1
|
Anjum F, Gilani M, Latif M, Sattar A, Ashraf H, Rafaqat S. The Role of Coagulation in Heart Failure: A Literature Review. Curr Heart Fail Rep 2024; 21:277-291. [PMID: 38869806 DOI: 10.1007/s11897-024-00671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE OF REVIEW This article summarizes the role of coagulation factors in the pathophysiology of heart failure including D-dimer, fibrinogen and fibrin, prothrombin, p-selectin, tissue factor, tissue plasminogen activator, von Willebrand factor, β-thromboglobulin, Factor XI, tissue thromboplastin, plasminogen activator inhibitor-1 (PAI-1), thrombomodulin, soluble urokinase-type plasminogen activator receptor (suPAR) and stuart-prower factor. RECENT FINDINGS The D-dimer, P-selectin, prothrombin, von Willebrand factor, tissue plasminogen activator, fibrinogen, suPAR, tissue factor, thrombomodulin and Factor XI play significant roles the pathophysiology of heart failure. However, no associations were found between β-thromboglobulin, tissue thromboplastin, PAI-1 and stuart-prower factor in the context of heart failure. Coagulation factors play significant role in the pathophysiology of heart failure. Consequently, the underlying pathophysiological mechanisms that explain changes in the cascade are closely related to the diagnostic, prognostic and therapeutic roles of coagulation cascade factors, which help physicians identify and treat heart failure.
Collapse
Affiliation(s)
- Farhan Anjum
- Institute of Zoology, University of Punjab, Quaid-I-Azam Campus, Lahore, Pakistan
| | - Mahrukh Gilani
- Department of the Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Maryam Latif
- Institute of Zoology, University of Punjab, Quaid-I-Azam Campus, Lahore, Pakistan
| | - Aqsa Sattar
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| | - Habiba Ashraf
- Department of the Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan.
| |
Collapse
|
2
|
Nevill AM, Reuter CP, Brand C, Sehn AP, Pollo Renner JD, Batista Lemes V, Duncan MJ. Exploring cardiovascular health in children: the influence of Hemoglobin-to-Platelet ratio in contrasting rural and urban communities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-10. [PMID: 39078499 DOI: 10.1080/09603123.2024.2385673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Understanding the associations and possible mechanisms between Cardiorespiratory Fitness (CRF) and residential location is an important focus of public health research. This is a cross-sectional study carried out with 2250 students (6-17 years), from southern Brazil. In addition to age, sex, and body size measurements, we also recorded hemoglobin and platelet count measurements using venous blood samples (10 ml). The CRF was measured using the 6-minute run/walk test, with predictors explored via allometry. Results identified a novel and independent association between the hemoglobin-to-platelet count ratio and children's CRF, after controlling for confounders. We also provide evidence of a possible mechanism for this association, having identified reduced measures of hemoglobin and increased platelet counts observed in children living in urban (vs rural) areas. These results suggest the need for more effective public health practices and policies addressing the built enviroment´s health effects in Brazil and potentially other congested ciries.
Collapse
Affiliation(s)
- Alan M Nevill
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Cézane Priscila Reuter
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | - Caroline Brand
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Paula Sehn
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | - Jane Dagmar Pollo Renner
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | - Vanilson Batista Lemes
- School of Physical Education, Physiotherapy and Dance. Federal University of Rio Grande do Sul, Porto Alegre/RS,Brazil
| | - Michael J Duncan
- Sport, Exercise and Life Sciences Research Centre, Coventry University, Coventry, UK
| |
Collapse
|
3
|
Yu T, Wang H, Guo R, Liu J, Tian L, Guga S, Li W, Zhao H, Suo F, Yang H, Yan Q. Long-term abuse of caffeine sodium benzoate induces endothelial cells injury and leads to coagulation dysfunction. IUBMB Life 2024; 76:88-100. [PMID: 37596858 DOI: 10.1002/iub.2777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023]
Abstract
Our hospital admitted a patient who had difficulty in coagulation even after blood replacement, and the patient had abused caffeine sodium benzoate (CSB) for more than 20 years. Hence, we aimed to explore whether CSB may cause dysfunction in vascular endothelial cells and its possible mechanism. Low, medium, and high concentrations of serum of long-term CSB intake patients were used to treat HUVECs, with LPS as the positive control. MTT and CCK8 were performed to verify CSB's damaging effect on HUVECs. The expression of ET-1, ICAM-1, VCAM-1, and E-selectin were measured by ELISA. TUNEL assay and Matrigel tube formation assay were carried out to detect apoptosis and angiogenesis of HUVECs. Flow cytometry was applied to analyze cell cycles and expression of CD11b, PDGF, and ICAM-1. Expression of PDGF-BB and PCNA were examined by western blot. The activation of MAPK signaling pathway was detected by qRT-PCR and western blot. Intracellular Ca2+ density was detected by fluorescent probes. CCK8 assay showed high concentration of CSB inhibited cell viability. Cell proliferation and angiogenesis were inhibited by CSB. ET-1, ICAM-1, VCAM-1, and E-selectin upregulated in CSB groups. CSB enhanced apoptosis of HUVECs. CD11b, ICAM-1 increased and PDGF reduced in CSB groups. The expression level and phosphorylation level of MEK, ERK, JUN, and p38 in MAPK pathway elevated in CSB groups. The expression of PCNA and PDGF-BB was suppressed by CSB. Intracellular Ca2+ intensity was increased by CSB. Abuse of CSB injured HUVECs and caused coagulation disorders.
Collapse
Affiliation(s)
- Tianwei Yu
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Hongwei Wang
- Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Rong Guo
- Clinical Laboratory Diagnostics, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Jianzhong Liu
- Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Lili Tian
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Suri Guga
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Weixin Li
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Huiying Zhao
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Feiya Suo
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Hao Yang
- Department of Radiation Oncology (Key Laboratory of Radiation Physics and Biology of Inner Mongolia Medical University), Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Quanzhi Yan
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| |
Collapse
|
4
|
Sun Y, Yang M, Li S, Hu Y, Yang B, Li X, Yan R, Dai K. Alantolactone induces platelet apoptosis by activating the Akt pathway. Platelets 2023; 34:2173505. [PMID: 36813739 DOI: 10.1080/09537104.2023.2173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Alantolactone (ALT), a sesquiterpene lactone compound isolated from Inula helenium L., has recently attracted much attention for its anti-tumor properties. ALT reportedly functions by regulating the Akt pathway, which has been shown to be involved in programmed platelet death (apoptosis) and platelet activation. However, the precise effect of ALT on platelets remains unclear. In this study, washed platelets were treated with ALT in vitro, and apoptotic events and platelet activation were detected. In vivo, platelet transfusion experiments were employed to detect the effect of ALT on platelet clearance. Platelet counts were examined after intravenous injection of ALT. We found that ALT treatment induced Akt activation and Akt-mediated apoptosis in platelets. ALT-activated Akt elicited platelet apoptosis by activating phosphodiesterase (PDE3A) and PDE3A-mediated protein kinase A (PKA) inhibition. Pharmacological inhibition of the PI3K/Akt/PDE3A signaling pathway or PKA activation was found to protect platelets from apoptosis induced by ALT. Moreover, ALT-induced apoptotic platelets were removed faster in vivo, and ALT injection resulted in the platelet count decline. Either PI3K/Akt/PDE3A inhibitors or a PKA activator could protect platelets from clearance, ultimately ameliorating the ALT-induced decline in platelet count in the animal model. These results reveal the effects of ALT on platelets and their related mechanisms, suggesting potential therapeutic targets for the prevention and alleviation of possible side effects resulting from ALT treatments.
Collapse
Affiliation(s)
- Yueyue Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Mengnan Yang
- State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Shujun Li
- State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Ying Hu
- State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Biao Yang
- State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Xu Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| | - Rong Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Kesheng Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Zhou X, Weng Y, Jiang T, Ou W, Zhang N, Dong Q, Tang X. Influencing factors of anthracycline-induced subclinical cardiotoxicity in acute leukemia patients. BMC Cancer 2023; 23:976. [PMID: 37833648 PMCID: PMC10571315 DOI: 10.1186/s12885-023-11060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/12/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Current treatment of acute leukemia is based on anthracycline chemotherapy. Anthracyclines, despite improving patient survival, have serious cardiotoxicity and therefore cardiac monitoring should be a priority. The purpose of this study is to explore the possible early predictors of anthracycline-induced subclinical cardiotoxicity(AISC)in acute leukemia patients. METHODS We conducted a prospective observational study involving 51 patients with acute leukemia treated with anthracycline. Demographic data, clinical variables, echocardiography variables and biochemical variables were collected at baseline and after 3 cycles of chemotherapy. Patients were divided into the AISC and No-AISC groups according to changes of global longitudinal peak systolic strain. Regression models and receiver operating characteristic curve analysis were used to explore the relationship between the variables and AISC. RESULT 17 of the patients suffered subclinical cardiotoxicity after 3 cycles of anthracycline treatment. Multiple logistic regression analysis showed a significant association of DBil (OR 0.612, 95% CI 0.409-0.916, p = 0.017), TBil (OR 0.841, 95% CI 0.717-0.986, p = 0.033), PLT (OR 1.012, 95% CI 1.002-1.021, p = 0.016) and Glu (OR 1.873, 95% CI 1.009-3.475, p = 0.047) with the development of AISC. After 3 cycles of chemotherapy, there was a significant difference in PLT between the AISC and NO-AISC groups. Moreover, the dynamic changes in PLT from baseline to after 3 cycles of chemotherapy were each statistically significant in the AISC and NO-AISC groups. The combination of PLT and N-terminal pro-B-type natriuretic peptide (NT-proBNP) had the highest area under curves (AUC) for the diagnosis of AISC than PLT and NT-proBNP alone (AUC = 0.713, 95%CI: 0.56-0.87, P = 0.017). CONCLUSION Total bilirubin (TBil), direct bilirubin (DBil), platelets (PLT) and blood glucose (Glu) are independent influencing factors for AISC in acute leukemia patients receiving anthracycline therapy. Bilirubin may be a protective factor and PLT may be a contributing factor for AISC. The combination of baseline PLT and baseline NT-proBNP shows satisfactory predictive ability for AISC in acute leukemia cases treated with 3 cycles of chemotherapy.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yue Weng
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Tiantian Jiang
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Wenxin Ou
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Nan Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Qian Dong
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
| | - Xiaoqiong Tang
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
| |
Collapse
|
6
|
Reinhardt C, Rühl H. Animal and Cellular Models in Thrombosis and Hemostasis. Hamostaseologie 2023; 43:319-320. [PMID: 37857292 DOI: 10.1055/a-2031-7975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
STANDARDIZED IN VITRO AND IN VIVO MODEL SYSTEMS TO SIMPLIFY COMPLEXITY-THAT'S HOW WE LEARN: The discovery of new target molecules and translational progress in the development and refinement of antithrombotic therapies as well as the improved treatment of bleeding disorders strongly relies on standardized ex vivo and in vivo models that closely resemble the respective human pathologies. The standardization of these models requires sound training in specialized hemostasis and thrombosis research laboratories as well as a consistent daily routine. In this theme issue of Hämostaseologie-Progress in Haemostasis, four review articles cover key models that have proven instrumental to gain mechanistic insights on thrombogenesis and hemostatic processes. In recent decades, these models have moved our field forward and enabled translation across scales, from cell-based research to isolated flow chamber systems, to mouse thrombosis models reflecting the pathologic situations as observed in patients, to large animal models.
Collapse
Affiliation(s)
- Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
8
|
Fritz DI, Ding Y, Merrill-Skoloff G, Flaumenhaft R, Hanada T, Chishti AH. Dematin Regulates Calcium Mobilization, Thrombosis, and Early Akt Activation in Platelets. Mol Cell Biol 2023; 43:283-299. [PMID: 37216480 PMCID: PMC10251785 DOI: 10.1080/10985549.2023.2210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The complex intrinsic and extrinsic pathways contributing to platelet activation profoundly impact hemostasis and thrombosis. Detailed cellular mechanisms that regulate calcium mobilization, Akt activation, and integrin signaling in platelets remain incompletely understood. Dematin is a broadly expressed actin binding and bundling cytoskeletal adaptor protein regulated by phosphorylation via cAMP-dependent protein kinase. Here, we report the development of a conditional mouse model specifically lacking dematin in platelets. Using the new mouse model termed PDKO, we provide direct evidence that dematin is a major regulator of calcium mobilization, and its genetic deletion inhibits the early phase of Akt activation in response to collagen and thrombin agonists in platelets. The aberrant platelet shape change, clot retraction, and in vivo thrombosis observed in PDKO mice will enable future characterization of dematin-mediated integrin activation mechanisms in thrombogenic as well as nonvascular pathologies.
Collapse
Affiliation(s)
- Daniel I. Fritz
- Programs in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yiwen Ding
- Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Athar H. Chishti
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Azzouz M, Xu Y, Barregard L, Zöller B, Molnar P, Oudin A, Spanne M, Engström G, Stockfelt L. Long-term ambient air pollution and venous thromboembolism in a population-based Swedish cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121841. [PMID: 37209899 DOI: 10.1016/j.envpol.2023.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Air pollution is a major contributor to the global burden of disease and has been linked to several diseases and conditions, including cardiovascular disease. The biological mechanisms are related to inflammation and increased coagulability, factors that play an important role in the pathogenesis of venous thromboembolism (VTE, i.e., deep vein thrombosis or pulmonary embolism). This study investigates if long-term exposure to air pollution is associated with increased VTE incidence. The study followed 29 408 participants from the Malmö Diet and Cancer (MDC) cohort, which consists of adults aged 44-74 recruited in Malmö, Sweden between 1991 and 1996. For each participant, annual mean residential exposures to particulate matter <2.5 μg (PM2.5) and <10 μg (PM10), nitrogen oxides (NOx) and black carbon (BC) from 1990 up to 2016 were calculated. Associations with VTE were analysed using Cox proportional hazard models for air pollution in the year of the VTE event (lag0) and the mean of the prior 1-10 years (lag1-10). Annual air pollution exposures for the full follow-up period had the following means: 10.8 μg/m3 for PM2.5, 15.8 μg/m3 for PM10, 27.7 μg/m3 for NOx, and 0.96 μg/m3 for BC. The mean follow-up period was 19.5 years, with 1418 incident VTE events recorded during this period. Exposure to lag1-10 PM2.5 was associated with an increased risk of VTE (HR 1.17 (95%CI 1.01-1.37)) per interquartile range (IQR) of 1.2 μg/m3 increase in PM2.5 exposure. No significant associations were found between other pollutants or lag0 PM2.5 and incident VTE. When VTE was divided into specific diagnoses, associations with lag1-10 PM2.5 exposure were similarly positive for deep vein thrombosis but not for pulmonary embolism. Results persisted in sensitivity analyses and in multi-pollutant models. Long-term exposure to moderate concentrations of ambient PM2.5 was associated with increased risks of VTE in the general population in Sweden.
Collapse
Affiliation(s)
- Mehjar Azzouz
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Yiyi Xu
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Barregard
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Zöller
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Peter Molnar
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Oudin
- Occupational and Environmental Medicine, Department for Laboratory Medicine, Lund University, Sweden; Division of Sustainable Health, Umeå University, Umeå, Sweden
| | - Mårten Spanne
- Environment Department, City of Malmö, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, CRC, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Belyaev AV, Kushchenko YK. Biomechanical activation of blood platelets via adhesion to von Willebrand factor studied with mesoscopic simulations. Biomech Model Mechanobiol 2023; 22:785-808. [PMID: 36627458 PMCID: PMC9838538 DOI: 10.1007/s10237-022-01681-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Platelet adhesion and activation are essential initial processes of arterial and microvascular hemostasis, where high hydrodynamic forces from the bloodflow impede coagulation. The process relies on von Willebrand factor (VWF)-a linear multimeric protein of blood plasma plays a pivotal role in mechanochemical regulation of shear-induced platelet aggregation (SIPA). Adhesive interactions between VWF and glycoprotein receptors GPIb are crucial for platelet recruitment under high shear stress in fluid. Recent advances in experimental studies revealed that mechanical tension on the extracellular part of GPIb may trigger a cascade of biochemical reactions in platelets leading to activation of integrins [Formula: see text] (also known as GPIIb/IIIa) and strengthening of the adhesion. The present paper is aimed at investigation of this process by three-dimensional computer simulations of platelet adhesion to surface-grafted VWF multimers in pressure-driven flow of platelet-rich plasma. The simulations demonstrate that GPIb-mediated mechanotransduction is a feasible way of platelet activation and stabilization of platelet aggregates under high shear stress. Quantitative understanding of mechanochemical processes involved in SIPA would potentially promote the discovery of new anti-platelet medication and the development of multiscale numerical models of platelet thrombosis and hemostasis.
Collapse
Affiliation(s)
- Aleksey V. Belyaev
- grid.14476.300000 0001 2342 9668Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskiye Gory, Moscow, Russia 119991
| | - Yulia K. Kushchenko
- grid.14476.300000 0001 2342 9668Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskiye Gory, Moscow, Russia 119991
| |
Collapse
|
11
|
How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon 2022; 221:106982. [DOI: 10.1016/j.toxicon.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
|
12
|
Chen Y, Fu W, Zheng Y, Yang J, Liu Y, Qi Z, Wu M, Fan Z, Yin K, Chen Y, Gao W, Ding Z, Dong J, Li Q, Zhang S, Hu L. Galectin 3 enhances platelet aggregation and thrombosis via Dectin-1 activation: a translational study. Eur Heart J 2022; 43:3556-3574. [PMID: 35165707 PMCID: PMC9989600 DOI: 10.1093/eurheartj/ehac034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Galectin-3, a β-galactoside-binding lectin, is abnormally increased in cardiovascular disease. Plasma Galectin-3 receives a Class II recommendation for heart failure management and has been extensively studied for multiple cellular functions. The direct effects of Galectin-3 on platelet activation remain unclear. This study explores the direct effects of Galectin-3 on platelet activation and thrombosis. METHODS AND RESULTS A strong positive correlation between plasma Galectin-3 concentration and platelet aggregation or whole blood thrombus formation was observed in patients with coronary artery disease (CAD). Multiple platelet function studies demonstrated that Galectin-3 directly potentiated platelet activation and in vivo thrombosis. Mechanistic studies using the Dectin-1 inhibitor, laminarin, and Dectin-1-/- mice revealed that Galectin-3 bound to and activated Dectin-1, a receptor not previously reported in platelets, to phosphorylate spleen tyrosine kinase and thus increased Ca2+ influx, protein kinase C activation, and reactive oxygen species production to regulate platelet hyperreactivity. TD139, a Galectin-3 inhibitor in a Phase II clinical trial, concentration dependently suppressed Galectin-3-potentiated platelet activation and inhibited occlusive thrombosis without exacerbating haemorrhage in ApoE-/- mice, which spontaneously developed increased plasma Galectin-3 levels. TD139 also suppressed microvascular thrombosis to protect the heart from myocardial ischaemia-reperfusion injury in ApoE-/- mice. CONCLUSION Galectin-3 is a novel positive regulator of platelet hyperreactivity and thrombus formation in CAD. As TD139 has potent antithrombotic effects without bleeding risk, Galectin-3 inhibitors may have therapeutic advantages as potential antiplatelet drugs for patients with high plasma Galectin-3 levels.
Collapse
Affiliation(s)
- Yufei Chen
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanrong Fu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunbo Zheng
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Liu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyong Qi
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meiling Wu
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Kanhua Yin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongren Ding
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzeng Dong
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Mettwally WS, Gamal AA, Shams El-Din NG, Hamdy AA. Biological activities and structural characterization of sulfated polysaccharide extracted from a newly Mediterranean Sea record Grateloupia gibbesii Harvey. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Rawish E, Langer HF. Platelets and the Role of P2X Receptors in Nociception, Pain, Neuronal Toxicity and Thromboinflammation. Int J Mol Sci 2022; 23:6585. [PMID: 35743029 PMCID: PMC9224425 DOI: 10.3390/ijms23126585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
P2X receptors belong to a family of cation channel proteins, which respond to extracellular adenosine 5'-triphosphate (ATP). These receptors have gained increasing attention in basic and translational research, as they are central to a variety of important pathophysiological processes such as the modulation of cardiovascular physiology, mediation of nociception, platelet and macrophage activation, or neuronal-glial integration. While P2X1 receptor activation is long known to drive platelet aggregation, P2X7 receptor antagonists have recently been reported to inhibit platelet activation. Considering the role of both P2X receptors and platelet-mediated inflammation in neuronal diseases such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and stroke, targeting purinergic receptors may provide a valuable novel therapeutic approach in these diseases. Therefore, the present review illuminates the role of platelets and purinergic signaling in these neurological conditions to evaluate potential translational implications.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, 23538 Lübeck, Germany;
- University Hospital Schleswig-Holstein, Department of Cardiology, University Heart Center Lübeck, 23538 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, 23538 Lübeck, Germany;
- University Hospital Schleswig-Holstein, Department of Cardiology, University Heart Center Lübeck, 23538 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| |
Collapse
|
15
|
Abbas MN, Chlastáková A, Jmel MA, Iliaki-Giannakoudaki E, Chmelař J, Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front Cell Infect Microbiol 2022; 12:892770. [PMID: 35711658 PMCID: PMC9195624 DOI: 10.3389/fcimb.2022.892770] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | | | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| |
Collapse
|
16
|
Moroi M, Induruwa I, Farndale RW, Jung SM. Factor XIII is a newly identified binding partner for platelet collagen receptor GPVI-dimer-An interaction that may modulate fibrin crosslinking. Res Pract Thromb Haemost 2022; 6:e12697. [PMID: 35494504 PMCID: PMC9035508 DOI: 10.1002/rth2.12697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background In the fibrin-forming process, thrombin cleaves fibrinogen to fibrin, which form fibrils and then fibers, producing a gel-like clot. Thrombin also activates coagulation factor XIII (FXIII), which crosslinks fibrin γ-chains and α-chains, stabilizing the clot. Many proteins bind to fibrin, including FXIII, an established regulation of clot structure, and platelet glycoprotein VI (GPVI), whose contribution to clot function is largely unknown. FXIII is present in plasma, but the abundant FXIII in platelet cytosol becomes exposed to the surface of strongly activated platelets. Objectives We determined if GPVI interacts with FXIII and how this might modulate clot formation. Methods We measured interactions between recombinant proteins of the GPVI extracellular domain: GPVI-dimer (GPVI-Fc2) or monomer (GPVIex) and FXIII proteins (nonactivated and thrombin-activated FXIII, FXIII subunits A and B) by ELISA. Binding to fibrin clots and fibrin γ-chain crosslinking were analyzed by immunoblotting. Results GPVI-dimer, but not GPVI-monomer, bound to FXIII. GPVI-dimer selectively bound to the FXIII A-subunit, but not to the B-subunit, an interaction that was decreased or abrogated by the GPVI-dimer-specific antibody mFab-F. The GPVI-dimer-FXIII interaction decreased the extent of γ-chain crosslinking, indicating a role in the regulation of clot formation. Conclusions This is the first report of the specific interaction between GPVI-dimer and the A-subunit of FXIII, as determined in an in vitro system with defined components. GPVI-dimer-FXIII binding was inhibitory toward FXIII-catalyzed crosslinking of fibrin γ-chains in fibrin clots. This raises the possibility that GPVI-dimer may negatively modulate fibrin crosslinking induced by FXIII, lessening clot stability.
Collapse
Affiliation(s)
- Masaaki Moroi
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Isuru Induruwa
- Department of Clinical Neurosciences University of Cambridge Cambridge UK
| | | | | |
Collapse
|
17
|
Abdulhay EW, Khnouf RE, Karain YM, Al Omari TK, Ebeid NM, Al Muhtaseb TH, Arunkumar N, Thilagaraj M, Ramirez-Gonzalez G. Polymethyl Methacrylate-Based Smart Microfluidic Point-of-Care Testing of Prothrombin Time and International Normalized Ratio through Optical Detection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5975228. [PMID: 35222684 PMCID: PMC8881148 DOI: 10.1155/2022/5975228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
The mechanical heart valve is a crucial solution for many patients. However, it cannot function on the state of blood as human tissue valves. Thus, people with mechanical valves are put under anticoagulant therapy. A good measurement of the state of blood and how long it takes blood to form clots is the prothrombin time (PT); moreover, it is an indicator of how well the anticoagulant therapy is, and of whether the response of the patient to the drug is as needed. For a more specific standardized measurement of coagulation time, an international normalized ratio (INR) is established. Clinical testing of INR and PT is relatively easy. However, it requires the patient to visit the clinic for evaluation purposes. Many techniques are therefore being developed to provide PT and INR self-testing devices. Unfortunately, those solutions are either inaccurate, complex, or expensive. The present work approaches the design of an anticoagulation self-monitoring device that is easy to use, accurate, and relatively inexpensive. Hence, a two-channel polymethyl methacrylate-based microfluidic point-of-care (POC) smart device has been developed. The Arduino based lab-on-a-chip device applies optical properties to a small amount of blood. The achieved accuracy is 96.7%.
Collapse
Affiliation(s)
- Enas W. Abdulhay
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ruba E. Khnouf
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yahia M. Karain
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Taqwa K. Al Omari
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nourshan M. Ebeid
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Tamara H. Al Muhtaseb
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - N. Arunkumar
- Department of Biomedical Engineering, Rathinam Technical Campus, Coimbatore, India
| | - M. Thilagaraj
- Department of Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, India
| | | |
Collapse
|
18
|
Carminita E, Crescence L, Panicot-Dubois L, Dubois C. Role of Neutrophils and NETs in Animal Models of Thrombosis. Int J Mol Sci 2022; 23:ijms23031411. [PMID: 35163333 PMCID: PMC8836215 DOI: 10.3390/ijms23031411] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Thrombosis is one of the major causes of mortality worldwide. Notably, it is not only implicated in cardiovascular diseases, such as myocardial infarction (MI), stroke, and pulmonary embolism (PE), but also in cancers. Understanding the cellular and molecular mechanisms involved in platelet thrombus formation is a major challenge for scientists today. For this purpose, new imaging technologies (such as confocal intravital microscopy, electron microscopy, holotomography, etc.) coupled with animal models of thrombosis (mouse, rat, rabbit, etc.) allow a better overview of this complex physiopathological process. Each of the cellular components is known to participate, including the subendothelial matrix, the endothelium, platelets, circulating cells, and, notably, neutrophils. Initially known as immune cells, neutrophils have been considered to be part of the landscape of thrombosis for more than a decade. They participate in this biological process through their expression of tissue factor (TF) and protein disulfide isomerase (PDI). Moreover, highly activated neutrophils are described as being able to release their DNA and thus form chromatin networks known as “neutrophil extracellular traps” (NETs). Initially, described as “dead sacrifices for a good cause” that prevent the dissemination of bacteria in the body, NETs have also been studied in several human pathologies, such as cardiovascular and respiratory diseases. Many articles suggest that they are involved in platelet thrombus formation and the activation of the coagulation cascade. This review presents the models of thrombosis in which neutrophils and NETs are involved and describes their mechanisms of action. We have even highlighted the medical diagnostic advances related to this research.
Collapse
Affiliation(s)
- Estelle Carminita
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
- Correspondence:
| | - Christophe Dubois
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| |
Collapse
|
19
|
Elevated platelet-leukocyte complexes are associated with, but dispensable for myocardial ischemia-reperfusion injury. Basic Res Cardiol 2022; 117:61. [PMID: 36383299 PMCID: PMC9668925 DOI: 10.1007/s00395-022-00970-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
AIMS P-selectin is an activatable adhesion molecule on platelets promoting platelet aggregation, and platelet-leukocyte complex (PLC) formation. Increased numbers of PLC are circulating in the blood of patients shortly after acute myocardial infarction and predict adverse outcomes. These correlations led to speculations about whether PLC may represent novel therapeutic targets. We therefore set out to elucidate the pathomechanistic relevance of PLC in myocardial ischemia and reperfusion injury. METHODS AND RESULTS By generating P-selectin deficient bone marrow chimeric mice, the post-myocardial infarction surge in PLC numbers in blood was prevented. Yet, intravital microscopy, flow cytometry and immunohistochemical staining, echocardiography, and gene expression profiling showed unequivocally that leukocyte adhesion to the vessel wall, leukocyte infiltration, and myocardial damage post-infarction were not altered in response to the lack in PLC. CONCLUSION We conclude that myocardial infarction associated sterile inflammation triggers PLC formation, reminiscent of conserved immunothrombotic responses, but without PLC influencing myocardial ischemia and reperfusion injury in return. Our experimental data do not support a therapeutic concept of selectively targeting PLC formation in myocardial infarction.
Collapse
|
20
|
McKenzie AJ, Doyle BJ, Aman ZM. Micromechanical Force Measurement of Clotted Blood Particle Cohesion: Understanding Thromboembolic Aggregation Mechanisms. Cardiovasc Eng Technol 2022; 13:816-828. [PMID: 35419664 PMCID: PMC9750917 DOI: 10.1007/s13239-022-00618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/19/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Arterial shear forces may promote the embolization of clotted blood from the surface of thrombi, displacing particles that may occlude vasculature, with increased risk of physiological complications and mortality. Thromboemboli may also collide in vivo to form metastable aggregates that increase vessel occlusion likelihood. METHODS A micromechanical force (MMF) apparatus was modified for aqueous applications to study clot-liquid interfacial phenomena between clotted porcine blood particles suspended in modified continuous phases. The MMF measurement is based on visual observation of particle-particle separation, where Hooke's Law is applied to calculate separation force. This technique has previously been deployed to study solid-fluid interfacial phenomena in oil and gas pipelines, providing fundamental insight to cohesive and adhesive properties between solids in multiphase flow systems. RESULTS This manuscript introduces distributed inter-particle separation force properties as a function of governing physio-chemical parameters; pre-load (contact) force, contact time, and bulk phase chemical modification. In each experimental campaign, the hysteresis and distributed force properties were analysed, to derive insight as to the governing mechanism of cohesion between particles. Porcine serum, porcine albumin and pharmaceutical agents (alteplase, tranexamic acid and hydrolysed aspirin) reduced the measurement by an order of magnitude from the baseline measurement-the apparatus provides a platform to study how surface-active chemistries impact the solid-fluid interface. CONCLUSION These results provide new insight to potential mechanisms of macroscopic thromboembolic aggregation via particles cohering in the vascular system-data that can be directly applied to computational simulations to predict particle fate, better informing the mechanistic developments of embolic occlusion.
Collapse
Affiliation(s)
- Angus J. McKenzie
- grid.1012.20000 0004 1936 7910Department of Chemical Engineering, The Centre for Long Subsea Tiebacks, Fluid Science and Resources Cluster, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Barry J. Doyle
- grid.1012.20000 0004 1936 7910Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Nedlands, and Centre for Medical Research, The University of Western Australia, Crawley, PER Australia ,Australian Research Council Centre for Personalised Therapeutics Technologies, Parkville, Australia ,grid.4305.20000 0004 1936 7988BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Zachary M. Aman
- grid.1012.20000 0004 1936 7910Department of Chemical Engineering, The Centre for Long Subsea Tiebacks, Fluid Science and Resources Cluster, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| |
Collapse
|
21
|
Zhang Y, Ramasundara SDZ, Preketes-Tardiani RE, Cheng V, Lu H, Ju LA. Emerging Microfluidic Approaches for Platelet Mechanobiology and Interplay With Circulatory Systems. Front Cardiovasc Med 2021; 8:766513. [PMID: 34901226 PMCID: PMC8655735 DOI: 10.3389/fcvm.2021.766513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding how platelets can sense and respond to hemodynamic forces in disturbed blood flow and complexed vasculature is crucial to the development of more effective and safer antithrombotic therapeutics. By incorporating diverse structural and functional designs, microfluidic technologies have emerged to mimic microvascular anatomies and hemodynamic microenvironments, which open the floodgates for fascinating platelet mechanobiology investigations. The latest endothelialized microfluidics can even recapitulate the crosstalk between platelets and the circulatory system, including the vessel walls and plasma proteins such as von Willebrand factor. Hereby, we highlight these exciting microfluidic applications to platelet mechanobiology and platelet–circulatory system interplay as implicated in thrombosis. Last but not least, we discuss the need for microfluidic standardization and summarize the commercially available microfluidic platforms for researchers to obtain reproducible and consistent results in the field.
Collapse
Affiliation(s)
- Yingqi Zhang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia
| | - Savindi De Zoysa Ramasundara
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia.,School of Medicine, The University of Notre Dame Sydney, Darlinghurst, NSW, Australia
| | - Renee Ellen Preketes-Tardiani
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia
| | - Vivian Cheng
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia
| | - Hongxu Lu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia.,Faculty of Science, Institute for Biomedical Materials and Devices, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia
| |
Collapse
|
22
|
Sharma C, Osmolovskiy A, Singh R. Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics 2021; 13:1880. [PMID: 34834294 PMCID: PMC8625737 DOI: 10.3390/pharmaceutics13111880] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the dissolution of fibrin clots and hence ameliorate thrombosis. Microbial fibrinolytic enzymes have attracted much more attention in the management of cardiovascular disorders than typical anti-thrombotic strategies because of the undesirable after-effects and high expense of the latter. Fibrinolytic enzymes such as plasminogen activators and plasmin-like proteins hydrolyse thrombi with high efficacy with no significant after-effects and can be cost effectively produced on a large scale with a short generation time. However, the hunt for novel fibrinolytic enzymes necessitates complex purification stages, physiochemical and structural-functional attributes, which provide an insight into their mechanism of action. Besides, strain improvement and molecular technologies such as cloning, overexpression and the construction of genetically modified strains for the enhanced production of fibrinolytic enzymes significantly improve their thrombolytic potential. In addition, the unconventional applicability of some fibrinolytic enzymes paves their way for protein hydrolysis in addition to fibrin/thrombi, blood pressure regulation, anti-microbials, detergent additives for blood stain removal, preventing dental caries, anti-inflammatory and mucolytic expectorant agents. Therefore, this review article encompasses the production, biochemical/structure-function properties, thrombolytic potential and other surplus applications of microbial fibrinolytic enzymes.
Collapse
Affiliation(s)
- Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| | - Alexander Osmolovskiy
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| |
Collapse
|
23
|
Gayen P, Jan S, Chowdhury N, Ghosh S, Hembram M, Bagchi A, Sinha Roy R. Engineered Bio-inspired Multifunctional Peptide- and Protein-based Therapeutic Biomolecules for Better Wound Care. Chem Asian J 2021; 16:4018-4036. [PMID: 34643055 DOI: 10.1002/asia.202101022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Indexed: 11/11/2022]
Abstract
Developing non-immunogenic therapeutic biomolecules for facilitating blood clotting followed by wound healing via therapeutic angiogenesis, still remains a formidable challenge. Excessive blood loss of accident victims and battalions cause a huge number of deaths worldwide. Patients with inherited bleeding disorders face acute complications during injury and post-surgery. Biologically-inspired peptide-based hemostat can act as a potential therapeutic for handling coagulopathy. Additionally, non-healing wounds for patients having ischemic diseases can cause severe clinical complications. Advancement in stabilized growth-factor-based proangiogenic therapy may offer effective possibilities for the treatment of ischemic pathology. This review will discuss nature-inspired biocompatible stabilized peptide- and protein-based molecular medicines to serve unmet medical challenges for handling traumatic coagulopathy and impaired wound healing.
Collapse
Affiliation(s)
- Paramita Gayen
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Somnath Jan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Nilkanta Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India
| | - Snehasish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Monjuri Hembram
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
24
|
Venous puncture wound hemostasis results in a vaulted thrombus structured by locally nucleated platelet aggregates. Commun Biol 2021; 4:1090. [PMID: 34531522 PMCID: PMC8445961 DOI: 10.1038/s42003-021-02615-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
Primary hemostasis results in a platelet-rich thrombus that has long been assumed to form a solid plug. Unexpectedly, our 3-dimensional (3D) electron microscopy of mouse jugular vein puncture wounds revealed that the resulting thrombi were structured about localized, nucleated platelet aggregates, pedestals and columns, that produced a vaulted thrombus capped by extravascular platelet adherence. Pedestal and column surfaces were lined by procoagulant platelets. Furthermore, early steps in thrombus assembly were sensitive to P2Y12 inhibition and late steps to thrombin inhibition. Based on these results, we propose a Cap and Build, puncture wound paradigm that should have translational implications for bleeding control and hemostasis. Rhee, Pokrovskaya et al. utilize 3D electron microscopy of mouse jugular vein puncture wounds to reveal thrombi structured around localized, nucleated platelet aggregates that produced a vaulted thrombus capped by extravascular platelet adherence. As a result, the authors propose a “Cap and Build” paradigm of primary hemostasis.
Collapse
|
25
|
Janssen BGH, Najiminaini M, Zhang YM, Omidi P, Carson JJL. Multispectral intravital microscopy for simultaneous bright-field and fluorescence imaging of the microvasculature. Appl Microsc 2021; 51:12. [PMID: 34302534 PMCID: PMC8310548 DOI: 10.1186/s42649-021-00059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/08/2021] [Indexed: 12/05/2022] Open
Abstract
Intravital video microscopy permits the observation of microcirculatory blood flow. This often requires fluorescent probes to visualize structures and dynamic processes that cannot be observed with conventional bright-field microscopy. Conventional light microscopes do not allow for simultaneous bright-field and fluorescent imaging. Moreover, in conventional microscopes, only one type of fluorescent label can be observed. This study introduces multispectral intravital video microscopy, which combines bright-field and fluorescence microscopy in a standard light microscope. The technique enables simultaneous real-time observation of fluorescently-labeled structures in relation to their direct physical surroundings. The advancement provides context for the orientation, movement, and function of labeled structures in the microcirculation.
Collapse
Affiliation(s)
- Barry G H Janssen
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada. .,Kidney Clinical Research Unit (KCRU), London Health Sciences Centre, London, ON, N6C 6B5, Canada.
| | - Mohamadreza Najiminaini
- Imaging Program, St.Joseph's Health Care, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, Western University, London, ON, N6A 5C1, Canada
| | - Yan Min Zhang
- Kidney Clinical Research Unit (KCRU), London Health Sciences Centre, London, ON, N6C 6B5, Canada.,Trauma Research Centre, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China.,School of Biomedical Engineering, Western University, London, ON, N6A 3K7, Canada.,Intensive Care Unit, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China
| | - Parsa Omidi
- Imaging Program, St.Joseph's Health Care, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, Western University, London, ON, N6A 5C1, Canada.,Intensive Care Unit, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China
| | - Jeffrey J L Carson
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada.,Imaging Program, St.Joseph's Health Care, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, Western University, London, ON, N6A 5C1, Canada.,Intensive Care Unit, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China
| |
Collapse
|
26
|
Gao Q, Hernandes MS. Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction. Inflammation 2021; 44:2143-2150. [PMID: 34291398 DOI: 10.1007/s10753-021-01501-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening clinical condition caused by a dysregulated host response to infection. Sepsis-associated encephalopathy (SAE) is a common but poorly understood neurological complication of sepsis, which is associated with increased morbidity and mortality. SAE clinical presentation may range from mild confusion and delirium to severe cognitive impairment and deep coma. Important mechanisms associated with SAE include excessive microglial activation, impaired endothelial barrier function, and blood-brain barrier (BBB) dysfunction. Endotoxemia and pro-inflammatory cytokines produced systemically during sepsis lead to microglial and brain endothelial cell activation, tight junction downregulation, and increased leukocyte recruitment. The resulting neuroinflammation and BBB dysfunction exacerbate SAE pathology and aggravate sepsis-induced brain dysfunction. In this mini-review, recent literature surrounding some of the mediators of BBB dysfunction during sepsis is summarized. Modulation of microglial activation, endothelial cell dysfunction, and the consequent prevention of BBB permeability represent relevant therapeutic targets that may significantly impact SAE outcomes.
Collapse
Affiliation(s)
- Qingzeng Gao
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, WMB 308, Atlanta, GA, 30322, USA
| | - Marina Sorrentino Hernandes
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, WMB 308, Atlanta, GA, 30322, USA.
| |
Collapse
|
27
|
Subramaniam T, Fauzi MB, Lokanathan Y, Law JX. The Role of Calcium in Wound Healing. Int J Mol Sci 2021; 22:6486. [PMID: 34204292 PMCID: PMC8235376 DOI: 10.3390/ijms22126486] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (T.S.); (M.B.F.); (Y.L.)
| |
Collapse
|
28
|
Liu D, Wang S, Zhang J, Xiao W, Miao CH, Konkle BA, Wan XF, Li L. Site-Specific N- and O-Glycosylation Analysis of Human Plasma Fibronectin. Front Chem 2021; 9:691217. [PMID: 34211961 PMCID: PMC8239226 DOI: 10.3389/fchem.2021.691217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Human plasma fibronectin is an adhesive protein that plays a crucial role in wound healing. Many studies had indicated that glycans might mediate the expression and functions of fibronectin, yet a comprehensive understanding of its glycosylation is still missing. Here, we performed a comprehensive N- and O-glycosylation mapping of human plasma fibronectin and quantified the occurrence of each glycoform in a site-specific manner. Intact N-glycopeptides were enriched by zwitterionic hydrophilic interaction chromatography, and N-glycosite sites were localized by the 18O-labeling method. O-glycopeptide enrichment and O-glycosite identification were achieved by an enzyme-assisted site-specific extraction method. An RP–LC–MS/MS system functionalized with collision-induced dissociation and stepped normalized collision energy (sNCE)-HCD tandem mass was applied to analyze the glycoforms of fibronectin. A total of 6 N-glycosites and 53 O-glycosites were identified, which were occupied by 38 N-glycoforms and 16 O-glycoforms, respectively. Furthermore, 77.31% of N-glycans were sialylated, and O-glycosylation was dominated by the sialyl-T antigen. These site-specific glycosylation patterns on human fibronectin can facilitate functional analyses of fibronectin and therapeutics development.
Collapse
Affiliation(s)
- Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Junping Zhang
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Weidong Xiao
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
29
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Kaneva VN, Dunster JL, Volpert V, Ataullahanov F, Panteleev MA, Nechipurenko DY. Modeling Thrombus Shell: Linking Adhesion Receptor Properties and Macroscopic Dynamics. Biophys J 2021; 120:334-351. [PMID: 33472026 DOI: 10.1016/j.bpj.2020.10.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Damage to arterial vessel walls leads to the formation of platelet aggregate, which acts as a physical obstacle for bleeding. An arterial thrombus is heterogeneous; it has a dense inner part (core) and an unstable outer part (shell). The thrombus shell is very dynamic, being composed of loosely connected discoid platelets. The mechanisms underlying the observed mobility of the shell and its (patho)physiological implications are unclear. To investigate arterial thrombus mechanics, we developed a novel, to our knowledge, two-dimensional particle-based computational model of microvessel thrombosis. The model considers two types of interplatelet interactions: primary reversible (glycoprotein Ib (GPIb)-mediated) and stronger integrin-mediated interaction, which intensifies with platelet activation. At high shear rates, the former interaction leads to adhesion, and the latter is primarily responsible for stable platelet aggregation. Using a stochastic model of GPIb-mediated interaction, we initially reproduced experimental curves that characterize individual platelet interactions with a von Willebrand factor-coated surface. The addition of the second stabilizing interaction results in thrombus formation. The comparison of thrombus dynamics with experimental data allowed us to estimate the magnitude of critical interplatelet forces in the thrombus shell and the characteristic time of platelet activation. The model predicts moderate dependence of maximal thrombus height on the injury size in the absence of thrombin activity. We demonstrate that the developed stochastic model reproduces the observed highly dynamic behavior of the thrombus shell. The presence of primary stochastic interaction between platelets leads to the properties of thrombus consistent with in vivo findings; it does not grow upstream of the injury site and covers the whole injury from the first seconds of the formation. А simplified model, in which GPIb-mediated interaction is deterministic, does not reproduce these features. Thus, the stochasticity of platelet interactions is critical for thrombus plasticity, suggesting that interaction via a small number of bonds drives the dynamics of arterial thrombus shell.
Collapse
Affiliation(s)
- Valeriia N Kaneva
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France; INRIA Team Dracula, INRIA Lyon La Doua, Villeurbanne, France; Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Fazoil Ataullahanov
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Dmitry Yu Nechipurenko
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
31
|
Immunohistological Evaluation of Von Willebrand Factor in the Left Atrial Endocardium and Atrial Thrombi from Cats with Cardiomyopathy. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021. [PMID: 33925795 DOI: 10.3390/ani11051240.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aortic thromboembolism (ATE) occurs in cats with cardiomyopathy and often results in euthanasia due to poor prognosis. However, the underlying predisposing mechanisms leading to left atrial (LA) thrombus formation are not fully characterised. von Willebrand Factor (vWF) is a marker of endothelium and shows increased expression following endothelial injury. In people with poor LA function and LA remodelling, vWF has been implicated in the development of LA thrombosis. In this study we have shown (1) the expression of endocardial vWF protein detected using immunohistofluorescence was elevated in cats with cardiomyopathy, LA enlargement (LAE) and clinical signs compared to cats with subclinical cardiomyopathy and control cats; (2) vWF was present at the periphery of microthrombi and macrothrombi within the LA where they come into contact with the LA endocardium and (3) vWF was integral to the structure of the macrothrombi retrieved from the atria. These results provide evidence for damage of the endocardial endothelium in the remodelled LA and support a role for endocardial vWF as a pro-thrombotic substrate potentially contributing to the development of ATE in cats with underlying cardiomyopathy and LAE. Results from this naturally occurring feline model may inform research into human thrombogenesis.
Collapse
|
32
|
Immunohistological Evaluation of Von Willebrand Factor in the Left Atrial Endocardium and Atrial Thrombi from Cats with Cardiomyopathy. Animals (Basel) 2021; 11:ani11051240. [PMID: 33925795 PMCID: PMC8146606 DOI: 10.3390/ani11051240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Disease of the heart muscle (cardiomyopathy) is very common in the domestic cat and may result in several severe outcomes. These include formation of a thrombus in the left atrium which migrates to the hindlimb cutting off the blood supply, a condition called aortic thromboembolism. Affected cats present with hindlimb paralysis and extreme pain, often requiring euthanasia on humane grounds. Several factors are known to predispose to thrombus formation, including damage to the inner cellular lining of the atrium which exposes proteins that initiates thrombosis. We studied the expression of one such protein called von Willebrand Factor in the left atrium of cats with and without cardiomyopathies and at different stages of disease severity. We found that expression increased in cats with advance disease. Obtaining a greater understanding of the role this protein has in thrombus formation may allow development of novel antithrombotic agents to help prevent this devastating consequence of feline cardiomyopathy. Abstract Aortic thromboembolism (ATE) occurs in cats with cardiomyopathy and often results in euthanasia due to poor prognosis. However, the underlying predisposing mechanisms leading to left atrial (LA) thrombus formation are not fully characterised. von Willebrand Factor (vWF) is a marker of endothelium and shows increased expression following endothelial injury. In people with poor LA function and LA remodelling, vWF has been implicated in the development of LA thrombosis. In this study we have shown (1) the expression of endocardial vWF protein detected using immunohistofluorescence was elevated in cats with cardiomyopathy, LA enlargement (LAE) and clinical signs compared to cats with subclinical cardiomyopathy and control cats; (2) vWF was present at the periphery of microthrombi and macrothrombi within the LA where they come into contact with the LA endocardium and (3) vWF was integral to the structure of the macrothrombi retrieved from the atria. These results provide evidence for damage of the endocardial endothelium in the remodelled LA and support a role for endocardial vWF as a pro-thrombotic substrate potentially contributing to the development of ATE in cats with underlying cardiomyopathy and LAE. Results from this naturally occurring feline model may inform research into human thrombogenesis.
Collapse
|
33
|
Zhang T, Liu M, Gao Y, Li H, Song L, Hou H, Chen T, Ma L, Zhang G, Ye Z. Salvianolic acid B inhalation solution enhances antifibrotic and anticoagulant effects in a rat model of pulmonary fibrosis. Biomed Pharmacother 2021; 138:111475. [PMID: 33774314 DOI: 10.1016/j.biopha.2021.111475] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to investigate the antifibrotic effect and anticoagulant ability of salvianolic acid B (SAB) inhalation solution on bleomycin (BLM)-induced idiopathic pulmonary fibrosis (IPF) in rats. We investigated how the osmotic pressure and concentration of SAB in an aerosol exerted effects. We also determined the aerodynamic particle size distribution and the uniformity of the delivery dose; these parameters were found to be suitable for inhalation. Compared with BLM group, the levels of hydroxyproline (HYP), collagen-1 (Col-1), tissue factor (TF) / coagulation factor VII (TF-VIIa), activated coagulation factor X (FXa), thrombin-antithrombin complex (TAT), fibrinogen degradation product (FDP) and plasminogen activator inhibitor-1 (PAI-1) decreased in SAB group. The increased expression of coagulation factor Ⅱ (FⅡ), coagulation factor X (FX), tissue type plasminogen activator (t-PA) and urokinase type plasminogen activator (u-PA) proved that SAB has obvious antifibrotic and anticoagulant effects. Western blotting and immunofluorescence further showed that compared with the BLM group, the SAB group of rats exhibited significant reductions in the expression levels of protease-activated receptors-1 (PAR-1) and phospho-protein kinase C (p-PKC) and increased expression levels of protein kinase C (PKC) in lung tissue. Furthermore, SAB reduced the infiltration of lymphocytes and neutrophils, protected the basic structure of the lung from destruction, inhibited the proliferation of fibrous tissue. Collectively, our data revealed that SAB may exert its antifibrotic and anticoagulant effects by preventing the expression of PAR-1 and phosphorylation of PKC.
Collapse
Affiliation(s)
- Tianyi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China
| | - Mengjiao Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China
| | - Yunhang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China
| | - Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China
| | - Hongping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China
| | - Tengfei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China
| | - Lina Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China.
| | - Zuguang Ye
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing City 100700, China.
| |
Collapse
|
34
|
Njoroge W, Hernández ACH, Musa FI, Butler R, Harper AGS, Yang Y. The Combination of Tissue-Engineered Blood Vessel Constructs and Parallel Flow Chamber Provides a Potential Alternative to In Vivo Drug Testing Models. Pharmaceutics 2021; 13:pharmaceutics13030340. [PMID: 33807995 PMCID: PMC7998107 DOI: 10.3390/pharmaceutics13030340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease is a major cause of death globally. This has led to significant efforts to develop new anti-thrombotic therapies or re-purpose existing drugs to treat cardiovascular diseases. Due to difficulties of obtaining healthy human blood vessel tissues to recreate in vivo conditions, pre-clinical testing of these drugs currently requires significant use of animal experimentation, however, the successful translation of drugs from animal tests to use in humans is poor. Developing humanised drug test models that better replicate the human vasculature will help to develop anti-thrombotic therapies more rapidly. Tissue-engineered human blood vessel (TEBV) models were fabricated with biomimetic matrix and cellular components. The pro- and anti-aggregatory properties of both intact and FeCl3-injured TEBVs were assessed under physiological flow conditions using a modified parallel-plate flow chamber. These were perfused with fluorescently labelled human platelets and endothelial progenitor cells (EPCs), and their responses were monitored in real-time using fluorescent imaging. An endothelium-free TEBV exhibited the capacity to trigger platelet activation and aggregation in a shear stress-dependent manner, similar to the responses observed in vivo. Ketamine is commonly used as an anaesthetic in current in vivo models, but this drug significantly inhibited platelet aggregation on the injured TEBV. Atorvastatin was also shown to enhance EPC attachment on the injured TEBV. The TEBV, when perfused with human blood or blood components under physiological conditions, provides a powerful alternative to current in vivo drug testing models to assess their effects on thrombus formation and EPC recruitment.
Collapse
Affiliation(s)
- Wanjiku Njoroge
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (W.N.); (A.C.H.H.); (F.I.M.)
| | | | - Faiza Idris Musa
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (W.N.); (A.C.H.H.); (F.I.M.)
| | - Robert Butler
- Department of Cardiology, Royal Stoke Hospital, Stoke-on-Trent ST4 6QG, UK;
| | - Alan G. S. Harper
- School of Medicine, Keele University, Staffs ST5 5BG, UK
- Correspondence: (A.G.S.H.); (Y.Y.); Tel.: +44-17-8273-4654 (A.G.S.H.); +44-17-8267-4386 (Y.Y.)
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (W.N.); (A.C.H.H.); (F.I.M.)
- Correspondence: (A.G.S.H.); (Y.Y.); Tel.: +44-17-8273-4654 (A.G.S.H.); +44-17-8267-4386 (Y.Y.)
| |
Collapse
|
35
|
Chen J, Qiu L, Li Q, Ai J, Liu H, Chen Q. Rapid hemostasis accompanied by antibacterial action of calcium crosslinking tannic acid-coated mesoporous silica/silver Janus nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111958. [PMID: 33812586 DOI: 10.1016/j.msec.2021.111958] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022]
Abstract
It is important to control bleeding and prevent bacterial infection for the wound people. The effective way is to fabricate an asymmetric Janus matrial for realizing rapid hemostasis and promoting wound healing. Herein, mesoporous silica nanoparticles (MSN) modified by tannic acid (TA), silver nanoparticles, and calcium ions (Ca-TA-MSN@Ag) with Janus structure were prepared via redox and coordination reactions. These anisotropic snowman-like particles possess obvious chemical compartition, in which silver nanoparticles are embedding in large MSN body. During blood coagulation, TA with catechol structure acts as a vasoconstrictor. Then, Ca-TA-MSN@Ag with high specific surface area (510.62 m2·g-1) and large pore volume (0.48 m3·g-1) induces red blood cell aggregation to form three-dimensional network structure with fibrin. Additionally, calcium ions as clotting factor IV and negative charge of Ca-TA-MSN@Ag accelerate coagulation cascade reaction. These three synergistic effects on animal model showed that hemostatic time of Ca-TA-MSN@Ag was shortened by nearly 50% compared to that of MSN. Moreover, Ca-TA-MSN@Ag possessed good blood compatibility, biocompatibility and antibacterial activity (~99%) against E. coli and S. aureus. The anisotropic Janus particles of Ca-TA-MSN@Ag with hemostatic performance and antibacterial activity will be a promising biomaterial for designing wound dressings in clinical application.
Collapse
Affiliation(s)
- Jiawen Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Liping Qiu
- Fujian Provincial Jinshan Hospital, Fuzhou 350007, People's Republic of China
| | - Qinglin Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Jie Ai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
36
|
Yazdani A, Deng Y, Li H, Javadi E, Li Z, Jamali S, Lin C, Humphrey JD, Mantzoros CS, Em Karniadakis G. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J R Soc Interface 2021; 18:20200834. [PMID: 33530862 PMCID: PMC8086870 DOI: 10.1098/rsif.2020.0834] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/12/2022] Open
Abstract
Normal haemostasis is an important physiological mechanism that prevents excessive bleeding during trauma, whereas the pathological thrombosis especially in diabetics leads to increased incidence of heart attacks and strokes as well as peripheral vascular events. In this work, we propose a new multiscale framework that integrates seamlessly four key components of blood clotting, namely transport of coagulation factors, coagulation kinetics, blood cell mechanics and platelet adhesive dynamics, to model the development of thrombi under physiological and pathological conditions. We implement this framework to simulate platelet adhesion due to the exposure of tissue factor in a three-dimensional microchannel. Our results show that our model can simulate thrombin-mediated platelet activation in the flowing blood, resulting in platelet adhesion to the injury site of the channel wall. Furthermore, we simulate platelet adhesion in diabetic blood, and our results show that both the pathological alterations in the biomechanics of blood cells and changes in the amount of coagulation factors contribute to the excessive platelet adhesion and aggregation in diabetic blood. Taken together, this new framework can be used to probe synergistic mechanisms of thrombus formation under physiological and pathological conditions, and open new directions in modelling complex biological problems that involve several multiscale processes.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Chensen Lin
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Christos S. Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
37
|
Iñigo-Marco I, Istúriz J, Fernández M, Nicolas MJ, Domínguez P, Bastarrika G, Valencia M, Fernández-Seara MA. Imaging of Stroke in Rodents Using a Clinical Scanner and Inductively Coupled Specially Designed Receiver Coils. Ann Biomed Eng 2021; 49:746-756. [PMID: 32918104 DOI: 10.1007/s10439-020-02610-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
Imaging of small laboratory animals in clinical MRI scanners is feasible but challenging. Compared with dedicated preclinical systems, clinical scanners have relatively low B0 field (1.5-3.0 T) and gradient strength (40-60 mT/m). This work explored the use of wireless inductively coupled coils (ICCs) combined with appropriate pulse sequence parameters to overcome these two drawbacks, with a special emphasis on the optimization of the coil passive detuning circuit for this application. A Bengal rose photothrombotic stroke model was used to induce cortical infarction in rats and mice. Animals were imaged in a 3T scanner using T2 and T1-weighted sequences. In all animals, the ICCs allowed acquisition of high-quality images of the infarcted brain at acute and chronic stages. Images obtained with the ICCs showed a substantial increase in SNR compared to clinical coils (by factors of 6 in the rat brain and 16-17 in the mouse brain), and the absence of wires made the animal preparation workflow straightforward.
Collapse
Affiliation(s)
- Ignacio Iñigo-Marco
- Neuroscience Program, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Miguel Fernández
- Radiology Department, Clínica Universidad de Navarra, Pio XII, 36, 31008, Pamplona, Spain
| | - Maria J Nicolas
- Neuroscience Program, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Pablo Domínguez
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Radiology Department, Clínica Universidad de Navarra, Pio XII, 36, 31008, Pamplona, Spain
| | - Gorka Bastarrika
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Radiology Department, Clínica Universidad de Navarra, Pio XII, 36, 31008, Pamplona, Spain
| | - Miguel Valencia
- Neuroscience Program, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María A Fernández-Seara
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- Radiology Department, Clínica Universidad de Navarra, Pio XII, 36, 31008, Pamplona, Spain.
| |
Collapse
|
38
|
Ngo ATP, Parra-Izquierdo I, Aslan JE, McCarty OJT. Rho GTPase regulation of reactive oxygen species generation and signalling in platelet function and disease. Small GTPases 2021; 12:440-457. [PMID: 33459160 DOI: 10.1080/21541248.2021.1878001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Platelets are master regulators and effectors of haemostasis with increasingly recognized functions as mediators of inflammation and immune responses. The Rho family of GTPase members Rac1, Cdc42 and RhoA are known to be major components of the intracellular signalling network critical to platelet shape change and morphological dynamics, thus playing a major role in platelet spreading, secretion and thrombus formation. Initially linked to the regulation of actomyosin contraction and lamellipodia formation, recent reports have uncovered non-canonical functions of platelet RhoGTPases in the regulation of reactive oxygen species (ROS), where intrinsically generated ROS modulate platelet function and contribute to thrombus formation. Platelet RhoGTPases orchestrate oxidative processes and cytoskeletal rearrangement in an interconnected manner to regulate intracellular signalling networks underlying platelet activity and thrombus formation. Herein we review our current knowledge of the regulation of platelet ROS generation by RhoGTPases and their relationship with platelet cytoskeletal reorganization, activation and function.
Collapse
Affiliation(s)
- Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Ivan Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
39
|
Tanaka A, Taruya A, Shibata K, Fuse K, Katayama Y, Yokoyama M, Kashiwagi M, Shingo O, Akasaka T, Kato N. Coronary artery lumen complexity as a new marker for refractory symptoms in patients with vasospastic angina. Sci Rep 2021; 11:13. [PMID: 33420164 PMCID: PMC7794492 DOI: 10.1038/s41598-020-79669-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
Refractory angina is an independent predictor of adverse events in patients with vasospastic angina (VSA). The aim of this study was to investigate the relationship between coronary lumen complexity and refractory symptoms in patients with VSA. Seventeen patients with VSA underwent optical coherence tomography. The patients were divided into the refractory VSA group (n = 9) and the stable VSA group (n = 8). A shoreline development index was used to assess the coronary artery lumen complexity. Shear stress was estimated using a computational fluid dynamics model. No difference was observed in the baseline characteristics between the two groups. The refractory VSA group showed the higher shoreline development index (refractory VSA 1.042 [1.017–1.188] vs stable VSA 1.003 [1.006–1.025], p = 0.036), and higher maximum medial thickness (refractory VSA 184 ± 17 μm vs stable VSA 148 ± 31 μm, p = 0.017), and higher maximum shear stress (refractory VSA 14.5 [12.1–18.8] Pa vs stable VSA 5.6 [3.0–10.5] Pa, p = 0.003). The shoreline development index positively correlates with shear stress (R2 = 0.46, P = 0.004). Increased medial thickness of the coronary arteries provokes lumen complexity and high shear stress, which might cause refractory symptoms in patients with VSA. The shoreline index could serve as a marker for irritability of the medial layer of coronary arteries and symptoms.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan.
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Kyosuke Shibata
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Kota Fuse
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Yosuke Katayama
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Mao Yokoyama
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Manabu Kashiwagi
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Ota Shingo
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Nobuhiro Kato
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| |
Collapse
|
40
|
Iwama RE, Tessler M, Siddall ME, Kvist S. The Origin and Evolution of Antistasin-like Proteins in Leeches (Hirudinida, Clitellata). Genome Biol Evol 2021; 13:evaa242. [PMID: 33527140 PMCID: PMC7851590 DOI: 10.1093/gbe/evaa242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Bloodfeeding is employed by many parasitic animals and requires specific innovations for efficient feeding. Some of these innovations are molecular features that are related to the inhibition of hemostasis. For example, bloodfeeding insects, bats, and leeches release proteins with anticoagulatory activity through their salivary secretions. The antistasin-like protein family, composed of serine protease inhibitors with one or more antistasin-like domains, is tightly linked to inhibition of hemostasis in leeches. However, this protein family has been recorded also in non-bloodfeeding invertebrates, such as cnidarians, mollusks, polychaetes, and oligochaetes. The present study aims to 1) root the antistasin-like gene tree and delimit the major orthologous groups, 2) identify potential independent origins of salivary proteins secreted by leeches, and 3) identify major changes in domain and/or motif structure within each orthologous group. Five clades containing leech antistasin-like proteins are distinguishable through rigorous phylogenetic analyses based on nine new transcriptomes and a diverse set of comparative data: the trypsin + leukocyte elastase inhibitors clade, the antistasin clade, the therostasin clade, and two additional, unnamed clades. The antistasin-like gene tree supports multiple origins of leech antistasin-like proteins due to the presence of both leech and non-leech sequences in one of the unnamed clades, but a single origin of factor Xa and trypsin + leukocyte elastase inhibitors. This is further supported by three sequence motifs that are exclusive to antistasins, the trypsin + leukocyte elastase inhibitor clade, and the therostasin clade, respectively. We discuss the implications of our findings for the evolution of this diverse family of leech anticoagulants.
Collapse
Affiliation(s)
- Rafael Eiji Iwama
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Michael Tessler
- Department of Biology, St. Francis College, Brooklyn, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | | | - Sebastian Kvist
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| |
Collapse
|
41
|
Intravital Assessment of Blood Platelet Function. A Review of the Methodological Approaches with Examples of Studies of Selected Aspects of Blood Platelet Function. Int J Mol Sci 2020; 21:ijms21218334. [PMID: 33172065 PMCID: PMC7664321 DOI: 10.3390/ijms21218334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023] Open
Abstract
Platelet biology owes to intravital studies not only a better understanding of platelets’ role in primary hemostasis but also findings that platelets are important factors in inflammation and atherosclerosis. Researchers who enter the field of intravital platelet studies may be confused by the heterogeneity of experimental protocols utilized. On the one hand, there are a variety of stimuli used to activate platelet response, and on the other hand there are several approaches to measure the outcome of the activation. A number of possible combinations of activation factors with measurement approaches result in the aforementioned heterogeneity. The aim of this review is to present the most often used protocols in a systematic way depending on the stimulus used to activate platelets. By providing examples of studies performed with each of the protocols, we attempt to explain why a particular combination of stimuli and measurement method was applied to study a given aspect of platelet biology.
Collapse
|
42
|
Rawish E, Nording H, Münte T, Langer HF. Platelets as Mediators of Neuroinflammation and Thrombosis. Front Immunol 2020; 11:548631. [PMID: 33123127 PMCID: PMC7572851 DOI: 10.3389/fimmu.2020.548631] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond platelets function in hemostasis, there is emerging evidence to suggest that platelets contribute crucially to inflammation and immune responses. Therefore, considering the detrimental role of inflammatory conditions in severe neurological disorders such as multiple sclerosis or stroke, this review outlines platelets involvement in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and inflammation are portrayed, focusing on the interaction of platelet receptors with other immune cells as well as brain endothelial cells. Furthermore, we draw attention to the intimate interplay between platelets and the complement system as well as between platelets and plasmatic coagulation factors in the course of neuroinflammation. Following the thorough exposition of preclinical approaches which aim at ameliorating disease severity after inducing experimental autoimmune encephalomyelitis (a counterpart of multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of platelet-mediated neuroinflammation is addressed. Thus, current as well as future propitious translational and clinical strategies for the treatment of neuro-inflammatory diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-mediated neuroinflammation could become an efficient adjunct therapy to mitigate disease severity of multiple sclerosis or stroke associated brain injury.
Collapse
Affiliation(s)
- Elias Rawish
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Thomas Münte
- University Hospital Schleswig-Holstein, Clinic for Neurology, Lübeck, Germany
| | - Harald F. Langer
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
43
|
Wang S, Wang R, Meng N, Guo H, Wu S, Wang X, Li J, Wang H, Jiang K, Xie C, Liu Y, Wang H, Lu W. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J Control Release 2020; 328:78-86. [PMID: 32853731 DOI: 10.1016/j.jconrel.2020.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Intravenous injection of thrombolytic drugs is the most effective strategy for the treatment of thrombotic diseases. However, the clinical application of most thrombolytic drugs is limited by hemorrhagic risks and narrow therapeutic index. The targeted drug delivery systems may help to address these problems. Inspired by the crucial role of platelets in the process of thrombus, Platelet membrane-coated PLGA cores loading lumbrokinase (PNPs/LBK) were designed for effective thrombolysis with reduced hemorrhagic risk. Using a mouse carotid thrombosis model, the affinity of platelet membrane-coated nanoparticles to the thrombus was confirmed. Also, the PNPs/LBK exhibited excellent thrombolytic efficacy at a low dose, compared with free LBK. More importantly, PNPs/LBK showed less adverse effect on the function of the coagulation system, and thus reduced hemorrhagic risk. These results indicated that a promising thrombus-targeted drug delivery system was achieved by coating PLGA nanoparticles with platelet membrane. Such rationally designed drug delivery system will provide a broad platform for thrombus treatment.
Collapse
Affiliation(s)
- Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China; National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Haiyan Guo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Xiaoyi Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Jinyang Li
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Huan Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Kuan Jiang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Integrative Medicine of Fudan University, Shanghai 200041, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
44
|
Hussain Z, Cooke AJ, Neelamkavil S, Brown L, Carswell E, Geissler WM, Guo Z, Hawes B, Kelly TM, Kiyoi Y, Lai K, Lesburg C, Pow E, Zang Y, Wood HB, Edmondson SD, Liu W. Design and synthesis of novel proline based factor XIa selective inhibitors as leads for potential new anticoagulants. Bioorg Med Chem Lett 2020; 30:127072. [DOI: 10.1016/j.bmcl.2020.127072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
|
45
|
Shen C, Liu M, Tian H, Li J, Xu R, Mwangi J, Lu Q, Hao X, Lai R. Conformation-Specific Blockade of αIIbβ3 by a Non-RGD Peptide to Inhibit Platelet Activation without Causing Significant Bleeding and Thrombocytopenia. Thromb Haemost 2020; 120:1432-1441. [PMID: 32717755 DOI: 10.1055/s-0040-1714215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bleeding and thrombocytopenia to readministration are the most serious side effects of clinical integrin αIIbβ3 antagonists such as RGD-containing peptides. Here we show that a non-RGD peptide ZDPI, identified from skin secretions of Amolops loloensis, inhibited platelet aggregation induced by agonists, such as adenosine diphosphate, collagen, arachidonic acid, PAR1AP, and integrin αIIbβ3 allosteric activator, and reduces soluble fibrinogen binding to activated platelets without perturbing adhesion numbers on immobilized fibrinogen. Further study showed that ZDPI preferred to bind to the active conformation of integrin αIIbβ3, and thus inhibited c-Src-mediated integrin signaling transduction. In contrast to currently used clinical blockers of integrin αIIbβ3, which are all conformation-unspecific blockers, ZDPI conformation specifically binds to activated integrin αIIbβ3, subsequently suppressing platelet spreading. In vivo study revealed that ZDPI inhibited carotid arterial thrombosis with limited bleeding and thrombocytopenia. A non-RGD peptide which targets the active conformation of integrin αIIbβ3, such as ZDPI, might be an excellent candidate or template to develop antithrombotics without significant bleeding and thrombocytopenia side effects.
Collapse
Affiliation(s)
- Chuanbin Shen
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Huiwen Tian
- Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiameng Li
- Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Runjia Xu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiumin Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China.,Sino-African Joint Research Center, CAS, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
46
|
Diacylglycerol kinase ζ is a negative regulator of GPVI-mediated platelet activation. Blood Adv 2020; 3:1154-1166. [PMID: 30967391 DOI: 10.1182/bloodadvances.2018026328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that convert diacylglycerol (DAG) into phosphatidic acid (PA). The ζ isoform of DGK (DGKζ) has been reported to inhibit T-cell responsiveness by downregulating intracellular levels of DAG. However, its role in platelet function remains undefined. In this study, we show that DGKζ was expressed at significant levels in both platelets and megakaryocytes and that DGKζ-knockout (DGKζ-KO) mouse platelets were hyperreactive to glycoprotein VI (GPVI) agonists, as assessed by aggregation, spreading, granule secretion, and activation of relevant signal transduction molecules. In contrast, they were less responsive to thrombin. Platelets from DGKζ-KO mice accumulated faster on collagen-coated microfluidic surfaces under conditions of arterial shear and stopped blood flow faster after ferric chloride-induced carotid artery injury. Other measures of hemostasis, as measured by tail bleeding time and rotational thromboelastometry analysis, were normal. Interestingly, DGKζ deficiency led to increased GPVI expression on the platelet and megakaryocyte surfaces without affecting the expression of other platelet surface receptors. These results implicate DGKζ as a novel negative regulator of GPVI-mediated platelet activation that plays an important role in regulating thrombus formation in vivo.
Collapse
|
47
|
Kini RM, Koh CY. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem Pharmacol 2020; 181:114105. [PMID: 32579959 DOI: 10.1016/j.bcp.2020.114105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases such as coronary and peripheral artery diseases, venous thrombosis, stroke, hypertension, and heart failure are enormous burden to health and economy globally. Snake venoms have been the sources of discovery of successful therapeutics targeting cardiovascular diseases. For example, the first-in-class angiotensin-converting enzyme inhibitor captopril was designed largely based on bradykinin-potentiating peptides from Bothrops jararaca venom. In the recent years, sensitive and high throughput approaches drive discovery and cataloging of new snake venom toxins. As one of the largest class of snake venom toxin, there are now>700 sequences of three-finger toxins (3FTxs) available, many of which are yet to be studied. While the function of 3FTxs are normally associated with neurotoxicity, increasingly more 3FTxs have been characterized to have pharmacological effects on cardiovascular systems. Here we focus on this family of snake venom toxins and their potential in developing therapeutics against cardiovascular diseases.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| |
Collapse
|
48
|
The Role of Serum Calcium Level in Intracerebral Hemorrhage Hematoma Expansion: Is There Any? Neurocrit Care 2020; 31:188-195. [PMID: 29951959 DOI: 10.1007/s12028-018-0564-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke, with a high rate of mortality and morbidity. Even with the best current medical or surgical interventions, outcomes remain poor. The location and initial hematoma volume are strong predictors of mortality. Hematoma expansion (HE) is a further marker of poor prognosis that may be at least partly preventable. Several risk factors for HE have been identified, including baseline ICH volume, anticoagulation, and computed tomography angiography spot signs. Recent studies have shown the correlation of serum calcium (Ca++) levels on admission with HE. Low serum Ca++ level has been associated with larger hematoma volume at the time of presentation, HE, and worse outcome. Although the causal and mechanistic links between low serum Ca++ level and HE are not well understood, several mechanisms have been proposed including coagulopathy, platelet dysfunction, and higher blood pressure (BP) in the context of low serum Ca++ level. However, low serum Ca++ level might be only a biomarker of the adaptive response due to acute inflammatory response following acute ICH. The purpose of the current review is to discuss the evidence regarding the possible role of low serum Ca++ level on HE in acute ICH.
Collapse
|
49
|
Ishihara K, Yanokuchi S, Teramura Y, Fukazawa K. Combination of two antithrombogenic methodologies for preventing thrombus formation on a poly(ether ether ketone) substrate. Colloids Surf B Biointerfaces 2020; 192:111021. [PMID: 32380403 DOI: 10.1016/j.colsurfb.2020.111021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 11/20/2022]
Abstract
To enhance the total antithrombogenicity of poly(ether ether ketone) (PEEK), we examined a combination of two methodologies for the suppression of activation in both the platelet and coagulation systems. A random copolymer (PMT) composed of a zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) unit and a cationic 2-methacryloyloxyethyl trimethylammonium chloride (TMAEMA) unit was grafted onto the PEEK surface by photoinduced self-initiated graft polymerization of the PEEK substrate (PMTx-g-PEEK). Then, negatively charged heparin was immobilized by ionic binding with TMAEMA units (Hep/PMTx-g-PEEK). The TMAEMA unit composition on grafted PMT altered the surface ζ-potentials of the PEEK substrates. Amounts of immobilized heparin depended on the ζ-potential. The concentration of heparin became constant on the sample surface where the TMAEMA unit composition was 30% or more, and was approximately 2.0 μg/cm2. The Hep/PMTx-g-PEEK with a TMAEMA unit composition of 50% showed not only decreased platelet adhesion, but also a 4-fold extension of the blood coagulation time of the poly(MPC)-g-PEEK substrate. The poly(MPC) layer could inhibit platelet adhesion and activation, resulting in surface antithrombogenic properties. Additionally, heparin released from the Hep/PMTx-g-PEEK prevented activation of the coagulation system in whole blood. Therefore, the combination of these antithrombogenic methodologies was promising for prolonging the blood coagulation period of the materials.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Satoshi Yanokuchi
- Department of Bioengineering School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
50
|
Thermal coagulum formation and hemostasis during repeated multipulse Nd:YAG laser treatment of cutaneous vascular lesions: animal experiment study. Lasers Med Sci 2020; 35:1589-1597. [PMID: 32277406 DOI: 10.1007/s10103-020-03007-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Laser therapy has been widely used to treat port-wine stain (PWS) and other cutaneous vascular lesions via selective photothermolysis. High incident laser fluence is always prohibited in clinic to prevent the thermal damage in normal skin tissue, leading to insufficient energy deposition on the target blood vessel and incomplete clearance of PWS lesion. In this study, repeated multipulse laser (RMPL) irradiation was proposed to induce acute thermal damage to target blood vessels with low incident fluence (40 J/cm2 for 1064-nm Nd:YAG laser). The feasibility of the method was investigated using animal models. Repeated multipulse irradiation cycles with 10-min intervals were performed in RMPL. A hamster dorsal skin chamber model with a visualization system was constructed to investigate the instant generation of thermal coagulum and relevant hemostasis by thrombus formation during and after irradiation under 1064 nm Nd:YAG single multipulse laser (SMPL) and RMPL irradiation. The diameter of the target blood vessel and the size of thermal coagula were measured before and after laser irradiation. The reflectance spectra of the dorsal skin were measured by a reflectance spectrometer during RMPL. Stasis thermal coagula that clogged the vessel lumen were generated during SMPL irradiation with low incident fluence. However, there was no acute thermal damage of blood vessels. Reflectance spectra measurement showed that the generation of thermal coagula and subsequent thrombus formation increases blood absorption by more than 10% within the first 10 min after laser irradiation. Acute vessel thermal damage could be induced in the target blood vessel by RMPL with low incident fluence of 40 J/cm2. Compared with our previous SMPL study, nearly 30% reduction in incident laser fluence was achieved by RMPL. Low fluence RMPL may be a promising approach to improve the therapeutic outcome for patients with cutaneous vascular lesions by improving energy deposition on the target blood vessel.
Collapse
|