 24732144 DOI: 10.1038/ijo.2014.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/18/2014] [Accepted: 04/06/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND In the central nervous system (CNS), thyrotropin-releasing hormone (TRH) has an important role in regulating energy balance. We previously showed that dietary deprivation of leucine in mice increases energy expenditure through CNS-dependent regulation. However, the involvement of central TRH in this regulation has not been reported. METHODS Male C57J/B6 mice were maintained on a control or leucine-deficient diet for 7 days. Leucine-deprived mice were either third intracerebroventricular (i.c.v.) injected with a TRH antibody followed by intraperitoneal (i.p.) injection of triiodothyronine (T3) or i.c.v. administrated with an adenovirus of shCREB (cAMP-response element binding protein) followed by i.c.v. injection of TRH. Food intake and body weight were monitored daily. Oxygen consumption, physical activity and rectal temperature were assessed after the treatment. After being killed, the hypothalamus and the brown adipose tissue were collected and the expression of related genes and proteins related was analyzed. In other experiments, control or leucine-deficient medium incubated primary cultured neurons were either infected with adenovirus-mediated short hairpin RNA targeting extracellular signal-regulated kinases 1 and 2 (Ad-shERK1/2) or transfected with plasmid-overexpressing protein phosphatase 1 regulatory subunit 3C (PPP1R3C). RESULTS I.c.v. administration of anti-TRH antibodies significantly reduced leucine deprivation-stimulated energy expenditure. Furthermore, the effects of i.c.v. TRH antibodies were reversed by i.p. injection of T3 during leucine deprivation. Moreover, i.c.v. injection of Ad-shCREB (adenovirus-mediated short hairpin RNA targeting CREB) significantly suppressed leucine deprivation-stimulated energy expenditure via modulation of TRH expression. Lastly, TRH expression was regulated by CREB, which was phosphorylated by ERK1/2 and dephosphorylated by PPP1R3C-containing protein Ser/Thr phosphatase type 1 (PP1) under leucine deprivation in vitro. CONCLUSIONS Our data indicate a novel role for TRH in regulating energy expenditure via T3 during leucine deprivation. Furthermore, our findings reveal that TRH expression is activated by CREB, which is phosphorylated by ERK1/2 and dephosphorylated by PPP1R3C-containing PP1. Collectively, our studies provide novel insights into the regulation of energy homeostasis by the CNS in response to an essential amino-acid deprivation.
Collapse
Affiliation(s)
- T Xia
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Q Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - C Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - J Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - H Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - S Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - F Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Al Rayyan N, Zhang J, Burnside AS, Good DJ. Leptin signaling regulates hypothalamic expression of nescient helix-loop-helix 2 (Nhlh2) through signal transducer and activator 3 (Stat3). Mol Cell Endocrinol 2014; 384:134-42. [PMID: 24486192 PMCID: PMC3984914 DOI: 10.1016/j.mce.2014.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022]
Abstract
Mice with a deletion of the hypothalamic basic helix-loop-helix transcription factor Nhlh2 display adult onset obesity. We have previously shown that Nhlh2 expression is induced by leptin. In this study, we identify a small proximal leptin-responsive promoter region in the Nhlh2 gene. This 163bp promoter contains five putative binding sites for the leptin-activated Stat3 transcription factor, and two putative binding sites for the NFκB transcription factor. Results of mutagenesis studies reveal that deletion of the NFκB sites have little effect, mutagenesis of the third Stat3 site eliminates both leptin-induced and basal expression of Nhlh2. Mutagenesis of the 4th and 5th sites eliminates leptin-induced expression, and increases basal expression above the WT promoter. Stat3 can be preferentially pulled down from leptin-treated mouse hypothalamic chromatin extracts. This study identifies leptin-induced Stat3 transcription factor as the major transcriptional regulator of Nhlh2. As Nhlh2 transcriptionally regulates genes within the melanocortin pathway, these findings have implications for human body weight control.
Collapse
Affiliation(s)
- Numan Al Rayyan
- Department of Human Nutrition, Foods and Exercise, 1981 Kraft Drive, ILSB Room 1020 (0913), Virginia Tech, Blacksburg, VA 24061, United States
| | - Jinhua Zhang
- Department of Human Nutrition, Foods and Exercise, 1981 Kraft Drive, ILSB Room 1020 (0913), Virginia Tech, Blacksburg, VA 24061, United States
| | - Amy S Burnside
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, 661 N. Pleasant Street, Amherst, MA 01003, United States
| | - Deborah J Good
- Department of Human Nutrition, Foods and Exercise, 1981 Kraft Drive, ILSB Room 1020 (0913), Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
34
|
Nie Y, Ferrini MG, Liu Y, Anghel A, Paez Espinosa EV, Stuart RC, Lutfy K, Nillni EA, Friedman TC. Morphine treatment selectively regulates expression of rat pituitary POMC and the prohormone convertases PC1/3 and PC2. Peptides 2013; 47:99-109. [PMID: 23891651 PMCID: PMC3787842 DOI: 10.1016/j.peptides.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
The prohormone convertases, PC1/3 and PC2 are thought to be responsible for the activation of many prohormones through processing including the endogenous opioid peptides. We propose that maintenance of hormonal homeostasis can be achieved, in part, via alterations in levels of these enzymes that control the ratio of active hormone to prohormone. In order to test the hypothesis that exogenous opioids regulate the endogenous opioid system and the enzymes responsible for their biosynthesis, we studied the effect of short-term morphine or naltrexone treatment on pituitary PC1/3 and PC2 as well as on the level of pro-opiomelanocortin (POMC), the precursor gene for the biosynthesis of the endogenous opioid peptide, β-endorphin. Using ribonuclease protection assays, we observed that morphine down-regulated and naltrexone up-regulated rat pituitary PC1/3 and PC2 mRNA. Immunofluorescence and Western blot analysis confirmed that the protein levels changed in parallel with the changes in mRNA levels and were accompanied by changes in the levels of phosphorylated cyclic-AMP response element binding protein. We propose that the alterations of the prohormone processing system may be a compensatory mechanism in response to an exogenous opioid ligand whereby the organism tries to restore its homeostatic hormonal milieu following exposure to the opioid, possibly by regulating the levels of multiple endogenous opioid peptides and other neuropeptides in concert.
Collapse
Affiliation(s)
- Ying Nie
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| | - Monica G. Ferrini
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Yanjun Liu
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Adrian Anghel
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Enma V. Paez Espinosa
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Ronald C. Stuart
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | - Kabirullah Lutfy
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Eduardo A. Nillni
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Theodore C. Friedman
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| |
Collapse
|
35
|
Martín MG, Lindberg I, Solorzano-Vargas RS, Wang J, Avitzur Y, Bandsma R, Sokollik C, Lawrence S, Pickett LA, Chen Z, Egritas O, Dalgic B, Albornoz V, de Ridder L, Hulst J, Gok F, Aydoğan A, Al-Hussaini A, Gok DE, Yourshaw M, Wu SV, Cortina G, Stanford S, Georgia S. Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. Gastroenterology 2013; 145:138-148. [PMID: 23562752 PMCID: PMC3719133 DOI: 10.1053/j.gastro.2013.03.048] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal-recessive disorder caused by rare mutations in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 also have been associated with obesity in heterozygotes in several population-based studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells. We investigated clinical and molecular features of PC1/3 deficiency. METHODS We studied the clinical features of 13 children with PC1/3 deficiency and performed sequence analysis of PCSK1. We measured enzymatic activity of recombinant PC1/3 proteins. RESULTS We identified a pattern of endocrinopathies that develop in an age-dependent manner. Eight of the mutations had severe biochemical consequences in vitro. Neonates had severe malabsorptive diarrhea and failure to thrive, required prolonged parenteral nutrition support, and had high mortality. Additional endocrine abnormalities developed as the disease progressed, including diabetes insipidus, growth hormone deficiency, primary hypogonadism, adrenal insufficiency, and hypothyroidism. We identified growth hormone deficiency, central diabetes insipidus, and male hypogonadism as new features of PCSK1 insufficiency. Interestingly, despite early growth abnormalities, moderate obesity, associated with severe polyphagia, generally appears. CONCLUSIONS In a study of 13 children with PC1/3 deficiency caused by disruption of PCSK1, failure of enteroendocrine cells to produce functional hormones resulted in generalized malabsorption. These findings indicate that PC1/3 is involved in the processing of one or more enteric hormones that are required for nutrient absorption.
Collapse
Affiliation(s)
- Martín G. Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Iris Lindberg
- Department Anatomy and Neurobiology, University of Maryland-Baltimore20 Penn St., HSFII Rm S251, Baltimore, MD 21201, USA
| | - R. Sergio Solorzano-Vargas
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jiafang Wang
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, University of Toronto, Toronto, ON
| | - Robert Bandsma
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, University of Toronto, Toronto, ON
| | - Christiane Sokollik
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, University of Toronto, Toronto, ON
| | - Sarah Lawrence
- Division of Endocrinology and Metabolism, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| | - Lindsay A. Pickett
- Department Anatomy and Neurobiology, University of Maryland-Baltimore20 Penn St., HSFII Rm S251, Baltimore, MD 21201, USA
| | - Zijun Chen
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Odul Egritas
- Gazi University School of Medicine, Department of Pediatric Gastroenterology, Ankara, Turkey
| | - Buket Dalgic
- Gazi University School of Medicine, Department of Pediatric Gastroenterology, Ankara, Turkey
| | - Valeria Albornoz
- Department Anatomy and Neurobiology, University of Maryland-Baltimore20 Penn St., HSFII Rm S251, Baltimore, MD 21201, USA
| | - Lissy de Ridder
- Pediatric Gastroenterology, Erasmus MC - Sophia Children’s Hospital Rotterdam, Netherlands
| | - Jessie Hulst
- Pediatric Gastroenterology, Erasmus MC - Sophia Children’s Hospital Rotterdam, Netherlands
| | - Faysal Gok
- Department of Pediatrics Nephrology, Gulhane Military Medical Academy School of Medicine, Ankara, Turkey
| | - Ayşen Aydoğan
- Kocaeli University Faculty of Medicine, Department of Pediatric Gastroenterology Hepatology and Nutrition, Kocaeli, Turkey
| | - Abdulrahman Al-Hussaini
- Pediatric Gastroenterology and Hepatology, Children’s Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Deniz Engin Gok
- Department of Endocrinology, Gulhane Military Medical Academy School of Medicine, Ankara, Turkey
| | - Michael Yourshaw
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90025, USA
| | - S. Vincent Wu
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Galen Cortina
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Sara Stanford
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Senta Georgia
- Department of Medicine, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California 90024, USA
| |
Collapse
|
36
|
Cakir I, Cyr NE, Perello M, Litvinov BP, Romero A, Stuart RC, Nillni EA. Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. J Biol Chem 2013; 288:17675-88. [PMID: 23640886 DOI: 10.1074/jbc.m113.475343] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It was shown previously that abnormal prohormone processing or inactive proconverting enzymes that are responsible for this processing cause profound obesity. Our laboratory demonstrated earlier that in the diet-induced obesity (DIO) state, the appetite-suppressing neuropeptide α-melanocyte-stimulating hormone (α-MSH) is reduced, yet the mRNA of its precursor protein proopiomelanocortin (POMC) remained unaltered. It was also shown that the DIO condition promotes the development of endoplasmic reticulum (ER) stress and leptin resistance. In the current study, using an in vivo model combined with in vitro experiments, we demonstrate that obesity-induced ER stress obstructs the post-translational processing of POMC by decreasing proconverting enzyme 2, which catalyzes the conversion of adrenocorticotropin to α-MSH, thereby decreasing α-MSH peptide production. This novel mechanism of ER stress affecting POMC processing in DIO highlights the importance of ER stress in regulating central energy balance in obesity.
Collapse
Affiliation(s)
- Isin Cakir
- Division of Endocrinology, Department of Medicine, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02907, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Gómez-SanMiguel AB, Martín AI, Nieto-Bona MP, Fernández-Galaz C, López-Menduiña M, Villanúa MÁ, López-Calderón A. Systemic α-melanocyte-stimulating hormone administration decreases arthritis-induced anorexia and muscle wasting. Am J Physiol Regul Integr Comp Physiol 2013; 304:R877-86. [PMID: 23515620 DOI: 10.1152/ajpregu.00447.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rheumatoid cachexia is associated with rheumatoid arthritis and it increases mortality and morbidity. Adjuvant-induced arthritis is an experimental model of rheumatoid arthritis that causes anorexia and muscle wasting. α-Melanocyte-stimulating hormone (α-MSH) has anti-inflammatory actions, and it is able to decrease inflammation in several inflammatory diseases including experimental arthritis. In this study we tested whether systemic α-MSH treatment is able to ameliorate cachexia in arthritic rats. On day 8 after adjuvant injection control and arthritic rats were treated with α-MSH (50 μg/rat ip) twice a day, until day 16 when all rats were euthanized. Arthritis decreased food intake, but it increased hypothalamic expression of neuropeptide Y (NPY) and Agouti-related peptides (AgRP) as well as interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) mRNA. In arthritic rats, α-MSH decreased the external signs of arthritis and increased food intake (P < 0.01). In addition, α-MSH decreased hypothalamic expression of IL-1β, COX-2, proopiomelanocortin, and prohormone-converting (PC) enzymes PC1/3 and PC2 mRNA in arthritic rats. In control rats, α-MSH did not modify food intake or hypothalamic expression of aforementioned mRNA. α-MSH prevented arthritis-induced increase in gastrocnemius COX-2, muscle-specific RING-finger protein-1 (MuRF1), and atrogin-1 expression, and it increased fast myofiber size. In conclusion our data show that in arthritic rats peripheral α-MSH treatment has an anti-cachectic action increasing food intake and decreasing muscle wasting.
Collapse
|
38
|
Cyr NE, Toorie AM, Steger JS, Sochat MM, Hyner S, Perello M, Stuart R, Nillni EA. Mechanisms by which the orexigen NPY regulates anorexigenic α-MSH and TRH. Am J Physiol Endocrinol Metab 2013; 304:E640-50. [PMID: 23321476 PMCID: PMC3602689 DOI: 10.1152/ajpendo.00448.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/12/2013] [Indexed: 01/24/2023]
Abstract
Protein posttranslational processing is a cellular mechanism fundamental to the generation of bioactive peptides, including the anorectic α-melanocyte-stimulating hormone (α-MSH) and thyrotropin-releasing hormone (TRH) peptides produced in the hypothalamic arcuate (ARC) and paraventricular (PVN) nuclei, respectively. Neuropeptide Y (NPY) promotes positive energy balance in part by suppressing α-MSH and TRH. The mechanism by which NPY regulates α-MSH output, however, is not well understood. Our results reveal that NPY inhibited the posttranslational processing of α-MSH's inactive precursor proopiomelanocortin (POMC) by decreasing the prohormone convertase-2 (PC2). We also found that early growth response protein-1 (Egr-1) and NPY-Y1 receptors mediated the NPY-induced decrease in PC2. NPY given intra-PVN also decreased PC2 in PVN samples, suggesting a reduction in PC2-mediated pro-TRH processing. In addition, NPY attenuated the α-MSH-induced increase in TRH production by two mechanisms. First, NPY decreased α-MSH-induced CREB phosphorylation, which normally enhances TRH transcription. Second, NPY decreased the amount of α-MSH in the PVN. Collectively, these results underscore the significance of the interaction between NPY and α-MSH in the central regulation of energy balance and indicate that posttranslational processing is a mechanism that plays a specific role in this interaction.
Collapse
Affiliation(s)
- Nicole E Cyr
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kwon Jeong J, Dae Kim J, Diano S. Ghrelin regulates hypothalamic prolyl carboxypeptidase expression in mice. Mol Metab 2013; 2:23-30. [PMID: 24024131 DOI: 10.1016/j.molmet.2013.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/28/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022] Open
Abstract
Hypothalamic Prolyl carboxypeptidase (PRCP) plays a role in the regulation of energy metabolism by inactivating hypothalamic α-melanocyte stimulating hormone (α-MSH) levels and thus affecting melanocortin signaling. Alpha-MSH production is highly regulated both at transcriptional and posttranslational levels. Here we show that fasting induces a hypothalamic-specific up-regulation of Prcp mRNA and protein levels. Since fasting is characterized by elevated circulating ghrelin levels, we tested the effect of peripheral and central administration of ghrelin, and found that ghrelin increases hypothalamic Prcp mRNA expression. No changes in Prcp mRNA levels were detected in ghrelin knockout mice compared to their controls. Finally, ghrelin effect on PRCP expression was ghrelin receptor-mediated. Altogether our data show that ghrelin is a key regulator of hypothalamic PRCP expression, and up-regulation of PRCP by ghrelin may be an additional mechanism to decrease melanocortin signaling.
Collapse
Key Words
- (ARC), Arcuate nucleus
- (AgRP), Agouti related peptide
- (CTX), Cortex
- (DMH), Dorsomedial nucleus
- (GHS-R), Growth hormone secretagogue receptor
- (Hcrt), Hypocretin
- (LH), Lateral hypothalamus
- (MCH), Melanin concentrating hormone
- (NPY), Neuropeptide Y
- (POMC), Proopiomelanocortin
- (PRCP), Prolyl carboxypeptidase
- (Prcpgt/gt), Prcp-ablated mice
- (VMH), Ventromedial nucleus
- (α-MSH), α-Melanocyte stimulating hormone
- Alpha-melanocyte stimulating hormone
- Fasting
- Ghrelin
- Hypothalamus
- Prolyl carboxypeptidase
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, New Haven, CT, 06520, USA ; Department of Ob/Gyn & Reproductive Sciences, New Haven, CT, 06520, USA
| | | | | |
Collapse
|
40
|
Abstract
Research into the control of energy balance has tended to focus on discrete brain regions, such as the brainstem, medulla, arcuate nucleus of the hypothalamus, and neocortex. Recently, a larger picture has begun to emerge in which the coordinated communication between these areas is proving to be critical to appropriate regulation of metabolism. By serving as a center for such communication, the paraventricular nucleus of the hypothalamus (PVH) is perhaps the most important brain nucleus regulating the physiological response to energetic challenges. Here we review recent advances in the understanding of the circuitry and function of the PVH.
Collapse
Affiliation(s)
- Jennifer W. Hill
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Obstetrics-Gynecology, University of Toledo, USA
| |
Collapse
|
41
|
Abstract
Leptin, a peptide hormone secreted by adipocytes in proportion of the amount of energy stored in fat, plays a central role in regulating human energy homeostasis. In addition, leptin plays a significant permissive role in the physiological regulation of several neuroendocrine axes, including the hypothalamic-pituitary-gonadal, -thyroid, -growth hormone, and -adrenal axes. Decreased levels of leptin, also known as hypoleptinemia, signal to the brain a state of energy deprivation. Hypoleptinemia can be a congenital or acquired condition, and is associated with alterations of the aforementioned axes aimed at promoting survival. More specifically, gonadotropin levels decrease and become less pulsatile under conditions of energy deprivation, and these changes can be at least partially reversed through leptin administration in physiological replacement doses. Similarly, leptin deficiency is associated with thyroid axis abnormalities including abnormal levels of thyrotropin-releasing hormone, and leptin administration may at least partially attenuate this effect. Leptin deficiency results in decreased insulin-like growth factor 1 levels which can be partially ameliorated through leptin administration, and leptin appears to have a much more pronounced effect on the growth of rodents than that of humans. Similarly, adrenal axis function is regulated more tightly by low leptin in rodents than in humans. In addition to congenital leptin deficiency, conditions that may be associated with decreased leptin levels include hypothalamic amenorrhea, anorexia nervosa, and congenital or acquired lipodystrophy syndromes. Accumulating evidence from proof of concept studies suggests that leptin administration, in replacement doses, may ameliorate neuroendocrine abnormalities in individuals who suffer from these conditions.
Collapse
Affiliation(s)
- Sami M. Khan
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ole-Petter R. Hamnvik
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Section of Endocrinology, Boston VA Healthcare System, Boston, MA, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Brinkoetter
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Section of Endocrinology, Boston VA Healthcare System, Boston, MA, USA
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Section of Endocrinology, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
42
|
Stavreus Evers A. Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility. Front Endocrinol (Lausanne) 2012; 3:50. [PMID: 22649421 PMCID: PMC3355884 DOI: 10.3389/fendo.2012.00050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
Thyroid disease often causes menstrual disturbances and infertility problems. Thyroid hormone (TH) acts through its receptors, transcription factors present in most cell types in the body. Thyroid stimulating hormone (TSH) stimulates TH synthesis in the thyroid gland, but seems to have other functions as well in the female reproductive tract. The receptors of both TH and TSH increase in the receptive endometrium, suggesting that they are important for implantation, possible by influencing inflammatory mediators such as leukemia inhibitory factor. The roles of these receptors in the ovary need further studies. However, it is likely that the thyroid system is important for both follicular and embryo development. The association between thyroid disease and infertility indicate that TH and TSH affect the endometrium and ovary on the paracrine level.
Collapse
|
43
|
Vázquez-Martínez R, Díaz-Ruiz A, Almabouada F, Rabanal-Ruiz Y, Gracia-Navarro F, Malagón MM. Revisiting the regulated secretory pathway: from frogs to human. Gen Comp Endocrinol 2012; 175:1-9. [PMID: 21907200 DOI: 10.1016/j.ygcen.2011.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 01/01/2023]
Abstract
The regulated secretory pathway is a hallmark of endocrine and neuroendocrine cells. This process comprises different sequential steps, including ER-associated protein synthesis, ER-to-Golgi protein transport, Golgi-associated posttranslational modification, sorting and packing of secretory proteins into carrier granules, cytoskeleton-based granule transport towards the plasma membrane and tethering, docking and fusion of granules with specialized releasing zones in the plasma membrane. Each one of these steps is tightly regulated by a large number of factors that function in a spatially and temporarily coordinated fashion. During the past three decades, much effort has been devoted to characterize the precise role of the yet-known proteins participating in the different steps of this process and to identify new regulatory factors in order to obtain a unifying picture of the secretory pathway. In spite of this and given the enormous complexity of the process, certain steps are not fully understood yet and many players remain to be identified. In this review, we offer a summary of the current knowledge on the main molecular mechanisms that govern and ensure the correct release of secretory proteins. In addition, we have integrated the advance on the field made possible by studies carried out in non-mammalian vertebrates, which, although not very numerous, have substantially contributed to acquire a mechanistic understanding of the regulated secretory pathway.
Collapse
Affiliation(s)
- Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica, University of Córdoba, 14014-Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Vella KR, Ramadoss P, Lam FS, Harris JC, Ye FD, Same PD, O'Neill NF, Maratos-Flier E, Hollenberg AN. NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab 2011; 14:780-90. [PMID: 22100407 PMCID: PMC3261758 DOI: 10.1016/j.cmet.2011.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/25/2011] [Accepted: 10/14/2011] [Indexed: 10/15/2022]
Abstract
Fasting-induced suppression of the hypothalamic-pituitary-thyroid (HPT) axis is an adaptive response to decrease energy expenditure during food deprivation. Previous studies demonstrate that leptin communicates nutritional status to the HPT axis through thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus. Leptin targets TRH neurons either directly or indirectly via the arcuate nucleus through pro-opiomelanocortin (POMC) and agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons. To evaluate the role of these pathways in vivo, we developed double knockout mice that lack both the melanocortin 4 receptor (MC4R) and NPY. We show that NPY is required for fasting-induced suppression of Trh expression in the PVN. However, both MC4R and NPY are required for activation of hepatic pathways that metabolize T(4) during the fasting response. Thus, these signaling pathways play a key role in the communication of fasting signals to reduce thyroid hormone levels both centrally and through a peripheral hepatic circuit.
Collapse
Affiliation(s)
- Kristen R Vella
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OPR, Koniaris A. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 2011; 301:E567-84. [PMID: 21791620 PMCID: PMC3191548 DOI: 10.1152/ajpendo.00315.2011] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leptin, discovered through positional cloning 15 years ago, is an adipocyte-secreted hormone with pleiotropic effects in the physiology and pathophysiology of energy homeostasis, endocrinology, and metabolism. Studies in vitro and in animal models highlight the potential for leptin to regulate a number of physiological functions. Available evidence from human studies indicates that leptin has a mainly permissive role, with leptin administration being effective in states of leptin deficiency, less effective in states of leptin adequacy, and largely ineffective in states of leptin excess. Results from interventional studies in humans demonstrate that leptin administration in subjects with congenital complete leptin deficiency or subjects with partial leptin deficiency (subjects with lipoatrophy, congenital or related to HIV infection, and women with hypothalamic amenorrhea) reverses the energy homeostasis and neuroendocrine and metabolic abnormalities associated with these conditions. More specifically, in women with hypothalamic amenorrhea, leptin helps restore abnormalities in hypothalamic-pituitary-peripheral axes including the gonadal, thyroid, growth hormone, and to a lesser extent adrenal axes. Furthermore, leptin results in resumption of menses in the majority of these subjects and, in the long term, may increase bone mineral content and density, especially at the lumbar spine. In patients with congenital or HIV-related lipoatrophy, leptin treatment is also associated with improvements in insulin sensitivity and lipid profile, concomitant with reduced visceral and ectopic fat deposition. In contrast, leptin's effects are largely absent in the obese hyperleptinemic state, probably due to leptin resistance or tolerance. Hence, another emerging area of research pertains to the discovery and/or usefulness of leptin sensitizers. Results from ongoing studies are expected to further increase our understanding of the role of leptin and the potential clinical applications of leptin or its analogs in human therapeutics.
Collapse
Affiliation(s)
- Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ozawa A, Lick AN, Lindberg I. Processing of proaugurin is required to suppress proliferation of tumor cell lines. Mol Endocrinol 2011; 25:776-84. [PMID: 21436262 DOI: 10.1210/me.2010-0389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Augurin is a secretory molecule produced in pituitary, thyroid, and esophagus and implicated in a wide array of physiological processes, from ACTH release to tumor suppression. However, the specific proaugurin-derived peptides present in various cell types are not yet known. In order to shed light on the posttranslational modifications required for biological activity, we here describe the posttranslational processing of proaugurin in AtT-20 and Lovo cells and identify proaugurin-derived products generated by convertases. In vitro cleavage of proaugurin with proprotein convertases produced multiple peptides, including a major product with a mass of 9.7 kDa by mass spectrometry. Metabolic labeling of C-terminally tagged proaugurin in AtT-20 and AtT-20/PC2 cells resulted in a major 15-kDa tagged form on SDS-PAGE, which likely corresponds to the 9.7-kDa in vitro fragment, with the added tag, its linker, and posttranslational modification(s). The secretion of neither proaugurin nor this cleavage product was stimulated by forskolin, indicating its lack of storage in regulated secretory granules and lack of cleavage by PC2. Incubation of cells with the furin inhibitor nona-d-arginine resulted in impaired cleavage of proaugurin, whereas metalloprotease inhibitors did not affect proaugurin proteolysis. These data support the idea that proaugurin is cleaved by furin and secreted via the constitutive secretory pathway. Interestingly, proaugurin was sulfated during trafficking; sulfation was completely inhibited by brefeldin A. Proliferation assays with three different tumor cell lines demonstrated that only furin-cleaved proaugurin could suppress cell proliferation, suggesting that proteolytic cleavage is a posttranslational requirement for proaugurin to suppress cell proliferation.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, 20 Penn Street, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
47
|
Pale and dark reddish melanic tawny owls differentially regulate the level of blood circulating POMC prohormone in relation to environmental conditions. Oecologia 2011; 166:913-21. [DOI: 10.1007/s00442-011-1955-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
48
|
Wardlaw SL. Hypothalamic proopiomelanocortin processing and the regulation of energy balance. Eur J Pharmacol 2011; 660:213-9. [PMID: 21208604 DOI: 10.1016/j.ejphar.2010.10.107] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/27/2010] [Accepted: 10/12/2010] [Indexed: 12/18/2022]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons play a key role in regulating energy balance and neuroendocrine function. Much attention has been focused on the regulation of POMC gene expression with less emphasis on regulated peptide processing. This is particularly important given the complexity of posttranslational POMC processing which is essential for the generation of biologically active MSH peptides. Mutations that impair POMC sorting and processing are associated with obesity in humans and in animals. Specifically, mutations in the POMC processing enzymes prohormone convertase 1/3 (PC1/3) and in carboxypeptidase E (CPE) and in the α-MSH degrading enzyme, PRCP, are associated with changes in energy balance. There is increasing evidence that POMC processing is regulated with respect to energy balance. Studies have implicated both the leptin and insulin signaling pathways in the regulation of POMC at various steps in the processing pathway. This article will review the role of hypothalamic POMC in regulating energy balance with a focus on POMC processing.
Collapse
Affiliation(s)
- Sharon L Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, United States.
| |
Collapse
|
49
|
Ozawa A, Peinado JR, Lindberg I. Modulation of prohormone convertase 1/3 properties using site-directed mutagenesis. Endocrinology 2010; 151:4437-45. [PMID: 20610561 PMCID: PMC2940488 DOI: 10.1210/en.2010-0296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prohormone convertase (PC)1/3 and PC2 cleave active peptide hormones and neuropeptides from precursor proteins. Compared with PC2, recombinant PC1/3 exhibits a very low specific activity against both small fluorogenic peptides and recombinant precursors, even though the catalytic domains in mouse PC1/3 and PC2 share 56% amino acid sequence identity. In this report, we have designed PC2-specific mutations into the catalytic domain of PC1/3 in order to investigate the molecular contributions of these sequences to PC1/3-specific properties. The exchange of residues RQG(314) with the SY sequence present in the same location within PC2 paradoxically shifted the pH optimum of PC1/3 upward into the neutral range; other mutations in the catalytic domain had no effect. Although none of the full-length PC1/3 mutants examined exhibited increased specific activity, the 66-kDa form of the RQG(314)SY mutant was two to four times more active than the 66-kDa form of wild-type PC1/3. However, stable transfection of RQG(314)SY into PC12 cells did not result in greater activity against the endogenous substrate proneurotensin, implying unknown cellular controls of PC1/3 activity. Mutation of GIVTDA(243-248) to QPFMTDI, a molecular determinant of 7B2 binding, resulted in increased zymogen expression but no propeptide cleavage or secretion, suggesting that this mutant is trapped in the endoplasmic reticulum due to an inability to cleave its own propeptide. We conclude that many convertase-specific properties are attributable less to convertase-specific catalytic cleft residues than to convertase-specific domain interactions.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn Street, Health Sciences Facility II Room S251, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
50
|
Leptin in human physiology and therapeutics. Front Neuroendocrinol 2010; 31:377-93. [PMID: 20600241 PMCID: PMC2916735 DOI: 10.1016/j.yfrne.2010.06.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 12/25/2022]
Abstract
Leptin regulates energy homeostasis and reproductive, neuroendocrine, immune, and metabolic functions. In this review, we describe the role of leptin in human physiology and review evidence from recent "proof of concept" clinical trials using recombinant human leptin in subjects with congenital leptin deficiency, hypoleptinemia associated with energy-deficient states, and hyperleptinemia associated with garden-variety obesity. Since most obese individuals are largely leptin-tolerant or -resistant, therapeutic uses of leptin are currently limited to patients with complete or partial leptin deficiency, including hypothalamic amenorrhea and lipoatrophy. Leptin administration in these energy-deficient states may help restore associated neuroendocrine, metabolic, and immune function and bone metabolism. Leptin treatment is currently available for individuals with congenital leptin deficiency and congenital lipoatrophy. The long-term efficacy and safety of leptin treatment in hypothalamic amenorrhea and acquired lipoatrophy are currently under investigation. Whether combination therapy with leptin and potential leptin sensitizers will prove effective in the treatment of garden-variety obesity and whether leptin may have a role in weight loss maintenance is being greatly anticipated.
Collapse
|