1
|
Xue F, Zhao J, Gao X, Jiang X, Lan Z. Potential susceptibility genes in patients with stage III and IV periodontitis: A whole-exome sequencing pilot study. BIOMOLECULES & BIOMEDICINE 2024; 24:73-81. [PMID: 37435641 PMCID: PMC10787624 DOI: 10.17305/bb.2023.9282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
The aim of this study was to screen potential susceptibility genes using whole-exome sequencing (WES) in 15 Han Chinese patients with stage III or IV periodontitis and to evaluate the quantity and quality of genomic DNA extracted from saliva. DNA was extracted from saliva epithelial cells, quality-tested, and then subjected to WES and bioinformatics analyses. All variation loci were analyzed and interpreted following the American College of Medical Genetics and Genomics (ACMG) criteria. Candidate pathogenic variation loci were identified and verified using Sanger sequencing. Correlation and functional analyses of the candidate genes were used to identify potential susceptibility genes in patients with severe periodontitis. LFNG, LENG8, NPHS1, HFE, ILDR1, and DMXL2 genes were identified in over two cases each with shared mutations. Following these analyses, the DMXL2 gene was identified as being associated with stage III and IV periodontitis. These results suggest a potential pathophysiological risk mechanism for periodontitis, but need to be verified through larger clinical studies and mechanistic experiments to determine the pathogenicity of these gene mutations and their generalizability to a wider population of periodontitis patients. By screening candidate pathogenic variation loci using WES in 15 Han Chinese patients with stage III or IV periodontitis, our study could provide a pipeline and feasibility support for the identification of susceptibility genes in patients with stage III and IV periodontitis.
Collapse
Affiliation(s)
- Fan Xue
- Department of Periodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Jianjiang Zhao
- Department of Periodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - XiaoCui Gao
- Department of Periodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Xuehai Jiang
- Department of Periodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Zedong Lan
- Department of Periodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
2
|
Chen Q, Yang Z, Lin H, Lai J, Hu D, Yan M, Wu Z, Liu W, Li Z, He Y, Sun Z, Shuai L, Peng Z, Wang Y, Li S, Cui Y, Zhang H, Zhang L, Bai L. Comparative effects of hepatocyte growth factor and tacrolimus on acute liver allograft early tolerance. Front Immunol 2023; 14:1162439. [PMID: 37614233 PMCID: PMC10444199 DOI: 10.3389/fimmu.2023.1162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Allostimulated CD8+ T cells (aCD8+ T cells), as the main mediators of acute liver rejection (ARJ), are hyposensitive to apoptosis due to the inactivation of death receptor FAS-mediated pathways and fail to allow tolerance induction, eventually leading to acute graft rejection. Although tacrolimus (FK506), the most commonly used immunosuppressant (IS) in the clinic, allows tolerance induction, its use is limited because its target immune cells are unknown and it is associated with increased incidences of malignancy, infection, and nephrotoxicity, which substantially impact long-term liver transplantation (LTx) outcomes. The dark agouti (DA)-to-Lewis rat LTx model is a well-known ARJ model and was hence chosen for the present study. We show that both hepatocyte growth factor (HGF) (cHGF, containing the main form of promoting HGF production) and recombinant HGF (h-rHGF) exert immunoregulatory effects mainly on allogeneic aCD8+ T cell suppression through FAS-mediated apoptotic pathways by inhibiting cMet to FAS antagonism and Fas trimerization, leading to acute tolerance induction. We also showed that such inhibition can be abrogated by treatment with neutralizing antibodies against cMet (HGF-only receptor). In contrast, we did not observe these effects in rats treated with FK506. However, we observed that the effect of anti-rejection by FK506 was mainly on allostimulated CD4+ T cell (aCD4+ T cell) suppression and regulatory T cell (Treg) promotion, in contrast to the mechanism of HGF. In addition, the protective mechanism of HGF in FK506-mediated nephrotoxicity was addressed. Therefore, HGF as a tolerance inducer, whether used in combination with FK506 or as monotherapy, may have good clinical value. Additional roles of these T-cell subpopulations in other biological systems and studies in these fields will also be meaningful.
Collapse
Affiliation(s)
- Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhiqing Yang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Heng Lin
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Bioengineering College, Chongqing University, Chongqing, China
| | - Min Yan
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Wei Liu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhehai Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Yu He
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhe Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhiping Peng
- Department of Radiological Medicine, Chongqing Medical University, Chongqing, China
| | - Yangyang Wang
- Bioengineering College, Chongqing University, Chongqing, China
| | - Sijin Li
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Youhong Cui
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Liu C, Wang M, Zhang H, Li C, Zhang T, Liu H, Zhu S, Chen J. Tumor microenvironment and immunotherapy of oral cancer. Eur J Med Res 2022; 27:198. [PMID: 36209263 PMCID: PMC9547678 DOI: 10.1186/s40001-022-00835-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
Oral cancer is one of the most common malignant tumors of the head and neck, not only affects the appearance, but also affects eating and even endangers life. The clinical treatments of oral cancer mainly include surgery, radiotherapy, and chemotherapy. However, unsatisfactory therapeutic effect and toxic side effects are still the main problems in clinical treatment. Tumor microenvironment (TME) is not only closely related to the occurrence, growth, and metastasis of tumor but also works in the diagnosis, prevention, and treatment of tumor and prognosis. Future studies should continue to investigate the relationship of TME and oral cancer therapy. This purpose of this review was to analyze the characteristics of oral cancer microenvironment, summarize the traditional oral cancer therapy and immunotherapy strategies, and finally prospect the development prospects of oral cancer immunotherapy. Immunotherapy targeting tumor microenvironment is expected to provide a new strategy for clinical treatment of oral cancer.
Collapse
Affiliation(s)
- Chang Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Min Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Haiyang Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Chunyan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Tianshou Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Hong Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Song Zhu
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| |
Collapse
|
4
|
Jiang S, Fagman JB, Ma Y, Liu J, Vihav C, Engstrom C, Liu B, Chen C. A comprehensive review of pancreatic cancer and its therapeutic challenges. Aging (Albany NY) 2022; 14:7635-7649. [PMID: 36173644 PMCID: PMC9550249 DOI: 10.18632/aging.204310] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic cancer is a devastating and lethal human malignancy with no curable chemo-treatments available thus far. More than 90% of pancreatic tumors are formed from ductal epithelium as pancreatic ductal adenocarcinoma (PDAC), which often accompany with the expression of mutant K-ras. The incidences of pancreatic cancer are expected to increase rapidly worldwide in the near future, due to environmental pollution, obesity epidemics and etc. The dismal prognosis of this malignancy is contributed to its susceptibility to tumor micro-metastasis from inception and the lack of methods to detect precursor lesions at very early stages of the onset until clinical symptoms occur. In recent years, basic and clinical studies have been making promising progresses for discovering markers to determine the subtypes or stages of this malignancy, which allow effectively implementing personalized therapeutic interventions. The purpose of this review is to discuss the existing knowledge of the molecular mechanisms of pancreatic cancer and the current state of treatment options with the emphasis on targeting therapeutic approaches. The specific focuses are on the molecular mechanisms of the disease, identifications of drug resistance, establishment of immune escaping mechanisms as well as potential of targeting identified pathways in combinations with existing chemo-drugs.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bourghardt Fagman
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yunyun Ma
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jian Liu
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Caroline Vihav
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cecilia Engstrom
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Changyan Chen
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Ma H, Feng PH, Yu SN, Lu ZH, Yu Q, Chen J. Identification and validation of TNFRSF4 as a high-profile biomarker for prognosis and immunomodulation in endometrial carcinoma. BMC Cancer 2022; 22:543. [PMID: 35562682 PMCID: PMC9107201 DOI: 10.1186/s12885-022-09654-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The interaction between tumor microenvironment (TME) and tumors offers various targets in mounting anti-tumor immunotherapies. However, the prognostic biomarkers in endometrial carcinoma (EC) are still limited. Here, we aimed to analyze the TME features and identify novel prognostic biomarkers for EC. METHODS ESTIMATE, CIBERSORT, protein-protein interaction (PPI) network, univariate and multivariate Cox regression, and functional enrichment analysis were performed to identify immune- and survival-related hub genes as well as possible molecular mechanisms. The limma package and deconvolution algorithm were adopted to estimate the abundance of tumor-infiltrating immune cells (TICs) and their relationship with the target gene. In the validation section, tissue microarrays (TMAs) of EC and multiplex immunohistochemistry (m-IHC) were evaluated to validate the expression of TNFRSF4, and its correlation with immune markers, including CD4, CD8, and FOXP3. Besides, the receiver operating characteristic (ROC) curve was plotted to determine the diagnostic performance of TNFRSF4, CD4, CD8, and FOXP3 in EC. RESULTS Two genes, TNFRSF4 and S1PR4, were screened out from 386 intersection differential expression genes (DEGs) shared by ImmuneScore and StromalScore in EC. Highlighted by TNFRSF4, we found that it was not only positively correlated with the TICs (mainly CD4+ T cells, CD8+ T cells, and Tregs) but significantly related to the prognosis in patients of EC, both verified by data from The Cancer Genome Altas (TCGA)-EC database and clinical samples. At the same time, the expression trend of TNFRSF4 was further confirmed by an integrated meta-analysis based on six microarrays from the Gene Expression Omnibus database (GEO). CONCLUSIONS Collectively, TNFRSF4, a previously unrecognized key player in EC, could serve as a potential biomarker for prognosis prediction and immunomodulation of EC.
Collapse
Affiliation(s)
- Heng Ma
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Peng-Hui Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Shuang-Ni Yu
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Zhao-Hui Lu
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
6
|
Huaux F. Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Front Immunol 2021; 12:690375. [PMID: 34489937 PMCID: PMC8417606 DOI: 10.3389/fimmu.2021.690375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Immunostimulation is recognized as an important contribution in lung fibrosis in some animal models and patient subsets. With this review, we illustrate an additional scenario covering the possible implication of immunoregulation during fibrogenesis. Available animal and human data indicate that pulmonary fibrosis also includes diverse and discrete immunoregulating populations comprising regulatory lymphocytes (T and B regs) and myeloid cells (immunosuppressive macrophages and myeloid-derived suppressive cells; MDSC). They are initially recruited to limit the establishment of deleterious inflammation but participate in the development of lung fibrosis by producing immunoregulatory mediators (mainly TGF-β1 and IL-10) that directly or indirectly stimulate fibroblasts and matrix protein deposition. The existence of this silent immunoregulatory environment sustains an alternative mechanism of fibrosis that explains why in some conditions neither pro-inflammatory cytokine deficiency nor steroid and immunosuppressive therapies limit lung fibrosis. Therefore, the persistent presence of immunoregulation is an important parameter to consider for refining therapeutical strategies in lung fibrotic disorders under non-immunostimulatory conditions.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Khan MA, Ashoor GA, Shamma T, Alanazi F, Altuhami A, Kazmi S, Ahmed HA, Mohammed Assiri A, Clemens Broering D. IL-10 Mediated Immunomodulation Limits Subepithelial Fibrosis and Repairs Airway Epithelium in Rejecting Airway Allografts. Cells 2021; 10:1248. [PMID: 34069395 PMCID: PMC8158696 DOI: 10.3390/cells10051248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin-10 plays a vital role in maintaining peripheral immunotolerance and favors a regulatory immune milieu through the suppression of T effector cells. Inflammation-induced microvascular loss has been associated with airway epithelial injury, which is a key pathological source of graft malfunctioning and subepithelial fibrosis in rejecting allografts. The regulatory immune phase maneuvers alloimmune inflammation through various regulatory modulators, and thereby promotes graft microvascular repair and suppresses the progression of fibrosis after transplantation. The present study was designed to investigate the therapeutic impact of IL-10 on immunotolerance, in particular, the reparative microenvironment, which negates airway epithelial injury, and fibrosis in a mouse model of airway graft rejection. Here, we depleted and reconstituted IL-10, and serially monitored the phase of immunotolerance, graft microvasculature, inflammatory cytokines, airway epithelium, and subepithelial collagen in rejecting airway transplants. We demonstrated that the IL-10 depletion suppresses FOXP3+ Tregs, tumor necrosis factor-inducible gene 6 protein (TSG-6), graft microvasculature, and establishes a pro-inflammatory phase, which augments airway epithelial injury and subepithelial collagen deposition while the IL-10 reconstitution facilitates FOXP3+ Tregs, TSG-6 deposition, graft microvasculature, and thereby favors airway epithelial repair and subepithelial collagen suppression. These findings establish a potential reparative modulation of IL-10-associated immunotolerance on microvascular, epithelial, and fibrotic remodeling, which could provide a vital therapeutic option to rescue rejecting transplants in clinical settings.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | | | - Talal Shamma
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Fatimah Alanazi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Abdullah Altuhami
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Shadab Kazmi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| |
Collapse
|
8
|
Xiong Y, Zhong Q, Palmer T, Benner A, Wang L, Suresh K, Damico R, D’Alessio FR. Estradiol resolves pneumonia via ERβ in regulatory T cells. JCI Insight 2021; 6:133251. [PMID: 33290273 PMCID: PMC7934849 DOI: 10.1172/jci.insight.133251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Current treatments for pneumonia (PNA) are focused on the pathogens. Mortality from PNA-induced acute lung injury (PNA-ALI) remains high, underscoring the need for additional therapeutic targets. Clinical and experimental evidence exists for potential sex differences in PNA survival, with males having higher mortality. In a model of severe pneumococcal PNA, when compared with male mice, age-matched female mice exhibited enhanced resolution characterized by decreased alveolar and lung inflammation and increased numbers of Tregs. Recognizing the critical role of Tregs in lung injury resolution, we evaluated whether improved outcomes in female mice were due to estradiol (E2) effects on Treg biology. E2 promoted a Treg-suppressive phenotype in vitro and resolution of PNA in vivo. Systemic rescue administration of E2 promoted resolution of PNA in male mice independent of lung bacterial clearance. E2 augmented Treg expression of Foxp3, CD25, and GATA3, an effect that required ERβ, and not ERα, signaling. Importantly, the in vivo therapeutic effects of E2 were lost in Treg-depleted mice (Foxp3DTR mice). Adoptive transfer of ex vivo E2-treated Tregs rescued Streptococcuspneumoniae–induce PNA-ALI, a salutary effect that required Treg ERβ expression. E2/ERβ was required for Tregs to control macrophage proinflammatory responses. Our findings support the therapeutic role for E2 in promoting resolution of lung inflammation after PNA via ERβ Tregs.
Collapse
|
9
|
Increased infiltration of regulatory T cells in hepatocellular carcinoma of patients with hepatitis B virus pre-S2 mutant. Sci Rep 2021; 11:1136. [PMID: 33441885 PMCID: PMC7807072 DOI: 10.1038/s41598-020-80935-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent and deadly human cancer worldwide that is intimately associated with chronic hepatitis B virus (HBV) infection. Pre-S2 mutant is a HBV oncoprotein that plays important roles in HCC development and is linked to poor prognosis in HCC patients. However, the profiles of tumor-infiltrating lymphocytes in HCC tissues of pre-S2 mutant-positive patients remain unknown. In this study, we performed fluorescent immunohistochemistry staining to detect the infiltration of 'anti-tumor' cytotoxic T lymphocytes (CTLs) and 'pro-tumor' regulatory T cells (Tregs) in pre-S2 mutant-positive and -negative HCC patients. We showed that pre-S2 mutant-positive patients had a significantly higher infiltration of CD4+CD25+ cells and forkhead box P3 (Foxp3)-expressing cells but similar CTLs and lower granzyme B-expressing cells in HCC tissues compared with pre-S2 mutant-negative patients. Moreover, the percentage of pre-S2 plus pre-S1 + pre-S2 deletion (pre-S2 mutant) was positively correlated with the density of CD4+CD25+ cells and Foxp3-expressing cells but negatively with granzyme B-expressing cells in HCC tissues. Considering that increased intratumoral Tregs have been shown to promote tumor immune evasion, our data may provide new insights into the pathogenesis of HBV pre-S2 mutant-induced HCC and suggest that therapeutics targeting Tregs may be a promising strategy for treating pre-S2 mutant-positive high-risk patient population.
Collapse
|
10
|
Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med 2020; 18:456. [PMID: 33267824 PMCID: PMC7713035 DOI: 10.1186/s12967-020-02632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremendous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of disease.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Effendi WI, Nagano T, Hasan H, Yudhawati R. Immunoregulatory Property of C-Type Lectin-Like Receptors in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 21:E3665. [PMID: 32455964 PMCID: PMC7279300 DOI: 10.3390/ijms21103665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
The innate immune system identifies exogenous threats or endogenous stress through germline-encoded receptors called pattern recognition receptors (PRRs) that initiate consecutive downstream signaling pathways to control immune responses. However, the contribution of the immune system and inflammation to fibrosing interstitial lung diseases (ILD) remains poorly understood. Immunoreceptor tyrosine-based motif-bearing C-type lectin-like receptors (CTLRs) may interact with various immune cells during tissue injury and wound repair processes. Dectin-1 is a CTLR with dominant mechanisms manifested through its intracellular signaling cascades, which regulate fibrosis-promoting properties through gene transcription and cytokine activation. Additionally, immune impairment in ILD facilitates microbiome colonization; hence, Dectin-1 is the master protector in host pulmonary defense against fungal invasion. Recent progress in determining the signaling pathways that control the balance of fibrosis has implicated immunoreceptor tyrosine-based motif-bearing CTLRs as being involved, either directly or indirectly, in the pathogenesis of fibrosing ILD.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Helmia Hasan
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| | - Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| |
Collapse
|
12
|
Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B 2020; 10:414-433. [PMID: 32140389 PMCID: PMC7049610 DOI: 10.1016/j.apsb.2019.08.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
The T cell co-stimulatory molecule OX40 and its cognate ligand OX40L have attracted broad research interest as a therapeutic target in T cell-mediated diseases. Accumulating preclinical evidence highlights the therapeutic efficacy of both agonist and blockade of the OX40-OX40L interaction. Despite this progress, many questions about the immuno-modulator roles of OX40 on T cell function remain unanswered. In this review we summarize the impact of the OX40-OX40L interaction on T cell subsets, including Th1, Th2, Th9, Th17, Th22, Treg, Tfh, and CD8+ T cells, to gain a comprehensive understanding of anti-OX40 mAb-based therapies. The potential therapeutic application of the OX40-OX40L interaction in autoimmunity diseases and cancer immunotherapy are further discussed; OX40-OX40L blockade may ameliorate autoantigen-specific T cell responses and reduce immune activity in autoimmunity diseases. We also explore the rationale of targeting OX40-OX40L interactions in cancer immunotherapy. Ligation of OX40 with targeted agonist anti-OX40 mAbs conveys activating signals to T cells. When combined with other therapeutic treatments, such as anti-PD-1 or anti-CTLA-4 blockade, cytokines, chemotherapy, or radiotherapy, the anti-tumor activity of agonist anti-OX40 treatment will be further enhanced. These data collectively suggest great potential for OX40-mediated therapies.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
14
|
Chandrasekar AP, Cummins NW, Badley AD. The Role of the BCL-2 Family of Proteins in HIV-1 Pathogenesis and Persistence. Clin Microbiol Rev 2019; 33:e00107-19. [PMID: 31666279 PMCID: PMC6822993 DOI: 10.1128/cmr.00107-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in HIV-1 therapy have transformed the once fatal infection into a manageable, chronic condition, yet the search for a widely applicable approach to cure remains elusive. The ineffectiveness of antiretroviral therapy (ART) in reducing the size of the HIV-1 latent reservoir has prompted investigation into the mechanisms of HIV-1 latency and immune escape. One of the major regulators of apoptosis, the BCL-2 protein, alongside its homologous family members, is a major target of HIV-1-induced change. Recent studies have now demonstrated the association of this protein with cells that support proviral forms in the setting of latency and have helped identify BCL-2 as a novel and promising therapeutic target for HIV-1 therapy directed at possible cure. This review aims to systematically review the interactions of HIV-1 with BCL-2 and its homologs and to examine the possibility of using BCL-2 inhibitors in the study and elimination of the latent reservoir.
Collapse
Affiliation(s)
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Hu Y, Li N, Jiang P, Cheng L, Ding B, Liu XM, He K, Zhu YQ, Liu BL, Cao X, Zhou H, Mao XM. Elevated thyroglobulin level is associated with dysfunction of regulatory T cells in patients with thyroid nodules. Endocr Connect 2019; 8:309-317. [PMID: 30822273 PMCID: PMC6432874 DOI: 10.1530/ec-18-0545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Thyroid nodules are usually accompanied by elevated thyroglobulin (Tg) level and autoimmune thyroid diseases (AITDs). However, the relationship between Tg and AITDs is not fully understood. Dysfunction of regulatory T cells (Tregs) plays an important role in the development of AITDs. We aimed to evaluate the effects of Tg on the function of Tregs in patients with thyroid nodules. METHODS Tg levels and the functions of Tregs in peripheral blood and thyroid tissues of patients with thyroid nodules from Nanjing First Hospital were evaluated. The effects of Tg on the function of Tregs from healthy donors were also assessed in vitro. The function of Tregs was defined as an inhibitory effect of Tregs on the effector T cell (CD4+ CD25- T cell) proliferation rate. RESULTS The level of Tg in peripheral blood correlated negatively with the inhibitory function of Tregs (R = 0.398, P = 0.03), and Tregs function declined significantly in the high Tg group (Tg >77 μg/L) compared with the normal Tg group (11.4 ± 3.9% vs 27.5 ± 3.5%, P < 0.05). Compared with peripheral blood, the function of Tregs in thyroid declined significantly (P < 0.01), but the proportion of FOXP3+ Tregs in thyroid increased (P < 0.01). High concentration of Tg (100 μg/mL) inhibited the function of Tregs and downregulated FOXP3, TGF-β and IL-10 mRNA expression in Tregs in vitro. CONCLUSIONS Elevated Tg level could impair the function of Tregs, which might increase the risk of AITDs in patient with thyroid nodules.
Collapse
Affiliation(s)
- Yun Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
- Department of Immunology, Nanjing Medical University, Jiangsu, China
| | - Na Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Peng Jiang
- Department of Thyroid and Breast Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Liang Cheng
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiao-Mei Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Ke He
- Department of Endocrinology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Yun-Qing Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Bing-li Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Xin Cao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Jiangsu, China
- Correspondence should be addressed to H Zhou or X-M Mao: or
| | - Xiao-Ming Mao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
- Correspondence should be addressed to H Zhou or X-M Mao: or
| |
Collapse
|
16
|
Vanichanan J, Udomkarnjananun S, Avihingsanon Y, Jutivorakool K. Common viral infections in kidney transplant recipients. Kidney Res Clin Pract 2018; 37:323-337. [PMID: 30619688 PMCID: PMC6312768 DOI: 10.23876/j.krcp.18.0063] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/22/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Infectious complications have been considered as a major cause of morbidity and mortality after kidney transplantation, especially in the Asian population. Therefore, prevention, early detection, and prompt treatment of such infections are crucial in kidney transplant recipients. Among all infectious complications, viruses are considered to be the most common agents because of their abundance, infectivity, and latency ability. Herpes simplex virus, varicella zoster virus, Epstein-Barr virus, cytomegalovirus, hepatitis B virus, BK polyomavirus, and adenovirus are well-known etiologic agents of viral infections in kidney transplant patients worldwide because of their wide range of distribution. As DNA viruses, they are able to reactivate after affected patients receive immunosuppressive agents. These DNA viruses can cause systemic diseases or allograft dysfunction, especially in the first six months after transplantation. Pretransplant evaluation and immunization as well as appropriate prophylaxis and preemptive approaches after transplant have been established in the guidelines and are used effectively to reduce the incidence of these viral infections. This review will describe the etiology, diagnosis, prevention, and treatment of viral infections that commonly affect kidney transplant recipients.
Collapse
Affiliation(s)
- Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Renal Immunology and Therapeutic Apheresis Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Renal Immunology and Therapeutic Apheresis Research Unit, Chulalongkorn University, Bangkok, Thailand.,Excellence Center of Immunology and Immune-mediated Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kamonwan Jutivorakool
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
17
|
Khan MA, Alanazi F, Ahmed HA, Vater A, Assiri AM, Broering DC. C5a Blockade Increases Regulatory T Cell Numbers and Protects Against Microvascular Loss and Epithelial Damage in Mouse Airway Allografts. Front Immunol 2018; 9:1010. [PMID: 29881374 PMCID: PMC5976734 DOI: 10.3389/fimmu.2018.01010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Microvascular injury during acute rejection has been associated with massive infiltration of CD4+ T effector cells, and the formation of complement products (C3a and C5a). Regulatory T cells (Tregs) are potent immunosuppressors of the adaptive immune system and have proven sufficient to rescue microvascular impairments. Targeting C5a has been linked with improved microvascular recovery, but its effects on the Treg and T effector balance is less well known. Here, we demonstrate the impact of C5a blockade on Treg induction and microvascular restoration in rejecting mouse airway allografts. BALB/c→C57BL/6 allografts were treated with a C5a-neutralizing l-aptamer (10 mg/kg, i.p. at d0 and every second day thereafter), and allografts were serially monitored for Treg infiltration, tissue oxygenation (tpO2), microvascular blood flow, and functional microvasculature between donor and recipients during allograft rejection. We demonstrated that C5a blocking significantly leads to enhanced presence of Tregs in the allograft, reinstates donor-recipient functional microvasculature, improves tpO2, microvascular blood flow, and epithelial repair, followed by an upregulation of IL-5, TGF-β, IL-10 vascular endothelial growth factor, and ANGPT1 gene expression, while it maintained a healthy epithelium and prevented subepithelial collagen deposition at d28 posttransplantation. Together, these data indicate that inhibition of C5a signaling has potential to preserve microvasculature and rescue allograft from a sustained hypoxic/ischemic phase, limits airway tissue remodeling through the induction of Treg-mediated immune tolerance. These findings may be useful in designing anti-C5a therapy in combination with existing immunosuppressive regimens to rescue tissue/organ rejection.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fatimah Alanazi
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Jung NC, Lee JH, Chung KH, Kwak YS, Lim DS. Dendritic Cell-Based Immunotherapy for Solid Tumors. Transl Oncol 2018; 11:686-690. [PMID: 29627706 PMCID: PMC6154348 DOI: 10.1016/j.tranon.2018.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
As a treatment for solid tumors, dendritic cell (DC)-based immunotherapy has not been as effective as expected. Here, we review the reasons underlying the limitations of DC-based immunotherapy for solid tumors and ask what can be done to improve immune cell-based cancer therapies. Several reports show that, rather than a lack of immune induction, the limited efficacy of DC-based immunotherapy in cases of renal cell carcinoma (RCC) likely results from inhibition of immune responses by tumor-secreted TGF-β and an increase in the number of regulatory T (Treg) cells in and around the solid tumor. Indeed, unlike DC therapy for solid tumors, cytotoxic T lymphocyte (CTL) responses induced by DC therapy inhibit tumor recurrence after surgery; CTL responses also limit tumor metastasis induced by additional tumor-challenge in RCC tumor-bearing mice. Here, we discuss the mechanisms underlying the poor efficacy of DC-based therapy for solid tumors and stress the need for new and improved DC immunotherapies and/or combination therapies with killer cells to treat resistant solid tumors.
Collapse
Affiliation(s)
- Nam-Chul Jung
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea; Pharos Vaccine Inc., Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Jun-Ho Lee
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea; Pharos Vaccine Inc., Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Kwang-Hoe Chung
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Yi Sub Kwak
- Department of Physical Education, Dong-Eui University, College of Arts and Sports Science, Busan 47340, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
19
|
Infection, Oxidative Stress, and Changes in Circulating Regulatory T Cells of Heart Failure Patients Supported by Continuous-Flow Ventricular Assist Devices. ASAIO J 2018; 63:128-133. [PMID: 27922883 DOI: 10.1097/mat.0000000000000487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the changes in oxidative stress (OS) and circulating regulatory T cells (Tregs) of the immune system in patients supported by continuous-flow ventricular assist device (CF-VAD) with or without infection. We recruited 16 CF-VAD patients (5 with infection and 11 without infection) and 7 healthy volunteers. Generation of reactive oxygen species (ROS) from lymphocytes, superoxide dismutase (SOD) in erythrocyte, total antioxidant capacity (TAC), and oxidized low-density lipoprotein (oxLDL) in plasma were measured. Circulating Tregs were evaluated by flow cytometry. Heart failure (HF) patients had elevated OS than healthy volunteers as evident from higher lymphocyte ROS, elevated oxLDL, as well as depleted SOD and TAC levels. At baseline, HF patients had decreased percentage of Tregs (5.12 ± 1.5% vs. 8.14 ± 3.01%, p < 0.01) when compared with healthy volunteers. Postimplant patients with infection illustrated 35% and 44% rise in ROS and oxLDL, respectively, 31% decrease in TAC, and marked rise in percentage of Tregs (14.27 ± 3.17% vs. 9.38 ± 3.41%, p < 0.01) when compared with the patients without infection. Elevated OS and rise in Tregs were more prominent in CF-VAD patients with infection. In conclusion, OS and compromised immune system may be important indicators of systemic response of the body to CF-VAD among HF patients with infection.
Collapse
|
20
|
Dwyer CJ, Bayer AL, Fotino C, Yu L, Cabello-Kindelan C, Ward NC, Toomer KH, Chen Z, Malek TR. Altered homeostasis and development of regulatory T cell subsets represent an IL-2R-dependent risk for diabetes in NOD mice. Sci Signal 2017; 10:10/510/eaam9563. [PMID: 29259102 DOI: 10.1126/scisignal.aam9563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytokine interleukin-2 (IL-2) is critical for the functions of regulatory T cells (Tregs). The contribution of polymorphisms in the gene encoding the IL-2 receptor α subunit (IL2RA), which are associated with type 1 diabetes, is difficult to determine because autoimmunity depends on variations in multiple genes, where the contribution of any one gene product is small. We investigated the mechanisms whereby a modest reduction in IL-2R signaling selectively in T lymphocytes influenced the development of diabetes in the NOD mouse model. The sensitivity of IL-2R signaling was reduced by about two- to threefold in Tregs from mice that coexpressed wild-type IL-2Rβ and a mutant subunit (IL-2RβY3) with reduced signaling (designated NOD-Y3). Male and female NOD-Y3 mice exhibited accelerated diabetes onset due to intrinsic effects on multiple activities in Tregs Bone marrow chimera and adoptive transfer experiments demonstrated that IL-2RβY3 Tregs resulted in impaired homeostasis of lymphoid-residing central Tregs and inefficient development of highly activated effector Tregs and that they were less suppressive. Pancreatic IL-2RβY3 Tregs showed impaired development into IL-10-secreting effector Tregs The pancreatic lymph nodes and pancreases of NOD-Y3 mice had increased numbers of antigen-experienced CD4+ effector T cells, which was largely due to impaired Tregs, because adoptively transferred pancreatic autoantigen-specific CD4+ Foxp3- T cells from NOD-Y3 mice did not accelerate diabetes in NOD.SCID recipients. Our study indicates that the primary defect associated with chronic, mildly reduced IL-2R signaling is due to impaired Tregs that cannot effectively produce and maintain highly functional tissue-seeking effector Treg subsets.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Allison L Bayer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carmen Fotino
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cecilia Cabello-Kindelan
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Natasha C Ward
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Zhibin Chen
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
21
|
Shin J, Jin M. Potential Immunotherapeutics for Immunosuppression in Sepsis. Biomol Ther (Seoul) 2017; 25:569-577. [PMID: 29081088 PMCID: PMC5685425 DOI: 10.4062/biomolther.2017.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a syndrome characterized by systemic inflammatory responses to a severe
infection. Acute hyper-inflammatory reactions in the acute phase of sepsis have been
considered as a primary reason for organ dysfunction and mortality, and advances in
emergency intervention and improved intensive care management have reduced
mortalities in the early phase. However it has been recognized that increased deaths
in the late phase still maintain sepsis mortality high worldwide. Patients recovered
from early severe illness are unable to control immune system with sepsis-induced
immunosuppression such as immunological tolerance, exhaustion and apoptosis, which
make them vulnerable to nosocomial and opportunistic infections ultimately leading to
threat to life. Based on strategies to reverse immunosuppression, recent developments
in sepsis therapy are focused on molecules having immune enhancing activities. These
efforts are focused on defining and revising the immunocompromised status associated
with long-term mortality.
Collapse
Affiliation(s)
- Jinwook Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
22
|
Chang K, Song JY, Lim DS. Tolerogenic dendritic cell-based immunotherapy. Oncotarget 2017; 8:90630-90631. [PMID: 29207589 PMCID: PMC5710870 DOI: 10.18632/oncotarget.21867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Kiyuk Chang
- Dae-Seog Lim: Department of Biotechnology, Laboratory for Immune Cells, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jie-Young Song
- Dae-Seog Lim: Department of Biotechnology, Laboratory for Immune Cells, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dae-Seog Lim
- Dae-Seog Lim: Department of Biotechnology, Laboratory for Immune Cells, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
23
|
Lifelong training improves anti-inflammatory environment and maintains the number of regulatory T cells in masters athletes. Eur J Appl Physiol 2017; 117:1131-1140. [PMID: 28391394 DOI: 10.1007/s00421-017-3600-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/26/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to quantify and characterize peripheral blood regulatory T cells (Tregs), as well as the IL-10 plasma concentration, in Masters athletes at rest and after an acute exhaustive exercise test. METHODS Eighteen Masters athletes (self-reported training: 24.6 ± 1.83 years; 10.27 ± 0.24 months and 5.45 ± 0.42 h/week per each month trained) and an age-matched control group of ten subjects (that never took part in regular physical training) volunteered for this study. All subjects performed an incremental test to exhaustion on a cycle ergometer. Blood samples were obtained before (Pre), 10 min into recovery (Post), and 1 h after the test (1 h). RESULTS Absolute numbers of Tregs were similar in both groups at rest. Acute exercise induced a significant increase in absolute numbers of Tregs at Post (0.049 ± 0.021 to 0.056 ± 0.024 × 109/L, P = 0.029 for Masters; 0.048 ± 0.017 to 0.058 ± 0.020 × 109/L, P = 0.037 for control) in both groups. Treg mRNA expression for FoxP3, IL-10, and TGF-β in sorted Tregs was similar throughout the trials in both groups. Masters athletes showed a higher percentage of subjects expressing the FoxP3 (100% for Masters vs. 78% for Controls, P = 0.038) and TGF-β (89% for Masters vs. 56% for Controls, P = 0.002) after exercise and a higher plasma IL-10 concentration (15.390 ± 7.032 for Masters vs. 2.411 ± 1.117 for control P = 0.001, ES = 2.57) at all timepoints. KLRG1 expression in Tregs was unchanged. CONCLUSION Our findings showed that Masters athletes have elevated anti-inflammatory markers and maintain the number of Tregs, and may be an adaptive response to lifelong training.
Collapse
|
24
|
Polycarpou A, Walker SL, Lockwood DNJ. A Systematic Review of Immunological Studies of Erythema Nodosum Leprosum. Front Immunol 2017; 8:233. [PMID: 28348555 PMCID: PMC5346883 DOI: 10.3389/fimmu.2017.00233] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/17/2017] [Indexed: 01/04/2023] Open
Abstract
Erythema nodosum leprosum (ENL) is a painful inflammatory complication of leprosy occurring in 50% of lepromatous leprosy patients and 5-10% of borderline lepromatous patients. It is a significant cause of economic hardship, morbidity and mortality in leprosy patients. Our understanding of the causes of ENL is limited. We performed a systematic review of the published literature and critically evaluated the evidence for the role of neutrophils, immune complexes (ICs), T-cells, cytokines, and other immunological factors that could contribute to the development of ENL. Searches of the literature were performed in PubMed. Studies, independent of published date, using samples from patients with ENL were included. The search revealed more than 20,000 articles of which 146 eligible studies were included in this systematic review. The studies demonstrate that ENL may be associated with a neutrophilic infiltrate, but it is not clear whether it is an IC-mediated process or that the presence of ICs is an epiphenomenon. Increased levels of tumor necrosis factor-α and other pro-inflammatory cytokines support the role of this cytokine in the inflammatory phase of ENL but not necessarily the initiation. T-cell subsets appear to be important in ENL since multiple studies report an increased CD4+/CD8+ ratio in both skin and peripheral blood of patients with ENL. Microarray data have identified new molecules and whole pathophysiological pathways associated with ENL and provides new insights into the pathogenesis of ENL. Studies of ENL are often difficult to compare due to a lack of case definitions, treatment status, and timing of sampling as well as the use of different laboratory techniques. A standardized approach to some of these issues would be useful. ENL appears to be a complex interaction of various aspects of the immune system. Rigorous clinical descriptions of well-defined cohorts of patients and a systems biology approach using available technologies such as genomics, epigenomics, transcriptomics, and proteomics could yield greater understanding of the condition.
Collapse
Affiliation(s)
- Anastasia Polycarpou
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| | - Stephen L Walker
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| | - Diana N J Lockwood
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
25
|
Verbeke CS, Gordo S, Schubert DA, Lewin SA, Desai RM, Dobbins J, Wucherpfennig KW, Mooney DJ. Multicomponent Injectable Hydrogels for Antigen-Specific Tolerogenic Immune Modulation. Adv Healthc Mater 2017; 6:10.1002/adhm.201600773. [PMID: 28116870 PMCID: PMC5518671 DOI: 10.1002/adhm.201600773] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore-forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide-co-glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle-based delivery leads to antigen-specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel-based peptide delivery, transient expansion of endogenous antigen-specific T cells is observed in the draining lymph nodes. Antigen-specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen-specific CD4+ T cells in the gels are Tregs. Antigen-specific T cells are also enriched in the pancreatic islets, and administration of peptide-loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen-specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
Collapse
Affiliation(s)
- Catia S Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Susana Gordo
- Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Sarah A Lewin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rajiv M Desai
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | | | | | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
26
|
Khan MA. T regulatory cell mediated immunotherapy for solid organ transplantation: A clinical perspective. Mol Med 2017; 22:892-904. [PMID: 27878210 PMCID: PMC5319206 DOI: 10.2119/molmed.2016.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
T regulatory cells (Tregs) play a vital role in suppressing heightened immune responses, and thereby promote a state of immunological tolerance. Tregs modulate both innate and adaptive immunity, which make them a potential candidate for cell-based immunotherapy to suppress uncontrolled activation of graft specific inflammatory cells and their toxic mediators. These grafts specific inflammatory cells (T effector cells) and other inflammatory mediators (Immunoglobulins, active complement mediators) are mainly responsible for graft vascular deterioration followed by acute/chronic rejection. Treg mediated immunotherapy is under investigation to induce allospecific tolerance in various ongoing clinical trials in organ transplant recipients. Treg immunotherapy is showing promising results but the key issues regarding Treg immunotherapy are not yet fully resolved including their mechanism of action, and specific Treg cell phenotype responsible for a state of tolerance. This review highlights the involvement of various subsets of Tregs during immune suppression, novelty of Tregs functions, effects on angiogenesis, emerging technologies for effective Treg expansion, plasticity and safety associated with clinical applications. Altogether this information will assist in designing single/combined Treg mediated therapies for successful clinical trials in solid organ transplantations.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia 11211
| |
Collapse
|
27
|
Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget 2016; 7:6506-20. [PMID: 26646699 PMCID: PMC4872729 DOI: 10.18632/oncotarget.6467] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer related death in women. While current diagnostic modalities provide opportunities for early medical intervention, significant proportions of breast tumours escape treatment and metastasize. Gaining increasing recognition as a factor in tumour metastasis is the local immuno-surveillance environment. Following identification of the role played by the enzyme indoleamine dioxygenase 1 (IDO1) in mediating maternal foetal tolerance, the kynurenine pathway (KP) of tryptophan metabolism has emerged as a key metabolic pathway contributing to immune escape. In inflammatory conditions activation of the KP leads to the production of several immune-modulating metabolites including kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, picolinic acid and quinolinic acid. KP over-activation was first described in BrCa patients in the early 1960s. More evidence has since emerged to suggest that the IDO1 is elevated in advanced BrCa patients and is associated with poor prognosis. Further, IDO1 positive breast tumours have a positive correlation with the density of immune suppressive Foxp3+ T regulatory cells and lymph node metastasis. The analysis of clinical microarray data in invasive BrCa compared to normal tissue showed, using two microarray databank (cBioportal and TCGA), that 86.3% and 91.4% BrCa patients have altered KP enzyme expression respectively. Collectively, these data highlight the key roles played by KP activation in BrCa, particularly in basal BrCa subtypes where expression of most KP enzymes was altered. Accordingly, the use of KP enzyme inhibitors in addition to standard chemotherapy regimens may present a viable therapeutic approach.
Collapse
|
28
|
Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model. Immunol Res 2016; 64:508-17. [PMID: 26471021 DOI: 10.1007/s12026-015-8726-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD4+ T regulatory cells (Tregs) play a pivotal role in the anti-inflammatory immune response following trauma. The mechanisms of CD4+ Treg activation are mostly unknown. Here, we hypothesize that platelets regulate CD4+ Treg activation following trauma. In a murine burn injury model (male C57Bl/6N mice), depletion of platelets or CD4+ Tregs was conducted. Draining lymph nodes, blood and spleen were harvested 2 h and 7 days after trauma. CD4+ Treg activation was measured using phospho- and conventional flow cytometry. Platelet activation was analyzed using thromboelastometry and flow cytometry. Trauma differentially activates CD4+ T cells, early after trauma only CD4+ Tregs are activated. Following burn injury, platelets augment the activation of CD4+ Tregs. This effect could only be seen early after trauma. While CD4+ Tregs influence hemostasis early following trauma, platelet activation markers were unchanged. Beyond their role in hemostasis, platelets are able to modulate the immunologic host response to trauma-induced injury by augmenting the activation of CD4+ Tregs. CD4+ Treg activation following trauma is considered protective. In addition, CD4+ Tregs are capable of modulating the hemostatic function of platelets. For the first time, we could show reciprocal activation of platelets and CD4+ Tregs as part of the protective immune response following trauma.
Collapse
|
29
|
Abstract
Cancer heterogeneity, a hallmark enabling clonal survival and therapy resistance, is shaped by active immune responses. Antigen-specific T cells can control cancer, as revealed clinically by immunotherapeutics such as adoptive T-cell transfer and checkpoint blockade. The host immune system is thus a powerful tool that, if better harnessed, could significantly enhance the efficacy of cytotoxic therapy and improve outcomes for cancer sufferers. To realize this vision, however, a number of research frontiers must be tackled. These include developing strategies for neutralizing tumor-promoting inflammation, broadening T-cell repertoires (via vaccination), and elucidating the mechanisms by which immune cells organize tumor microenvironments to regulate T-cell activity. Such efforts will pave the way for identifying new targets for combination therapies that overcome resistance to current treatments and promote long-term cancer control.
Collapse
|
30
|
Concepcion AR, Salas JT, Sáez E, Sarvide S, Ferrer A, Portu A, Uriarte I, Hervás-Stubbs S, Oude Elferink RPJ, Prieto J, Medina JF. CD8+ T cells undergo activation and programmed death-1 repression in the liver of aged Ae2a,b-/- mice favoring autoimmune cholangitis. Oncotarget 2016; 6:28588-606. [PMID: 26396175 PMCID: PMC4745679 DOI: 10.18632/oncotarget.5665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Primary biliary cirrhosis (PBC) is a chronic cholestatic disease of unknown etiopathogenesis showing progressive autoimmune-mediated cholangitis. In PBC patients, the liver and lymphocytes exhibit diminished expression of AE2/SLC4A2, a Cl-/HCO3- anion exchanger involved in biliary bicarbonate secretion and intracellular pH regulation. Decreased AE2 expression may be pathogenic as Ae2a,b(-/-) mice reproduce hepatobiliary and immunological features resembling PBC. To understand the role of AE2 deficiency for autoimmunity predisposition we focused on the phenotypic changes of T cells that occur over the life-span of Ae2a,b(-/-) mice. At early ages (1-9 months), knockout mice had reduced numbers of intrahepatic T cells, which exhibited increased activation, programmed-cell-death (PD)-1 expression, and apoptosis. Moreover, young knockouts had upregulated PD-1 ligand (PD-L1) on bile-duct cells, and administration of neutralizing anti-PD-L1 antibodies prevented their intrahepatic T-cell deletion. Older (≥ 10 months) knockouts, however, showed intrahepatic accumulation of cytotoxic CD8(+) T cells with downregulated PD-1 and diminished apoptosis. In-vitro DNA demethylation with 5-aza-2'-deoxycytidine partially reverted PD-1 downregulation of intrahepatic CD8(+) T cells from aged knockouts. CONCLUSION Early in life, AE2 deficiency results in intrahepatic T-cell activation and PD-1/PD-L1 mediated deletion. With aging, intrahepatic CD8+ T cells epigenetically suppress PD-1, and their consequential expansion and further activation favor autoimmune cholangitis.
Collapse
Affiliation(s)
- Axel R Concepcion
- Center for Applied Medical Research (CIMA), School of Medicine and Clinic University of Navarra, and CIBERehd, Pamplona, Spain
| | - January T Salas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elena Sáez
- Center for Applied Medical Research (CIMA), School of Medicine and Clinic University of Navarra, and CIBERehd, Pamplona, Spain
| | - Sarai Sarvide
- Center for Applied Medical Research (CIMA), School of Medicine and Clinic University of Navarra, and CIBERehd, Pamplona, Spain
| | - Alex Ferrer
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ainhoa Portu
- Center for Applied Medical Research (CIMA), School of Medicine and Clinic University of Navarra, and CIBERehd, Pamplona, Spain
| | - Iker Uriarte
- Center for Applied Medical Research (CIMA), School of Medicine and Clinic University of Navarra, and CIBERehd, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Center for Applied Medical Research (CIMA), School of Medicine and Clinic University of Navarra, and CIBERehd, Pamplona, Spain
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Jesús Prieto
- Center for Applied Medical Research (CIMA), School of Medicine and Clinic University of Navarra, and CIBERehd, Pamplona, Spain
| | - Juan F Medina
- Center for Applied Medical Research (CIMA), School of Medicine and Clinic University of Navarra, and CIBERehd, Pamplona, Spain
| |
Collapse
|
31
|
Marinho FV, Alves CC, de Souza SC, da Silva CMG, Cassali GD, Oliveira SC, Pacifico LGG, Fonseca CT. Schistosoma mansoni Tegument (Smteg) Induces IL-10 and Modulates Experimental Airway Inflammation. PLoS One 2016; 11:e0160118. [PMID: 27454771 PMCID: PMC4959726 DOI: 10.1371/journal.pone.0160118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that S. mansoni infection and inoculation of the parasite eggs and antigens are able to modulate airways inflammation induced by OVA in mice. This modulation was associated to an enhanced production of interleukin-10 and to an increased number of regulatory T cells. The S. mansoni schistosomulum is the first stage to come into contact with the host immune system and its tegument represents the host-parasite interface. The schistosomula tegument (Smteg) has never been studied in the context of modulation of inflammatory disorders, although immune evasion mechanisms take place in this phase of infection to guarantee the persistence of the parasite in the host. METHODOLOGY AND PRINCIPAL FINDINGS The aim of this study was to evaluate the Smteg ability to modulate inflammation in an experimental airway inflammation model induced by OVA and to characterize the immune factors involved in this modulation. To achieve the objective, BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with OVA aerosol after Smteg intraperitoneal inoculation. Protein extravasation and inflammatory cells were assessed in bronchoalveolar lavage and IgE levels were measured in serum. Additionally, lungs were excised for histopathological analyses, cytokine measurement and characterization of the cell populations. Inoculation with Smteg led to a reduction in the protein levels in bronchoalveolar lavage (BAL) and eosinophils in both BAL and lung tissue. In the lung tissue there was a reduction in inflammatory cells and collagen deposition as well as in IL-5, IL-13, IL-25 and CCL11 levels. Additionally, a decrease in specific anti-OVA IgE levels was observed. The reduction observed in these inflammatory parameters was associated with increased levels of IL-10 in lung tissues. Furthermore, Smteg/asthma mice showed high percentage of CD11b+F4/80+IL-10+ and CD11c+CD11b+IL-10+ cells in lungs. CONCLUSION Taken together, these findings demonstrate that S. mansoni schistosomula tegument can modulates experimental airway inflammation.
Collapse
Affiliation(s)
- Fábio Vitarelli Marinho
- Laboratório de Imunologia de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | - Clarice Carvalho Alves
- Laboratório de Biologia e Imunologia Parasitária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte-MG, Brazil
| | - Sara C. de Souza
- Laboratório de Biologia e Imunologia Parasitária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte-MG, Brazil
| | - Cintia M. G. da Silva
- Laboratório de Biologia e Imunologia Parasitária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte-MG, Brazil
| | - Geovanni D. Cassali
- Laboratório de Patologia, Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | - Sergio C. Oliveira
- Laboratório de Imunologia de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador-BA, Brazil
| | - Lucila G. G. Pacifico
- Laboratório de Biologia e Imunologia Parasitária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte-MG, Brazil
| | - Cristina T. Fonseca
- Laboratório de Biologia e Imunologia Parasitária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte-MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador-BA, Brazil
- * E-mail:
| |
Collapse
|
32
|
Qin A, Coffey DG, Warren EH, Ramnath N. Mechanisms of immune evasion and current status of checkpoint inhibitors in non-small cell lung cancer. Cancer Med 2016; 5:2567-78. [PMID: 27416962 PMCID: PMC5055165 DOI: 10.1002/cam4.819] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022] Open
Abstract
In the past several years, immunotherapy has emerged as a viable treatment option for patients with advanced non‐small cell lung cancer (NSCLC) without actionable driver mutations that have progressed on standard chemotherapy. We are also beginning to understand the methods of immune evasion employed by NSCLC which likely contribute to the 20% response rate to immunotherapy. It is also yet unclear what tumor or patient factors predict response to immunotherapy. The objectives of this review are (1) review the immunogenicity of NSCLC (2) describe the mechanisms of immune evasion (3) summarize efforts to target the anti‐program death‐1 (PD‐1) and anti‐program death‐ligand 1(PD‐L1) pathway (4) outline determinants of response to PD‐1/PD‐L1 therapy and (5) discuss potential future areas for research.
Collapse
Affiliation(s)
- Angel Qin
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, Michigan.
| | - David G Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Nithya Ramnath
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, Michigan.,VA Ann Arbor Health Care System, Ann Arbor, Michigan
| |
Collapse
|
33
|
Abstract
Dysregulation of the immune system contributes to the breakdown of immune regulation, leading to autoimmune diseases, such as type 1 diabetes (T1D). Current therapies for T1D include daily insulin, due to pancreatic β-cell destruction to maintain blood glucose levels, suppressive immunotherapy to decrease the symptoms associated with autoimmunity, and islet transplantation. Genetic risks for T1D have been linked to IL-2 and IL-2R signaling pathways that lead to the breakdown of self-tolerance mechanisms, primarily through altered regulatory T cell (Treg) function and homeostasis. In attempt to correct such deficits, therapeutic administration of IL-2 at low doses has gained attention due to the capacity to boost Tregs without the unwanted stimulation of effector T cells. Preclinical and clinical studies utilizing low-dose IL-2 have shown promising results to expand Tregs due to their high selective sensitivity to respond to IL-2. These results suggest that low-dose IL-2 therapy represents a new class of immunotherapy for T1D by promoting immune regulation rather than broadly suppressing unwanted and beneficial immune responses.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Natasha C Ward
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Alberto Pugliese
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA.
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA.
| |
Collapse
|
34
|
Schweintzger NA, Gruber-Wackernagel A, Shirsath N, Quehenberger F, Obermayer-Pietsch B, Wolf P. Influence of the season on vitamin D levels and regulatory T cells in patients with polymorphic light eruption. Photochem Photobiol Sci 2016; 15:440-6. [PMID: 26911519 PMCID: PMC4841162 DOI: 10.1039/c5pp00398a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
The exact mechanisms of photohardening in polymorphic light eruption (PLE) are still unknown, but medical photohardening was shown to increase regulatory T cell (Treg) numbers in the blood of PLE patients, similar to natural hardening. Furthermore, oral vitamin D supplementation increased peripheral Tregs in healthy individuals. We herein report on a post hoc analysis of 26 screened PLE patients of a clinical trial (ClinicalTrials.gov No. NCT01595893), in which the influence of the progressing season was investigated on baseline CD4+CD25+FoxP3+CD127- Treg numbers by flow cytometry and Treg suppressive function by co-culture assays with T effector cells as a secondary endpoint, together with 25-hydroxy vitamin D (25(OH)D) serum levels at the study's screening visit, taking place in the period from January to June. The mean 25(OH)D serum level of all patients was 33.2 ng ml(-1). Ten of those patients (38.5%) were identified with low 25(OH)D levels (<30 ng ml(-1)). Significantly higher baseline 25(OH)D serum levels (plus 34.4%; P = 0.0182) as well as higher relative Treg percentages in CD4+ population (plus 62.8%; P = 0.0157) and in total lymphocyte population (plus 59.6%; P = 0.0372) and higher absolute Treg numbers (plus 100.2%; P = 0.0042) were observed in the late spring/early summer period (April to June) compared to the winter period (January to February). No significant relationship was observed when Treg numbers and function were correlated with 25(OH)D levels. These data indicate that in PLE patients Treg numbers and their suppressive function are independent of vitamin D serum levels and suggest that UV light and/or other seasonal factors may affect these cells via the non-vitamin D related pathway(s).
Collapse
Affiliation(s)
- N. A. Schweintzger
- Research Unit for Photodermatology , Department of Dermatology , Medical University of Graz , Graz , Austria . ; Fax: +43 316 385-12466 ; Tel: +43 316 385-12371
- Center for Medical Research , Medical University of Graz , Graz , Austria
| | - A. Gruber-Wackernagel
- Research Unit for Photodermatology , Department of Dermatology , Medical University of Graz , Graz , Austria . ; Fax: +43 316 385-12466 ; Tel: +43 316 385-12371
| | - N. Shirsath
- Research Unit for Photodermatology , Department of Dermatology , Medical University of Graz , Graz , Austria . ; Fax: +43 316 385-12466 ; Tel: +43 316 385-12371
- Center for Medical Research , Medical University of Graz , Graz , Austria
| | - F. Quehenberger
- Institute for Medical Informatics , Statistics and Documentation , Medical University of Graz , Graz , Austria
| | - B. Obermayer-Pietsch
- Division of Endocrinology and Metabolism , Department of Internal Medicine , Medical University of Graz , Graz , Austria
| | - P. Wolf
- Research Unit for Photodermatology , Department of Dermatology , Medical University of Graz , Graz , Austria . ; Fax: +43 316 385-12466 ; Tel: +43 316 385-12371
| |
Collapse
|
35
|
Sabarish R, Rao SR, Lavu V. Natural T Regulatory Cells (n Treg) in the Peripheral Blood of Healthy Subjects and Subjects with Chronic Periodontitis - A Pilot Study. J Clin Diagn Res 2016; 10:ZC36-9. [PMID: 27134998 DOI: 10.7860/jcdr/2016/15449.7446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The T cells play a central role in the aetiopathogenesis of periodontal disease. Natural T regulatory cells (nTreg) are the key stone immunoregulatory elements having an anergic phenotype and play an important role in the suppression of exaggerated immune responses thereby maintaining homeostasis. There are increasing evidences for the role of nTreg in the periodontal disease pathogenesis. AIM To identify the proportion of natural T regulatory cells in the peripheral blood of periodontally healthy subjects and subjects with chronic periodontitis. MATERIALS AND METHODS A total of 15 subjects (7 with healthy gingiva and 8 with chronic periodontitis) were recruited for this pilot study. Baseline periodontal parameters were recorded and 5 ml of peripheral blood was collected. The samples from both the groups were analysed for the relative proportion of nTreg (identified by the expression CD45RB+CD4+CD25+FOXP3+) using flow cytometry. RESULTS The mean percentages of the CD45RB+CD4+CD25+ cells expressing FOXP3 in control and chronic periodontitis group were found to be 14.75±5.04 and 43.13±11.17 respectively. The mean proportion of nTreg were compared between the control and chronic periodontitis sample using Mann-Whitney Test and was found to be statistically significant with (p<0.001). CONCLUSION A higher proportion of nTreg in the peripheral blood sample of chronic periodontitis subjects were observed as compared to that of healthy individuals.
Collapse
Affiliation(s)
- Ram Sabarish
- Senior Lecturer, Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| | - Suresh Ranga Rao
- Professor and Head, Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| | - Vamsi Lavu
- Associate Professor, Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| |
Collapse
|
36
|
Haploidentical Hematopoietic Stem Cell Transplantation: Expanding the Horizon for Hematologic Disorders. Adv Hematol 2016; 2016:1423493. [PMID: 26949395 PMCID: PMC4754478 DOI: 10.1155/2016/1423493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/14/2022] Open
Abstract
Despite the advent of targeted therapies and novel agents, allogeneic hematopoietic stem cell transplantation remains the only curative modality in the management of hematologic disorders. The necessity to find an HLA-matched related donor is a major obstacle that compromises the widespread application and development of this field. Matched unrelated donors and umbilical cord blood have emerged as alternative sources of donor stem cells; however, the cost of maintaining donor registries and cord blood banks is very high and even impractical in developing countries. Almost every patient has an HLA haploidentical relative in the family, meaning that haploidentical donors are potential sources of stem cells, especially in situations where cord blood or matched unrelated donors are not easily available. Due to the high rates of graft failure and graft-versus-host disease, haploidentical transplant was not considered a feasible option up until the late 20th century, when strategies such as “megadose stem cell infusions” and posttransplantation immunosuppression with cyclophosphamide showed the ability to overcome the HLA disparity barrier and significantly improve the rates of engraftment and reduce the incidence and severity of graft-versus-host disease. Newer technologies of graft manipulation have also yielded the same effects in addition to preserving the antileukemic cells in the donor graft.
Collapse
|
37
|
Ye M, Chung HS, Lee C, Yoon MS, Yu AR, Kim JS, Hwang DS, Shim I, Bae H. Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer's disease. J Neuroinflammation 2016; 13:10. [PMID: 26772975 PMCID: PMC4715334 DOI: 10.1186/s12974-016-0476-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a severe neuroinflammatory disease. CD4+Foxp3+ regulatory T cells (Tregs) modulate various inflammatory diseases via suppressing Th cell activation. There are increasing evidences that Tregs have beneficial roles in neurodegenerative diseases. Previously, we found the population of Treg cells was significantly increased by bee venom phospholipase A2 (bvPLA2) treatment in vivo and in vitro. Methods To examine the effects of bvPLA2 on AD, bvPLA2 was administered to 3xTg-AD mice, mouse model of Alzheimer’s disease. The levels of amyloid beta (Aβ) deposits in the hippocampus, glucose metabolism in the brain, microglia activation, and CD4+ T cell infiltration were analyzed to evaluate the neuroprotective effect of bvPLA2. Results bvPLA2 treatment significantly enhanced the cognitive function of the 3xTg-AD mice and increased glucose metabolism, as assessed with 18F-2 fluoro-2-deoxy-D-glucose ([F-18] FDG) positron emission tomography (PET). The levels of Aβ deposits in the hippocampus were dramatically decreased by bvPLA2 treatment. This neuroprotective effect of bvPLA2 was associated with microglial deactivation and reduction in CD4+ T cell infiltration. Interestingly, the neuroprotective effects of bvPLA2 were abolished in Treg-depleted mice. Conclusions The present studies strongly suggest that the increase of Treg population by bvPLA2 treatment might inhibit progression of AD in the 3xTg AD mice.
Collapse
Affiliation(s)
- Minsook Ye
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| | - Chanju Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - Moon Sik Yoon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - A Ram Yu
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, University of Science and Technology, #215-4 Gongneug-dong, Nowon-ku, Seoul, 139-241, Republic of Korea.
| | - Jin Su Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, University of Science and Technology, #215-4 Gongneug-dong, Nowon-ku, Seoul, 139-241, Republic of Korea.
| | - Deok-Sang Hwang
- Department of Obstetrics and Gynecology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medical Science Graduate School, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
38
|
Jin Y, Zhang P, Li J, Zhao J, Liu C, Yang F, Yang D, Gao A, Lin W, Ma X, Sun Y. B7-H3 in combination with regulatory T cell is associated with tumor progression in primary human non-small cell lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13987-13995. [PMID: 26823710 PMCID: PMC4713496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
B7-H3 belongs to the co-inhibitory B7 family and plays an important role in the adaptive immune response in regulating T cells. In human malignancies, B7-H3 is reported to be involved in tumor immune evasion. However, the detailed molecular mechanism of B7-H3 in tumor evasion remains unclear, particularly in non-small cell lung cancer (NSCLC). Regulatory T cells (Tregs) are known as a key player in the inhibition of immune mechanisms. The study demonstrated the correlation between B7-H3 on tumor cells and the number of Tregs in the tumor microenvironment in NSCLC. B7-H3 was examined in tumor tissues from 110 patients with NSCLC by immunohistochemical analysis. Forkhead box P3+ (FOXP3+) Tregs in those spencimens were also detected and numbered. Survival curves were drawn using the Kaplan-Meier method and compared by the log-rank test. High B7-H3 expression in tumor cells significantly correlated with male gender, squamous NSCLC, advanced stage and shorter overall survival (OS) (P = 0.035, P = 0.004, P = 0.037, P = 0.014, respectively). Meanwhile, FOXP3 expression in tumor-infiltrating lymphocytes (TILs) was associated with male gender, regional lymph node involvement, advanced stage and worse OS (P = 0.009, P = 0.015, P = 0.014, P = 0.034, respectively). Significant correlation was identified between the expression of B7-H3 and the number of FOXP3+ TILs (P = 0.013). Patients with B7-H3 high/FOXP3 high had poorer OS (P = 0.006), suggesting that B7-H3 and Tregs may play a cooperatively role in tumor immune evasion, leading to poor outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Yingjie Jin
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
- Department of Oncology, Zhangqiu HospitalZhangqiu, 250200, Shandong, P. R. China
| | - Pei Zhang
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Juan Li
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Jianqiang Zhao
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Chuanyong Liu
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Dong Yang
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Xiaoxia Ma
- Department of Gastroscopy Center, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong UniversityJinan 250013, Shandong, P. R. China
| |
Collapse
|
39
|
Jalouli MM, Jalouli J, Hasséus B, Öhman J, Hirsch JM, Sand L. Nested PCR for detection of HSV-1 in oral mucosa. Med Oral Patol Oral Cir Bucal 2015; 20:e664-9. [PMID: 26449432 PMCID: PMC4670245 DOI: 10.4317/medoral.20630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/23/2015] [Indexed: 12/05/2022] Open
Abstract
Background It has been estimated that 15%-20% of human tumours are driven by infection and inflammation, and viral infections play an important role in malignant transformation. The evidence that herpes simplex virus type 1 (HSV-1) could be involved in the aetiology of oral cancer varies from weak to persuasive.
This study aimed to investigate by nested PCR (NPCR) the prevalence of HSV-1 in samples from normal oral mucosa, oral leukoplakia, and oral squamous cell carcinoma (OSCC). Material and Methods We investigated the prevalence of HSV-1 in biopsies obtained from 26 fresh, normal oral mucosa from healthy volunteers as well as 53 oral leukoplakia and 27 OSCC paraffin-embedded samples. DNA was extracted from the specimens and investigated for the presence of HSV-1 by nested polymerase chain reaction (NPCR) and DNA sequencing. Results HSV-1 was detected in 14 (54%) of the healthy samples, in 19 (36%) of the oral leukoplakia samples, and in 14 (52%) of the OSCC samples. The differences were not statistically significant. Conclusions We observed a high incidence of HSV-1 in healthy oral mucosa, oral leukoplakia, and OSCC tissues. Thus, no connection between OSCC development and presence of HSV-1 was detected. Key words:HSV-1, nested PCR, PCR.
Collapse
Affiliation(s)
- Miranda-Masoumeh Jalouli
- Department of Surgical Sciences, Oral and Maxillofacial Surgery, Medical Faculty, Uppsala University, Uppsala SE-751 85, Sweden,
| | | | | | | | | | | |
Collapse
|
40
|
Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T Cells: Serious Contenders in the Promise for Immunological Tolerance in Transplantation. Front Immunol 2015; 6:438. [PMID: 26379673 PMCID: PMC4553385 DOI: 10.3389/fimmu.2015.00438] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance and curb autoimmunity following their adoptive transfer. The safety and potential therapeutic efficacy of these cells has already been reported in Phase I trials of bone-marrow transplantation and type I diabetes, the success of which has motivated the broadened application of these cells in solid-organ transplantation. Despite major advances in the clinical translation of these cells, there are still key questions to be addressed to ensure that Tregs attest their reputation as ideal candidates for tolerance induction. In this review, we will discuss the unique traits of Tregs that have attracted such fame in the arena of tolerance induction. We will outline the protocols used for their ex vivo expansion and discuss the future directions of Treg cell therapy. In this regard, we will review the concept of Treg heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions. The relevance of Treg migratory capacity will also be discussed together with methods of in vivo visualization of the infused cells. Moreover, we will highlight key advances in the identification and expansion of antigen-specific Tregs and discuss their significance for cell therapy application. We will also summarize the clinical parameters that are of importance, alongside cell manufacture, from the choice of immunosuppression regimens to the number of injections in order to direct the success of future efficacy trials of Treg cell therapy. Years of research in the field of tolerance have seen an accumulation of knowledge and expertise in the field of Treg biology. This perpetual progression has been the driving force behind the many successes to date and has put us now within touching distance of our ultimate success, immunological tolerance.
Collapse
Affiliation(s)
- Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Cristiano Scotta
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Trishan Vaikunthanathan
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Robert I Lechler
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| |
Collapse
|
41
|
Prabhala RH, Fulciniti M, Pelluru D, Rashid N, Nigroiu A, Nanjappa P, Pai C, Lee S, Prabhala NS, Bandi RL, Smith R, Lazo-Kallanian SB, Valet S, Raje N, Gold JS, Richardson PG, Daley JF, Anderson KC, Ettenberg SA, Di Padova F, Munshi NC. Targeting IL-17A in multiple myeloma: a potential novel therapeutic approach in myeloma. Leukemia 2015; 30:379-89. [PMID: 26293646 PMCID: PMC4740263 DOI: 10.1038/leu.2015.228] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that interleukin-17A (IL-17) producing Th17 cells are significantly elevated in blood and bone marrow (BM) in multiple myeloma (MM) and IL-17A promotes MM cell growth via the expression of IL-17 receptor. In this study, we evaluated anti-human IL-17A human monoclonal antibody (mAb), AIN457 in MM. We observe significant inhibition of MM cell growth by AIN457 both in the presence and absence of BM stromal cells (BMSC). While IL-17A induces IL-6 production, AIN457 significantly down-regulated IL-6 production and MM cell-adhesion in MM-BMSC co-culture. AIN-457 also significantly inhibited osteoclast cell–differentiation. More importantly, in the SCIDhu model of human myeloma administration of AIN-457 weekly for 4 weeks after the first detection of tumor in mice led to a significant inhibition of tumor growth and reduced bone damage compared to isotype control mice. To understand the mechanism of action of anti-IL-17A mAb, we report here, that MM cells express IL-17A. We also observed that IL-17A knock-down inhibited MM cell growth and their ability to induce IL-6 production in co-cultures with BMSC. These pre-clinical observations suggest efficacy of AIN 457 in myeloma and provide the rationale for its clinical evaluation for anti-myeloma effects and for improvement of bone disease.
Collapse
Affiliation(s)
- R H Prabhala
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Fulciniti
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Pelluru
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Rashid
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Nigroiu
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - P Nanjappa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Pai
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - S Lee
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - N S Prabhala
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - R L Bandi
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Smith
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S B Lazo-Kallanian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Valet
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - N Raje
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - J S Gold
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J F Daley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S A Ettenberg
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - F Di Padova
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - N C Munshi
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Elevated levels of serum IL-12 and IL-18 are associated with lower frequencies of CD4(+)CD25 (high)FOXP3 (+) regulatory t cells in young patients with type 1 diabetes. Inflammation 2015; 37:1513-20. [PMID: 24677179 PMCID: PMC4174326 DOI: 10.1007/s10753-014-9878-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes is thought to involve chronic inflammation, which is manifested by the activation and expression of different inflammatory mediators. IL-12 and IL-18 are two cytokines that have been shown to exert strong proinflammatory activity and have been implicated in the pathogenesis of type 1 diabetes in mice and humans. The overproduction of proinflammatory mediators is controlled by specialized T cell subset, namely regulatory T cells that express FOXP3 transcription factor. Since IL-12 and IL-18 mediate inflammatory response and Tregs exhibit anti-inflammatory potential, we aimed to examine their reciprocal relationship in patients with type 1 diabetes. The study group consisted of 47 children diagnosed with type 1 diabetes and 28 healthy individuals. Serum levels of IL-12 and IL-18 were measured by ELISA, and the peripheral blood CD4+CD25high FOXP3+ regulatory T cell frequencies were analyzed by flow cytometry. Patients with type 1 diabetes had a decreased percentage of circulating CD4+CD25highFOXP3+ Tregs in comparison to their healthy counterparts. In addition, they produced more IL-12 and IL-18 than children from the control group. Concentrations of these cytokines positively correlated with one another, as well as with CRP and HbA1c. Moreover, the negative association between IL-12, IL-18, CRP serum levels, and the frequency of regulatory CD4+CD25highFOXP3+ Tregs was observed. IL-12 and IL-18 may have direct or indirect impact on regulatory T cell subset, which may contribute to their reduced frequency in peripheral blood of patients with type 1 diabetes mellitus.
Collapse
|
43
|
Expression of Viral Antigen by the Liver Leads to Chronic Infection Through the Generation of Regulatory T Cells. Cell Mol Gastroenterol Hepatol 2015; 1:325-341.e1. [PMID: 28210682 PMCID: PMC5301191 DOI: 10.1016/j.jcmgh.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS The constant exposure of the liver to food and bacterial antigens through the mesenteric circulation requires it to maintain tolerance while preserving the ability to mount an effective immune response against pathogens. We investigated the contribution of the liver's tolerogenic nature on the establishment of chronic viral infections. METHODS TTR-NP mice, which express the nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) specifically in hepatocytes under control of a modified transthyretin (TTR) promoter, were infected with the Armstrong (Arm) or WE acute strains of LCMV. RESULTS The infection persisted for at least 147 days in TTR-NP mice. Expression of NP by the liver induced a strong peripheral tolerance against NP that was mediated by interleukin-10-secreting CD4+ regulatory T cells, leading to high PD-1 (programmed death-1) expression and reduced effector function of virus-specific T cells. Despite an active immune response against LCMV, peripheral tolerance against a single viral protein was sufficient to induce T-cell exhaustion and chronic LCMV Armstrong (Arm) or WE infection by limiting the antiviral T-cell response in an otherwise immunocompetent host. Regulatory T-cell depletion of chronically infected TTR-NP mice led to functional restoration of LCMV-specific CD4+ and CD8+ T cell responses and viral clearance. CONCLUSIONS Expression of a viral antigen by hepatocytes can induce a state of peripheral tolerance mediated by regulatory T cells that can lead to the establishment of a chronic viral infection. Strategies targeting regulatory T cells in patients chronically infected with hepatotropic viruses could represent a promising approach to restore functional antiviral immunity and clear infection.
Collapse
Key Words
- ALT, alanine aminotransferase
- APC, allophycocyanin
- Arm, Armstrong strain
- BTLA, B and T lymphocyte attenuator
- CFSE, carboxyfluorescein diacetate succinimidyl ester
- CTL, cytotoxic T lymphocyte
- Chronic Infection
- ELISA, enzyme-linked immunoassay
- FACS, fluorescence-activated cell sorter
- FoxP3, forkhead box P3
- GP, glycoprotein
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- Hepatitis
- IFN, interferon
- IL, interleukin
- IP, intraperitoneal
- IV, intravenous
- LCMV, lymphocytic choriomeningitis virus
- LIL, liver-infiltrating lymphocytes
- NP, nucleoprotein
- P14, GP33–41-specific TCR transgenic
- PD-1, programmed death-1
- PD-L1, programmed death-ligand-1
- PE, phycoerythrin
- RAG, recombination-activating gene
- TCR, T-cell receptor
- TNF-α, tumor necrosis factor-α
- TNP4, NP396–404-specific TCR transgenic
- TTR, transthyretin
- Tolerance
- Treg, regulatory T cell
- pfu, plaque-forming units
Collapse
|
44
|
Kim MJ, Jeong EK, Kwon EY, Joo JY, Lee JY, Choi J. Human CD103(+) dendritic cells promote the differentiation of Porphyromonas gingivalis heat shock protein peptide-specific regulatory T cells. J Periodontal Implant Sci 2014; 44:235-41. [PMID: 25368812 PMCID: PMC4216400 DOI: 10.5051/jpis.2014.44.5.235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/24/2014] [Indexed: 11/15/2022] Open
Affiliation(s)
- Myung-Jin Kim
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Eui-Kyong Jeong
- Department of Molecular Biology, Pusan University College of Natural Sciences, Yangsan, Korea
| | - Eun-Young Kwon
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| |
Collapse
|
45
|
Costa DL, Cardoso TM, Queiroz A, Milanezi CM, Bacellar O, Carvalho EM, Silva JS. Tr-1-like CD4+CD25-CD127-/lowFOXP3- cells are the main source of interleukin 10 in patients with cutaneous leishmaniasis due to Leishmania braziliensis. J Infect Dis 2014; 211:708-18. [PMID: 25139022 DOI: 10.1093/infdis/jiu406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD4(+)CD25(+)FOXP3(+) regulatory T cells have long been shown to mediate susceptibility to Leishmania infection, mainly via interleukin 10 production. In this work, we showed that the main sources of interleukin 10 in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis due to Leishmania braziliensis are CD4(+)CD25(-)CD127(-/low)FOXP3(-) cells. Compared with uninfected controls, patients with CL had increased frequencies of circulating interleukin 10-producing CD4(+)CD25(-)CD127(-/low) cells, which efficiently suppressed tumor necrosis factor α production by the total PBMC population. Also, in CL lesions, interleukin 10 was mainly produced by CD4(+)CD25(-) cells, and interleukin 10 messenger RNA expression was associated with interleukin 27, interleukin 21, and interferon γ expression, rather than with FOXP3 or transforming growth factor β expressions. Active production of both interleukin 27 and interleukin 21, together with production of interferon γ and interleukin 10, was also detected in the lesions. Since these cytokines are associated with the differentiation and activity of Tr-1 cells, our results suggest that this cell population may play an important role in the immunomodulation of CL. Therefore, development of treatments that interfere with this pathway may lead to faster parasite elimination.
Collapse
Affiliation(s)
- Diego L Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto
| | - Tiago M Cardoso
- Immunology Service, University Hospital Professor Edgar Santos, Federal University of Bahia National Institute of Science and Technology in Tropical Diseases (INCT-DT), Salvador, Brazil
| | - Adriano Queiroz
- Immunology Service, University Hospital Professor Edgar Santos, Federal University of Bahia National Institute of Science and Technology in Tropical Diseases (INCT-DT), Salvador, Brazil
| | - Cristiane M Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto
| | - Olívia Bacellar
- Immunology Service, University Hospital Professor Edgar Santos, Federal University of Bahia National Institute of Science and Technology in Tropical Diseases (INCT-DT), Salvador, Brazil
| | - Edgar M Carvalho
- Immunology Service, University Hospital Professor Edgar Santos, Federal University of Bahia National Institute of Science and Technology in Tropical Diseases (INCT-DT), Salvador, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto
| |
Collapse
|
46
|
T-cell TGF-β signaling abrogation restricts medulloblastoma progression. Proc Natl Acad Sci U S A 2014; 111:E3458-66. [PMID: 25082897 DOI: 10.1073/pnas.1412489111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer cell secretion of TGF-β is a potent mechanism for immune evasion. However, little is known about how central nervous system tumors guard against immune eradication. We sought to determine the impact of T-cell TGF-β signaling blockade on progression of medulloblastoma (MB), the most common pediatric brain tumor. Genetic abrogation of T-cell TGF-β signaling mitigated tumor progression in the smoothened A1 (SmoA1) transgenic MB mouse. T regulatory cells were nearly abolished and antitumor immunity was mediated by CD8 cytotoxic T lymphocytes. To define the CD8 T-cell subpopulation responsible, primed CD8 T cells were adoptively transferred into tumor-bearing immunocompromised SmoA1 recipients. This led to generation of CD8(+)/killer cell lectin-like receptor G1 high (KLRG1(hi))/IL-7R(lo) short-lived effector cells that expressed granzyme B at the tumor. These results identify a cellular immune mechanism whereby TGF-β signaling blockade licenses the T-cell repertoire to kill pediatric brain tumor cells.
Collapse
|
47
|
Bezrodnik L, Caldirola MS, Seminario AG, Moreira I, Gaillard MI. Follicular bronchiolitis as phenotype associated with CD25 deficiency. Clin Exp Immunol 2014; 175:227-34. [PMID: 24116927 DOI: 10.1111/cei.12214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 01/06/2023] Open
Abstract
Regulatory T cells [Tregs ; CD4(+) CD25(+) forkhead box protein 3 (FoxP3(+) )] are subsets of T cells involved in the maintenance of peripheral self-tolerance by actively suppressing the activation and expansion of autoreactive T cells. Signalling through the interleukin-2 receptor (IL-2R) contributes to T cell tolerance by controlling three important aspects of regulatory T cell (Treg ) biology. CD25 is the α-chain of the IL-2R that, in concert with the β-chain and γ-chain, constitutes the complete IL-2R. CD25 contributes only to IL-2 binding affinity but not to the recruitment of signalling molecules. However, its importance in the development of a normal immune response is emphasized by the finding that a truncation mutant of CD25 results in an immunodeficiency in humans characterized by an increased susceptibility to viral, bacterial and fungal infections. In 1997, Sharfe et al. described an infant with severe bacterial, viral and fungal infections. Counts of autologous T lymphocytes were moderately low, T cells displayed a weak proliferative response to mitogens in vitro and the patient displayed no rejection of an allogeneic skin graft. However, unlike children with severe combined immunodeficiency (SCID), besides not having circulating T cells, the patient also developed peripheral lymphocytic proliferation and autoimmune primary biliary cirrhosis. We present the first female Argentine patient with mutation in CD25 associated with chronic and severe inflammatory lung disease (follicular bronchiolitis with lymphocyte hyperplasia), eczema and infections. She has no expression of CD25 on CD4(+) T cells and an extremely low amount of Tregs . The molecular study confirmed homozygous missense mutation in the alpha subunit of the IL-2 receptor (CD25αR) (c. 122 a > c; p. Y41S).
Collapse
Affiliation(s)
- L Bezrodnik
- Immunology Service, Ricardo Gutierrez Children's Hospital, Ciudad Autonoma de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
48
|
Abstract
Endothelial dysfunction plays a key role in the development and progression of cardiovascular disease. In patients with hypertension, endothelial dysfunction is characterized by a decrease of vasodilator factors release. Recent evidence highlights the involvement of regulatory T cell in the cardiovascular physiology and pathology. An increasing body of data suggest that an imbalance in the immune system triggers inflammation and compromises the cardiovascular homeostasis. In this mini-review, we will highlight the role of immune regulatory T cells in hypertension-induced vascular dysfunction.
Collapse
|
49
|
Zhong J, Rao X, Braunstein Z, Taylor A, Narula V, Hazey J, Mikami D, Needleman B, Rutsky J, Sun Q, Deiuliis JA, Satoskar AR, Rajagopalan S. T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes 2014; 63:1289-302. [PMID: 24222350 PMCID: PMC4179314 DOI: 10.2337/db13-1094] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A key pathophysiologic role for activated T-cells in mediating adipose inflammation and insulin resistance (IR) has been recently postulated. However, mechanisms underlying their activation are poorly understood. In this study, we demonstrated a previously unrecognized homeostatic role for the costimulatory B7 molecules (CD80 and CD86) in preventing adipose inflammation. Instead of promoting inflammation, which was found in many other disease conditions, B7 costimulation reduced adipose inflammation by maintaining regulatory T-cell (Treg) numbers in adipose tissue. In both humans and mice, expression of CD80 and CD86 was negatively correlated with the degree of IR and adipose tissue macrophage infiltration. Decreased B7 expression in obesity appeared to directly impair Treg proliferation and function that lead to excessive proinflammatory macrophages and the development of IR. CD80/CD86 double knockout (B7 KO) mice had enhanced adipose macrophage inflammation and IR under both high-fat and normal diet conditions, accompanied by reduced Treg development and proliferation. Adoptive transfer of Tregs reversed IR and adipose inflammation in B7 KO mice. Our results suggest an essential role for B7 in maintaining Tregs and adipose homeostasis and may have important implications for therapies that target costimulation in type 2 diabetes.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Xiaoquan Rao
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Zachary Braunstein
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Anne Taylor
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Vimal Narula
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Jeffrey Hazey
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Dean Mikami
- Department of Surgery, The Ohio State University, Columbus, OH
| | | | - Jessica Rutsky
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Qinghua Sun
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jeffrey A. Deiuliis
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Abhay R. Satoskar
- Division of Experimental Pathology, The Ohio State University, Columbus, OH
| | - Sanjay Rajagopalan
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- Corresponding author: Sanjay Rajagopalan,
| |
Collapse
|
50
|
Drennan S, Stafford ND, Greenman J, Green VL. Increased frequency and suppressive activity of CD127(low/-) regulatory T cells in the peripheral circulation of patients with head and neck squamous cell carcinoma are associated with advanced stage and nodal involvement. Immunology 2013; 140:335-43. [PMID: 23826668 DOI: 10.1111/imm.12144] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/11/2022] Open
Abstract
The presence of regulatory T (Treg) cells is thought to be an important mechanism by which head and neck squamous cell carcinoma (HNSCC) successfully evades the immune system. Using multicolour flow cytometry, the frequency and functional capacity of two CD4(+) CD127(low/-) Treg cell populations, separated on the basis of different levels of CD25 expression (CD25(inter) and CD25(high) ), from the peripheral circulation of newly presenting HNSCC patients were assessed with regard to clinicopathological features and healthy controls. The frequency of circulating Treg cells was similar between HNSCC patients and healthy controls, and for patients with HNSCC developing from different subsites (laryngeal compared with oropharyngeal). However, patients with advanced stage tumours and those with nodal involvement had significantly elevated levels of CD4(+) CD25(high) CD127(low/-) Treg cells compared with patients who had early stage tumours (P = 0·03) and those without nodal involvement (P = 0·03), respectively. CD4(+) CD25(high) CD127(low/-) Treg cells from the entire HNSCC patient cohort and from patients whose tumours had metastasized to the lymph nodes were also shown to suppress the proliferation of effector T cells significantly more, compared with those from healthy controls (P = 0·04) or patients with no nodal involvement (P = 0·04). Additionally, CD4(+) CD25(inter) CD127(low/-) Treg cells consistently induced greater suppressive activity than CD4(+) CD25(high) CD127(low/-) Treg cells on the proliferation of the effector T-cell populations (CD4(+) CD25(-) CD127(-/+) and CD4(+) CD25(+) CD127(+) ). Peripheral Treg cells, identified by the CD127(low/-) phenotype, have been shown to be influenced by a patient's tumour stage and/or nodal status in HNSCC; suggesting a role in tumour progression that could be manipulated by future immunotherapy.
Collapse
|