1
|
Sudhadevi T, Annadi A, Basa P, Jafri A, Natarajan V, Harijith A. Fingolimod, a sphingosine-1-phosphate receptor modulator, prevents neonatal bronchopulmonary dysplasia and subsequent airway remodeling in a murine model. J Appl Physiol (1985) 2024; 137:1231-1242. [PMID: 39262336 DOI: 10.1152/japplphysiol.00311.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Neonatal bronchopulmonary dysplasia (BPD) is associated with alveolar simplification and airway remodeling. Airway remodeling leads to deformation of airways characterized by peribronchial collagen deposition and hypertrophy of airway smooth muscle, which contribute to the narrowing of airways. Poorly developed lungs contribute to reduced lung function that deteriorates with the passage of time. We have earlier shown that sphingosine kinase 1 (SPHK 1)/sphingosine-1-phosphate (S1P)/S1P receptor1 (S1PR1) signaling plays a role in the pathogenesis of BPD. In this study, we investigated the role of fingolimod or FTY720, a known S1PR1 modulator approved for the treatment of multiple sclerosis in the treatment of BPD. Fingolimod promotes the degradation of S1PR1 by preventing its recycling, thus serving as the equivalent of an inhibitor. Exposure of neonatal mice to hyperoxia enhanced the expression of S1PR1 in both airways and alveoli as compared with normoxia. This increased expression of S1PR1 in the airways persisted into adulthood, accompanied by airway remodeling and airway hyperreactivity (AHR) after neonatal hyperoxia. Intranasal fingolimod at a much lower dose compared with the intraperitoneal route of administration during neonatal hyperoxia improved alveolarization in neonates and reduced airway remodeling and AHR in adult mice associated with improved lung function. The intranasal route was not associated with the lymphopenia seen with the intraperitoneal route of administration of the drug. An increase in S1PR1 expression in the airways was associated with an increase in the expression of enzyme lysyl oxidase (LOX) in the airways following hyperoxia, which was suppressed by fingolimod. This association warrants further investigation.NEW & NOTEWORTHY The role of the S1P receptor1 modulator, fingolimod, as an FDA-approved drug in preventing the recurrence of multiple sclerosis is established. Fingolimod prevented bronchopulmonary dysplasia (BPD) and its sequela of airway remodeling in a neonatal murine model. This protection was associated with the downregulation of lysyl oxidase signaling pathway. Fingolimod could be repurposed for the therapy of BPD.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Akanksha Annadi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Yuan Y. Imbalance of dendritic cell function in pulmonary fibrosis. Cytokine 2024; 181:156687. [PMID: 38963940 DOI: 10.1016/j.cyto.2024.156687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease. The pathogenesis of PF remains unclear, and there are currently no effective treatments or drugs that can completely cure PF. The primary cause of PF is an imbalance of inflammatory response and inappropriate repair following lung injury. Dendritic cells (DCs), as one of the immune cells in the body, play an important role in regulating immune response, immune tolerance, and promoting tissue repair following lung injury. However, the role of DCs in the PF process is ambiguous or even contradictory in the existing literature. On the one hand, DCs can secrete transforming growth factor β(TGF-β), stimulate Th17 cell differentiation, stimulate fibroblast proliferation, and promote the generation of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α), thereby promoting PF. On the other hand, DCs suppress PF through mechanisms including the secretion of IL-10 to inhibit effector T cell activity in the lungs and promote the function of regulatory T cells (Tregs), as well as by expressing matrix metalloproteinases (MMPs) which facilitate the degradation of the extracellular matrix (ECM). This article will infer possible reasons for the different roles of DCs in PF and analyze possible reasons for the functional imbalance of DCs in pulmonary fibrosis from the complexity and changes of the pulmonary microenvironment, autophagy defects of DCs, and changes in the pulmonary physical environment.
Collapse
Affiliation(s)
- Yuan Yuan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China.
| |
Collapse
|
3
|
Wang M, Zhu M, Jia X, Wu J, Yuan Q, Xu T, Wang Z, Huang M, Ji N, Zhang M. LincR-PPP2R5C regulates IL-1β ubiquitination in macrophages and promotes airway inflammation and emphysema in a murine model of COPD. Int Immunopharmacol 2024; 139:112680. [PMID: 39018689 DOI: 10.1016/j.intimp.2024.112680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. Macrophages release IL-1β and orchestrate airway inflammation in COPD. Previously, we explored the role of a new lncRNA, LincR-PPP2R5C, in regulating Th2 cells in asthma. Here, we established a murine model of COPD and explored the roles and mechanisms by which LincR-PPP2R5C regulates IL-1β in macrophages. LincR-PPP2R5C was highly expressed in pulmonary macrophages from COPD-like mice. LincR-PPP2R5C deficiency ameliorated emphysema and pulmonary inflammation, as characterized by reduced IL-1β in macrophages. Unexpectedly, in both lung tissues and macrophages, LincR-PPP2R5C deficiency decreased the expression of the IL-1β protein but not the IL-1β mRNA. Furthermore, we found that LincR-PPP2R5C deficiency increased the level of ubiquitinated IL-1β in macrophages, which was mediated by PP2A activity. Targeting PP2A with FTY720 decreased IL-1β and improved COPD. In conclusion, LincR-PPP2R5C regulates IL-1β ubiquitination by affecting PP2A activity in macrophages, contributing to the airway inflammation and emphysema in a murine model of COPD. PP2A and IL-1β ubiquitination in macrophages might be new therapeutic avenues for COPD therapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Manni Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Yoshida K, Morishima Y, Ishii Y, Mastuzaka T, Shimano H, Hizawa N. Abnormal saturated fatty acids and sphingolipids metabolism in asthma. Respir Investig 2024; 62:526-530. [PMID: 38640569 DOI: 10.1016/j.resinv.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Recent advances in fatty acid analysis have highlighted the links between lipid disruption and disease development. Lipid abnormalities are well-established risk factors for many of the most common chronic illnesses, and their involvement in asthma is also becoming clear. Here, we review research demonstrating the role of abnormal lipid metabolism in asthma, with a focus on saturated fatty acids and sphingolipids. High levels of palmitic acid, the most abundant saturated fatty acid in the human body, have been found in the airways of asthmatic patients with obesity, and were shown to worsen eosinophilic airway inflammation in asthma model mice on a high-fat diet. Aside from being a building block of longer-chain fatty acids, palmitic acid is also the starting point for de novo synthesis of ceramides, a class of sphingolipids. We outline the three main pathways for the synthesis of ceramides, which have been linked to the severity of asthma and act as precursors for the dynamic lipid mediator sphingosine 1-phosphate (S1P). S1P signaling is involved in allergen-induced eosinophilic inflammation, airway hyperresponsiveness, and immune-cell trafficking. A recent study of mice with mutations for the elongation of very long-chain fatty acid family member 6 (Elovl6), an enzyme that elongates fatty acid chains, has highlighted the potential role of palmitic acid composition, and thus lipid balance, in the pathophysiology of allergic airway inflammation. Elovl6 may be a potential therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Kazufumi Yoshida
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuko Morishima
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukio Ishii
- Department of Respiratory Medicine, National Hospital Organization Ibaraki Higashi National Hospital, 825 Terunuma, Tokai-Mura, Naka-Gun, Ibaraki, 319-1113, Japan
| | - Takashi Mastuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
5
|
Sudhadevi T, Ackerman SJ, Jafri A, Basa P, Ha AW, Natarajan V, Harijith A. Sphingosine kinase 1-specific inhibitor PF543 reduces goblet cell metaplasia of bronchial epithelium in an acute asthma model. Am J Physiol Lung Cell Mol Physiol 2024; 326:L377-L392. [PMID: 38290992 PMCID: PMC11281799 DOI: 10.1152/ajplung.00269.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
6
|
Součková I, Souček O, Krejsek J, Vyšata O, Matyáš D, Peterka M, Novotný M, Kunc P, Pavelek Z. Quantiferon Monitor Testing Sheds Light on Immune System Disparities between Multiple Sclerosis Patients and Healthy Individuals. Int J Mol Sci 2024; 25:2179. [PMID: 38396856 PMCID: PMC10889671 DOI: 10.3390/ijms25042179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to conduct QuantiFERON Monitor (QFM) testing in patients with multiple sclerosis (MS), which is used to monitor the state of the immune system through the non-specific stimulation of leukocytes followed by determining the level of interferon-gamma (IFN-γ) released from activated cells. Additionally, we tested the level of selected cytokines (IFN-α, IFN-γ, IL-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-6, IL-7, IL-10, IL-15, IL-33, VEGF) from stimulated blood samples to further understand the immune response. This study builds upon a previously published study, utilizing activated serum samples that were initially used for IFN-γ determination. However, our current focus shifts from IFN-γ to exploring other cytokines that could provide further insights into the immune response. A screening was conducted using Luminex technology, which yielded promising results. These results were then further elaborated upon using ELISA to provide a more detailed understanding of the cytokine profiles involved. This study, conducted from August 2019 to June 2023, included 280 participants: 98 RRMS patients treated with fingolimod (fMS), 96 untreated patients with progressive MS (pMS), and 86 healthy controls (HC). Our results include Violin plots showing elevated IL-1α in pMS and fMS. Statistical analysis indicated significant differences in the interleukin levels between groups, with IL-1ra and age as key predictors in differentiating HC from pMS and IL-1ra, IL-1α, age, and EDSS in distinguishing pMS from fMS. These findings suggest cytokines' potential as biomarkers in MS progression and treatment response.
Collapse
Affiliation(s)
- Ilona Součková
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
| | - Ondřej Souček
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
| | - Oldřich Vyšata
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - David Matyáš
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Marek Peterka
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Michal Novotný
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Pavel Kunc
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Zbyšek Pavelek
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Laaker C, Baenen C, Kovács KG, Sandor M, Fabry Z. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol 2023; 14:1233908. [PMID: 37662908 PMCID: PMC10471710 DOI: 10.3389/fimmu.2023.1233908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.
Collapse
Affiliation(s)
- Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Cameron Baenen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
8
|
Roy S, Batra L. Protein Phosphatase 2A: Role in T Cells and Diseases. J Immunol Res 2023; 2023:4522053. [PMID: 37234102 PMCID: PMC10208765 DOI: 10.1155/2023/4522053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that plays an important role in the regulation of cell proliferation and signal transduction. The catalytic activity of PP2A is integral in the maintenance of physiological functions which gets severely impaired in its absence. PP2A plays an essential role in the activation, differentiation, and functions of T cells. PP2A suppresses Th1 cell differentiation while promoting Th2 cell differentiation. PP2A fosters Th17 cell differentiation which contributes to the pathogenesis of systemic lupus erythematosus (SLE) by enhancing the transactivation of the Il17 gene. Genetic deletion of PP2A in Tregs disrupts Foxp3 expression due to hyperactivation of mTORC1 signaling which impairs the development and immunosuppressive functions of Tregs. PP2A is important in the induction of Th9 cells and promotes their antitumor functions. PP2A activation has shown to reduce neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) and is now used to treat multiple sclerosis (MS) clinically. In this review, we will discuss the structure and functions of PP2A in T cell differentiation and diseases and therapeutic applications of PP2A-mediated immunotherapy.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
9
|
Alakhras NS, Kaplan MH. Dendritic Cells as a Nexus for the Development of Multiple Sclerosis and Models of Disease. Adv Biol (Weinh) 2023:e2300073. [PMID: 37133870 DOI: 10.1002/adbi.202300073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Multiple sclerosis (MS) results from an autoimmune attack on the central nervous system (CNS). Dysregulated immune cells invade the CNS, causing demyelination, neuronal and axonal damage, and subsequent neurological disorders. Although antigen-specific T cells mediate the immunopathology of MS, innate myeloid cells have essential contributions to CNS tissue damage. Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that promote inflammation and modulate adaptive immune responses. This review focuses on DCs as critical components of CNS inflammation. Here, evidence from studies is summarized with animal models of MS and MS patients that support the critical role of DCs in orchestrating CNS inflammation.
Collapse
Affiliation(s)
- Nada S Alakhras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Dr, MS420, Indianapolis, IN, 46202, USA
| |
Collapse
|
10
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
11
|
Huang L, Peng S, Liu Z, Zhang J, Liu N, Lin J. Natural blood plasma-based hydrogels as tumor vaccines delivery systems to enhance biomimetic recruitment of antigen presenting cells for tumor immunotherapy. Mater Today Bio 2022; 17:100497. [DOI: 10.1016/j.mtbio.2022.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
|
12
|
Constantinescu V, Akgün K, Ziemssen T. Current status and new developments in sphingosine-1-phosphate receptor antagonism: fingolimod and more. Expert Opin Drug Metab Toxicol 2022; 18:675-693. [PMID: 36260948 DOI: 10.1080/17425255.2022.2138330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fingolimod was the first oral disease-modifying treatment approved for relapsing-remitting multiple sclerosis (MS) that serves as a sphingosine-1-phosphate receptor (S1PR) agonist. The efficacy is primarily mediated by S1PR subtype 1 activation, leading to agonist-induced down-modulation of receptor expression and further functional antagonism, blocking the egression of auto-aggressive lymphocytes from the lymph nodes in the peripheral compartment. The role of S1P signaling in the regulation of other pathways in human organisms through different S1PR subtypes has received much attention due to its immune-modulatory function and its significance for the regeneration of the central nervous system (CNS). The more selective second-generation S1PR modulators have improved safety and tolerability profiles. AREAS COVERED This review has been carried out based on current data on S1PR modulators, emphasizing the benefits of recent advances in this emergent class of immunomodulatory treatment for MS. EXPERT OPINION Ongoing clinical research suggests that S1PR modulators represent an alternative to first-line therapies in selected cases of MS. A better understanding of the relevance of selective S1PR pathways and the ambition to optimize selective modulation has improved the safety and tolerability of S1PR modulators in MS therapy and opened new perspectives for the treatment of other diseases.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| |
Collapse
|
13
|
Sethi GS, Gracias D, Croft M. Contribution of circulatory cells to asthma exacerbations and lung tissue-resident CD4 T cell memory. Front Immunol 2022; 13:951361. [PMID: 35936001 PMCID: PMC9353789 DOI: 10.3389/fimmu.2022.951361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident memory CD4 T cells (Trm) are thought to be a major contributor to asthma relapse, but the role of circulatory T cells in asthma exacerbations or to maintaining the population of lung Trm cells is not fully understood. Here, we used a house dust mite allergen-based murine model of asthma relapse, and monitored the development of lung effector/Trm phenotype CD44hiCD62LloCD69+ CD4 T cells. To determine the contribution of circulatory cells, mice were treated with FTY720, to block lymphocyte egress from lymph nodes. Inhibiting the primary migration of circulatory cells to the lungs mitigated the accumulation and expansion of allergen-driven Trm phenotype cells, but subsequent allergen challenges still resulted in strong lung inflammation and Trm cell accumulation. This was blocked if FTY720 was also given at the time of allergen re-exposure, showing that new circulatory cells contributed to this lung memory/effector T cell pool at times well after the initial sensitization. However, once lung-localized Trm cells developed at high frequency, circulatory cells were not required to maintain this population following allergen re-encounter, even though circulatory cells still were major contributors to the overall asthmatic lung inflammatory response. Our results suggest that strategies that target the response of circulatory memory T cells and Trm cells together might be required to strongly inhibit T cell reactivity to airborne allergens and to limit exacerbations of asthma and their reoccurrence, but the contribution of circulatory T cells might vary in long-term asthmatics possessing a large stable Trm cell population in the lungs.
Collapse
Affiliation(s)
- Gurupreet S. Sethi
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Donald Gracias
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Michael Croft,
| |
Collapse
|
14
|
Zehra Okus F, Busra Azizoglu Z, Canatan H, Eken A. S1P analogues SEW2871, BAF312 and FTY720 affect human Th17 and Treg generation ex vivo. Int Immunopharmacol 2022; 107:108665. [DOI: 10.1016/j.intimp.2022.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/05/2022]
|
15
|
Sphingosine 1-Phosphate Receptor 5 (S1P5) Knockout Ameliorates Adenine-Induced Nephropathy. Int J Mol Sci 2022; 23:ijms23073952. [PMID: 35409312 PMCID: PMC8999641 DOI: 10.3390/ijms23073952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
S1P and its receptors have been reported to play important roles in the development of renal fibrosis. Although S1P5 has barely been investigated so far, there are indications that it can influence inflammatory and fibrotic processes. Here, we report the role of S1P5 in renal inflammation and fibrosis. Male S1P5 knockout mice and wild-type mice on a C57BL/6J background were fed with an adenine-rich diet for 7 days or 14 days to induce tubulointerstitial fibrosis. The kidneys of untreated mice served as respective controls. Kidney damage, fibrosis, and inflammation in kidney tissues were analyzed by real-time PCR, Western blot, and histological staining. Renal function was assessed by plasma creatinine ELISA. The S1P5 knockout mice had better renal function and showed less kidney damage, less proinflammatory cytokine release, and less fibrosis after 7 days and 14 days of an adenine-rich diet compared to wild-type mice. S1P5 knockout ameliorates tubular damage and tubulointerstitial fibrosis in a model of adenine-induced nephropathy in mice. Thus, targeting S1P5 might be a promising goal for the pharmacological treatment of kidney diseases.
Collapse
|
16
|
Olesch C, Brüne B, Weigert A. Keep a Little Fire Burning-The Delicate Balance of Targeting Sphingosine-1-Phosphate in Cancer Immunity. Int J Mol Sci 2022; 23:ijms23031289. [PMID: 35163211 PMCID: PMC8836181 DOI: 10.3390/ijms23031289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) promotes tumor development through a variety of mechanisms including promoting proliferation, survival, and migration of cancer cells. Moreover, S1P emerged as an important regulator of tumor microenvironmental cell function by modulating, among other mechanisms, tumor angiogenesis. Therefore, S1P was proposed as a target for anti-tumor therapy. The clinical success of current cancer immunotherapy suggests that future anti-tumor therapy needs to consider its impact on the tumor-associated immune system. Hereby, S1P may have divergent effects. On the one hand, S1P gradients control leukocyte trafficking throughout the body, which is clinically exploited to suppress auto-immune reactions. On the other hand, S1P promotes pro-tumor activation of a diverse range of immune cells. In this review, we summarize the current literature describing the role of S1P in tumor-associated immunity, and we discuss strategies for how to target S1P for anti-tumor therapy without causing immune paralysis.
Collapse
Affiliation(s)
- Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
17
|
Thomas JM, Sudhadevi T, Basa P, Ha AW, Natarajan V, Harijith A. The Role of Sphingolipid Signaling in Oxidative Lung Injury and Pathogenesis of Bronchopulmonary Dysplasia. Int J Mol Sci 2022; 23:ijms23031254. [PMID: 35163176 PMCID: PMC8835774 DOI: 10.3390/ijms23031254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Premature infants are born with developing lungs burdened by surfactant deficiency and a dearth of antioxidant defense systems. Survival rate of such infants has significantly improved due to advances in care involving mechanical ventilation and oxygen supplementation. However, a significant subset of such survivors develops the chronic lung disease, Bronchopulmonary dysplasia (BPD), characterized by enlarged, simplified alveoli and deformed airways. Among a host of factors contributing to the pathogenesis is oxidative damage induced by exposure of the developing lungs to hyperoxia. Recent data indicate that hyperoxia induces aberrant sphingolipid signaling, leading to mitochondrial dysfunction and abnormal reactive oxygen species (ROS) formation (ROS). The role of sphingolipids such as ceramides and sphingosine 1-phosphate (S1P), in the development of BPD emerged in the last decade. Both ceramide and S1P are elevated in tracheal aspirates of premature infants of <32 weeks gestational age developing BPD. This was faithfully reflected in the murine models of hyperoxia and BPD, where there is an increased expression of sphingolipid metabolites both in lung tissue and bronchoalveolar lavage. Treatment of neonatal pups with a sphingosine kinase1 specific inhibitor, PF543, resulted in protection against BPD as neonates, accompanied by improved lung function and reduced airway remodeling as adults. This was accompanied by reduced mitochondrial ROS formation. S1P receptor1 induced by hyperoxia also aggravates BPD, revealing another potential druggable target in this pathway for BPD. In this review we aim to provide a detailed description on the role played by sphingolipid signaling in hyperoxia induced lung injury and BPD.
Collapse
Affiliation(s)
- Jaya M. Thomas
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Alison W. Ha
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Correspondence: ; Tel.: +1-(216)-286-7038
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This study reviews the mechanisms of HDL cholesterol immunomodulation in the context of the mechanisms of chronic inflammation and immunosuppression causing persistent inflammation, immunosuppression and catabolism syndrome (PICS) and describes potential therapies and gaps in current research. RECENT FINDINGS Low HDL cholesterol is predictive of acute sepsis severity and outcome. Recent research has indicated apolipoprotein is a prognostic indicator of long-term outcomes. The pathobiologic mechanisms of PICS have been elucidated in the past several years. Recent research of the interaction of HDL pathways in related chronic inflammatory diseases may provide insights into further mechanisms and therapeutic targets. SUMMARY HDL significantly influences innate and adaptive immune pathways relating to chronic disease and inflammation. Further research is needed to better characterize these interactions in the setting of PICS.
Collapse
Affiliation(s)
- Grant Barker
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville
| | - Julia R Winer
- University of Florida College of Medicine, Gainesville, Florida
| | - Faheem W Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville
| | - Srinivasa Reddy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Jenkins MM, Bachus H, Botta D, Schultz MD, Rosenberg AF, León B, Ballesteros-Tato A. Lung dendritic cells migrate to the spleen to prime long-lived TCF1 hi memory CD8 + T cell precursors after influenza infection. Sci Immunol 2021; 6:eabg6895. [PMID: 34516781 DOI: 10.1126/sciimmunol.abg6895] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Meagan M Jenkins
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly Bachus
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael D Schultz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Rodriguez-Coira J, Villaseñor A, Izquierdo E, Huang M, Barker-Tejeda TC, Radzikowska U, Sokolowska M, Barber D. The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Front Immunol 2021; 12:692004. [PMID: 34394086 PMCID: PMC8355700 DOI: 10.3389/fimmu.2021.692004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
There is increasing evidence that the metabolic status of T cells and macrophages is associated with severe phenotypes of chronic inflammation, including allergic inflammation. Metabolic changes in immune cells have a crucial role in their inflammatory or regulatory responses. This notion is reinforced by metabolic diseases influencing global energy metabolism, such as diabetes or obesity, which are known risk factors of severity in inflammatory conditions, due to the metabolic-associated inflammation present in these patients. Since several metabolic pathways are closely tied to T cell and macrophage differentiation, a better understanding of metabolic alterations in immune disorders could help to restore and modulate immune cell functions. This link between energy metabolism and inflammation can be studied employing animal, human or cellular models. Analytical approaches rank from classic immunological studies to integrated analysis of metabolomics, transcriptomics, and proteomics. This review summarizes the main metabolic pathways of the cells involved in the allergic reaction with a focus on T cells and macrophages and describes different models and platforms of analysis used to study the immune system and its relationship with metabolism.
Collapse
Affiliation(s)
- Juan Rodriguez-Coira
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Alma Villaseñor
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Elena Izquierdo
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Tomás Clive Barker-Tejeda
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Domingo Barber
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| |
Collapse
|
21
|
Steele MM, Lund AW. Afferent Lymphatic Transport and Peripheral Tissue Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:264-272. [PMID: 33397740 DOI: 10.4049/jimmunol.2001060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Lymphatic vessels provide an anatomical framework for immune surveillance and adaptive immune responses. Although appreciated as the route for Ag and dendritic cell transport, peripheral lymphatic vessels are often not considered active players in immune surveillance. Lymphatic vessels, however, integrate contextual cues that directly regulate transport, including changes in intrinsic pumping and capillary remodeling, and express a dynamic repertoire of inflammatory chemokines and adhesion molecules that facilitates leukocyte egress out of inflamed tissue. These mechanisms together contribute to the course of peripheral tissue immunity. In this review, we focus on context-dependent mechanisms that regulate fluid and cellular transport out of peripheral nonlymphoid tissues to provide a framework for understanding the effects of afferent lymphatic transport on immune surveillance, peripheral tissue inflammation, and adaptive immunity.
Collapse
Affiliation(s)
- Maria M Steele
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016; .,Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016; and.,Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
22
|
Smail SW, Saeed M, Twana Alkasalias, Khudhur ZO, Younus DA, Rajab MF, Abdulahad WH, Hussain HI, Niaz K, Safdar M. Inflammation, immunity and potential target therapy of SARS-COV-2: A total scale analysis review. Food Chem Toxicol 2021; 150:112087. [PMID: 33640537 PMCID: PMC7905385 DOI: 10.1016/j.fct.2021.112087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a complex disease that causes illness ranging from mild to severe respiratory problems. It is caused by a novel coronavirus SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) that is an enveloped positive-sense single-stranded RNA (+ssRNA) virus belongs to coronavirus CoV family. It has a fast-spreading potential worldwide, which leads to high mortality regardless of lows death rates. Now some vaccines or a specific drug are approved but not available for every country for disease prevention and/or treatment. Therefore, it is a high demand to identify the known drugs and test them as a possible therapeutic approach. In this critical situation, one or more of these drugs may represent the only option to treat or reduce the severity of the disease, until some specific drugs or vaccines will be developed and/or approved for everyone in this pandemic. In this updated review, the available repurpose immunotherapeutic treatment strategies are highlighted, elucidating the crosstalk between the immune system and SARS-CoV-2. Despite the reasonable data availability, the effectiveness and safety of these drugs against SARS-CoV-2 needs further studies and validations aiming for a better clinical outcome.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq; Department of Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Twana Alkasalias
- Department of Pathological Analysis, College of Science, Knowledge University, Erbil, Kurdistan Region, Iraq; General Directorate for Scientific Research Center, Salahaddin University- Erbil, Erbil, Kurdistan Region, Iraq; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Science, Tishk International University - Erbil, Kurdistan Region, Iraq
| | - Delan Ameen Younus
- General Directorate for Scientific Research Center, Salahaddin University- Erbil, Erbil, Kurdistan Region, Iraq
| | - Mustafa Fahmi Rajab
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | - Wayel Habib Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Hafiz Iftikhar Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Kamal Niaz
- Department of Pharmacology & Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Muhammad Safdar
- Department of Breeding and Genetics, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan.
| |
Collapse
|
23
|
Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158853. [PMID: 33160078 DOI: 10.1016/j.bbalip.2020.158853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lipids participate in many important biological functions through energy storage, material transport, signal transduction, and molecular recognition processes. Studies have reported that asthmatic patients have abnormal lipid metabolism. However, there are limited studies on the characterization of lipid metabolism in asthmatic patients by lipidomics. METHODS We characterized the plasma lipid profile of 28 healthy controls and 33 outpatients with asthma (18 mild, 15 moderate) by liquid chromatography mass spectrometry/mass spectrometry-based lipidomics. RESULTS We determined 1338 individual lipid species in the plasma. Significant changes were identified in ten lipid species in asthmatic patients than in healthy controls (all P < 0.05). Phosphatidylethanolamine (PE) (18:1p/22:6), PE (20:0/18:1), PE (38:1), sphingomyelin (SM) (d18:1/18:1), and triglyceride (TG) (16:0/16:0/18:1) positively correlated with the severity of asthma (all P < 0.05). Phosphatidylinositol (PI) (16:0/20:4), TG (17:0/18:1/18:1), phosphatidylglycerol (PG) (44:0), ceramide (Cer) (d16:0/27:2), and lysophosphatidylcholine (LPC) (22:4) negatively correlated with the severity of asthma (all P < 0.05). Correlation analysis showed a significant correlation between all ten lipid species (all P < 0.05). From the area under the curve of the receiver operating characteristic curve analysis, PE (38:1) was the major lipid metabolite that distinguished asthmatic patients from healthy controls, and may be considered a potential lipid biomarker. PE (20:0/18:1) and TG (16:0/16:0/18:1) might be related to IgE levels in asthmatic patients. CONCLUSIONS Our results indicated the presence of abnormal lipid metabolism, which correlated with the severity and IgE levels in asthmatic patients.
Collapse
|
24
|
Risiken und Chancen von Immuntherapien in Zeiten der Coronavirus-2019-Pandemie. DGNEUROLOGIE 2020. [PMCID: PMC7284681 DOI: 10.1007/s42451-020-00205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immuntherapien stellen die essenzielle Grundlage der Behandlung von neuroinflammatorischen Erkrankungen dar. In Zeiten der Coronavirus-2019 (COVID-19)-Pandemie ergibt sich im klinischen Alltag jedoch zunehmend die Frage, ob eine Immuntherapie bei neurologischen Patienten aufgrund des potenziellen Infektionsrisikos eingeleitet, intensiviert, pausiert oder gar beendet werden sollte. Unsicherheit besteht v. a. deshalb, weil verschiedene nationale und internationale Fachgesellschaften diesbezüglich unterschiedliche Empfehlungen veröffentlichten. In diesem Artikel soll ein Überblick über die Wirkmechanismen von Immuntherapien und den daraus abzuleitenden Infektionsrisiken in Bezug auf COVID-19 (durch den Coronavirus verursachte Erkrankung) gegeben werden. Potenzielle Chancen und vorteilhafte Effekte einzelner Substrate in der Akuttherapie von COVID-19 werden diskutiert.
Collapse
|
25
|
Sudhadevi T, Ha AW, Ebenezer DL, Fu P, Putherickal V, Natarajan V, Harijith A. Advancements in understanding the role of lysophospholipids and their receptors in lung disorders including bronchopulmonary dysplasia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158685. [PMID: 32169655 PMCID: PMC7206974 DOI: 10.1016/j.bbalip.2020.158685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating chronic neonatal lung disease leading to serious adverse consequences. Nearly 15 million babies are born preterm accounting for >1 in 10 births globally. The aetiology of BPD is multifactorial and the survivors suffer lifelong respiratory morbidity. Lysophospholipids (LPL), which include sphingosine-1-phosphate (S1P), and lysophosphatidic acid (LPA) are both naturally occurring bioactive lipids involved in a variety of physiological and pathological processes such as cell survival, death, proliferation, migration, immune responses and vascular development. Altered LPL levels have been observed in a number of lung diseases including BPD, which underscores the importance of these signalling lipids under normal and pathophysiological situations. Due to the paucity of information related to LPLs in BPD, most of the ideas related to BPD and LPL are speculative. This article is intended to promote discussion and generate hypotheses, in addition to the limited review of information related to BPD already established in the literature.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Vijay Putherickal
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America; Department of Medicine, University of Illinois, Chicago, IL, United States of America
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America; Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America; Department of Pharmacology, University of Illinois, Chicago, IL, United States of America.
| |
Collapse
|
26
|
Rousselle TV, Kuscu C, Kuscu C, Schlegel K, Huang L, Namwanje M, Eason JD, Makowski L, Maluf D, Mas V, Bajwa A. FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Front Immunol 2020; 11:1278. [PMID: 32670281 PMCID: PMC7328774 DOI: 10.3389/fimmu.2020.01278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are central in regulating immune responses of kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in mice treated with S1PR agonist, FTY720 (FTY). We tested if ex vivo propagation of DCs with FTY could be used as cellular therapy to limit the off-target effects associated with systemic FTY administration in kidney IRI. DCs have the ability of regulate innate and adaptive responses and we posited that treatment of DC with FTY may underlie improvements in kidney IRI. Herein, it was observed that treatment of bone marrow derived dendritic cells (BMDCs) with FTY induced mitochondrial biogenesis, FTY-treated BMDCs (FTY-DCs) showed significantly higher oxygen consumption rate and ATP production compared to vehicle treated BMDCs (Veh-DCs). Adoptive transfer of FTY-DCs to mice 24 h before or 4 h after IRI significantly protected the kidneys from injury compared to mice treated with Veh-DCs. Additionally, allogeneic adoptive transfer of C57BL/6J FTY-DCs into BALB/c mice equally protected the kidneys from IRI. FTY-DCs propagated from S1pr1-deficient DCs derived from CD11cCreS1pr1fl/fl mice as well as blunting mitochondrial oxidation in wildtype (WT) FTY-DCs prior to transfer abrogated the protection observed by FTY-DCs. We queried if DC mitochondrial content alters kidney responses after IRI, a novel but little studied phenomenon shown to be integral to regulation of the immune response. Transfer of mitochondria rich FTY-DCs protects kidneys from IRI as transferred FTY-DCs donated their mitochondria to recipient splenocytes (i.e., macrophages) and prior splenectomy abrogated this protection. Adoptive transfer of FTY-DCs either prior to or after ischemic injury protects kidneys from IRI demonstrating a potent role for donor DC-mitochondria in FTY's efficacy. This is the first evidence, to our knowledge, that DCs have the potential to protect against kidney injury by donating mitochondria to splenic macrophages to alter their bioenergetics thus making them anti-inflammatory. In conclusion, the results support that ex vivo FTY720-induction of the regulatory DC phenotype could have therapeutic relevance that can be preventively infused to reduce acute kidney injury.
Collapse
Affiliation(s)
- Thomas V Rousselle
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Kailo Schlegel
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - LiPing Huang
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Maria Namwanje
- Department of Pediatrics and Genetics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James D Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Liza Makowski
- Department of Medicine - Division of Hematology and Oncology, College of Medicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Valeria Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
27
|
Bahlas S, Damiati LA, Al-Hazmi AS, Pushparaj PN. Decoding the Role of Sphingosine-1-Phosphate in Asthma and Other Respiratory System Diseases Using Next Generation Knowledge Discovery Platforms Coupled With Luminex Multiple Analyte Profiling Technology. Front Cell Dev Biol 2020; 8:444. [PMID: 32637407 PMCID: PMC7317666 DOI: 10.3389/fcell.2020.00444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic sphingolipid derived by the phosphorylation of sphingosine either by sphingosine kinase 1 (SPHK1) or SPHK2. Importantly, S1P acts through five different types of G-protein coupled S1P receptors (S1PRs) in immune cells to elicit inflammation and other immunological processes by enhancing the production of various cytokines, chemokines, and growth factors. The airway inflammation in asthma and other respiratory diseases is augmented by the activation of immune cells and the induction of T-helper cell type 2 (Th2)-associated cytokines and chemokines. Therefore, studying the S1P mediated signaling in airway inflammation is crucial to formulate effective treatment and management strategies for asthma and other respiratory diseases. The central aim of this study is to characterize the molecular targets induced through the S1P/S1PR axis and dissect the therapeutic importance of this key axis in asthma, airway inflammation, and other related respiratory diseases. To achieve this, we have adopted both high throughput next-generation knowledge discovery platforms such as SwissTargetPrediction, WebGestalt, Open Targets Platform, and Ingenuity Pathway Analysis (Qiagen, United States) to delineate the molecular targets of S1P and further validated the upstream regulators of S1P signaling using cutting edge multiple analyte profiling (xMAP) technology (Luminex Corporation, United States) to define the importance of S1P signaling in asthma and other respiratory diseases in humans.
Collapse
Affiliation(s)
- Sami Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Laila A Damiati
- Department of Biology, Faculty of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ayman S Al-Hazmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Makkah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Pawlitzki M, Zettl UK, Ruck T, Rolfes L, Hartung HP, Meuth SG. Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine 2020; 56:102822. [PMID: 32535547 PMCID: PMC7286830 DOI: 10.1016/j.ebiom.2020.102822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Immunosuppression and immunomodulation are valuable therapeutic approaches for managing neuroimmunological diseases. In times of the Coronavirus disease 2019 (COVID-19) pandemic, clinicians must deal with the question of whether immunotherapy should currently be initiated or discontinued in neurological patients. Uncertainty exists especially because different national medical associations publish different recommendations on the extent to which immunotherapies must be continued, monitored, or possibly switched during the current pandemic. Based on the most recently available data both about the novel coronavirus and the approved immunotherapies for neurological diseases, we provide an updated overview that includes current treatment strategies and the associated COVID-19 risk, but also the potential of immunotherapies to treat COVID-19.
Collapse
Affiliation(s)
- Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | - Uwe K Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
29
|
Silva JE, Mayordomo AC, Dave MN, Aguilera Merlo C, Eliçabe RJ, Di Genaro MS. Dendritic Cells of Mesenteric and Regional Lymph Nodes Contribute to Yersinia enterocolitica O:3-Induced Reactive Arthritis in TNFRp55-/- Mice. THE JOURNAL OF IMMUNOLOGY 2020; 204:1859-1868. [PMID: 32122996 DOI: 10.4049/jimmunol.1901137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023]
Abstract
Dendritic cells (DCs) participate in the pathogenesis of several diseases. We investigated DCs and the connection between mucosa and joints in a murine model of Yersinia enterocolitica O:3-induced reactive arthritis (ReA) in TNFRp55-/- mice. DCs of mesenteric lymph nodes (MLN) and joint regional lymph nodes (RLN) were analyzed in TNFRp55-/- and wild-type mice. On day 14 after Y. enterocolitica infection (arthritis onset), we found that under TNFRp55 deficiency, migratory (MHChighCD11c+) DCs increased significantly in RLN. Within these RLN, resident (MHCintCD11c+) DCs increased on days 14 and 21. Similar changes in both migratory and resident DCs were also detected on day 14 in MLN of TNFRp55-/- mice. In vitro, LPS-stimulated migratory TNFRp55-/- DCs of MLN increased IL-12/23p40 compared with wild-type mice. In addition, TNFRp55-/- bone marrow-derived DCs in a TNFRp55-/- MLN microenvironment exhibited higher expression of CCR7 after Y. enterocolitica infection. The major intestinal DC subsets (CD103+CD11b-, CD103-CD11b+, and CD103+CD11b+) were found in the RLN of Y. enterocolitica-infected TNFRp55-/- mice. Fingolimod (FTY720) treatment of Y. enterocolitica-infected mice reduced the CD11b- subset of migratory DCs in RLN of TNFRp55-/- mice and significantly suppressed the severity of ReA in these mice. This result was associated with decreased articular IL-12/23p40 and IFN-γ levels. In vitro FTY720 treatment downregulated CCR7 on Y. enterocolitica-infected bone marrow-derived DCs and purified MLN DCs, which may explain the mechanism underlying the impairment of DCs in RLN induced by FTY720. Taken together, data indicate the migration of intestinal DCs to RLN and the contribution of these cells in the immunopathogenesis of ReA, which may provide evidence for controlling this disease.
Collapse
Affiliation(s)
- Juan E Silva
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and.,Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | - Andrea C Mayordomo
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | - Mabel N Dave
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | - Claudia Aguilera Merlo
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and
| | - Ricardo J Eliçabe
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and.,Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | - María S Di Genaro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and .,Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| |
Collapse
|
30
|
Jin J, Xue N, Liu Y, Fu R, Wang M, Ji M, Lai F, Hu J, Wang X, Xiao Q, Zhang X, Yin D, Bai L, Chen X, Rao S. A novel S1P1 modulator IMMH002 ameliorates psoriasis in multiple animal models. Acta Pharm Sin B 2020; 10:276-288. [PMID: 32082973 PMCID: PMC7016294 DOI: 10.1016/j.apsb.2019.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/12/2023] Open
Abstract
Psoriasis is characterized by abnormal proliferation of keratinocytes, as well as infiltration of immune cells into the dermis and epidermis, causing itchy, scaly and erythematous plaques of skin. The understanding of this chronic inflammatory skin disease remains unclear and all available treatments have their limitations currently. Here, we showed that IMMH002, a novel orally active S1P1 modulator, desensitized peripheral pathogenic lymphocytes to egress signal from secondary lymphoid organs and thymus. Using different psoriasis animal models, we demonstrated that IMMH002 could significantly relieve skin damage as revealed by PASI score and pathological injure evaluation. Mechanistically, IMMH002 regulated CD3+ T lymphocytes re-distribution by inducing lymphocytes’ homing, thus decreased T lymphocytes allocation in the peripheral blood and skin but increased in the thymus. Our results suggest that the novel S1P1 agonist, IMMH002, exert extraordinary capacity to rapidly modulate T lymphocytes distribution, representing a promising drug candidate for psoriasis treatment.
Collapse
|
31
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
32
|
Blais-Lecours P, Laouafa S, Arias-Reyes C, Santos WL, Joseph V, Burgess JK, Halayko AJ, Soliz J, Marsolais D. Metabolic Adaptation of Airway Smooth Muscle Cells to an SPHK2 Substrate Precedes Cytostasis. Am J Respir Cell Mol Biol 2020; 62:35-42. [PMID: 31247144 PMCID: PMC6938129 DOI: 10.1165/rcmb.2018-0397oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Thickening of the airway smooth muscle is central to bronchial hyperreactivity. We have shown that the sphingosine analog (R)-2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol (AAL-R) can reverse preestablished airway hyperreactivity in a chronic asthma model. Because sphingosine analogs can be metabolized by SPHK2 (sphingosine kinase 2), we investigated whether this enzyme was required for AAL-R to perturb mechanisms sustaining airway smooth muscle cell proliferation. We found that AAL-R pretreatment reduced the capacity of live airway smooth muscle cells to use oxygen for oxidative phosphorylation and increased lactate dehydrogenase activity. We also determined that SPHK2 was upregulated in airway smooth muscle cells bearing the proliferation marker Ki67 relative to their Ki67-negative counterpart. Comparing different stromal cell subsets of the lung, we found that high SPHK2 concentrations were associated with the ability of AAL-R to inhibit metabolic activity assessed by conversion of the tetrazolium dye MTT. Knockdown or pharmacological inhibition of SPHK2 reversed the effect of AAL-R on MTT conversion, indicating the essential role for this kinase in the metabolic perturbations induced by sphingosine analogs. Our results support the hypothesis that increased SPHK2 levels in proliferating airway smooth muscle cells could be exploited to counteract airway smooth muscle thickening with synthetic substrates.
Collapse
Affiliation(s)
- Pascale Blais-Lecours
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Sofien Laouafa
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Christian Arias-Reyes
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia
| | - Vincent Joseph
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research and
- GRIAC (Groningen Research Institute for Asthma and COPD), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jorge Soliz
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - David Marsolais
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
33
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
34
|
Jaiswal AK, Sandey M, Suryawanshi A, Cattley RC, Mishra A. Dimethyl fumarate abrogates dust mite-induced allergic asthma by altering dendritic cell function. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:201-213. [PMID: 31264384 PMCID: PMC6688084 DOI: 10.1002/iid3.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/12/2022]
Abstract
Introduction Allergic asthma is the most common inflammatory disease of upper airways. Airway dendritic cells (DCs) are key antigen presenting cells that regulate T helper 2 (Th2)‐dependent allergic inflammation. Recent studies have shown critical role of airway DCs in the induction of Th2‐mediated allergic inflammation and are attractive therapeutic targets in asthma. However, molecular signaling mechanism that regulate DCs function to Th2 immune responses are poorly understood. Here we aim to evaluate the immunomodulatory effect of dimethyl fumarate (DMF), an FDA approved small molecule drug, in the house dust mite (HDM)‐induced experimental model of allergic asthma. Methods DMF was administered intranasally in the challenge period of HDM‐induced murine model of experimental asthma. Airway inflammation, airway hyperreactivity, Th2/Th1 cytokine were assessed. The effect of DMF on DC function was further evaluated by adoptive transfer of HDM‐pulsed DMF treated DCs to wild‐type naïve mice. Results DMF treatment significantly reduced HDM‐induced airway inflammation, mucous cell metaplasia, and airway hyperactivity to inhaled methacholine. Mechanistically, DMF interferes with the migration of lung DCs to draining mediastinal lymph nodes, thereby attenuates the induction of allergic sensitization and Th2 immune response. Notably, adoptive transfer of DMF treated DCs to naïve mice with HDM challenge similarly reduces the features of allergic asthma. Conclusion This identifies a novel function of DMF on DC‐mediated adaptive immune responses in the setting of HDM‐induced airway inflammation. Taken together, our results offer a mechanistic rationale for DMF use to target DCs in local lung environment as antiasthmatic therapy.
Collapse
Affiliation(s)
- Anil K Jaiswal
- The Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Russell C Cattley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amarjit Mishra
- The Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
35
|
Abstract
Lymphatic vessels collect interstitial fluid that has extravasated from blood vessels and return it to the circulatory system. Another important function of the lymphatic network is to facilitate immune cell migration and antigen transport from the periphery to draining lymph nodes. This migration plays a crucial role in immune surveillance, initiation of immune responses and tolerance. Here we discuss the significance and mechanisms of lymphatic migration of innate and adaptive immune cells in homeostasis, inflammation and cancer.
Collapse
Affiliation(s)
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, Kensington, NSW, Australia
| |
Collapse
|
36
|
León B, Lund FE. Compartmentalization of dendritic cell and T-cell interactions in the lymph node: Anatomy of T-cell fate decisions. Immunol Rev 2019; 289:84-100. [PMID: 30977197 PMCID: PMC6464380 DOI: 10.1111/imr.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Upon receiving cognate and co-stimulatory priming signals from antigen (Ag)-presenting dendritic cells (DCs) in secondary lymphoid tissues, naïve CD4+ T cells differentiate into distinct effector and memory populations. These alternate cell fate decisions, which ultimately control the T-cell functional attributes, are dictated by programming signals provided by Ag-bearing DCs and by other cells that are present in the microenvironment in which T-cell priming occurs. We know that DCs can be subdivided into multiple populations and that the various DC subsets exhibit differential capacities to initiate development of the different CD4+ T-helper populations. What is less well understood is why different subanatomic regions of secondary lymphoid tissues are colonized by distinct populations of Ag-presenting DCs and how the location of these DCs influences the type of T-cell response that will be generated. Here we review how chemokine receptors and their ligands, which position allergen and nematode-activated DCs within different microdomains of secondary lymphoid tissues, contribute to the establishment of IL-4 committed follicular helper T and type 2 helper cell responses.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frances E. Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
37
|
Jung KH, Shin D, Kim S, Min D, Kim W, Kim J, Lee G, Bae H. Intratracheal Ovalbumin Administration Induces Colitis Through the IFN-γ Pathway in Mice. Front Immunol 2019; 10:530. [PMID: 30949176 PMCID: PMC6437076 DOI: 10.3389/fimmu.2019.00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
Recent studies have reported an increased incidence of inflammatory bowel disease (IBD) in patients with pulmonary diseases. Despite clinical and epidemiological studies of the interplay between colitis and asthma, the diseases' related underlying mechanisms remain unclear. In this study, we evaluated the development of colitis in a model of allergic airway inflammation. We revealed that intratracheal chronic ovalbumin (OVA) exposure induces colitis and allergic airway inflammation. Interestingly, induction of colitis was largely regulated by Th1, rather than Th2 responses, whereas allergic airway inflammation was primarily mediated by Th2 responses. Experiments in Tbx21 (T-bet) and Ifng (IFN-γ) deficient mice have confirmed that IFN-γ is a major mediator involved in OVA-induced colitis. These findings broaden current understanding of allergen induced colitis pathology and could play a role in the development of novel clinical treatment strategies for asthmatic patients who are at risk of developing colitis.
Collapse
Affiliation(s)
- Kyoung-Hwa Jung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Dasom Shin
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sejun Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Daeun Min
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woogyeong Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Jinju Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Naju, South Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
38
|
Park SJ, Im DS. Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic asthma in mice. Br J Pharmacol 2019; 176:938-949. [PMID: 30706444 DOI: 10.1111/bph.14597] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine-1-phosphate 2 (S1P2 ) receptors have been implicated in degranulation of mast cells. However, functions of S1P2 receptors have not been investigated in an in vivo model of allergic asthma. EXPERIMENTAL APPROACH Using an ovalbumin (OVA)-induced asthma model, the function of S1P2 receptors was evaluated in S1P2 -deficient mice or in mice treated with JTE-013, a selective S1P2 antagonist. Bone marrow-derived dendritic cells (BMDCs) were used to investigate the roles of S1P2 receptors in dendritic cell maturation and migration. KEY RESULTS Eosinophil accumulation and elevated Th2 cytokine levels in bronchoalveolar lavage fluid and inflamed lung tissues were strongly inhibited by administration of JTE-013 before OVA sensitization, before OVA challenge, and before both events. In S1P2 -deficient mice, allergic responses were significantly lower than in wild-type mice. LPS- and OVA-induced maturation of BMDCs was significantly blunted in dendritic cells from S1P2 -deficient mice and by treatment with JTE-013. Migrations of immature and mature BMDCs were also dependent on S1P2 receptors. It was found that OVA-challenged mice into which in vitro OVA primed BMDCs from S1P2 -deficient mice were adoptively transferred, had less severe asthma responses than OVA-challenged mice into which OVA-primed BMDCs from wild-type mice were adoptively transferred. CONCLUSIONS AND IMPLICATIONS Pro-allergic functions of S1P2 receptors were elucidated in a murine asthma model. S1P2 receptors were involved not only in maturation and migration of dendritic cells in the sensitization phase but also in mast cell degranulation in the challenge phase. These results suggest S1P2 receptor as a therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan, Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan, Korea
| |
Collapse
|
39
|
Abstract
Dendritic cells (DCs) can be viewed as translators between innate and adaptive immunity. They integrate signals derived from tissue infection or damage and present processed antigen from these sites to naive T cells in secondary lymphoid organs while also providing multiple soluble and surface-bound signals that help to guide T cell differentiation. DC-mediated tailoring of the appropriate T cell programme ensures a proper cascade of immune responses that adequately targets the insult. Recent advances in our understanding of the different types of DC subsets along with the cellular organization and orchestration of DC and lymphocyte positioning in secondary lymphoid organs over time has led to a clearer understanding of how the nature of the T cell response is shaped. This Review discusses how geographical organization and ordered sequences of cellular interactions in lymph nodes and the spleen regulate immunity.
Collapse
Affiliation(s)
- S C Eisenbarth
- Department of Laboratory Medicine, Immunobiology, Section of Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Yan J, Zhao Q, Gabrusiewicz K, Kong LY, Xia X, Wang J, Ott M, Xu J, Davis RE, Huo L, Rao G, Sun SC, Watowich SS, Heimberger AB, Li S. FGL2 promotes tumor progression in the CNS by suppressing CD103 + dendritic cell differentiation. Nat Commun 2019; 10:448. [PMID: 30683885 PMCID: PMC6347641 DOI: 10.1038/s41467-018-08271-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Few studies implicate immunoregulatory gene expression in tumor cells in arbitrating brain tumor progression. Here we show that fibrinogen-like protein 2 (FGL2) is highly expressed in glioma stem cells and primary glioblastoma (GBM) cells. FGL2 knockout in tumor cells did not affect tumor-cell proliferation in vitro or tumor progression in immunodeficient mice but completely impaired GBM progression in immune-competent mice. This impairment was reversed in mice with a defect in dendritic cells (DCs) or CD103+ DC differentiation in the brain and in tumor-draining lymph nodes. The presence of FGL2 in tumor cells inhibited granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CD103+ DC differentiation by suppressing NF-κB, STAT1/5, and p38 activation. These findings are relevant to GBM patients because a low level of FGL2 expression with concurrent high GM-CSF expression is associated with higher CD8B expression and longer survival. These data provide a rationale for therapeutic inhibition of FGL2 in brain tumors.
Collapse
Affiliation(s)
- Jun Yan
- Center for Brain Disorders Research, Capital Medical University, Beijing, 100069, China
- Beijing Institute for Brain Disorders, Beijing, 100069, China
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingnan Zhao
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Konrad Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqing Xia
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jingda Xu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - R Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Longfei Huo
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Shulin Li
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Kim SH. Sphingosine-1-Phosphate: Biomarker, Contributor, or Target for Asthma? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:299-301. [PMID: 30912319 PMCID: PMC6439184 DOI: 10.4168/aair.2019.11.3.299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Seung Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea.
| |
Collapse
|
42
|
Svajdova S, Mazurova L, Brozmanova M. The inflammatory molecule sphingosine-1-phosphate is not effective to evoke or sensitize cough in naïve guinea pigs. Respir Physiol Neurobiol 2018; 257:82-86. [DOI: 10.1016/j.resp.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 01/31/2023]
|
43
|
Kawa Y, Nagano T, Yoshizaki A, Dokuni R, Katsurada M, Terashita T, Yasuda Y, Umezawa K, Yamamoto M, Kamiryo H, Kobayashi K, Nishimura Y. Role of S1P/S1PR3 axis in release of CCL20 from human bronchial epithelial cells. PLoS One 2018; 13:e0203211. [PMID: 30192865 PMCID: PMC6128515 DOI: 10.1371/journal.pone.0203211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022] Open
Abstract
Background Sphingosine kinase phosphorylates sphingosine to generate sphingosine 1 phosphate (S1P) following stimulation of the five plasma membrane G-protein-coupled receptors. The objective of this study is to clarify the role of S1P and its receptors (S1PRs), especially S1PR3 in airway epithelial cells. Methods The effects of S1P on asthma-related genes expression were examined with the human bronchial epithelial cells BEAS-2B and Calu-3 using a transcriptome analysis and siRNA of S1PRs. To clarify the role of CCL20 in the airway inflammation, BALB/c mice were immunized with ovalbumin (OVA) and subsequently challenged with an OVA-containing aerosol to induce asthma with or without intraperitoneal administration of anti-CCL20. Finally, the anti-inflammatory effect of VPC 23019, S1PR1/3 antagonist, in the OVA-induced asthma was examined. Results S1P induced the expression of some asthma-related genes, such as ADRB2, PTGER4, and CCL20, in the bronchial epithelial cells. The knock-down of SIPR3 suppressed the expression of S1P-inducing CCL20. Anti-CCL20 antibody significantly attenuated the eosinophil numbers in the bronchoalveolar lavage fluid (P<0.01). Upon OVA challenge, VPC23019 exhibited substantially attenuated eosinophilic inflammation. Conclusions S1P/S1PR3 pathways have a role in release of proinflammatory cytokines from bronchial epithelial cells. Our results suggest that S1P/S1PR3 may be a possible candidate for the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Yoshitaka Kawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
- * E-mail:
| | - Asuka Yoshizaki
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Tomomi Terashita
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Yuichiro Yasuda
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Hiroshi Kamiryo
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| |
Collapse
|
44
|
Fettel J, Kühn B, Guillen NA, Sürün D, Peters M, Bauer R, Angioni C, Geisslinger G, Schnütgen F, Heringdorf DM, Werz O, Meybohm P, Zacharowski K, Steinhilber D, Roos J, Maier TJ. Sphingosine‐1‐phosphate (S1P) induces potent anti‐inflammatory effects
in vitro
and
in vivo
by S1P receptor 4‐mediated suppression of 5‐lipoxygenase activity. FASEB J 2018; 33:1711-1726. [DOI: 10.1096/fj.201800221r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jasmin Fettel
- Institute of Pharmaceutical ChemistryGoethe UniversityFrankfurt/MainGermany
| | - Benjamin Kühn
- Institute of Pharmaceutical ChemistryGoethe UniversityFrankfurt/MainGermany
| | | | - Duran Sürün
- Department of Medicine 2, Hematology/OncologyGoethe UniversityFrankfurt/MainGermany
| | - Marcus Peters
- Department of Experimental PneumologyRuhr University BochumBochumGermany
| | - Rebekka Bauer
- Institute of Pharmaceutical ChemistryGoethe UniversityFrankfurt/MainGermany
| | - Carlo Angioni
- Institute of Clinical PharmacologyGoethe UniversityFrankfurt/MainGermany
| | - Gerd Geisslinger
- Institute of Clinical PharmacologyGoethe UniversityFrankfurt/MainGermany
| | - Frank Schnütgen
- Department of Medicine 2, Hematology/OncologyGoethe UniversityFrankfurt/MainGermany
| | - Dagmar Meyer Heringdorf
- Institute of General PharmacologyPharmazentrum Frankfurt/ZAFESGoethe UniversityFrankfurt/MainGermany
| | - Oliver Werz
- Institute of PharmacyDepartment of Pharmaceutical/Medicinal ChemistryFriedrich Schiller UniversityJenaGermany
| | - Patrick Meybohm
- Department for Anesthesiology, Intensive Care Medicine, and Pain TherapyUniversity HospitalGoethe UniversityFrankfurt/MainGermany
| | - Kai Zacharowski
- Department for Anesthesiology, Intensive Care Medicine, and Pain TherapyUniversity HospitalGoethe UniversityFrankfurt/MainGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryGoethe UniversityFrankfurt/MainGermany
| | - Jessica Roos
- Department for Anesthesiology, Intensive Care Medicine, and Pain TherapyUniversity HospitalGoethe UniversityFrankfurt/MainGermany
| | - Thorsten J. Maier
- Department for Anesthesiology, Intensive Care Medicine, and Pain TherapyUniversity HospitalGoethe UniversityFrankfurt/MainGermany
| |
Collapse
|
45
|
Sturgill JL. Sphingolipids and their enigmatic role in asthma. Adv Biol Regul 2018; 70:74-81. [PMID: 30197277 PMCID: PMC6560640 DOI: 10.1016/j.jbior.2018.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Asthma is defined as a chronic inflammatory condition in the lung and is characterized by episodic shortness of breath with expiratory wheezing and cough. Asthma is a serious public health concern globally with an estimated incidence over 300 million. Asthma is a complex disease in that it manifests as disease of gene and environmental interactions. Sphingolipids are a unique class of lipids involved in a host of biological functions ranging from serving as key cellular membrane lipids to acting as critical signaling molecules. To date sphingolipids have been studied across various human conditions ranging from neurological disorders to cancer to infection to autoimmunity. This review will focus on the role of sphingolipids in asthma development and pathology with particular focus on the role of mast cell sphingolipid biology.
Collapse
Affiliation(s)
- Jamie L Sturgill
- University of Kentucky, Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep Medicine, 740 South Limestone St, Lexington, KY 40536, United States.
| |
Collapse
|
46
|
Lu M, Xu C, Zhang Q, Wu X, Tang L, Wang X, Wu J, Wu X. Inhibition of p21-activated kinase 1 attenuates the cardinal features of asthma through suppressing the lymph node homing of dendritic cells. Biochem Pharmacol 2018; 154:464-473. [PMID: 29906467 DOI: 10.1016/j.bcp.2018.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) trafficking from lung to the draining mediastinal lymph nodes (MLNs) is a key step for initiation of T cell responses in allergic asthma. In the present study, we investigate the role of DC-mediated airway inflammation after inhibition of p21-activated kinase-1 (PAK1), an effector of Rac and Cdc42 small GTPases, in the allergen-induced mouse models of asthma. Systemic administration of PAK1 specific inhibitor IPA-3 significantly attenuates not only the airway inflammation but also the airway hyperresponsiveness in a mouse model of ovalbumin-induced asthma. Specifically, intratracheal administration of low dosage of IPA-3 consistently decreases not only the airway inflammation but also the DC trafficking from lung to the MLNs. Importantly, intratracheal instillation of IPA-3-treated and ovalbumin-pulsed DCs behaves largely the same as that of either Rac inhibitor-treated and ovalbumin-pulsed DCs or Cdc42 inhibitor-treated and ovalbumin-pulsed DCs in attenuation of the airway inflammation in ovalbumin-challenged mice. Mechanistically, PAK1 is not involved in the maturation, apoptosis, antigen uptake, and T cell activation of cultured DCs, but PAK1 dose lie on the downstream of Rac and Cdc42 to regulate the DC migration toward the chemokine C-C motif chemokine ligand 19. Taken together, this study demonstrates that inhibition of PAK1 attenuates the cardinal features of asthma through suppressing the DC trafficking from lung to the MLN, and that interfere with DC trafficking by a PAK1 inhibitor thus holds great promise for the therapeutic intervention of allergic diseases.
Collapse
Affiliation(s)
- Meiping Lu
- Department of Allergy immunology and rheumatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Chengyun Xu
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qin Zhang
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiling Wu
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lanfang Tang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiangzhi Wang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Junsong Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ximei Wu
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
47
|
S1P Signalling Differentially Affects Migration of Peritoneal B Cell Populations In Vitro and Influences the Production of Intestinal IgA In Vivo. Int J Mol Sci 2018; 19:ijms19020391. [PMID: 29382132 PMCID: PMC5855613 DOI: 10.3390/ijms19020391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Sphingosine-1-phosphate (S1P) regulates the migration of follicular B cells (B2 cells) and directs the positioning of Marginal zone B cells (MZ B cells) within the spleen. The function of S1P signalling in the third B cell lineage, B1 B cells, mainly present in the pleural and peritoneal cavity, has not yet been determined. Methods: S1P receptor expression was analysed in peritoneal B cells by real-time polymerase chain reaction (qPCR). The chemotactic response to S1P was studied in vitro. The role of S1P signalling was further explored in a s1p4−/− mouse strain. Results: Peritoneal B cells expressed considerable amounts of the S1P receptors 1 and 4 (S1P1 and S1P4, respectively). S1P1 showed differential expression between the distinct peritoneal B cell lineages. While B2 cells showed no chemotactic response to S1P, B1 B cells showed a migration response to S1P. s1p4−/− mice displayed significant alterations in the composition of peritoneal B cell populations, as well as a significant reduction of mucosal immunoglobulin A (IgA) in the gut. Discussion: S1P signalling influences peritoneal B1 B cell migration. S1P4 deficiency alters the composition of peritoneal B cell populations and reduces secretory IgA levels. These findings suggest that S1P signalling may be a target to modulate B cell function in inflammatory intestinal pathologies.
Collapse
|
48
|
Tertiary Lymphoid Structures Among the World of Noncanonical Ectopic Lymphoid Organizations. Methods Mol Biol 2018; 1845:1-15. [PMID: 30141004 DOI: 10.1007/978-1-4939-8709-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tertiary lymphoid structures (TLOs), also known as ectopic lymphoid structures, are associated with chronic infections and inflammatory diseases. Despite their association with pathology, these structures are actually a normal, albeit transient, component of the immune system and facilitate local immune responses that are meant to mitigate inflammation and resolve infection. Many of the mechanisms controlling the formation and function of tertiary lymphoid structures have been identified, in part by experimentally triggering their formation using defined stimuli under controlled conditions. Here, we introduce the experimental and pathological conditions in which tertiary lymphoid tissues are formed, describe the mechanisms linked to their formation, and discuss their functions in the context of both infection and inflammation.
Collapse
|
49
|
Nair PM, Starkey MR, Haw TJ, Liu G, Horvat JC, Morris JC, Verrills NM, Clark AR, Ammit AJ, Hansbro PM. Targeting PP2A and proteasome activity ameliorates features of allergic airway disease in mice. Allergy 2017; 72:1891-1903. [PMID: 28543283 DOI: 10.1111/all.13212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma is an allergic airway disease (AAD) caused by aberrant immune responses to allergens. Protein phosphatase-2A (PP2A) is an abundant serine/threonine phosphatase with anti-inflammatory activity. The ubiquitin proteasome system (UPS) controls many cellular processes, including the initiation of inflammatory responses by protein degradation. We assessed whether enhancing PP2A activity with fingolimod (FTY720) or 2-amino-4-(4-(heptyloxy) phenyl)-2-methylbutan-1-ol (AAL(S) ), or inhibiting proteasome activity with bortezomib (BORT), could suppress experimental AAD. METHODS Acute AAD was induced in C57BL/6 mice by intraperitoneal sensitization with ovalbumin (OVA) in combination with intranasal (i.n) exposure to OVA. Chronic AAD was induced in mice with prolonged i.n exposure to crude house dust mite (HDM) extract. Mice were treated with vehicle, FTY720, AAL(S) , BORT or AAL(S) +BORT and hallmark features of AAD assessed. RESULTS AAL(S) reduced the severity of acute AAD by suppressing tissue eosinophils and inflammation, mucus-secreting cell (MSC) numbers, type 2-associated cytokines (interleukin (IL)-33, thymic stromal lymphopoietin, IL-5 and IL-13), serum immunoglobulin (Ig)E and airway hyper-responsiveness (AHR). FTY720 only suppressed tissue inflammation and IgE. BORT reduced bronchoalveolar lavage fluid (BALF) and tissue eosinophils and inflammation, IL-5, IL-13 and AHR. Combined treatment with AAL(S) +BORT had complementary effects and suppressed BALF and tissue eosinophils and inflammation, MSC numbers, reduced the production of type 2 cytokines and AHR. AAL(S) , BORT and AAL(S) +BORT also reduced airway remodelling in chronic AAD. CONCLUSION These findings highlight the potential of combination therapies that enhance PP2A and inhibit proteasome activity as novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- P. M. Nair
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - M. R. Starkey
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - T. J. Haw
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - G. Liu
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Horvat
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Morris
- School of Chemistry; University of New South Wales; Sydney NSW Australia
| | - N. M. Verrills
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - A. R. Clark
- Institute of Inflammation and Ageing; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | - A. J. Ammit
- Woolcock Emphysema Centre; Woolcock Institute of Medical Research; University of Sydney; Sydney NSW Australia
- Faculty of Science; School of Life Sciences; University of Technology Sydney; Sydney NSW Australia
| | - P. M. Hansbro
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| |
Collapse
|
50
|
Effects of FTY720 on Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats. Mediators Inflamm 2017; 2017:5301312. [PMID: 29249870 PMCID: PMC5700482 DOI: 10.1155/2017/5301312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/09/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Background Sphingosine-1-phosphate (S1P) is a biologically active lysophospholipid mediator involved in modulating inflammatory process. We investigated the effects of FTY720, a structural analogue of S1P after phosphorylation, on lung injury induced by hindlimb ischemia reperfusion (IR) in rats. Methods Fifty Sprague-Dawley rats were divided into groups SM, IR, F3, F5, and F10. Group SM received sham operation, and bilateral hindlimb IR was established in group IR. The rats in groups F3, F5, and F10 were pretreated with 3, 5, and 10 mg/kg/d FTY720 for 7 days before IR. S1P lyase (S1PL), sphingosine kinase (SphK) 1, and SphK2 mRNA expressions, wet/dry weight (W/D), and polymorphonuclear/alveolus (P/A) in lung tissues were detected, and the lung injury score was evaluated. Results W/D, P/A, and mRNA expressions of S1PL, SphK1, and SphK2 were higher in group IR than in group SM, while these were decreased in both groups F5 and F10 as compared to IR (p < 0.05). The lung tissue presented severe lesions in group IR, which were attenuated in groups F5 and F10 with lower lung injury scores than in group IR (p < 0.05). Conclusions FTY720 pretreatment could attenuate lung injury induced by hindlimb IR by modulating S1P metabolism and decreasing pulmonary neutrophil infiltration.
Collapse
|