1
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
South AP, Laimer M, Gueye M, Sui JY, Eichenfield LF, Mellerio JE, Nyström A. Type VII Collagen Deficiency in the Oncogenesis of Cutaneous Squamous Cell Carcinoma in Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2023; 143:2108-2119. [PMID: 37327859 DOI: 10.1016/j.jid.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFβ signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Jennifer Y Sui
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
3
|
Luo J, Mao K, Zhu Z, Ye J, Li L, Wang D, Zhou J, Lin F, Li J, Ye J. FUT1-mediated terminal fucosylation acts as a new target to attenuate renal fibrosis. Mol Med 2023; 29:55. [PMID: 37085770 PMCID: PMC10122342 DOI: 10.1186/s10020-023-00639-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/19/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUNDS Renal fibrosis is a common pathologic process of most chronic kidney diseases (CKDs), becoming one of the major public health problems worldwide. Terminal fucosylation plays an important role in physiological homeostasis and pathological development. The present study aimed to explore the role of terminal fucosylation during kidney fibrogenesis and propose a possible anti-fibrosis treatment via suppressing aberrant terminal fucosylation. METHODS We investigated the expression level of fucosyltransferase1 (FUT1) in CKD patients by using public database. Then, we further confirmed the level of terminal fucosylation by UEA-I staining and FUT1 expression in unilateral ureteral obstruction (UUO)-induced renal fibrosis mice. Immunostaining, qPCR, western blotting and wound healing assay were applied to reveal the effect of FUT1 overexpression in human kidney proximal tubular epithelial cell (HK-2). What's more, we applied terminal fucosylation inhibitor, 2-Deoxy-D-galactose (2-D-gal), to determine whether suppressing terminal fucosylation ameliorates renal fibrosis progression in vitro and in vivo. RESULTS Here, we found that the expression of FUT1 significantly increased during renal fibrosis. In vitro experiments showed upregulation of epithelial-mesenchymal transition (EMT) after over-expression of FUT1 in HK-2. Furthermore, in vivo and in vitro experiments indicated that suppression of terminal fucosylation, especially on TGF-βR I and II, could alleviate fibrogenesis via inhibiting transforming growth factor-β (TGF-β)/Smad signaling. CONCLUSIONS The development of kidney fibrosis is attributed to FUT1-mediated terminal fucosylation, shedding light on the inhibition of terminal fucosylation as a potential therapeutic treatment against renal fibrosis.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, China.
| | - Kaifeng Mao
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junli Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Lei Li
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fenwang Lin
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Juan Li
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510900, China.
| | - Junsheng Ye
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
4
|
Hepatocyte growth factor derived from senescent cells attenuates cell competition-induced apical elimination of oncogenic cells. Nat Commun 2022; 13:4157. [PMID: 35851277 PMCID: PMC9293948 DOI: 10.1038/s41467-022-31642-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Cellular senescence and cell competition are important tumor suppression mechanisms that restrain cells with oncogenic mutations at the initial stage of cancer development. However, the link between cellular senescence and cell competition remains unclear. Senescent cells accumulated during the in vivo aging process contribute toward age-related cancers via the development of senescence-associated secretory phenotype (SASP). Here, we report that hepatocyte growth factor (HGF), a SASP factor, inhibits apical extrusion and promotes basal protrusion of Ras-mutated cells in the cell competition assay. Additionally, cellular senescence induced by a high-fat diet promotes the survival of cells with oncogenic mutations, whereas crizotinib, an inhibitor of HGF signaling, provokes the removal of mutated cells from mouse livers and intestines. Our study provides evidence that cellular senescence inhibits cell competition-mediated elimination of oncogenic cells through HGF signaling, suggesting that it may lead to cancer incidence during aging.
Collapse
|
5
|
De Luca F, Di Chio C, Zappalà M, Ettari R. Dihydrochalcones as antitumor agents. Curr Med Chem 2022; 29:5042-5061. [PMID: 35430969 DOI: 10.2174/0929867329666220415113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Dihydrochalcones are a class of secondary metabolites, possessing several biological properties such as antitumor, antioxidant, antibacterial, antidiabetic, estrogenic, anti-inflammatory, antithrombotic, antiviral, neuroprotective and immunomodulator properties; therefore, they are currently considered promising candidates in the drug discovery process. This review intend to debate their pharmacological actions with a particular attention to their antitumor activity against a panel of cancer cell-lines and to the description of the inhibition mechanisms of cell proliferation such as the regulation of angiogenesis, apoptosis, etc etc.
Collapse
Affiliation(s)
- Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| |
Collapse
|
6
|
DGKZ promotes TGFβ signaling pathway and metastasis in triple-negative breast cancer by suppressing lipid raft-dependent endocytosis of TGFβR2. Cell Death Dis 2022; 13:105. [PMID: 35115500 PMCID: PMC8814002 DOI: 10.1038/s41419-022-04537-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Diacylglycerol kinase ζ (DGKZ) is a diacylglycerol kinase that metabolizes diacylglycerol to yield phosphatidic acid, and its function in breast cancer progression remains unclear. In this study, via screening of a CRISPR-Cas9 knockout library containing lipid metabolic genes, DGKZ was identified as a potential prometastatic gene. We first confirmed that high DGKZ expression correlated with tumor progression and poor prognosis in patients. Next, knockout of DGKZ in triple-negative breast cancer cell lines were found to significantly inhibit metastatic behaviors in vitro and in vivo, whereas its overexpression increased the metastatic potential of cell lines. Mechanistic studies based on RNA sequencing and bioinformatic analysis indicated that DGKZ might regulate cell metastasis by promoting epithelial–mesenchymal transition via the transforming growth factor β (TGFβ) signaling pathway. Furthermore, we found that overexpression of DGKZ activated the TGFβ/TGFβR2/Smad3 signaling pathway by inhibiting the degradation of TGFβR2 through suppression of caveolin/lipid raft-dependent endocytosis. Moreover, the caveolin/lipid raft-dependent endocytosis of TGFβR2 was regulated by the metabolite phosphatidic acid, which might alter TGFβR2 partitioning in lipid rafts and nonlipid rafts by affecting the fluidity of the plasma membrane. These findings suggested that DGKZ is a novel promoter of metastasis and that it could be a potential prognostic indicator in patients with triple-negative breast cancer.
Collapse
|
7
|
Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, Ranjbar M, Nouri M, Fattahi A, Imakawa K. Epithelial-mesenchymal transition process during embryo implantation. Cell Tissue Res 2022; 388:1-17. [PMID: 35024964 DOI: 10.1007/s00441-021-03574-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/29/2021] [Indexed: 03/01/2023]
Abstract
The epithelial to mesenchymal transition (EMT) in endometrial epithelial and trophectoderm cells is essential for the progression of embryo implantation and its impairment could cause implantation failure. Therefore, EMT should be tightly regulated in both embryonic and endometrial cells during implantation. Studies reported the involvement of numerous factors in EMT regulation, including hormones, growth factors, transcription factors, microRNAs, aquaporins (AQPs), and ion channels. These factors act through different signaling pathways to affect the expression of epithelial and mesenchymal markers as well as the cellular cytoskeleton. Although the mechanisms involved in cancer cell EMT have been well studied, little is known about EMT during embryo implantation. Therefore, we comprehensively reviewed different factors that regulate the EMT, a key event required for the conceptus implantation to the endometrium.Summary sentence: Abnormal epithelial-mesenchymal transition (EMT) process within endometrial epithelial cells (EECs) or trophoblast cells can cause implantation failure. This process is regulated by various factors. Thus, the objective of this review was to summarize the effective factors on the EMT process during implantation.
Collapse
Affiliation(s)
- Farnaz Oghbaei
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Minoo Ranjbar
- Department of Midwifery, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| |
Collapse
|
8
|
Lamptey J, Czika A, Aremu JO, Pervaz S, Adu-Gyamfi EA, Otoo A, Li F, Wang YX, Ding YB. The role of fascin in carcinogenesis and embryo implantation. Exp Cell Res 2021; 409:112885. [PMID: 34662557 DOI: 10.1016/j.yexcr.2021.112885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
The cytoskeleton, with its actin bundling proteins, plays crucial roles in a host of cellular function, such as cancer metastasis, antigen presentation and trophoblast migration and invasion, as a result of cytoskeletal remodeling. A key player in cytoskeletal remodeling is fascin. Upregulation of fascin induces the transition of epithelial phenotypes to mesenchymal phenotypes through complex interaction with transcription factors. Fascin expression also regulates mitochondrial F-actin to promote oxidative phosphorylation (OXPHOS) in some cancer cells. Trophoblast cells, on the other hand, exhibit similar physiological functions, involving the upregulation of genes crucial for its migration and invasion. Owing to the similar tumor-like characteristics among cancer and trophoblats, we review recent studies on fascin in relation to cancer and trophoblast cell biology; and based on existing evidence, link fascin to the establishment of the maternal-fetal interface.
Collapse
Affiliation(s)
- Jones Lamptey
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China; Kumasi Centre for Collaborative Research in Tropical Medicine, KCCR, UPO, Kumasi, Ghana.
| | - Armin Czika
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - John Ogooluwa Aremu
- Department of Human Anatomy and Histoembryology, Harbin Medical University, Harbin, People's Republic of China
| | - Sadaf Pervaz
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Enoch Appiah Adu-Gyamfi
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Antonia Otoo
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Strait AA, Woolaver RA, Hall SC, Young CD, Karam SD, Jimeno A, Lan Y, Raben D, Wang JH, Wang XJ. Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma. Commun Biol 2021; 4:1005. [PMID: 34433873 PMCID: PMC8387430 DOI: 10.1038/s42003-021-02522-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Transforming growth factor beta (TGFβ) and programmed death-ligand 1 (PD-L1) are often overproduced in refractory squamous cell carcinoma (SCC). We examined spatial patterns of PD-L1+ cells in mouse and human SCCs and found that PD-L1 was primarily expressed on infiltrating leukocytes. Although combined TGFβ and PD-L1 blockade are undergoing cancer clinical trials, there are no predictive markers for therapeutic responders. To address this, we used both a small molecule TGFβ inhibitor in combination with anti-PD-L1 and a bifunctional fusion protein targeting both TGFβ and PD-L1 to treat mouse SCCs and found TGFβ inhibition enhanced PD-L1 blockade-induced tumor eradication in multiple tumor models. Furthermore, we identified distinct cell populations of responders and non-responders to bintrafusp alfa, with responders showing a shift toward a more immune-permissive microenvironment. The cellular and molecular signatures of responders versus non-responders to combined TGFβ and PD-L1 blockade provide important insights into future personalized immunotherapy in SCC. Strait et al describe distinct immune microenvironment profiles of responders versus non-responders to combined TGF-β/PD-L1 blockade in mouse models of squamous cell carcinoma (SCC). The results emphasize the potential of combined TGF-β/PD-L1 targeting and provide important clues to guide personalized SCC immunotherapy.
Collapse
Affiliation(s)
- Alexander A Strait
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Spencer C Hall
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christian D Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Antonio Jimeno
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Yan Lan
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA.,a business of Merck KGaA, Darmstadt, Germany
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. .,Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. .,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA.
| |
Collapse
|
10
|
Dumbrava MG, Lacanlale JL, Rowan CJ, Rosenblum ND. Transforming growth factor beta signaling functions during mammalian kidney development. Pediatr Nephrol 2021; 36:1663-1672. [PMID: 32880018 DOI: 10.1007/s00467-020-04739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022]
Abstract
Aberrant transforming growth factor beta (TGFβ) signaling during embryogenesis is implicated in severe congenital abnormalities, including kidney malformations. However, the molecular mechanisms that underlie congenital kidney malformations related to TGFβ signaling remain poorly understood. Here, we review current understanding of the lineage-specific roles of TGFβ signaling during kidney development and how dysregulation of TGFβ signaling contributes to the pathogenesis of kidney malformation.
Collapse
Affiliation(s)
- Mihai G Dumbrava
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Jon L Lacanlale
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Christopher J Rowan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Paediatrics, University of Toronto, Toronto, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada.
| |
Collapse
|
11
|
Thomson J, Bewicke-Copley F, Anene CA, Gulati A, Nagano A, Purdie K, Inman GJ, Proby CM, Leigh IM, Harwood CA, Wang J. The Genomic Landscape of Actinic Keratosis. J Invest Dermatol 2021; 141:1664-1674.e7. [PMID: 33482222 PMCID: PMC8221374 DOI: 10.1016/j.jid.2020.12.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Actinic keratoses (AKs) are lesions of epidermal keratinocyte dysplasia and are precursors for invasive cutaneous squamous cell carcinoma (cSCC). Identifying the specific genomic alterations driving the progression from normal skin to skin with AK to skin with invasive cSCC is challenging because of the massive UVR-induced mutational burden characteristic at all stages of this progression. In this study, we report the largest AK whole-exome sequencing study to date and perform a mutational signature and candidate driver gene analysis on these lesions. We demonstrate in 37 AKs from both immunosuppressed and immunocompetent patients that there are significant similarities between AKs and cSCC in terms of mutational burden, copy number alterations, mutational signatures, and patterns of driver gene mutations. We identify 44 significantly mutated AK driver genes and confirm that these genes are similarly altered in cSCC. We identify azathioprine mutational signature in all AKs from patients exposed to the drug, providing further evidence for its role in keratinocyte carcinogenesis. cSCCs differ from AKs in having higher levels of intrasample heterogeneity. Alterations in signaling pathways also differ, with immune-related signaling and TGFβ signaling significantly more mutated in cSCC. Integrating our findings with independent gene expression datasets confirms that dysregulated TGFβ signaling may represent an important event in AK‒cSCC progression.
Collapse
Affiliation(s)
- Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Chinedu Anthony Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Abha Gulati
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Ai Nagano
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Karin Purdie
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Irene M Leigh
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
12
|
Ishitsuka Y, Hanaoka Y, Tanemura A, Fujimoto M. Cutaneous Squamous Cell Carcinoma in the Age of Immunotherapy. Cancers (Basel) 2021; 13:1148. [PMID: 33800195 PMCID: PMC7962464 DOI: 10.3390/cancers13051148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent skin cancer globally. Because most cSCC cases are manageable by local excision/radiotherapy and hardly become life-threatening, they are often excluded from cancer registries in most countries. Compared with cutaneous melanoma that originates from the melanin-producing, neural crest-derived epidermal resident, keratinocyte (KC)-derived cancers are influenced by the immune system with regards to their pathogenetic behaviour. Congenital or acquired immunosurveillance impairments compromise tumoricidal activity and raises cSCC incidence rates. Intriguingly, expanded applications of programmed death-1 (PD-1) blockade therapies have revealed cSCC to be one of the most amenable targets, particularly when compared with the mucosal counterparts arisen in the esophagus or the cervix. The clinical observation reminds us that cutaneous tissue has a peculiarly high immunogenicity that can evoke tumoricidal recall responses topically. Here we attempt to redefine cSCC biology and review current knowledge about cSCC from multiple viewpoints that involve epidemiology, clinicopathology, molecular genetics, molecular immunology, and developmental biology. This synthesis not only underscores the primal importance of the immune system, rather than just a mere accumulation of ultraviolet-induced mutations but also reinforces the following hypothesis: PD-1 blockade effectively restores the immunity specially allowed to exist within the fully cornified squamous epithelium, that is, the epidermis.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.H.); (A.T.); (M.F.)
| | | | | | | |
Collapse
|
13
|
Twaroski K, Chen W, Pickett-Leonard M, Tolar J. Role of transforming growth factor-β1 in recessive dystrophic epidermolysis bullosa squamous cell carcinoma. Exp Dermatol 2021; 30:664-675. [PMID: 33595864 DOI: 10.1111/exd.14304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Squamous cell carcinoma (SCC) develops in more than 80% of individuals with the skin blistering disorder recessive dystrophic epidermolysis bullosa (RDEB). In contrast with UV-induced SCC, RDEB-SCC results from skin damage and has a high proliferative and metastatic rate with 5-year survival near zero. Our objective is to determine the mechanisms underlying the increased metastatic tendencies of RDEB-SCC. RDEB-SCC cultured cell lines were treated with RDEB and non-RDEB fibroblast conditioned media and assayed for migration and invasion with and without small molecule inhibitors for TGFβ and other downstream signal transduction pathways. TGFβ1 secreted by RDEB dermal fibroblasts has been found to induce migration and invasion and to increase expression of epithelial-to-mesenchymal transition markers in an RDEB-SCC line. These effects were reversed upon inhibition of TGFβ signalling and its downstream pathways MEK/ERK, P38 kinase and SMAD3. A number of small molecule inhibitors for these pathways are in different phases of various clinical trials and may be applicable to RDEB-SCC patients. Studying the mechanisms of the extreme form RDEB-SCC may inform studies of other types of SCC, as well as lead to better therapies for RDEB patients.
Collapse
Affiliation(s)
- Kirk Twaroski
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Weili Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Michael Pickett-Leonard
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Han D, Wang L, Chen B, Zhao W, Liang Y, Li Y, Zhang H, Liu Y, Wang X, Chen T, Li C, Song X, Luo D, Li Z, Yang Q. USP1-WDR48 deubiquitinase complex enhances TGF-β induced epithelial-mesenchymal transition of TNBC cells via stabilizing TAK1. Cell Cycle 2021; 20:320-331. [PMID: 33461373 PMCID: PMC7889205 DOI: 10.1080/15384101.2021.1874695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive histological subtype of breast cancer and is characterized by poor outcomes and a lack of specific-targeted therapies. Transforming growth factor-β (TGF-β) acts as the key cytokine in the epithelial-mesenchymal transition (EMT) and the metastasis of TNBC. However, the regulatory mechanisms of the TGF-β signaling pathway remain largely unknown. In this study, we identified that the USP1/WDR48 complex could effectively enhance TGF-β-mediated EMT and migration of TNBC cells. Furthermore, lower phosphorylation of Smad2/3, Erk, Jnk, and p38 was noted on the suppression of the expression of endogenous USP1 or WDR48. Moreover, the USP1-WDR48 complex was found to downregulate the polyubiquitination of TAK1 and mediate its in vitro stability. Therefore, our findings have shed a light on the novel role of the USP1/WDR48 complex in promoting TGF-β-induced EMT and migration in TNBC via in vitro stabilization of TAK1.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tong Chen
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dan Luo
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zheng Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
- Research Institute of Breast Cancer, Shandong University, Jinan, China
| |
Collapse
|
15
|
TGFβ Signaling in Photoaging and UV-Induced Skin Cancer. J Invest Dermatol 2021; 141:1104-1110. [PMID: 33358021 DOI: 10.1016/j.jid.2020.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023]
Abstract
UVR is a major etiology for premature skin aging that leads to photoaging and UV-induced skin cancers. In the skin, TGFβ signaling is a growth inhibitor for keratinocytes and a profibrotic factor in the dermis. It exerts context-dependent effects on tumor progression. Chronic UV exposure likely causes TGFβ1/SMAD3 signaling activation and contributes to metalloproteinase-induced collagen degradation and photoinflammation in photoaging. UV irradiation also causes gene mutations in key elements of the TGFβ pathway, including TGFβRI, TGFβRII, SMAD2, and SMAD4. These mutations enable tumor cells to escape from TGFβ-induced growth inhibition and induce genomic instability and cancer stem cells, leading to the initiation, progression, invasion, and metastasis of cutaneous squamous cell carcinoma (cSCC). Furthermore, UV-induced mutations cause TGFβ overexpression in the tumor microenvironment (TME) of cSCC, basal cell carcinoma (BCC), and cutaneous melanoma, resulting in inflammation, angiogenesis, cancer-associated fibroblasts, and immune inhibition, supporting cancer survival, immune evasion, and metastasis. The pleiotropic effects of TGFβ provide possible treatment options for photoaging and skin cancer. Given the high UV-induced mutational burden and immune-repressive TME seen in cSCC, BCC, and cutaneous melanoma, treatment with the combination of a TGFβ signaling inhibitor and immune checkpoint blockade could reverse immune evasion to reduce tumor growth.
Collapse
|
16
|
Richard V, Kumar TRS, Pillai RM. Transitional dynamics of cancer stem cells in invasion and metastasis. Transl Oncol 2021; 14:100909. [PMID: 33049522 PMCID: PMC7557893 DOI: 10.1016/j.tranon.2020.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
At the onset, few cancer cells amidst the tumor bulk, identified as cancer stem cells (CSCs) or early disseminated cancer cells (eDCCs) are capable of survival post conventional therapy and persist as minimal residual disease (MRD). Metastatic subclones emerge both early and late in the life of primary tumor ensuing an ongoing regional clonal evolution of progenitor cells in metastatic and primary tumors. In the last decade, multiple studies proposed various identities of stem-like cells that undergo transitions to adapt to the changing microenvironment as the disease progresses. This review advocates with substantial evidence the dynamic model of tumor propagation by exploring the specific cell types, reversible phenotypic plasticity between the tumorigenic leader seeds and the supporting follower cancer cells both in circulation and in solid tissue to accurately decipher tumor promoting clones and its role in metastatic dissemination and tumor re-growth. (142 words).
Collapse
Affiliation(s)
- Vinitha Richard
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - T R Santhosh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - Radhakrishna M Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India.
| |
Collapse
|
17
|
Lai C, Coltart G, Shapanis A, Healy C, Alabdulkareem A, Selvendran S, Theaker J, Sommerlad M, Rose-Zerilli M, Al-Shamkhani A, Healy E. CD8+CD103+ tissue-resident memory T cells convey reduced protective immunity in cutaneous squamous cell carcinoma. J Immunother Cancer 2021; 9:e001807. [PMID: 33479027 PMCID: PMC7825273 DOI: 10.1136/jitc-2020-001807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tumor infiltrating lymphocytes play a key role in antitumor responses; however, while several memory T-cell subtypes have been reported in inflammatory and neoplastic conditions, the proportional representation of the different subsets of memory T cells and their functional significance in cancer is unclear. Keratinocyte skin cancer is one of the most common cancers globally, with cutaneous squamous cell cancer (cSCC) among the most frequent malignancies capable of metastasis. METHODS Memory T-cell subsets were delineated in human cSCCs and, for comparison, in non-lesional skin and blood using flow cytometry. Immunohistochemistry was conducted to quantify CD103+ cells in primary human cSCCs which had metastasized (P-M) and primary cSCCs which had not metastasized (P-NM). TIMER2.0 (timer.cistrome.org) was used to analyze TCGA cancer survival data based on ITGAE expression. Immunofluorescence microscopy was performed to determine frequencies of CD8+CD103+ cells in P-M and P-NM cSCCs. RESULTS Despite intertumoral heterogeneity, most cSCC T cells were CCR7-/CD45RA- effector/resident memory (TRM) lymphocytes, with naive, CD45RA+/CCR7- effector memory re-expressing CD45RA, CCR7+/L-selectin+ central memory and CCR7+/L-selectin- migratory memory lymphocytes accounting for smaller T-cell subsets. The cSCC CD8+ T-cell population contained a higher proportion of CD69+/CD103+ TRMs than that in non-lesional skin and blood. These cSCC CD69+/CD103+ TRMs exhibited increased IL-10 production, and higher CD39, CTLA-4 and PD-1 expression compared with CD103- TRMs in the tumor. CD103+ cells were more frequent in P-M than P-NM cSCCs. Analysis of TCGA data demonstrated that high expression of ITGAE (encoding CD103) was associated with reduced survival in primary cutaneous melanoma, breast carcinoma, renal cell carcinoma, kidney chromophobe cancer, adrenocortical carcinoma and lower grade glioma. Immunofluorescence microscopy showed that the majority of CD103 was present on CD8+ T cells and that CD8+CD103+ cells were significantly more frequent in P-M than P-NM cSCCs. CONCLUSION These results highlight CD8+CD103+ TRMs as an important functional T-cell subset associated with poorer clinical outcome in this cancer.
Collapse
Affiliation(s)
- Chester Lai
- Dermatopharmacology, Faculty of Medicine, University of Southampton, Southampton, UK
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - George Coltart
- Dermatopharmacology, Faculty of Medicine, University of Southampton, Southampton, UK
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew Shapanis
- Dermatopharmacology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Conor Healy
- Dermatopharmacology, Faculty of Medicine, University of Southampton, Southampton, UK
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ahmad Alabdulkareem
- Dermatopharmacology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sara Selvendran
- Dermatopharmacology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeffrey Theaker
- Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Matthew Sommerlad
- Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Matthew Rose-Zerilli
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Aymen Al-Shamkhani
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Eugene Healy
- Dermatopharmacology, Faculty of Medicine, University of Southampton, Southampton, UK
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
18
|
Sözmen M, Devrim AK, Sudağıdan M, Kabak YB, Yıldırım F. Expression of angiogenic growth factors in canine squamous cell cancers. Biotech Histochem 2020; 96:450-459. [PMID: 33006294 DOI: 10.1080/10520295.2020.1818826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin and subcutaneous tissue tumors are the most common neoplasms in dogs. The most common sites of origin in dogs include digits, skin and the oral cavity including cheek and retromandibular area. We investigated canine squamous cell carcinoma (SCC) samples from 15 dogs and classified them histopathologically according to the degree of differentiation. bFGF, VEGF-C, TGF-β, PDGF-A, PDGF-C and PDGFR-α expressions were assessed using immunohistochemistry to determine the roles of growth factors during SCC. We found that TGF-β1 immunolabeling was elevated significantly compared to healthy controls in SCC originating from nailbeds, while expression of other growth factors did not change significantly. Our findings might explain the role of TGF-β1 in the infiltrative and malignant behavior of SCC originating from nailbeds.
Collapse
Affiliation(s)
- M Sözmen
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - A K Devrim
- Department of Biochemistry, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - M Sudağıdan
- KIT-ARGEM R & D Center, Konya Food and Agriculture University, Konya, Turkey
| | - Y B Kabak
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - F Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
19
|
EPS8 phosphorylation by Src modulates its oncogenic functions. Br J Cancer 2020; 123:1078-1088. [PMID: 32641864 PMCID: PMC7525440 DOI: 10.1038/s41416-020-0976-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/18/2020] [Accepted: 06/17/2020] [Indexed: 11/15/2022] Open
Abstract
Background EPS8 is a scaffolding protein that regulates proliferation, actin dynamics and receptor trafficking. Its expression is increased in cancer, enhancing mitogenesis, migration and tumorigenesis. Src phosphorylates EPS8 at four tyrosine residues, although the function is unknown. Here we investigated the pro-oncogenic role of EPS8 tyrosine phosphorylation at Src target sites in HNSCC. Methods Plasmids expressing EPS8 Src-mediated phosphorylation site mutants (Y485F, Y525F, Y602F, Y774F and all four combined [FFFF]) were expressed in cells containing a normal endogenous level of EPS8. In addition, cells were treated with dasatinib to inhibit Src activity. EPS8 downstream targets were evaluated by western blotting. Wound closure, proliferation, immunofluorescence and tumorgenicity assays were used to investigate the impact of phenylalanine mutations on EPS8 biological functions. Results FOXM1, AURKA, and AURKB were decreased in cells expressing FFFF- and Y602F-EPS8 mutants, while cells harbouring the Y485F-, Y525F- and Y774F-EPS8 mutants showed no differences compared to controls. Consistent with this, dasatinib decreased the expression of EPS8 targets. Moreover, Y602F- and FFFF-EPS8 mutants reduced mitogenesis and motility. Strikingly though, FFFF- or Y602F-EPS8 mutants actually promoted tumorigenicity compared with control cells. Conclusions Phosphorylation of EPS8 at Y602 is crucial for signalling to the cell cycle and may provide insight to explain reduced efficacy of dasatinib treatment.
Collapse
|
20
|
Wang M, Li S, Wang Y, Cheng H, Su J, Li Q. Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition. Toxicol Appl Pharmacol 2020; 401:115110. [PMID: 32533954 DOI: 10.1016/j.taap.2020.115110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Melanoma is characterized by high malignancy and early onset of metastasis. Epithelial-to-mesenchymal transition (EMT) is an early event during tumor metastasis. Tumor cells that develop EMT can escape apoptosis, but they are vulnerable to ferroptosis inducers. Gambogenic acid (GNA), a xanthone found in Gamboge, has cytotoxic effects in highly invasive melanoma cells. This study investigated the anti-melanoma effect and mechanism of action of GNA in TGF-β1-induced EMT melanoma cells. We found that GNA significantly inhibited the invasion, migration and EMT in melanoma cells, and these cells exhibited small mitochondrial wrinkling (an important feature of ferroptosis). An iron chelator, but not an apoptosis inhibitor or a necrosis inhibitor, abolished the inhibitory effects of GNA on proliferation, invasion and migration of TGF-β1-stimulated melanoma cells. GNA upregulated the expression of p53, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in the model cells, contributing to the mechanisms underlying GNA-induced ferroptosis. Collectively, our findings suggest that GNA induces ferroptosis in TGF-β1-stimulated melanoma cells via the p53/SLC7A11/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Shanshan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Youlin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Jingjing Su
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, China; Key Laboratory of Chinese Medicial Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
21
|
Liu M, Xiao Y, Tang W, Li J, Hong L, Dai W, Zhang W, Peng Y, Wu X, Wang J, Chen Y, Bai Y, Lin J, Yang Q, Wang Y, Lin Z, Liu S, Xiong J, Wang J, Xiang L. HOXD9 promote epithelial-mesenchymal transition and metastasis in colorectal carcinoma. Cancer Med 2020; 9:3932-3943. [PMID: 32281284 PMCID: PMC7286477 DOI: 10.1002/cam4.2967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
Background HOXD9, a Hox family member, is involved in cancer growth and metastasis. But, its regulation mechanism at the molecular level particularly in colorectal cancer (CRC), is mostly unknown. Methods The HOXD9 protein expression levels were analyzed using immunofluorescence, immunohistochemistry (IHC) assays, and western blot. The in vivo and in vitro roles of HOXD9 in CRC were determined using colony formation and EdU incorporation, CCK‐8, wound scratch and transwell invasion assay, and animal models. Results Expression of HOXD9 was higher in CRC than in matched healthy tissues. High expression of HOXD9 has significantly associated with the American Joint Committee on Cancer (AJCC) stages, tumor differentiation, lymph node metastasis, and other serious invasions, and it had a poor prognosis. In vitro, HOXD9 encouraged proliferation, movement and EMT processes in cells of CRC. Also, TGF‐β1 promoted the expression of HOXD9 and this effect was dependent on the dose and downregulation of HOXD9 repressed TGF‐β1 ‐induced EMT. In vivo, HOXD9 promoted the invasive and metastasis of CRC cells via orthotopic implantation. Conclusions The ectopic expression of HOXD9 promoted the invasion metastasis in cells of the colorectal tumor by induction of EMT in vitro and vivo.
Collapse
Affiliation(s)
- Mengwei Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Zhang
- Department of Medical Oncology, The First people's Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaying Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjiao Lin
- Department of Gastroenterology, Longgang District Peopl, Hospital, Shenzhen, China
| | - Qiong Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Yusi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang District Peopl, Hospital, Shenzhen, China
| | - Jing Xiong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang District Peopl, Hospital, Shenzhen, China
| | - Li Xiang
- Department of Gastroenterology, Longgang District Peopl, Hospital, Shenzhen, China
| |
Collapse
|
22
|
Weng J, Li S, Lin H, Mei H, Liu Y, Xiao C, Zhu Z, Cai W, Ding X, Mi Y, Wen Y. PCDHGA9 represses epithelial-mesenchymal transition and metastatic potential in gastric cancer cells by reducing β-catenin transcriptional activity. Cell Death Dis 2020; 11:206. [PMID: 32231199 PMCID: PMC7105466 DOI: 10.1038/s41419-020-2398-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) has a high mortality rate, and metastasis is the main reason for treatment failure. It is important to study the mechanism of tumour invasion and metastasis based on the regulation of key genes. In a previous study comparing the expression differences between GES-1 and SGC-7901 cells, PCDHGA9 was selected for further research. In vitro and in vivo experiments showed that PCDHGA9 inhibited invasion and metastasis. A cluster analysis suggested that PCDHGA9 inhibited epithelial-mesenchymal transition (EMT) through the Wnt/β-catenin and TGF-β pathways. Laser confocal techniques and western blotting revealed that PCDHGA9 inhibited the nuclear translocation of β-catenin, regulated T cell factor (TCF)/ /lymphoid enhancer factor (LEF) transcriptional activity, directly impacted the signal transmission of the TGF-β/Smad2/3 pathway, strengthened the adhesion complex, weakened the effects of TGF-β, and blocked the activation of the Wnt pathway. In addition, PCDHGA9 expression was regulated by methylation, which was closely related to poor clinical prognosis. The aim of this study was to elucidate the molecular mechanism by which PCDHGA9 inhibits EMT and metastasis in GC to provide a new theoretical basis for identifying GC metastasis and a new target for improving the outcome of metastatic GC.
Collapse
Affiliation(s)
- Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, 200003, Shanghai, China
| | - Shanbao Li
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, 201800, Shanghai, China
| | - Hao Lin
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU, Munich, 80539, Germany
| | - Haitao Mei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Yang Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of General Surgery, Shanghai Huashan Hospital, Fudan University, 200000, Shanghai, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of General Surgery, Henan Provincial People's Hospital, 450003, Zhengzhou, Henan, China
| | - Weiwei Cai
- Department of Medicine, The Third Hospital of Quanzhou, 362000, Quanzhou, China
| | - Xusheng Ding
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, 200003, Shanghai, China
| | - Yushuai Mi
- Department of General Surgery, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China.
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.
| |
Collapse
|
23
|
Kabak YB, Sozmen M, Devrim AK, Sudagidan M, Yildirim F, Guvenc T, Yarim M, Gulbahar YM, Ahmed I, Karaca E, Inal S. Expression levels of angiogenic growth factors in feline squamous cell carcinoma. Acta Vet Hung 2020; 68:37-48. [PMID: 32384073 DOI: 10.1556/004.2020.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/13/2019] [Indexed: 01/16/2023]
Abstract
Squamous cell carcinoma (SCC) is the most common malignant neoplasm of the skin in cats. Tumour angiogenesis is the pivotal event for tumour progression and metastasis. We assessed protein and gene expression of angiogenic growth factors including bFGF, VEGF-C, TGF-β, PDGF-A, PDGF-C and PDGFR-α that possibly contribute to the angiogenic phenotype of feline SCC (FSCC) and could, therefore, be a good target in the treatment of SCC. In the present study, a total of 27 FSCC cases were investigated. Tumour cases were histopathologically classified as well differentiated (10/27), moderately differentiated (5/27), and poorly differentiated (12/27). The expression levels of the growth factors were detected using immunohistochemistry and assessed semi-quantitatively. Growth factor expression levels were evaluated at different locations: in the oral region, in areas exposed to solar UV radiation including the ears, eyelids and nasal planum, and other miscellaneous locations. Our findings have revealed that FSCC arising from different anatomical sites of the body and showing differences in aggressiveness, metastasis, and prognosis may be angiogenesis dependent, and angiogenic key regulators could play a role in the development of FSCC.
Collapse
Affiliation(s)
- Yonca B. Kabak
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Mahmut Sozmen
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Alparslan K. Devrim
- 2Department of Biochemistry, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Mert Sudagidan
- 3Konya Food and Agriculture University, Kit-Argem, Konya, Turkey
| | - Funda Yildirim
- 4Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Tolga Guvenc
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Murat Yarim
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Yavuz M. Gulbahar
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Ishtiaq Ahmed
- 5Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Efe Karaca
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Sinem Inal
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| |
Collapse
|
24
|
Jiang L, Jiang S, Zhou W, Huang J, Lin Y, Long H, Luo Q. Oxidized low density lipoprotein receptor 1 promotes lung metastases of osteosarcomas through regulating the epithelial-mesenchymal transition. J Transl Med 2019; 17:369. [PMID: 31718700 PMCID: PMC6852786 DOI: 10.1186/s12967-019-2107-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Oxidized low density lipoprotein receptor 1 (OLR1), a type II membrane protein, has been identified as receptor for oxidized low-density lipoprotein. The current study firstly provided evidence that OLR1 regulated EMT and thus promoted lung metastases in osteosarcoma (OS). METHOD All relevant experiments were conducted according to the manufacturer's protocols. In vivo tumor xenograft experiments were carried out in 6- to 16-week-old mice, then maintained in our animal facility under pathogen-free conditions in accordance with the Institutional Guidelines and approval by local authorities. For the use of the clinical materials for research purposes, prior patient's consent and approval from the Institute Research Ethics Committee were obtained. All statistical analyses were performed using IBM SPSS Statistics 22.0 for Windows. RESULT Microarrays were adopted to explore the underlying epigenetic mechanisms related to metastasis. 11 genes were identified among total 26,890 differentially expressed genes. After validated in paired primary and metastatic tissues, OLR1 was selected in the current study. The expression levels of OLR1 were tested in 4 widely used cell lines. Cell proliferation, migration and invasion could be enhanced when OLR1 was overexpressed. OLR1 overexpression also triggered G1 to S + G2 phases of cell cycle. Accordingly, cell proliferations, migration and invasion would be reduced when OLR1 was silenced. OLR1-silencing blocked G1 to S + G2 phases of cell cycle. Also, OLR1 silencing effectively suppressed local tumor carcinogenesis and lung metastases in vivo. Moreover, silencing OLR1 repressed the expression of mesenchymal markers (Snail, Twist, and N-cadherin), but induced an epithelial marker (E-cadherin). CONCLUSION This study indicated a novel molecular mechanism involving the role of OLR1 in lung metastases of osteosarcoma, strengthened the correlation between OLR1 and lung metastases.
Collapse
Affiliation(s)
- Long Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Lung Cancer Institute of Sun Yat-sen University, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shanshan Jiang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Wenjie Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Lung Cancer Institute of Sun Yat-sen University, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Yongbin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Lung Cancer Institute of Sun Yat-sen University, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hao Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Lung Cancer Institute of Sun Yat-sen University, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China.
| |
Collapse
|
25
|
Ma X, Wang M, Yin T, Zhao Y, Wei X. Myeloid-Derived Suppressor Cells Promote Metastasis in Breast Cancer After the Stress of Operative Removal of the Primary Cancer. Front Oncol 2019; 9:855. [PMID: 31552179 PMCID: PMC6746963 DOI: 10.3389/fonc.2019.00855] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Objective: To investigate the role of myeloid-derived suppressor cells (MDSC) in cancer progression after the stress of operative removal and the potential treatment value of MDSC depletion. Summary Background Data: Surgery is the most important treatment strategy in breast cancer. Recent research has provided evidence that operations may promote cancer metastases under some circumstances. Methods: A mouse model of breast cancer (administration of the murine breast cancer 4T1 cells subcutaneously) and the stress of operation were used to compare immune responses and survival outcomes. Flow cytometry was performed to detect the expression of CD11b and Gr1 MDSCs in tumor tissues and lung metastases. Cytokine levels were detected with three-color flow cytometry and enzyme-linked immunosorbent assay (ELISA). MDSCs were isolated and co-cultured with 4T1 cells to identify any morphological change with immunofluorescence. The anti Gr-1 antibody was used to detect the function of the anti-Gr1 treatment in breast cancer. Results: The operative stress impaired the overall survival, leading to an increased number of MDSCs that preferentially infiltrated the tumor microenvironment and promoted tumor metastasis. In both in vitro and in vivo assays, MDSCs induced the epithelial-mesenchymal transition (EMT) of tumor cells through the up-regulation of TGF-beta1, VEGF, and IL-10. Furthermore, a treatment strategy of MDSC depletion was found to reduce pulmonary metastases after operations. Conclusions: The stress of operation could impair the overall survival in mice. The infiltrated MDSCs appear to induce EMT of tumor cells and increase metastases through the up-regulation of TGF-beta1, VEGF, and IL-10 levels. MDSC depletion could be a promising treatment strategy to prevent immune evasion after operations.
Collapse
Affiliation(s)
- Xuelei Ma
- State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Yin
- State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunuo Zhao
- State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Hsiao YH, Hsieh MJ, Yang SF, Chen SP, Tsai WC, Chen PN. Phloretin suppresses metastasis by targeting protease and inhibits cancer stemness and angiogenesis in human cervical cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152964. [PMID: 31153059 DOI: 10.1016/j.phymed.2019.152964] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phloretin, a dihydrochalcone flavonoid, possesses anti-inflammatory activity and inhibits the growth of various cancers. However, the flavonoid's effect on cervical cancer metastasis and angiogenesis remains unknown. PURPOSE In this study, we provide molecular evidence associated with the antimetastatic and antiangiogenic effects of phloretin. METHODS In this study, the anti-invasive effect of phloretin (0-60 μM) in cervical cancer cells was evaluated using the Matrigel invasion assay, gelatin zymography, cell-matrix adhesion assay, wound healing assay, and Western blotting. Antiangiogenic potential of phloretin (0-100 μM) was assessed by the Matrigel tube formation assay. The in vivo antitumor effect of phloretin (10 or 20 mg/kg) was fed by oral gavage and determined using subcutaneous inoculation and tail vein injection in immunodeficient nude mice. RESULTS Phloretin (60 μM) showed marked suppression of invasion and migration through downregulation of matrix metalloproteinase (MMP)-2, MMP-3, and cathepsin S in human SiHa cervical cancer cells. Phloretin (60 μM) reversed the epithelial-mesenchymal transition induced by transforming growth factor-β1 and downregulated mesenchymal markers, such as fibronectin, vimentin, and RhoA. Phloretin (100 μM) treatment significantly inhibited the aldehyde dehydrogenase 1 activity of SiHa cells, reduced the self-renewal properties and stemness signatures of CD44 and Sox-2 in sphere-forming cervical cancer-derived tumor-initiating cells, and inhibited the invasion, MMP-2 activity, and tube formation capacity of human umbilical vein endothelial cells. The ability of phloretin (20 mg/kg) to suppress lung metastasis and tumor growth in SiHa cells was evidenced by tail vein injection and subcutaneous inoculation in a tumor xenograft model. CONCLUSION In summary, the findings indicate that phloretin inhibits the metastatic and angiogenic abilities and cancer stemness of SiHa cells, thereby suggesting that this flavonoid is a promising therapeutic agent for the treatment of human cervical cancer cells.
Collapse
Affiliation(s)
- Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan; Women's Health Research Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shao-Pin Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University, Taichung, Taiwan
| | - Wen-Chi Tsai
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
27
|
Tang Y, He G, Huang S, Zhong K, Liao H, Cai L, Gao Y, Peng Z, Fu S. The long noncoding RNA AK002107 negatively modulates miR-140-5p and targets TGFBR1 to induce epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Oncol 2019; 13:1296-1310. [PMID: 30943320 PMCID: PMC6487707 DOI: 10.1002/1878-0261.12487] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
The abnormal expression of long noncoding RNAs (lncRNAs) is associated with human carcinoma. The present study aimed to investigate the mechanisms underlying the function of lncRNA AK002107 in the progression of hepatocellular carcinoma (HCC). The differential expression of lncRNAs between HCC and paired nontumor tissues was identified using microarrays, and the correlation between the expression of lncRNA AK002107 and the clinical prognosis of HCC was analyzed. We investigated the role of lncRNA AK002107 in HCC tumor biology in vitro using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), colony formation, and Matrigel invasion assays and in vivo by assessing the growth of xenografted HCC tumors. The potential microRNAs that interact with lncRNA AK002107 were identified using online tools and were verified using PCR and luciferase reporter assay. The levels of TGFBR1, E-cadherin, and vimentin were determined using western blot assays. We then further investigated the correlation between expression of lncRNA AK002107 with miR-140-5p and TGFBR1 expression in HCC tissues. The expression of lncRNA AK002107 is frequently upregulated in HCC samples and cell lines. Patients with HCC who have elevated lncRNA AK002107 expression exhibit poorer overall survival and disease-free survival. Silencing lncRNA AK002107 expression significantly inhibited HCC cell proliferation, colony formation, and invasion both in vitro and in vivo. Furthermore, lncRNA AK002107 directly binds to miR-140-5p and significantly inhibits miR-140-5p expression. The functions of lncRNA AK002107 in cell growth and tumor invasion are mediated via miR-140-5p. lncRNA AK002107 upregulated TGFBR1 expression and then induced epithelial-mesenchymal transition (EMT) by inhibiting miR-140-5p expression. The expression of lncRNA AK002107 inversely correlated with miR-140-5p expression and positively correlated with TGFBR1 expression in HCC tissues. In summary, lncRNA AK002107 functions as an oncogene in tumors by inhibiting miR-140-5p, targeting TGFBR1, and then inducing EMT. The lncRNA AK002107/miR-140-5p/TGFBR1/EMT regulatory network may be a valuable target for the development of novel diagnostic and treatment methods for HCC.
Collapse
Affiliation(s)
- Yun‐Hua Tang
- Organ Transplant Centerthe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guo‐Lin He
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shan‐Zhou Huang
- Organ Transplant Centerthe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ke‐Bo Zhong
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hui Liao
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lei Cai
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhen‐Wei Peng
- Department of Oncologythe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shun‐Jun Fu
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
28
|
Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Cancers (Basel) 2018; 10:E247. [PMID: 30060514 PMCID: PMC6115974 DOI: 10.3390/cancers10080247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
Collapse
Affiliation(s)
- Sharmila Velapasamy
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Christopher W Dawson
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Ian C Paterson
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lee Fah Yap
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Liu X, Qiao B, Zhao T, Hu F, Lam AKY, Tao Q. Sox2 promotes tumor aggressiveness and epithelial‑mesenchymal transition in tongue squamous cell carcinoma. Int J Mol Med 2018; 42:1418-1426. [PMID: 29956740 PMCID: PMC6089783 DOI: 10.3892/ijmm.2018.3742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is highly malignant and poorly differentiated, resulting in a high frequency of local recurrence and distant metastases. Sox2 (Sry-box2), an important factor in embryonic development and cell differentiation, has been shown to associate with malignant phenotypes and epithelial-mesenchymal transition (EMT) progression in numerous types of human tumors. However, the clinical relevance and molecular mechanisms of Sox2 in TSCC remain unclear. In the present study, the expression levels of Sox2 were assessed in 61 pairs of TSCC samples and corresponding adjacent non-cancerous tissues using immunohistochemical methods. Associations between Sox2 expression and clinicopathological features were evaluated. Furthermore, Sox2 was overexpressed and inhibited using full-length Sox2 cDNA and short hairpin RNA (shRNA) transfection in UM2 and Cal27 cell lines, respectively. The malignant phenotypes were assessed by plate clone formation assays, wound-healing assays and Transwell assays. EMT markers (E-cadherin, vimentin, Twist, Slug and Snail) and β-catenin were detected by reverse transcription-polymerase chain reaction and western blot analysis following the alterations of Sox2 expression. The results indicated that Sox2 expression was markedly upregulated in TSCC samples and was significantly associated with tumor growth (pT stage), cell differentiation, lymphatic metastasis (pN stage) and clinical stage (pTNM stage). Cal27-shRNA-Sox2 cells not only exhibited a decreased capacity for cell proliferation, but also suppressed cell migration and invasion, and an attenuated colony formation capacity. By contrast, UM2-Sox2 cells exhibited accelerated cell malignant phenotypes and EMT progression. Moreover, when the expression of Sox2 was decreased by shRNA transduction, β-catenin expression was attenuated. An opposing phenomenon was observed in UM2-Sox2 cells. In conclusion, this study suggests that Sox2 expression serves a role in TSCC malignant phenotypes and EMT progression, and that β-catenin may act as a modulated factor in this progression.
Collapse
Affiliation(s)
- Xingguang Liu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Bin Qiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tengda Zhao
- Department of Oral and Maxillofacial Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fengchun Hu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Qian Tao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055
| |
Collapse
|
30
|
Sundaram GM, Quah S, Sampath P. Cancer: the dark side of wound healing. FEBS J 2018; 285:4516-4534. [PMID: 29905002 DOI: 10.1111/febs.14586] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Complex multicellular organisms have evolved sophisticated mechanisms to rapidly resolve epithelial injuries. Epithelial integrity is critical to maintaining internal homeostasis. An epithelial breach represents the potential for pathogen ingress and fluid loss, both of which may have severe consequences if not limited. The mammalian wound healing response involves a finely tuned, self-limiting series of cellular and molecular events orchestrated by the transient activation of specific signalling pathways. Accurate regulation of these events is essential; failure to initiate key steps at the right time delays healing and leads to chronic wounds, while aberrant initiation of wound healing processes may produce cell behaviours that promote cancer progression. In this review, we discuss how wound healing pathways co-opted in cancer lose their stringent regulation and become compromised in their reversibility. We hypothesize on how the commandeering of wound healing 'master regulators' is involved in this process, and also highlight the implications of these findings in the treatment of both chronic wounds and cancer.
Collapse
Affiliation(s)
- Gopinath M Sundaram
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Shan Quah
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
31
|
Yang R, Liang J, Xu GX, Ding LM, Huang HM, Su QZ, Yan J, Li YC. Human cytomegalovirus glycoprotein B inhibits migration of breast cancer MDA-MB-231 cells and impairs TGF-β/Smad2/3 expression. Oncol Lett 2018; 15:7730-7738. [PMID: 29849800 PMCID: PMC5962863 DOI: 10.3892/ol.2018.8344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a leading cause of cancer-associated mortality in females worldwide and evidence suggests that human cytomegalovirus (HCMV) infection may be implicated in the progress of breast cancer. HCMV glycoprotein B (gB) is the most abundant envelope protein and serves an important role in host cell entry. The present study aimed to clarify the role of HCMV gB in breast cancer cells. A HCMV gB construct (UL55) was generated and stable vUL55 gene lentivirus-transfected MDA-MB-231 cells were established. Subsequently, the effect of HCMV gB on the apoptosis and proliferation of MDA-MB-231 cells was measured by flow cytometry and Cell Counting Kit-8 assay. Furthermore, whether HCMV gB may modulate MDA-MB-231 cell migration was examined using Transwell and cell scratch assays. In addition, alterations in HCMV gB-modulated protein levels of transforming growth factor-β (TGF-β) and Mothers against decapentaplegic homologs 2/3 (Smad2/3) were detected using western blot analysis. The results indicated that UL55 cDNA was stably transfected into MDA-MB-231 cells, and that HCMV gB protein was stably expressed. No significant differences in cell apoptosis and proliferation between transfected (231-GB-OE) and negative control (231-NC) cells were observed, while the rate of cell migration was significantly decreased in the 231-GB-OE cells compared with the 231-NC cells. Additionally, the expression level of TGF-β and phosphorylation level of Smad2/3 were also decreased in 231-GB-OE cells compared with the 231-NC cells. Although certain previous studies indicated that HCMV infection was associated with breast carcinogenesis, the results of the present study indicate that the envelope protein HCMV gB exhibits no effect on cell apoptosis and proliferation, but inhibits breast cancer cell migration. This may be due to downregulated TGF-β/Smad signaling. Taken together, these studies may assist in developing anti-TGF-β agents that contribute to tumor suppression.
Collapse
Affiliation(s)
- Rui Yang
- Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jie Liang
- Institute of Immunology, University of Heidelberg, Heidelberg D-69120, Germany
| | - Guo-Xiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Liu-Mei Ding
- Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Hong-Mei Huang
- Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Qi-Zhu Su
- Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jing Yan
- Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Yun-Chun Li
- Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
32
|
Rose AM, Spender LC, Stephen C, Mitchell A, Rickaby W, Bray S, Evans AT, Dayal J, Purdie KJ, Harwood CA, Proby CM, Leigh IM, Coates PJ, Inman GJ. Reduced SMAD2/3 activation independently predicts increased depth of human cutaneous squamous cell carcinoma. Oncotarget 2018; 9:14552-14566. [PMID: 29581863 PMCID: PMC5865689 DOI: 10.18632/oncotarget.24545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/10/2018] [Indexed: 11/25/2022] Open
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is rising. Whilst the majority are cured surgically, aggressive metastatic cSCC carry a poor prognosis. Inactivating mutations in transforming growth factor beta (TGF-β) receptors have been identified amongst genetic drivers of sporadic tumours and murine models of cSCC, suggesting a tumour suppressor function for TGF-β in normal skin. However, paradoxically, TGF-β acts as a tumour promoter in some murine model systems. Few studies have analysed the role of TGF-β/activin signalling in human normal skin, hyper-proliferative skin disorders and cSCC. Antibodies recognising phospho-SMAD proteins which are activated during canonical TGF-β/activin signalling were validated for use in immunohistochemistry. A tissue microarray comprising FFPE lesional and perilesional tissue from human primary invasive cSCC (n=238), cSCC in-situ (n=2) and keratocanthoma (n=9) were analysed in comparison with tissues from normal human scalp (n=10). Phosphorylated SMAD2 and SMAD3 were detected in normal interfollicular epidermal keratinocytes and were also highly localised to inner root sheath, matrix cells and Keratin 15 positive cells. Lesional cSCC tissue had significantly reduced activated SMAD2/3 compared to perilesional tissue, consistent with a tumour suppressor role for SMAD2/3 activators in cSCC. Increased cSCC tumour thickness inversely correlated with the presence of phospho-SMADs in tumour tissue suggesting that a reduction in canonical TGF-β/activin signalling may be associated with disease progression.
Collapse
Affiliation(s)
- Aidan M Rose
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK.,Department of Plastic and Reconstructive Surgery, Ninewells Hospital and Medical School, NHS Tayside, Dundee, Scotland, DD1 9SY, UK
| | - Lindsay C Spender
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Christopher Stephen
- Department of Plastic and Reconstructive Surgery, Ninewells Hospital and Medical School, NHS Tayside, Dundee, Scotland, DD1 9SY, UK
| | - Alastair Mitchell
- Department of Dermatology, Ninewells Hospital and Medical School, NHS Tayside, Dundee, Scotland, DD1 9SY, UK
| | - William Rickaby
- Dermatopathology Laboratory, St. John's Institute of Dermatology, St.Thomas' Hospital, London, SE1 7EH, UK
| | - Susan Bray
- Tayside Tissue Bank, Ninewells Hospital and Medical School, NHS Tayside, Dundee, Scotland, DD1 9SY, UK
| | - Alan T Evans
- Department of Pathology, Ninewells Hospital and Medical School, NHS Tayside, Dundee, Scotland, DD1 9SY, UK
| | - Jasbani Dayal
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Karin J Purdie
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Irene M Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK.,Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Philip J Coates
- Tayside Tissue Bank, Ninewells Hospital and Medical School, NHS Tayside, Dundee, Scotland, DD1 9SY, UK.,Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, 656 53, Czech Republic
| | - Gareth J Inman
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| |
Collapse
|
33
|
FPPS mediates TGF-β1-induced non-small cell lung cancer cell invasion and the EMT process via the RhoA/Rock1 pathway. Biochem Biophys Res Commun 2018; 496:536-541. [PMID: 29337059 DOI: 10.1016/j.bbrc.2018.01.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023]
Abstract
Farnesyl pyrophosphate synthase (FPPS), a key enzyme in the mevalonate pathway, was recently shown to play a role in cancer progression. However, its role in non-small cell lung cancer (NSCLC) metastasis and the underlying mechanism remain unclear. In this study, FPPS expression was significantly correlated with TNM stage, and metastasis. Inhibition or knockdown of FPPS blocked TGF-β1-induced cell invasion and epithelial-to-mesenchymal transition (EMT) process. FPPS expression of FPPS was induced by TGF-β1 and FPPS promoted cell invasion and EMT via the RhoA/Rock1 pathway. In conclusion, FPPS mediates TGF-β1-induced lung cancer cell invasion and EMT via the RhoA/Rock1 pathway. These findings suggest new treatment strategies to reduce mortality associated with metastasis in patients with NSCLC.
Collapse
|
34
|
Yang G, Zeng X, Wang M, Wu A. The TET2/E-cadherin/β-catenin regulatory loop confers growth and invasion in hepatocellular carcinoma cells. Exp Cell Res 2018; 363:218-226. [PMID: 29331390 DOI: 10.1016/j.yexcr.2018.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022]
Abstract
The poor outcome of hepatocellular carcinoma (HCC) is mainly due to the development of fast growth, invasion and metastasis. The role of TET2 has been implicated in some cancer types, but its role and mechanisms in HCC remains elusive. In this study, our findings indicated that TET2 expression frequently increased in HCC and that TET2 expressional upregulation correlated with HCC progression. TET2 knockdown inhibited HCC cells proliferation in vitro and growth in vivo, and inhibited the invasion potential of HCC cells. Mechanically, TET2 knockdown upregulated E-cadherin expression and then attenuated β-catenin transactivation in HCC cells. TET2 repressed E-cadherin expression via recruited HDAC1 to E-cadherin promoter to reduce the H3K9Ac and H4K16Ac levels. Moreover, β-catenin signaling transcriptionally regulated TET2 expression to form a positive feedback in HCC cells. These findings indicate that the dysregulation of TET2/E-cadherin/β-catenin regulatory loop is a critical oncogenic event in HCC progression.
Collapse
Affiliation(s)
- Guohua Yang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, NO. 253 Guangzhou Industrial Avenue, Guangzhou 510282, Guangdong Province, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, NO. 78 Hengzhigang Road, Guangzhou 510095, Guangdong, China
| | - Xiang Zeng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, NO. 78 Hengzhigang Road, Guangzhou 510095, Guangdong, China
| | - Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, NO. 253 Guangzhou Industrial Avenue, Guangzhou 510282, Guangdong Province, China
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, NO. 253 Guangzhou Industrial Avenue, Guangzhou 510282, Guangdong Province, China.
| |
Collapse
|
35
|
Wu F, Weigel KJ, Zhou H, Wang XJ. Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2018; 50:98-105. [PMID: 29206939 PMCID: PMC5846704 DOI: 10.1093/abbs/gmx127] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling either promotes or inhibits tumor formation and/or progression of many cancer types including squamous cell carcinoma (SCC). Canonical TGF-β signaling is mediated by a number of downstream proteins including Smad family proteins. Alterations in either TGF-β or Smad signaling can impact cancer. For instance, defects in TGF-β type I and type II receptors (TGF-βRI and TGF-βRII) and in Smad2/3/4 could promote tumor development. Conversely, increased TGF-β1 and activated TGF-βRI and Smad3 have all been shown to have tumor-promoting effects in experimental systems of human and mouse SCCs. Among TGF-β/Smad signaling, only TGF-βRII or Smad4 deletion in mouse epithelium causes spontaneous SCC in the mouse model, highlighting the critical roles of TGF-βRII and Smad4 in tumor suppression. Herein, we review the dual roles of the TGF-β/Smad signaling pathway and related mechanisms in SCC, highlighting the potential benefits and challenges of TGF-β/Smad-targeted therapies.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelsey J Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Elmansuri AZ, Tanino MA, Mahabir R, Wang L, Kimura T, Nishihara H, Kinoshita I, Dosaka-Akita H, Tsuda M, Tanaka S. Novel signaling collaboration between TGF-β and adaptor protein Crk facilitates EMT in human lung cancer. Oncotarget 2017; 7:27094-107. [PMID: 27027347 PMCID: PMC5053635 DOI: 10.18632/oncotarget.8314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
The signaling adaptor protein Crk has been shown to play an important role in various human cancers. However, its regulatory machinery is not clear. Here, we demonstrated that Crk induced EMT in A549 human lung adenocarcinoma cells through differential regulation of Rac1/Snail and RhoA/Slug, leading to decreased expression of E-cadherin and increased N-cadherin, fibronectin, and MMP2 expression. Cancer cells with mesenchymal features produced TGF-β and also increased the levels of TGF-β receptor. TGF-β increased the endogenous levels of Crk and also augmented Crk-dependent expression of Snail and Slug, and conversely TGF-β receptor inhibitor suppressed the levels of Snail and Slug. Overexpression of Crk was observed at the invasive front of human lung cancer tissues and was significantly associated with poor prognosis. Thus, TGF-β and Crk collaborate to form a positive feedback loop to facilitate EMT, which may lead to the malignancy of human cancers possibly being affected by their microenvironment.
Collapse
Affiliation(s)
- Aiman Z Elmansuri
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mishie A Tanino
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Roshan Mahabir
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Lei Wang
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Taichi Kimura
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichiro Kinoshita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
37
|
Zhou S, Cecere R, Philip A. CD109 released from human bone marrow mesenchymal stem cells attenuates TGF-β-induced epithelial to mesenchymal transition and stemness of squamous cell carcinoma. Oncotarget 2017; 8:95632-95647. [PMID: 29221155 PMCID: PMC5707049 DOI: 10.18632/oncotarget.21067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Although there is increasing evidence that human bone marrow mesenchymal stem cells (hBM-MSCs) play an important role in cancer progression, the underlying mechanisms are poorly understood. Transforming growth factor β (TGF-β) is an important pro-metastatic cytokine. We have previously shown that CD109, a glycosylphosphatidylinositol-anchored protein, is a TGF-β co-receptor and a strong inhibitor of TGF-β signalling. Moreover, CD109 can be released from the cell surface. In the current study, we examined whether hBM-MSCs regulate the malignant properties of squamous cell carcinoma cells, and whether CD109 plays a role in mediating the effect of hBM-MSCs on cancer cells. Here we show that hBM-MSC-conditioned medium decreases proliferation and induces apoptosis in human squamous carcinoma cell lines, A431 and FaDu. Importantly, hBM-MSC-conditioned medium markedly suppresses markers of epithelial-to-mesenchymal transition and stemness, and concomitantly decreases cell migration, invasion, and spheroid formation in A431 and FaDu cells. In addition, knockdown of CD109 in hBM-MSCs abrogates the anti-malignant activity of hBM-MSC-conditioned medium on A431 and FaDu cells. Furthermore, overexpression of CD109 in A431 cells decreases their malignant traits. Together, our findings suggest that hBM-MSCs inhibit the malignant traits of squamous cell carcinoma cells by a paracrine effect via released factors and that CD109 released from hBM-MSCs, at least partially, mediates these effects.
Collapse
Affiliation(s)
- Shufeng Zhou
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Renzo Cecere
- Division of Cardiac Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
38
|
Okumura K, Kagawa N, Saito M, Yoshizawa Y, Munakata H, Isogai E, Fukagawa T, Wakabayashi Y. CENP-R acts bilaterally as a tumor suppressor and as an oncogene in the two-stage skin carcinogenesis model. Cancer Sci 2017; 108:2142-2148. [PMID: 28795467 PMCID: PMC5665765 DOI: 10.1111/cas.13348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
CENP‐R is a component of the CENP‐O complex, including CENP‐O, CENP‐P, CENP‐Q, CENP‐R, and CENP‐U and is constitutively localized to kinetochores throughout the cell cycle in vertebrates. CENP‐R‐deficient chicken DT40 cells are viable and show a very minor effect on mitosis. To investigate the functional roles of CENP‐R in vivo, we generated CENP‐R‐deficient mice (Cenp‐r−/−). Mice heterozygous or homozygous for Cenp‐r null mutation are viable and healthy, with no apparent defect in growth and morphology, indicating Cenp‐r is not essential for normal development. Accordingly, to investigate the role of the Cenp‐r gene in skin carcinogenesis, we subjected Cenp‐r−/− mice to the 7,12‐dimethylbenz(a)anthracene (DMBA)/TPA chemical carcinogenesis protocol and monitored tumor development. As a result, Cenp‐r−/− mice initially developed significantly more papillomas than control wild‐type mice. However, papillomas in Cenp‐r−/− mice showed a decrease of proliferative cells and an increase of apoptotic cells. As a result, they did not grow bigger and some papillomas showed substantial regression. Furthermore, papillomas in Cenp‐r−/− mice showed lower frequency of malignant conversion to squamous cell carcinomas. These results indicate Cenp‐r functions bilaterally in cancer development: during early developmental stages, Cenp‐r functions as a tumor suppressor, but during the expansion and progression of papillomas it functions as a tumor‐promoting factor.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Naoko Kagawa
- Department of Molecular Genetics, National Institute of Genetics, The Graduate University for Advanced Studies, Mishima, Japan
| | - Megumi Saito
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasuhiro Yoshizawa
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Haruka Munakata
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Eriko Isogai
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics, The Graduate University for Advanced Studies, Mishima, Japan.,Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuichi Wakabayashi
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
39
|
Wu L, Han L, Zhou C, Wei W, Chen X, Yi H, Wu X, Bai X, Guo S, Yu Y, Liang L, Wang W. TGF-β1-induced CK17 enhances cancer stem cell-like properties rather than EMT in promoting cervical cancer metastasis via the ERK1/2-MZF1 signaling pathway. FEBS J 2017; 284:3000-3017. [PMID: 28703907 DOI: 10.1111/febs.14162] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
Tumor metastasis remains a major obstacle for improving overall cancer survival in cervical cancer (CC), which may be due to the existence of tumor microenvironment-related cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT). The mechanism underlying these processes needs to be further elucidated. Here, we report that TGF-β1, one of the key microenvironmental stimuli, can enhance CSC characteristics, facilitate the EMT, and induce CK17. Silencing CK17 expression attenuated CSC-like properties without affecting the EMT markers induced by TGF-β1, whereas forced overexpression of CK17 promoted lymphatic metastasis in vivo even without EMT inducement. Inhibitors of ERK1/2 signaling drastically decreased the induction of CK17 mediated by TGF-β1. By combined computational and experimental approaches, we identified and validated that MZF1 was a key transcription factor binding to the promoter of CK17. Taken together, these results demonstrate that CK17 induced by the TGF-β1-ERK1/2-MZF1 signaling pathway facilitates metastasis by promoting the acquisition of CSC properties rather than by inducing the EMT process in CC, suggesting that this CK17-related signaling pathway might be a suitable target for the development of therapy for CC metastasis.
Collapse
Affiliation(s)
- Lanfang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Lingfei Han
- Department of Minimally Invasive Gynecologic Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenfei Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenfei Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Yi
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangguang Wu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangyang Bai
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Kim B, Kim YS, Ahn HM, Lee HJ, Jung MK, Jeong HY, Choi DK, Lee JH, Lee SR, Kim JM, Lee DS. Peroxiredoxin 5 overexpression enhances tumorigenicity and correlates with poor prognosis in gastric cancer. Int J Oncol 2017; 51:298-306. [PMID: 28535004 DOI: 10.3892/ijo.2017.4013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/07/2017] [Indexed: 11/05/2022] Open
|
41
|
Agarwal R, Agarwal P. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate? Exp Biol Med (Maywood) 2017; 242:374-383. [PMID: 27798117 PMCID: PMC5298538 DOI: 10.1177/1535370216675065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 01/29/2023] Open
Abstract
Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
Collapse
Affiliation(s)
- Renu Agarwal
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor 47000, Malaysia
| | - Puneet Agarwal
- Department of Ophthalmology, School of Medicine, International Medical University, Jalan Rasah, Seremban 70300, Malaysia
| |
Collapse
|
42
|
Direct regulation of FOXK1 by C-jun promotes proliferation, invasion and metastasis in gastric cancer cells. Cell Death Dis 2016; 7:e2480. [PMID: 27882939 PMCID: PMC5260906 DOI: 10.1038/cddis.2016.225] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/19/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
Forkhead box (FOX) K1 is a member of the FOX transcription factor superfamily. High FOXK1 expression is associated with several cancers. However, whether FOXK1 expression contributes to gastric cancer (GC) development and progression remains unknown. We analyzed the FOXK1 promoter using the Promo software and found several binding sequence transcription factors, including c-jun. However, the molecular mechanism by which FOXK1 affects the c-jun-mediated malignant phenotype is poorly understood. Here, we found that FOXK1 protein expression was higher in 8/10 (80.0%) fresh cancer tissues compared with that in adjacent normal tissues. FOXK1 overexpression enhanced the proliferation, migration and invasion of GC cells. Moreover, FOXK1 expression was stimulated by transforming growth factor-β1 (TGF-β1). FOXK1 acted as a potential epithelial-to-mesenchymal transition (EMT) inducer by stimulating vimentin expression and inducing the loss of E-cadherin in stable FOXK1-transfected cells. The results of promoter reporter and chromatin immunoprecipitation assays demonstrated that c-jun directly binds to and activates the human FOXK1 gene promoter. A positive correlation was observed between the expression patterns of FOXK1 and c-jun in GC cells and tissue. FOXK1 and c-jun expression were correlated with tumor progression and represented significant predictors of overall survival in GC patients. However, the siRNA-mediated repression of c-jun in FOXK1-overexpressing cells reversed EMT, as well as the proliferative and metastatic phenotypes. In vivo, c-jun promoted FOXK1-mediated proliferation and metastasis via orthotopic implantation. The evidence presented here suggests that FOXK1-directed regulation by c-jun promote the development and progression of human GC.
Collapse
|
43
|
Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression. J Clin Med 2016; 5:E96. [PMID: 27827889 PMCID: PMC5126793 DOI: 10.3390/jcm5110096] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Abstract
Osteosarcomas are the most prevalent malignant primary bone tumors in children. Despite intensive efforts to improve both chemotherapeutics and surgical management, 40% of all osteosarcoma patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma remains poor; less than 30% of patients who present metastases will survive five years after initial diagnosis. Treating metastatic osteosarcoma thus remains a challenge. One of the main characteristics of osteosarcomas is their ability to deregulate bone remodelling. The invasion of bone tissue by tumor cells indeed affects the balance between bone resorption and bone formation. This deregulation induces the release of cytokines or growth factors initially trapped in the bone matrix, such as transforming growth factor-β (TGF-β), which in turn promote tumor progression. Over the past years, there has been considerable interest in the TGF-β pathway within the cancer research community. This review discusses the involvement of the TGF-β signalling pathway in osteosarcoma development and in their metastatic progression.
Collapse
Affiliation(s)
- Audrey Lamora
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
- INSERM Liliane Bettencourt School, 75014 Paris, France.
| | - Julie Talbot
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Mathilde Mullard
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Benedicte Brounais-Le Royer
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Françoise Redini
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Franck Verrecchia
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| |
Collapse
|
44
|
Yan Q, Zhang W, Wu Y, Wu M, Zhang M, Shi X, Zhao J, Nan Q, Chen Y, Wang L, Cheng T, Li J, Bai Y, Liu S, Wang J. KLF8 promotes tumorigenesis, invasion and metastasis of colorectal cancer cells by transcriptional activation of FHL2. Oncotarget 2016; 6:25402-17. [PMID: 26320172 PMCID: PMC4694840 DOI: 10.18632/oncotarget.4517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 07/03/2015] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Krüppel-like factor (KLF)8 plays an important role in the formation of several human tumors, including colorectal cancer. We recently identified four-and-a-half LIM protein 2 (FHL2) as a critical inducer of the epithelial-to-mesenchymal transition (EMT) and invasion. However, the molecular mechanism by which KLF8 affects FHL2-mediated tumor proliferation, EMT and metastasis remains unknown. Here, we showed that KLF8 overexpression promoted EMT and metastatic phenotypes. KLF8 expression was stimulated by transforming growth factor (TGF)-β1. Moreover, KLF8 acted as a potential EMT inducer by stimulating vimentin expression and inducing a loss of E-cadherin in stable KLF8-transfected cells. KLF8 overexpression induced a strong increase in FHL2 expression, and a positive correlation between the expression patterns of KLF8 and FHL2 was observed in CRC cells. Promoter reporter and chromatin immunoprecipitation (ChIP) assays demonstrated that KLF8 directly bound to and activated the human FHL2 gene promoter. However, siRNA-mediated repression of FHL2 in KLF8-overexpressing cells reversed the EMT and the proliferative and metastatic phenotypes. In vivo, KLF8 promoted FHL2-mediated proliferation and metastasis via orthotopic implantation. Taken together, this work identified KLF8-induced FHL2 activation as a novel and critical signaling mechanism underlying human breast/colorectal cancer invasion and metastasis.
Collapse
Affiliation(s)
- Qingqing Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiyan Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengnan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinpeng Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinjun Zhao
- Department of Rheumatism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingzhen Nan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Long Wang
- Division of Vascular Interventional Radiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianming Cheng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiachu Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Zeng Y, Zhu J, Shen D, Qin H, Lei Z, Li W, Huang JA, Liu Z. Repression of Smad4 by miR‑205 moderates TGF-β-induced epithelial-mesenchymal transition in A549 cell lines. Int J Oncol 2016; 49:700-8. [PMID: 27279345 DOI: 10.3892/ijo.2016.3547] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 11/06/2022] Open
Abstract
The TGF-β/Smad signaling pathway plays important roles in cancer cell proliferation, apoptosis, differentiation, angiogenesis and epithelial-mesenchymal transition (EMT), which is the key event in the early stages of cancer metastasis and enhances the capability of cell migration and invasion. Smad4 acts as the only Co-Smad of TGF/Smad signaling pathway and plays the key role in TGF-β-mediated EMT. Nevertheless, the mRNA regulation mechanisms of Smad4 in human non-small cell lung cancer (NSCLC) remains largely unclear. Computational algorithms predicted that the 3'-UTR of Smad4 is a target of miR‑205. Here, we validated that miR‑205 could directly bind to 3'-UTR of Smad4 by luciferase assays. Moreover, we investigated the functional roles of miR‑205 and its molecular link to Smad4 in lung cancer cells. In this study, we confirmed that overexpression of miR‑205 suppressed the expression of Smad4, in turn, weakened the TGF-β/Smad signaling pathway and inhibited TGF-β/Smad4-induced EMT, invasion and migration ultimately. Furthermore, this study shows that miR‑205 can serve as a promising therapeutic target of highly aggressive NSCLC.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Jianjie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Dan Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Hualong Qin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Zhe Lei
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, P.R. China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
46
|
NEAGU MONICA, CARUNTU CONSTANTIN, CONSTANTIN CAROLINA, BODA DANIEL, ZURAC SABINA, SPANDIDOS DEMETRIOSA, TSATSAKIS ARISTIDISM. Chemically induced skin carcinogenesis: Updates in experimental models (Review). Oncol Rep 2016; 35:2516-28. [PMID: 26986013 PMCID: PMC4811393 DOI: 10.3892/or.2016.4683] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology.
Collapse
Affiliation(s)
- MONICA NEAGU
- 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| | - CONSTANTIN CARUNTU
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Dermatology, 'Prof. N. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 79811, Romania
| | | | - DANIEL BODA
- Department of Dermatology, 'Prof. N. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 79811, Romania
| | - SABINA ZURAC
- Department of Pathology, 'Colentina' Clinical Hospital, Bucharest 72202, Romania
| | - DEMETRIOS A. SPANDIDOS
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71409, Greece
| | - ARISTIDIS M. TSATSAKIS
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
47
|
Jiang HL, Sun HF, Gao SP, Li LD, Hu X, Wu J, Jin W. Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-β/SMAD signaling. Oncotarget 2016; 6:16352-65. [PMID: 25970785 PMCID: PMC4599274 DOI: 10.18632/oncotarget.3877] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive tumor subtype associated with a poor prognosis. The mechanism involved in TNBC progression remains largely unknown. To date, there are no effective therapeutic targets for this tumor subtype. In this study, by performing quantitative proteomic analyses in highly metastatic and parental breast cancer cell line, we found that RAB1B, a member of the RAS oncogene family, was significantly down-regulated in highly metastatic breast cancer cells. Moreover, down-regulation of RAB1B was also found to promote the proliferation and migration of TNBC cells in vitro and in vivo. Mechanistically, loss of RAB1B resulted in elevated expression of TGF-β receptor 1 (TβR1) through decreased degradation of ubiquitin, increased levels of phosphorylated SMAD3 and TGF-β-induced epithelial-mesenchymal transition (EMT). Furthermore, low RAB1B expression correlated with poor prognosis in breast cancer patients. Taken together, our findings reveal that RAB1B acts as a metastasis suppressor in TNBC by regulating the TGF-β/SMAD signaling pathway and RAB1B may serve as a novel biomarker of prognosis and the response to anti-tumor therapeutics for patients with TNBC.
Collapse
Affiliation(s)
- Hong-Lin Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - He-Fen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shui-Ping Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang-Dong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
48
|
E Davies J, Pollheimer J, Yong HEJ, Kokkinos MI, Kalionis B, Knöfler M, Murthi P. Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adh Migr 2016; 10:310-21. [PMID: 27070187 DOI: 10.1080/19336918.2016.1170258] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A successful pregnancy depends on the intricate and timely interactions of maternal and fetal cells. Placental extravillous cytotrophoblast invasion involves a cellular transition from an epithelial to mesenchymal phenotype. Villous cytotrophoblasts undergo a partial epithelial to mesenchymal transition (EMT) when differentiating into extravillous cytotrophoblasts and gain the capacity to migrate and invade. This review summarizes our current knowledge regarding known regulators of EMT in the human placenta, including the inducers of EMT, upstream transcription factors that control EMT and the downstream effectors, cell adhesion molecules and their differential expression and functions in pregnancy pathologies, preeclampsia (PE) and fetal growth restriction (FGR). The review also describes the research strategies that were used for the identification of the functional role of EMT targets in vitro. A better understanding of molecular pathways driven by placental EMT and further elucidation of signaling pathways underlying the developmental programs may offer novel strategies of targeted therapy for improving feto-placental growth in placental pathologies including PE and FGR.
Collapse
Affiliation(s)
- Jessica E Davies
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Jürgen Pollheimer
- c Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Hannah E J Yong
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Maria I Kokkinos
- b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Bill Kalionis
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Martin Knöfler
- c Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Padma Murthi
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia.,d Department of Medicine , School of Clinical Sciences, Monash University , Clayton , Victoria , Australia
| |
Collapse
|
49
|
Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, Li Y, Owens P, Malkoski S, Said S, Jin F, Kulesz-Martin M, Gross N, Wang XJ, Lu SL. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene 2016; 35:4641-52. [PMID: 26876212 PMCID: PMC4985507 DOI: 10.1038/onc.2016.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) patients have a poor prognosis, with invasion and metastasis as major causes of mortality. The phosphatidylinositol 3-kinase (PI3K) pathway regulates a wide range of cellular processes crucial for tumorigenesis, and PIK3CA amplification and mutation are among the most common genetic alterations in human HNSCC. Compared to the well-documented roles of the PI3K pathway in cell growth and survival, the roles of the PI3K pathway in tumor invasion and metastasis have not been well delineated. We generated a PIK3CA-genetically engineered mouse model (PIK3CA-GEMM) in which wildtype PIK3CA is overexpressed in head and neck epithelium. Although PIK3CA overexpression alone was not sufficient to initiate HNSCC formation, it significantly increased tumor susceptibility in an oral-carcinogenesis mouse model. PIK3CA overexpression in mouse oral epithelium increased tumor invasiveness and metastasis by increasing epithelial-mesenchymal transition and by enriching a cancer stem cell phenotype in tumor epithelial cells. In addition to these epithelial alterations, we also observed marked inflammation in tumor stroma. AKT is a central signaling mediator of the PI3K pathway. However, molecular analysis suggested that progression of PIK3CA-driven HNSCC is facilitated by PDK1 and enhanced TGFβ signaling rather than by AKT. Examination of human HNSCC clinical samples revealed that both PIK3CA and PDK1 protein levels correlated with tumor progression, highlighting the significance of this pathway. In summary, our results offer significant insight into how PIK3CA-overexpression drives HNSCC invasion and metastasis, providing a rationale for targeting PI3K/PDK1 and TGFβ signaling in advanced HNSCC patients with PIK3CA amplification.
Collapse
Affiliation(s)
- L Du
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Otolaryngology, Fourth University Hospital of China Medical University, Shengyang, China
| | - X Chen
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Y Cao
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgical Oncology, The First University Hospital of China Medical University, Shengyang, Liaoning, China
| | - L Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F Zhang
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Bornstein
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA
| | - Y Li
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA
| | - P Owens
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA
| | - S Malkoski
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Said
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F Jin
- Department of Surgical Oncology, The First University Hospital of China Medical University, Shengyang, Liaoning, China
| | - M Kulesz-Martin
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - N Gross
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA
| | - X-J Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S-L Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
50
|
Martins VL, Caley MP, Moore K, Szentpetery Z, Marsh ST, Murrell DF, Kim MH, Avari M, McGrath JA, Cerio R, Kivisaari A, Kähäri VM, Hodivala-Dilke K, Brennan CH, Chen M, Marshall JF, O'Toole EA. Suppression of TGFβ and Angiogenesis by Type VII Collagen in Cutaneous SCC. J Natl Cancer Inst 2016; 108:djv293. [PMID: 26476432 DOI: 10.1093/jnci/djv293] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Individuals with severe generalized recessive dystrophic epidermolysis bullosa (RDEB), an inherited blistering disorder caused by mutations in the COL7A1 gene, develop unexplained aggressive squamous cell carcinomas (SCC). Here we report that loss of type VII collagen (Col7) in SCC results in increased TGFβ signaling and angiogenesis in vitro and in vivo. METHODS Stable knockdown (KD) of Col7 was established using shRNA, and cells were used in a mouse xenograft model. Angiogenesis was assessed by immunohistochemistry, endothelial tube-forming assays, and proteome arrays. Mouse and zebrafish models were used to examine the effect of recombinant Col7 on angiogenesis. Findings were confirmed in anonymized, archival human tissue: RDEB SCC tumors, non-EB SCC tumors, RDEB skin, normal skin; and two human RDEB SCC cell lines. The TGFβ pathway was examined using immunoblotting, immunohistochemistry, biochemical inhibition, and siRNA. All statistical tests were two-sided. RESULTS Increased numbers of cross-cut blood vessels were observed in Col7 KD compared with control xenografts (n = 4 to 7 per group) and in RDEB tumors (n = 21) compared with sporadic SCC (n = 24, P < .001). Recombinant human Col7 reversed the increased SCC angiogenesis in Col7 KD xenografts in vivo (n = 7 per group, P = .04). Blocking the interaction between α2β1 integrin and Col7 increased TGFB1 mRNA expression 1.8-fold and p-Smad2 levels two-fold. Increased TGFβ signaling and VEGF expression were observed in Col7 KD xenografts (n = 4) compared with control (n = 4) and RDEB tumors (TGFβ markers, n = 6; VEGF, n = 17) compared with sporadic SCC (TGFβ markers, n = 6; VEGF, n = 21). Inhibition of TGFβ receptor signaling using siRNA resulted in decreased endothelial cell tube formation (n = 9 per group, mean tubes per well siC = 63.6, SD = 17.1; mean tubes per well siTβRII = 29.7, SD = 6.1, P = .02). CONCLUSIONS Type VII collagen suppresses TGFβ signaling and angiogenesis in cutaneous SCC. Patients with RDEB SCC may benefit from anti-angiogenic therapy.
Collapse
Affiliation(s)
- V L Martins
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - M P Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - K Moore
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - Z Szentpetery
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - S T Marsh
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - D F Murrell
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - M H Kim
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - M Avari
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - J A McGrath
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - R Cerio
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - A Kivisaari
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - V M Kähäri
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - K Hodivala-Dilke
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - C H Brennan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - M Chen
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - J F Marshall
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC)
| | - E A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC).
| |
Collapse
|