1
|
Liu T, Wu H, Li J, Zhu C, Wei J. Unraveling the Bone-Brain Axis: A New Frontier in Parkinson's Disease Research. Int J Mol Sci 2024; 25:12842. [PMID: 39684552 DOI: 10.3390/ijms252312842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD), as a widespread neurodegenerative disorder, significantly impacts patients' quality of life. Its primary symptoms include motor disturbances, tremor, muscle stiffness, and balance disorders. In recent years, with the advancement of research, the concept of the bone-brain axis has gradually become a focal point in the field of PD research. The bone-brain axis refers to the interactions and connections between the skeletal system and the central nervous system (CNS), playing a crucial role in the pathogenesis and pathological processes of PD. The purpose of this review is to comprehensively and deeply explore the bone-brain axis in PD, covering various aspects such as the complex relationship between bone metabolism and PD, the key roles of neurotransmitters and hormones in the bone-brain axis, the role of inflammation and immunity, microRNA (miRNA) functional regulation, and potential therapeutic strategies. Through a comprehensive analysis and in-depth discussion of numerous research findings, this review aims to provide a solid theoretical foundation for a deeper understanding of the pathogenesis of PD and to offer strong support for the development of new treatment methods.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingwen Li
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Lee SJ, Kim JA, Ihn HJ, Choi JY, Kwon TY, Shin HI, Cho ES, Bae YC, Jiang R, Kim JE, Park EK. The transcription factor BBX regulates phosphate homeostasis through the modulation of FGF23. Exp Mol Med 2024; 56:2436-2448. [PMID: 39482539 PMCID: PMC11612488 DOI: 10.1038/s12276-024-01341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/19/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays an important role in phosphate homeostasis, and increased FGF23 levels result in hypophosphatemia; however, the molecular mechanism underlying increased FGF23 expression has not been fully elucidated. In this study, we found that mice lacking the bobby sox homolog (Bbx-/-) presented increased FGF23 expression and low phosphate levels in the serum and skeletal abnormalities such as a low bone mineral density (BMD) and bone volume (BV), as well as short and weak bones associated with low bone formation. Osteocyte-specific deletion of Bbx using Dmp-1-Cre resulted in similar skeletal abnormalities, elevated serum FGF23 levels, and reduced serum phosphate levels. In Bbx-/- mice, the expression of sodium phosphate cotransporter 2a (Npt2a) and Npt2c in the kidney and Npt2b in the small intestine, which are negatively regulated by FGF23, was downregulated, leading to phosphate excretion/wasting and malabsorption. An in vitro Fgf23 promoter analysis revealed that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-induced transactivation of the Fgf23 promoter was significantly inhibited by BBX overexpression, whereas it was increased following Bbx knockdown. Interestingly, 1,25(OH)2D3 induced an interaction of the 1,25(OH)2D3 receptor (VDR) with BBX and downregulated BBX protein levels. Cycloheximide (CHX) only partially downregulated BBX protein levels, indicating that 1,25(OH)2D3 regulates BBX protein stability. Furthermore, the ubiquitination of BBX followed by proteasomal degradation was required for the increase in Fgf23 expression induced by 1,25(OH)2D3. Collectively, our data demonstrate that BBX negatively regulates Fgf23 expression, and consequently, the ubiquitin-dependent proteasomal degradation of BBX is required for FGF23 expression, thereby regulating phosphate homeostasis and bone development in mice.
Collapse
Affiliation(s)
- Su Jeong Lee
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Hye Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Yub Kwon
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Ohio, TX, USA
| | - Jung-Eun Kim
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
3
|
Sun L, Gang X, Li F, Guo W, Cui M, Wang G. Effects of Growth Hormone on Osteoarthritis Development. Horm Metab Res 2024; 56:761-769. [PMID: 39510098 DOI: 10.1055/a-2411-9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease characterized by primary or secondary degeneration of articular cartilage and bone dysplasia, is associated with various risk factors and is the leading cause of musculoskeletal pain and disability, severely impacting the quality of life. Growth hormone (GH), secreted by the anterior pituitary gland, is essential in mediating the growth and development of bone and cartilage. Reportedly, osteoarthritis increases, and the growth hormone decreases with age. A negative correlation between GH and OA suggests that GH may be related to the occurrence and development of OA. Considering that abnormal growth hormone levels can lead to many diseases related to bone growth, we focus on the relationship between GH and OA. In this review, we will explain the effects of GH on the growth and deficiency of bone and cartilage based on the local pathological changes of osteoarthritis. In addition, the potential feasibility of treating OA with GH will be further explored and summarized.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Fei Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mengzhao Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zillinger LS, Liesegang A, Hustedt K, Schnepel N, Sauerwein H, Schmicke M, Schwennen C, Muscher-Banse AS. Influence of N- and/or P-restriction on bone metabolism in young goats. Br J Nutr 2024; 132:874-886. [PMID: 39402760 PMCID: PMC11576093 DOI: 10.1017/s0007114524002150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/31/2024] [Accepted: 08/30/2024] [Indexed: 11/20/2024]
Abstract
Ruminants can recycle nitrogen (N) and phosphorus (P), which are essential for vital body processes. Reduced N- and P-intake in ruminants is desirable for economic and ecologic reasons. Simultaneous modulation of mineral homoeostasis and bone metabolism occurs in young goats. This study aimed to investigate potential effects of dietary N- and/or P-restriction on molecular changes in bone metabolism. The twenty-eight young male goats were fed a control diet, an N-reduced diet, a P-reduced diet or a combined N- and P-reduced diet for 6-8 weeks. The N-restricted goats had lower plasma Ca concentration and higher plasma osteocalcin (OC) and CrossLaps concentrations. The P-restricted goats had reduced plasma inorganic phosphate (Pi) concentrations and increased plasma Ca concentrations. Due to the initiation of a signalling pathway that inhibits the fibroblast growth factor 23 (FGF23) expression, this was lower with P-restriction. Consequently, lower Pi concentrations were the main factor influencing the reduction in FGF23. The changes in mineral homoeostasis associated with P-restriction led to a reduction in OC, bone mineral content and mineral density. Simultaneously, bone resorption potentially increased with P-restriction as indicated by an increased receptor activator of NF-κB ligand/osteoprotegerin (OPG) ratio and an increase in OPG mRNA expression. Additionally, the increased mRNA expression of the calcitonin receptor during P-restriction points to a higher number of osteoclasts. This study demonstrates an impairment of bone remodelling processes in young goats by N- or P-restriction. With P-restriction, bone mineralisation rate was potentially reduced and bone quality impaired, while with N-restriction, bone remodelling increased.
Collapse
Affiliation(s)
- Luisa S Zillinger
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover30173, Germany
| | - Annette Liesegang
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty Zurich, University of Zurich, Zurich8057, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), Zurich, Switzerland
| | - Karin Hustedt
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover30173, Germany
| | - Nadine Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover30173, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn53115, Germany
| | - Marion Schmicke
- Clinic for Diseases of Cattle, University of Veterinary Medicine Hannover Foundation, Hannover30173, Germany
| | - Cornelia Schwennen
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover Foundation, Hannover30173, Germany
| | - Alexandra S Muscher-Banse
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover30173, Germany
| |
Collapse
|
5
|
Doms S, Verlinden L, Janssens I, Vanhevel J, Eerlings R, Houtman R, Kato S, Mathieu C, Decallonne B, Carmeliet G, Verstuyf A. Coactivator-independent vitamin D receptor signaling causes severe rickets in mice, that is not prevented by a diet high in calcium, phosphate, and lactose. Bone Res 2024; 12:44. [PMID: 39164247 PMCID: PMC11335873 DOI: 10.1038/s41413-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/26/2024] [Accepted: 05/12/2024] [Indexed: 08/22/2024] Open
Abstract
The vitamin D receptor (VDR) plays a critical role in the regulation of mineral and bone homeostasis. Upon binding of 1α,25-dihydroxyvitamin D3 to the VDR, the activation function 2 (AF2) domain repositions and recruits coactivators for the assembly of the transcriptional machinery required for gene transcription. In contrast to coactivator-induced transcriptional activation, the functional effects of coactivator-independent VDR signaling remain unclear. In humans, mutations in the AF2 domain are associated with hereditary vitamin D-resistant rickets, a genetic disorder characterized by impaired bone mineralization and growth. In the present study, we used mice with a systemic or conditional deletion of the VDR-AF2 domain (VdrΔAF2) to study coactivator-independent VDR signaling. We confirm that ligand-induced transcriptional activation was disabled because the mutant VDRΔAF2 protein was unable to interact with coactivators. Systemic VdrΔAF2 mice developed short, undermineralized bones with dysmorphic growth plates, a bone phenotype that was more pronounced than that of systemic Vdr knockout (Vdr-/-) mice. Interestingly, a rescue diet that is high in calcium, phosphate, and lactose, normalized this phenotype in Vdr-/-, but not in VdrΔAF2 mice. However, osteoblast- and osteoclast-specific VdrΔAF2 mice did not recapitulate this bone phenotype indicating coactivator-independent VDR effects are more important in other organs. In addition, RNA-sequencing analysis of duodenum and kidney revealed a decreased expression of VDR target genes in systemic VdrΔAF2 mice, which was not observed in Vdr-/- mice. These genes could provide new insights in the compensatory (re)absorption of minerals that are crucial for bone homeostasis. In summary, coactivator-independent VDR effects contribute to mineral and bone homeostasis.
Collapse
Affiliation(s)
- Stefanie Doms
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Iris Janssens
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Justine Vanhevel
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | | | - Shigeaki Kato
- Health Sciences Research Center, Iryo Sosei University, Iwaki, Fukuchima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukuchima, Japan
| | - Chantal Mathieu
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Thomas L, Dissanayake LV, Tahmasbi M, Staruschenko A, Al-Masri S, Dominguez Rieg JA, Rieg T. Vitamin D 3 suppresses Npt2c abundance and differentially modulates phosphate and calcium homeostasis in Npt2a knockout mice. Sci Rep 2024; 14:16997. [PMID: 39043847 PMCID: PMC11266651 DOI: 10.1038/s41598-024-67839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Vitamin D3 is clinically used for the treatment of vitamin D3 deficiency or osteoporosis, partially because of its role in regulating phosphate (Pi) and calcium (Ca2+) homeostasis. The renal sodium-phosphate cotransporter 2a (Npt2a) plays an important role in Pi homeostasis; however, the role of vitamin D3 in hypophosphatemia has never been investigated. We administered vehicle or vitamin D3 to wild-type (WT) mice or hypophosphatemic Npt2a-/- mice. In contrast to WT mice, vitamin D3 treatment increased plasma Pi levels in Npt2a-/- mice, despite similar levels of reduced parathyroid hormone and increased fibroblast growth factor 23. Plasma Ca2+ was increased ~ twofold in both genotypes. Whereas WT mice were able to increase urinary Pi and Ca2+/creatinine ratios, in Npt2a-/- mice, Pi/creatinine was unchanged and Ca2+/creatinine drastically decreased, coinciding with the highest kidney Ca2+ content, highest plasma creatinine, and greatest amount of nephrocalcinosis. In Npt2a-/- mice, vitamin D3 treatment completely diminished Npt2c abundance, so that mice resembled Npt2a/c double knockout mice. Abundance of intestinal Npt2b and claudin-3 (tight junctions protein) were reduced in Npt2a-/- only, the latter might facilitate the increase in plasma Pi in Npt2a-/- mice. Npt2a might function as regulator between renal Ca2+ excretion and reabsorption in response to vitamin D3.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Maryam Tahmasbi
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA
| | - Sima Al-Masri
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans' Hospital, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
7
|
Elangovan H, Stokes RA, Keane J, Chahal S, Samer C, Agoncillo M, Yu J, Chen J, Downes M, Evans RM, Liddle C, Gunton JE. Vitamin D Receptor Regulates Liver Regeneration After Partial Hepatectomy in Male Mice. Endocrinology 2024; 165:bqae077. [PMID: 38963813 PMCID: PMC11250209 DOI: 10.1210/endocr/bqae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell-cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death. Together, these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.
Collapse
Affiliation(s)
- Harendran Elangovan
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Rebecca A Stokes
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jeremy Keane
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Sarinder Chahal
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Caroline Samer
- Pharmacogenomics and Personalized Therapy Unit, Geneva University Hospitals, Geneva 1205, Switzerland
| | - Miguel Agoncillo
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Josephine Yu
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jennifer Chen
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037-1002, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037-1002, USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jenny E Gunton
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
8
|
Shi H, Chen M. The brain-bone axis: unraveling the complex interplay between the central nervous system and skeletal metabolism. Eur J Med Res 2024; 29:317. [PMID: 38849920 PMCID: PMC11161955 DOI: 10.1186/s40001-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.
Collapse
Affiliation(s)
- Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China.
| |
Collapse
|
9
|
Rivoira MA, Peralta López ME, Areco V, Díaz de Barboza G, Dionisi MP, Tolosa de Talamoni N. Emerging concepts on the FGF23 regulation and activity. Mol Cell Biochem 2024:10.1007/s11010-024-04982-6. [PMID: 38581553 DOI: 10.1007/s11010-024-04982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 04/08/2024]
Abstract
Fibroblast growth factor 23 (FGF23) discovery has provided new insights into the regulation of Pi and Ca homeostasis. It is secreted by osteoblasts and osteocytes, and acts mainly in the kidney, parathyroid, heart, and bone. The aim of this review is to highlight the current knowledge on the factors modulating the synthesis of FGF23, the canonical and non-canonical signaling pathways of the hormone, the role of FGF23 in different pathophysiological conditions, and the anti-FGF23 therapy. This is a narrative review based on the search of PubMed database in the range of years 2000-2023 using the keywords local and systemic regulators of FGF23 synthesis, FGF23 receptors, canonical and non-canonical pathways, pathophysiological conditions and FGF23, and anti-FGF23 therapy, focusing the data on the molecular mechanisms. The regulation of FGF23 synthesis is complex and multifactorial. It is regulated by local factors and systemic regulators mainly involved in bone mineralization. The excessive FGF23 production is associated with different congenital diseases and with diseases occurring with a secondary high FGF23 production such as in chronic disease kidney and tumor-induced osteomalacia (TIO). The anti-FGF23 therapy appears to be useful to treat chromosome X-linked hypophosphatemia and TIO, but there are doubts about the handle of excessive FGF23 production in CKD. FGF23 biochemistry and pathophysiology are generating a plethora of knowledge to reduce FGF23 bioactivity at many levels that might be useful for future therapeutics of diseases associated with high-serum FGF23 levels.
Collapse
Affiliation(s)
- María Angélica Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Elena Peralta López
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Vanessa Areco
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, CONICET-UNVM), Córdoba, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Paula Dionisi
- Cátedra de Clínica Médica II - UHMI Nº 2, Hospital San Roque, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
10
|
Nardin M, Verdoia M, Nardin S, Cao D, Chiarito M, Kedhi E, Galasso G, Condorelli G, De Luca G. Vitamin D and Cardiovascular Diseases: From Physiology to Pathophysiology and Outcomes. Biomedicines 2024; 12:768. [PMID: 38672124 PMCID: PMC11048686 DOI: 10.3390/biomedicines12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin D is rightly recognized as an essential key factor in the regulation of calcium and phosphate homeostasis, affecting primary adequate bone mineralization. In the last decades, a more complex and wider role of vitamin D has been postulated and demonstrated. Cardiovascular diseases have been found to be strongly related to vitamin D levels, especially to its deficiency. Pre-clinical studies have suggested a direct role of vitamin D in the regulation of several pathophysiological pathways, such as endothelial dysfunction and platelet aggregation; moreover, observational data have confirmed the relationship with different conditions, including coronary artery disease, heart failure, and hypertension. Despite the significant evidence available so far, most clinical trials have failed to prove any positive impact of vitamin D supplements on cardiovascular outcomes. This discrepancy indicates the need for further information and knowledge about vitamin D metabolism and its effect on the cardiovascular system, in order to identify those patients who would benefit from vitamin D supplementation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Internal Medicine, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13875 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 28100 Novara, Italy
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiology, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
| | - Mauro Chiarito
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Elvin Kedhi
- McGill University Health Center, Montreal, QC H3G 1A4, Canada
- Department of Cardiology and Structural Heart Disease, University of Silesia, 40-032 Katowice, Poland
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU “Policlinico G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
11
|
Feger M, Alber J, Strotmann J, Grund A, Leifheit-Nestler M, Haffner D, Föller M. Short-term fasting of mice elevates circulating fibroblast growth factor 23 (FGF23). Acta Physiol (Oxf) 2023; 239:e14049. [PMID: 37746883 DOI: 10.1111/apha.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
AIMS Phosphate and vitamin D homeostasis are controlled by fibroblast growth factor 23 (FGF23) from bone suppressing renal phosphate transport and enhancing 24-hydroxylase (Cyp24a1), thereby inactivating 1,25(OH)2 D3 . Serum FGF23 is correlated with outcomes in several diseases. Fasting stimulates the production of ketone bodies. We hypothesized that fasting can induce FGF23 synthesis through the production of ketone bodies. METHODS UMR106 cells and isolated neonatal rat ventricular myocytes (NRVM) were treated with ketone body β-hydroxybutyrate. Mice were fasted overnight, fed ad libitum, or treated with β-hydroxybutyrate. Proteins and further blood parameters were determined by enzyme-linked immunoassay (ELISA), western blotting, immunohistochemistry, fluorometric or colorimetric methods, and gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS β-Hydroxybutyrate stimulated FGF23 production in UMR106 cells in a nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB)-dependent manner, and in NRVMs. Compared to fed animals, fasted mice exhibited higher β-hydroxybutyrate and FGF23 serum levels (based on assays either detecting C-terminal or intact, biologically active FGF23 only), cardiac, pancreatic, and thymic Fgf23 and renal Cyp24a1 expression, and lower 1,25(OH)2 D3 serum concentration as well as renal Slc34a1 and αKlotho (Kl) expression. In contrast, Fgf23 expression in bone and serum phosphate, calcium, plasma parathyroid hormone (PTH) concentration, and renal Cyp27b1 expression were not significantly affected by fasting. CONCLUSION Short-term fasting increased FGF23 production, as did administration of β-hydroxybutyrate, effects possibly of clinical relevance in view of the increasing use of FGF23 as a surrogate parameter in clinical monitoring of diseases. The fasting state of patients might therefore affect FGF23 tests.
Collapse
Affiliation(s)
- Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jana Alber
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Strotmann
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Yadav PS, Papaioannou G, Kobelski MM, Demay MB. Phosphate-induced activation of VEGFR2 leads to caspase-9-mediated apoptosis of hypertrophic chondrocytes. iScience 2023; 26:107548. [PMID: 37636062 PMCID: PMC10450517 DOI: 10.1016/j.isci.2023.107548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
Low circulating phosphate (Pi) leads to rickets, characterized by expansion of the hypertrophic chondrocytes (HCs) in the growth plate due to impaired HC apoptosis. Studies in HCs demonstrate that Pi activates the Raf/MEK/ERK1/2 and mitochondrial apoptotic pathways. To determine how Pi activates these pathways, a small-molecule screen was undertaken to identify inhibitors of Pi-induced ERK1/2 phosphorylation in HCs. Vascular endothelial growth factor receptor 2 (VEGFR2) was identified as a target. In vitro studies in HCs demonstrate that VEGFR2 inhibitors block Pi-induced pERK1/2 and caspase-9 cleavage. Like Pi, rhVEGF activates ERK1/2 and caspase-9 in HCs and induces phosphorylation of VEGFR2, confirming that Pi activates this signaling pathway in HCs. Chondrocyte-specific depletion of VEGFR2 leads to an increase in HCs, impaired vascular invasion, and a decrease in HC apoptosis. Thus, these studies define a role for VEGFR2 in transducing Pi signals and mediating its effects on growth plate maturation.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Garyfallia Papaioannou
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Marie B. Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Nakamichi Y, Liu Z, Mori T, He Z, Yasuda H, Takahashi N, Udagawa N. The vitamin D receptor in osteoblastic cells but not secreted parathyroid hormone is crucial for soft tissue calcification induced by the proresorptive activity of 1,25(OH) 2D 3. J Steroid Biochem Mol Biol 2023; 232:106351. [PMID: 37352941 DOI: 10.1016/j.jsbmb.2023.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
The vitamin D receptor (VDR) is expressed most abundantly in osteoblasts and osteocytes (osteoblastic cells) in bone tissues and regulates bone resorption and calcium (Ca) and phosphate (P) homeostasis in association with parathyroid hormone (PTH). We previously reported that near-physiological doses of vitamin D compounds suppressed bone resorption through VDR in osteoblastic cells. We also found that supra-physiological doses of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced bone resorption and hypercalcemia via VDR in osteoblastic cells. Here, we report that the latter, a proresorptive dose of 1,25(OH)2D3, causes soft tissue calcification through VDR in osteoblastic cells. High concentrations of vitamin D affect multiple organs and cause soft tissue calcification, with increases in bone resorption and serum Ca levels. Such a variety of symptoms is known as hypervitaminosis D, which is caused by not only high doses of vitamin D but also impaired vitamin D metabolism and diseases that produce 1,25(OH)2D3 ectopically. To clarify the biological process hierarchy in hypervitaminosis D, a proresorptive dose of 1,25(OH)2D3 was administered to wild-type mice in which bone resorption had been suppressed by neutralizing anti-receptor activator of NF-κB ligand (RANKL) antibody. 1,25(OH)2D3 upregulated the serum Ca x P product, concomitantly induced calcification of the aorta, lungs, and kidneys, and downregulated serum PTH levels in control IgG-pretreated wild-type mice. Pretreatment of wild-type mice with anti-RANKL antibody did not affect the down-regulation of PTH levels by 1,25(OH)2D3, but inhibited the increase of the serum Ca x P product and soft tissue calcification induced by 1,25(OH)2D3. Consistent with the effects of anti-RANKL antibody, VDR ablation in osteoblastic cells also did not affect the down-regulation of PTH levels by 1,25(OH)2D3, but suppressed the 1,25(OH)2D3-induced increase of the serum Ca x P product and calcification of soft tissues. Taken together with our previous results, these findings suggest that bone resorption induced by VDR signaling in osteoblastic cells is critical for the pathogenesis of hypervitaminosis D, but PTH is not involved in hypervitaminosis D.
Collapse
Affiliation(s)
- Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan.
| | - Ziyang Liu
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Tomoki Mori
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Zhifeng He
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | | | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
14
|
Wimalawansa SJ. Physiological Basis for Using Vitamin D to Improve Health. Biomedicines 2023; 11:1542. [PMID: 37371637 DOI: 10.3390/biomedicines11061542] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin D is essential for life-its sufficiency improves metabolism, hormonal release, immune functions, and maintaining health. Vitamin D deficiency increases the vulnerability and severity of type 2 diabetes, metabolic syndrome, cancer, obesity, and infections. The active enzyme that generates vitamin D [calcitriol: 1,25(OH)2D], CYP27B1 (1α-hydoxylase), and its receptors (VDRs) are distributed ubiquitously in cells. Once calcitriol binds with VDRs, the complexes are translocated to the nucleus and interact with responsive elements, up- or down-regulating the expression of over 1200 genes and modulating metabolic and physiological functions. Administration of vitamin D3 or correct metabolites at proper doses and frequency for longer periods would achieve the intended benefits. While various tissues have different thresholds for 25(OH)D concentrations, levels above 50 ng/mL are necessary to mitigate conditions such as infections/sepsis, cancer, and reduce premature deaths. Cholecalciferol (D3) (not its metabolites) should be used to correct vitamin D deficiency and raise serum 25(OH)D to the target concentration. In contrast, calcifediol [25(OH)D] raises serum 25(OH)D concentrations rapidly and is the agent of choice in emergencies such as infections, for those who are in ICUs, and for insufficient hepatic 25-hydroxylase (CYP2R1) activity. In contrast, calcitriol is necessary to maintain serum-ionized calcium concentration in persons with advanced renal failure and hypoparathyroidism. Calcitriol is, however, ineffective in most other conditions, including infections, and as vitamin D replacement therapy. Considering the high costs and higher incidence of adverse effects due to narrow therapeutic margins (ED50), 1α-vitamin D analogs, such as 1α-(OH)D and 1,25(OH)2D, should not be used for other conditions. Calcifediol analogs cost 20 times more than D3-thus, they are not indicated as a routine vitamin D supplement for hypovitaminosis D, osteoporosis, or renal failure. Healthcare workers should resist accepting inappropriate promotions, such as calcifediol for chronic renal failure and calcitriol for osteoporosis or infections-there is no physiological rationale for doing so. Maintaining the population's vitamin D sufficiency (above 40 ng/mL) with vitamin D3 supplements and/or daily sun exposure is the most cost-effective way to reduce chronic diseases and sepsis, overcome viral epidemics and pandemics, and reduce healthcare costs. Furthermore, vitamin D sufficiency improves overall health (hence reducing absenteeism), reduces the severity of chronic diseases such as metabolic and cardiovascular diseases and cancer, decreases all-cause mortality, and minimizes infection-related complications such as sepsis and COVID-19-related hospitalizations and deaths. Properly using vitamin D is the most cost-effective way to reduce chronic illnesses and healthcare costs: thus, it should be a part of routine clinical care.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Medicine, Endocrinology & Nutrition, Cardio Metabolic Institute, (Former) Rutgers University, North Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Capobianco E, McGaughey V, Seraphin G, Heckel J, Rieger S, Lisse TS. Vitamin D inhibits osteosarcoma by reprogramming nonsense-mediated RNA decay and SNAI2-mediated epithelial-to-mesenchymal transition. Front Oncol 2023; 13:1188641. [PMID: 37228489 PMCID: PMC10203545 DOI: 10.3389/fonc.2023.1188641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Osteosarcomas are immune-resistant and metastatic as a result of elevated nonsense-mediated RNA decay (NMD), reactive oxygen species (ROS), and epithelial-to-mesenchymal transition (EMT). Although vitamin D has anti-cancer effects, its effectiveness and mechanism of action against osteosarcomas are poorly understood. In this study, we assessed the impact of vitamin D and its receptor (VDR) on NMD-ROS-EMT signaling in in vitro and in vivo osteosarcoma animal models. Initiation of VDR signaling facilitated the enrichment of EMT pathway genes, after which 1,25(OH)2D, the active vitamin D derivative, inhibited the EMT pathway in osteosarcoma subtypes. The ligand-bound VDR directly downregulated the EMT inducer SNAI2, differentiating highly metastatic from low metastatic subtypes and 1,25(OH)2D sensitivity. Moreover, epigenome-wide motif and putative target gene analysis revealed the VDR's integration with NMD tumorigenic and immunogenic pathways. In an autoregulatory manner, 1,25(OH)2D inhibited NMD machinery genes and upregulated NMD target genes implicated in anti-oncogenic activity, immunorecognition, and cell-to-cell adhesion. Dicer substrate siRNA knockdown of SNAI2 revealed superoxide dismutase 2 (SOD2)-mediated antioxidative responses and 1,25(OH)2D sensitization via non-canonical SOD2 nuclear-to-mitochondrial translocalization leading to overall ROS suppression. In a mouse xenograft metastasis model, the therapeutically relevant vitamin D derivative calcipotriol inhibited osteosarcoma metastasis and tumor growth shown for the first time. Our results uncover novel osteosarcoma-inhibiting mechanisms for vitamin D and calcipotriol that may be translated to human patients.
Collapse
Affiliation(s)
| | - Vanessa McGaughey
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Gerbenn Seraphin
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - John Heckel
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas S. Lisse
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- iCURA DX, Malvern, PA, United States
| |
Collapse
|
16
|
Asmussen NC, Alam S, Lin Z, Cohen DJ, Schwartz Z, Boyan BD. 1α,25-Dihydroxyvitamin D 3 Regulates microRNA Packaging in Extracellular Matrix Vesicles and Their Release in the Matrix. Calcif Tissue Int 2023; 112:493-511. [PMID: 36840756 DOI: 10.1007/s00223-023-01067-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Growth plate chondrocytes are regulated by numerous factors and hormones as they mature during endochondral bone formation, including transforming growth factor beta-1 (TGFb1), bone morphogenetic protein 2 (BMP2), insulin-like growth factor-1 (IFG1), parathyroid hormone and parathyroid hormone related peptide (PTH, PTHrP), and Indian hedgehog (IHH). Chondrocytes in the growth plate's growth zone (GC) produce and export matrix vesicles (MVs) under the regulation of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3]. 1α,25(OH)2D3 regulates MV enzyme composition genomically and 1α,25(OH)2D3 secreted by the cells acts on the MV membrane nongenomically, destabilizing it and releasing MV enzymes. This study examined the regulatory role 1α,25(OH)2D3 has over production and packaging of microRNA (miRNA) into MVs by GC cells and the release of miRNA by direct action on MVs. Costochondral cartilage GC cells were treated with 1α,25(OH)2D3 and the miRNA in the cells and MVs sequenced. We also treated MVs with 1α,25(OH)2D3 and determined if the miRNA was released. To assess whether MVs can act directly with chondrocytes and if this is regulated by 1α,25(OH)2D3, we stained MVs with a membrane dye and treated GC cells with them. 1α,25(OH)2D3 regulated production and packaging of a unique population of miRNA into MVs compared to the vehicle control population. 1α,25(OH)2D3 treatment of MVs did not release miRNA. Stained MVs were endocytosed by GC cells and this was increased with 1α,25(OH)2D3 treatment. This study adds new regulatory roles for 1α,25(OH)2D3 with respect to packaging and transport of MV miRNAs.
Collapse
Affiliation(s)
- Niels C Asmussen
- School of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Sheikh Alam
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Zhao Lin
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - David J Cohen
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Zvi Schwartz
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Barbara D Boyan
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
17
|
Capobianco E, McGaughey V, Seraphin G, Heckel J, Rieger S, Lisse TS. Vitamin D inhibits osteosarcoma by reprogramming nonsense-mediated RNA decay and SNAI2-mediated epithelial-to-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522778. [PMID: 36711643 PMCID: PMC9882006 DOI: 10.1101/2023.01.04.522778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteosarcomas are immune-resistant and metastatic as a result of elevated nonsense-mediated RNA decay (NMD), reactive oxygen species (ROS), and epithelial-to-mesenchymal transition (EMT). Although vitamin D has anti-cancer effects, its effectiveness and mechanism of action against osteosarcomas are poorly understood. In this study, we assessed the impact of vitamin D and its receptor (VDR) on the NMD-ROS-EMT signaling axis in in vitro and in vivo osteosarcoma animal models. Initiation of VDR signaling facilitated the enrichment of EMT pathway genes, after which 1,25(OH) 2 D, the active vitamin D derivative, inhibited the EMT pathway in osteosarcoma subtypes. The ligand-bound VDR directly downregulated the EMT inducer SNAI2 , differentiating highly metastatic from low metastatic subtypes and 1,25(OH) 2 D sensitivity. Moreover, epigenome-wide motif and putative target gene analysis revealed the VDR’s integration with NMD tumorigenic and immunogenic pathways. In an autoregulatory manner, 1,25(OH) 2 D inhibited NMD machinery genes and upregulated NMD target genes implicated in anti-oncogenic activity, immunorecognition, and cell-to-cell adhesion. Dicer substrate siRNA knockdown of SNAI2 revealed superoxide dismutase 2 (SOD2)-mediated antioxidative responses and 1,25(OH) 2 D sensitization via non-canonical SOD2 nuclear-to-mitochondrial translocalization leading to overall ROS suppression. In a mouse xenograft metastasis model, the therapeutically relevant vitamin D derivative calcipotriol inhibited osteosarcoma metastasis and tumor growth shown for the first time. Our results uncover novel osteosarcoma-inhibiting mechanisms for vitamin D and calcipotriol that may be translated to human patients.
Collapse
|
18
|
Latic N, Erben RG. Interaction of Vitamin D with Peptide Hormones with Emphasis on Parathyroid Hormone, FGF23, and the Renin-Angiotensin-Aldosterone System. Nutrients 2022; 14:nu14235186. [PMID: 36501215 PMCID: PMC9736617 DOI: 10.3390/nu14235186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The seminal discoveries that parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are major endocrine regulators of vitamin D metabolism led to a significant improvement in our understanding of the pivotal roles of peptide hormones and small proteohormones in the crosstalk between different organs, regulating vitamin D metabolism. The interaction of vitamin D, FGF23 and PTH in the kidney is essential for maintaining mineral homeostasis. The proteohormone FGF23 is mainly secreted from osteoblasts and osteoclasts in the bone. FGF23 acts on proximal renal tubules to decrease production of the active form of vitamin D (1,25(OH)2D) by downregulating transcription of 1α-hydroxylase (CYP27B1), and by activating transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase (CYP24A1). Conversely, the peptide hormone PTH stimulates 1,25(OH)2D renal production by upregulating the expression of 1α-hydroxylase and downregulating that of 24-hydroxylase. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in the bone, and a negative regulator of PTH secretion from the parathyroid gland, forming feedback loops between kidney and bone, and between kidney and parathyroid gland, respectively. In recent years, it has become clear that vitamin D signaling has important functions beyond mineral metabolism. Observation of seasonal variations in blood pressure and the subsequent identification of vitamin D receptor (VDR) and 1α-hydroxylase in non-renal tissues such as cardiomyocytes, endothelial and smooth muscle cells, suggested that vitamin D may play a role in maintaining cardiovascular health. Indeed, observational studies in humans have found an association between vitamin D deficiency and hypertension, left ventricular hypertrophy and heart failure, and experimental studies provided strong evidence for a role of vitamin D signaling in the regulation of cardiovascular function. One of the proposed mechanisms of action of vitamin D is that it functions as a negative regulator of the renin-angiotensin-aldosterone system (RAAS). This finding established a novel link between vitamin D and RAAS that was unexplored until then. During recent years, major progress has been made towards a more complete understanding of the mechanisms by which FGF23, PTH, and RAAS regulate vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the interaction between vitamin D, FGF23, PTH, and RAAS, and to discuss the role of these mechanisms in physiology and pathophysiology.
Collapse
|
19
|
Mironov N, Haque M, Atfi A, Razzaque MS. Phosphate Dysregulation and Metabolic Syndrome. Nutrients 2022; 14:4477. [PMID: 36364739 PMCID: PMC9658852 DOI: 10.3390/nu14214477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 10/05/2023] Open
Abstract
Phosphorus is one of the most abundant minerals in the human body. It is essential for almost all biochemical activities through ATP formation, intracellular signal transduction, cell membrane formation, bone mineralization, DNA and RNA synthesis, and inflammation modulation through various inflammatory cytokines. Phosphorus levels must be optimally regulated, as any deviations may lead to substantial derangements in glucose homeostasis. Clinical studies have reported that hyperphosphatemia can increase an individual's risk of developing metabolic syndrome. High phosphate burden has been shown to impair glucose metabolism by impairing pancreatic insulin secretion and increasing the risk of cardiometabolic disorders. Phosphate toxicity deserves more attention as metabolic syndrome is being seen more frequently worldwide and should be investigated further to determine the underlying mechanism of how phosphate burden may increase the cardiometabolic risk in the general population.
Collapse
Affiliation(s)
- Nikolay Mironov
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Azeddine Atfi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| |
Collapse
|
20
|
Abstract
Fibroblast growth factor-23 (FGF23) controls the homeostasis of both phosphate and vitamin D. Bone-derived FGF23 can suppress the transcription of 1α-hydroxylase (1α(OH)ase) to reduce renal activation of vitamin D (1,25(OH)2D3). FGF23 can also activate the transcription of 24-hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-regulation for FGF23 and vitamin D; 1,25(OH)2D3 induces the skeletal synthesis and the release of FGF23, while FGF23 can suppress the production of 1,25(OH)2D3 by inhibiting 1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)2D3, while genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar feedback control of FGF23 and vitamin D is also detected in various human diseases. Further studies are required to understand the subcellular molecular regulation of FGF23 and vitamin D in health and disease.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
21
|
Fu Y, Wang J, Schroyen M, Chen G, Zhang HJ, Wu SG, Li BM, Qi GH. Effects of rearing systems on the eggshell quality, bone parameters and expression of genes related to bone remodeling in aged laying hens. Front Physiol 2022; 13:962330. [PMID: 36117717 PMCID: PMC9470921 DOI: 10.3389/fphys.2022.962330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Public concerns regarding animal welfare are changing the selection of rearing systems in laying hens. This study investigated the effects of rearing systems on eggshell quality, bone parameters and relative expression levels of genes related to bone remodeling in aged laying hens. A total of 2,952 55-day-old Jing Tint Six pullets were randomly assigned to place in the conventional caging system (CCS) or aviary system (AVS) and kept until 95 weeks of age. The AVS group delayed the decrease of eggshell quality and alleviated the symptoms of osteoporosis in the humerus rather than in the femur. Eggshell breaking strength, thickness, weight, weight ratio, stiffness and fracture toughness were decreased linearly with age (from 55 to 95 weeks of age, p < 0.05). The AVS group had higher eggshell breaking strength, stiffness and fracture toughness than the CCS group (p < 0.05). Higher total calcium and phosphorus per egg were presented in the AVS group at 95 weeks of age (p < 0.05). At 95 weeks of age, the AVS group had a humerus with higher weight, volume, length, midpoint perimeter, cortical index, fat-free dry weight, ash content, total calcium per bone, total phosphorus per bone, average bone mineral density, strength, stiffness and work to fracture compared to the CCS group (p < 0.05). Such differences did not appear in the femur. The relative expression levels of alkaline phosphatase (ALP) and osteocalcin (OCN) genes in the femur and hormone receptors (vitamin D receptor (VDR), estrogen receptor alpha (ERα) and fibroblast growth factor 23 (FGF23)) genes in the humerus were significantly upregulated (p < 0.05) in the AVS group. The level of tartrate-resistant acid phosphatase (TRAP) transcripts was also increased (p < 0.05) in the femur of the AVS group. Overall, compared with the CCS, the AVS alleviated the deterioration of eggshell and bone qualities of aged laying hens, which may be related to the changes in the expression of genes associated with bone remodeling.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Gang Chen
- Key Laboratory of Bio-environmental Engineering, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Hai-jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao-ming Li
- Key Laboratory of Bio-environmental Engineering, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- *Correspondence: Guang-hai Qi, ; Bao-ming Li,
| | - Guang-hai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guang-hai Qi, ; Bao-ming Li,
| |
Collapse
|
22
|
Ewendt F, Kotwan J, Ploch S, Feger M, Hirche F, Föller M, Stangl GI. Tachysterol 2 increases the synthesis of fibroblast growth factor 23 in bone cells. Front Nutr 2022; 9:948264. [PMID: 35958252 PMCID: PMC9358286 DOI: 10.3389/fnut.2022.948264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Tachysterol2 (T2) is a photoisomer of the previtamin D2 found in UV-B-irradiated foods such as mushrooms or baker’s yeast. Due to its structural similarity to vitamin D, we hypothesized that T2 can affect vitamin D metabolism and in turn, fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone that is transcriptionally regulated by the vitamin D receptor (VDR). Initially, a mouse study was conducted to investigate the bioavailability of T2 and its impact on vitamin D metabolism and Fgf23 expression. UMR106 and IDG-SW3 bone cell lines were used to elucidate the effect of T2 on FGF23 synthesis and the corresponding mechanisms. LC-MS/MS analysis found high concentrations of T2 in tissues and plasma of mice fed 4 vs. 0 mg/kg T2 for 2 weeks, accompanied by a significant decrease in plasma 1,25(OH)2D and increased renal Cyp24a1 mRNA abundance. The Fgf23 mRNA abundance in bones of mice fed T2 was moderately higher than that in control mice. The expression of Fgf23 strongly increased in UMR106 cells treated with T2. After Vdr silencing, the T2 effect on Fgf23 diminished. This effect is presumably mediated by single-hydroxylated T2-derivatives, since siRNA-mediated silencing of Cyp27a1, but not Cyp27b1, resulted in a marked reduction in T2-induced Fgf23 gene expression. To conclude, T2 is a potent regulator of Fgf23 synthesis in bone and activates Vdr. This effect depends, at least in part, on the action of Cyp27a1. The potential of oral T2 to modulate vitamin D metabolism and FGF23 synthesis raises questions about the safety of UV-B-treated foods.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Kotwan
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Halle (Saale), Germany
| | - Stefan Ploch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Halle (Saale), Germany
| |
Collapse
|
23
|
Hu SM, Bai YJ, Li YM, Tao Y, Wang XD, Lin T, Wang LL, Shi YY. Cholecalciferol supplementation effectively improved tertiary hyperparathyroidism, FGF23 resistance and lowered coronary calcification score: a prospective study. Endocr Connect 2022; 11:e220123. [PMID: 35904219 PMCID: PMC9346334 DOI: 10.1530/ec-22-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
Introduction Tertiary hyperparathyroidism (THPT) and vitamin D deficiency are commonly seen in kidney transplant recipients, which may result in persistently elevated fibroblast growth factor 23 (FGF23) level after transplantation and decreased graft survival. The aim of this study is to evaluate the effect of vitamin D supplementation on THPT, FGF23-alpha Klotho (KLA) axis and cardiovascular complications after transplantation. Materials and methods Two hundred nine kidney transplant recipients were included and further divided into treated and untreated groups depending on whether they received vitamin D supplementation. We tracked the state of THPT, bone metabolism and FGF23-KLA axis within 12 months posttransplant and explored the predictors and risk factors for intact FGF23 levels, KLA levels, THPT and cardiovascular complications in recipients. Results Vitamin D supplementation significantly improved FGF23 resistance, THPT and high bone turnover status, preserved better graft function and prevented coronary calcification in the treated group compared to the untreated group at month 12. The absence of vitamin D supplementation was an independent risk factor for THPT and a predictor for intact FGF23 and KLA levels at month 12. Age and vitamin D deficiency were independent risk factors for coronary calcification in recipients at month 12. Conclusion Vitamin D supplementation effectively improved THPT, FGF23 resistance and bone metabolism, preserved graft function and prevented coronary calcification after transplantation.
Collapse
Affiliation(s)
- Shu-Meng Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang-Juan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Mei Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Tao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xian-Ding Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Lin
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan-Lan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun-Ying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Kang M, Chen J, Liu L, Xue C, Tang X, Lv J, Fu L, Mei C, Mao Z, Liu Y, Dai B. In-center Nocturnal Hemodialysis Reduced the Circulating FGF23, Left Ventricular Hypertrophy, and All-Cause Mortality: A Retrospective Cohort Study. Front Med (Lausanne) 2022; 9:912764. [PMID: 35801203 PMCID: PMC9253468 DOI: 10.3389/fmed.2022.912764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor 23(FGF23) is the most important biomarker and pathogenic factor in Chronic Kidney Disease–Mineral and Bone Disorder (CKD–MBD). In the moderate and severe stages of chronic renal failure, abnormally elevated circulating FGF23 can lead to some complications, including myocardial hypertrophy, which is positively correlated with all-cause mortality. However, the circulating FGF23 level of different hemodialysis modalities, the underlying essential regulatory factors, and potential clinical benefits remain to be elucidated. In this retrospective cohort study, 90 in-center nocturnal hemodialysis (INHD) and 90 matched conventional hemodialysis (CHD) patients were enrolled. The complete blood count, intact FGF23(iFGF23), calcium, phosphorus, PTH, and other biochemical and echocardiographic parameters of INHD and CHD patients were collected and analyzed at 1-year follow-up. The all-cause mortality was recorded during the 7-year follow-up. Furthermore, the regulatory factors of iFGF23 and its association with echocardiographic parameters and mortality were investigated by multivariate regression. The levels of iFGF23 and serum phosphate in patients undergoing INHD were significantly lower than those in patients undergoing CHD. The left ventricular volume index (LVMI) in patients with INHD was significantly attenuated and positively correlated with the drop of serum iFGF23. The INHD group had reduced all-cause mortality compared to the CHD group. Multivariate analysis showed that iFGF23 was positively correlated with serum calcium, serum phosphorus, and calcium-phosphate product. The calcium-phosphate product is an independent determining factor of serum iFGF23. Compared with the CHD group, the INHD group presented with a significantly reduced circulating iFGF23 level, which was closely associated with attenuation of left ventricular hypertrophy, but INHD reduced all-cause mortality in an FGF23 independent manner.
Collapse
Affiliation(s)
- Meizi Kang
- Division of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong, China
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Chen
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lingling Liu
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Cheng Xue
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaojing Tang
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiayi Lv
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lili Fu
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Changlin Mei
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yawei Liu
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Internal Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bing Dai
| | - Bing Dai
- Division of Nephrology, Kidney Institute of People's Liberation Army of China, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Yawei Liu
| |
Collapse
|
25
|
Vitamin D Supplementation in Patients with Juvenile Idiopathic Arthritis. Nutrients 2022; 14:nu14081538. [PMID: 35458099 PMCID: PMC9029755 DOI: 10.3390/nu14081538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin D has been implicated in the pathogenesis of skeletal disorders and various autoimmune disorders. Vitamin D can be consumed from the diet or synthesized in the skin upon ultraviolet exposure and hydroxylation in the liver and kidneys. In its bioactive form, vitamin D exerts a potent immunomodulatory effect and is important for bone health. Juvenile idiopathic arthritis (JIA) is a collection of inflammatory joint diseases in children that share the manifestation of inflamed synovium, which can result in growth arrest, articular deformity, bone density loss, and disability. To evaluate the potential effect of vitamin D on JIA disease manifestations and outcomes, we review the role of vitamin D in bone metabolism, discuss the mechanism of vitamin D in modulating the innate and adaptive immune systems, evaluate the clinical significance of vitamin D in patients with JIA, and summarize the supplementation studies.
Collapse
|
26
|
Afsar B, Kanbay M, Afsar RE. Interconnections of fibroblast growth factor 23 and klotho with erythropoietin and hypoxia-inducible factor. Mol Cell Biochem 2022; 477:1973-1985. [PMID: 35381946 DOI: 10.1007/s11010-022-04422-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Bone marrow (BM) hematopoiesis is tightly regulated process and bone components such as osteoblasts, extracellular matrix, and minerals influence hematopoiesis via regulation of hematopoietic stem cell function. Erythropoietin (EPO) secreted mostly by renal EPO producing (REP) cells which employ the hypoxia-inducible factor (HIF) pathway. When tissue hypoxia occurs, HIFs bind to hypoxia response element in the EPO promoter and induce EPO production. EPO binds to the EPO receptor on red cell progenitors in the BM and triggers expansion of red cell mass. Fibroblast growth factor-23 (FGF23) which is secreted mostly by osteoblasts and less by BM impacts hematopoiesis by influencing EPO production. Reciprocally, increases of EPO (acute or chronic) influence both FG23 production and cleavage resulting in variation of c fragment FGF23 (cFGF23) and intact FGF23 (iFGF23) ratios. As HIFs stimulate EPO production, they indirectly affect FGF23. Direct stimulation of FGF23 synthesis by binding of HIF on FGF23 promoter is also suggested. FGF23 cleavage by furin is another potential mechanism affecting FGF23 levels. Klotho is present in membrane-bound (transmembrane) and free (circulating) forms. Transmembrane klotho is the co-receptor of FGF23 and forms complexes with FGF23 receptors in the membrane surface and required for FGF23 actions. Recent evidence showed that klotho is also associated with EPO and HIF production suggesting a complex relationship between FGF23, klotho, EPO, and HIF. In this review, we have summarized the connections between FGF23, klotho, HIF, and EPO and their reflections to hematopoiesis.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Mehmet Kanbay
- Department of Nephrology, School of Medicine, Koc University, Istanbul, Turkey
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
27
|
Oral Acid Load Down-Regulates Fibroblast Growth Factor 23. Nutrients 2022; 14:nu14051041. [PMID: 35268016 PMCID: PMC8912769 DOI: 10.3390/nu14051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/30/2022] Open
Abstract
Increased dietary acid load has a negative impact on health, particularly when renal function is compromised. Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that is elevated during renal failure. The relationship between metabolic acidosis and FGF23 remains unclear. To investigate the effect of dietary acid load on circulating levels of FGF23, rats with normal renal function and with a graded reduction in renal mass (1/2 Nx and 5/6 Nx) received oral NH4Cl for 1 month. Acid intake resulted in a consistent decrease of plasma FGF23 concentrations in all study groups when compared with their non-acidotic control: 239.3 ± 13.5 vs. 295.0 ± 15.8 pg/mL (intact), 346.4 ± 19.7 vs. 522.6 ± 29.3 pg/mL (1/2 Nx) and 988.0 ± 125.5 vs. 2549.4 ± 469.7 pg/mL (5/6 Nx). Acidosis also decreased plasma PTH in all groups, 96.5 ± 22.3 vs. 107.3 ± 19.1 pg/mL, 113.1 ± 17.3 vs. 185.8 ± 22.2 pg/mL and 504.9 ± 75.7 vs. 1255.4 ± 181.1 pg/mL. FGF23 showed a strong positive correlation with PTH (r = 0.877, p < 0.0001) and further studies demonstrated that acidosis did not influence plasma FGF23 concentrations in parathyroidectomized rats, 190.0 ± 31.6 vs. 215 ± 25.6 pg/mL. In conclusion, plasma concentrations of FGF23 are consistently decreased in rats with metabolic acidosis secondary to increased acid intake, both in animals with intact renal function and with decreased renal function. The in vivo effect of metabolic acidosis on FGF23 appears to be related to the simultaneous decrease in PTH.
Collapse
|
28
|
Sirikul W, Siri-Angkul N, Chattipakorn N, Chattipakorn SC. Fibroblast Growth Factor 23 and Osteoporosis: Evidence from Bench to Bedside. Int J Mol Sci 2022; 23:ijms23052500. [PMID: 35269640 PMCID: PMC8909928 DOI: 10.3390/ijms23052500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a chronic debilitating disease caused by imbalanced bone remodeling processes that impair the structural integrity of bone. Over the last ten years, the association between fibroblast growth factor 23 (FGF23) and osteoporosis has been studied in both pre-clinical and clinical investigations. FGF23 is a bone-derived endocrine factor that regulates mineral homeostasis via the fibroblast growth factor receptors (FGFRs)/αKlotho complex. These receptors are expressed in kidney and the parathyroid gland. Preclinical studies have supported the link between the local actions of FGF23 on the bone remodeling processes. In addition, clinical evidence regarding the effects of FGF23 on bone mass and fragility fractures suggest potential diagnostic and prognostic applications of FGF23 in clinical contexts, particularly in elderly and patients with chronic kidney disease. However, inconsistent findings exist and there are areas of uncertainty requiring exploration. This review comprehensively summarizes and discusses preclinical and clinical reports on the roles of FGF23 on osteoporosis, with an emphasis on the local action, as opposed to the systemic action, of FGF23 on the bone. Current gaps in knowledge and future research directions are also suggested to encourage further rigorous research in this important field.
Collapse
Affiliation(s)
- Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Natthaphat Siri-Angkul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-944-451; Fax: +66-53-222-844
| |
Collapse
|
29
|
Urinary tetrahydroaldosterone is associated with circulating FGF23 in kidney stone formers. Urolithiasis 2022; 50:333-340. [PMID: 35201364 PMCID: PMC9110437 DOI: 10.1007/s00240-022-01317-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The spectrum of diseases with overactive renin–angiotensin–aldosterone system (RAS) or elevated circulating FGF23 overlaps, but the relationship between aldosterone and FGF23 remains unclarified. Here, we report that systemic RAS activation sensitively assessed by urinary tetrahydroaldosterone excretion is associated with circulating C-terminal FGF23. We performed a retrospective analysis in the Bern Kidney Stone Registry, a single-center observational cohort of kidney stone formers. Urinary excretion of the main aldosterone metabolite tetrahydroaldosterone was measured by gas chromatography–mass spectrometry. Plasma FGF23 concentrations were measured using a C-terminal assay. Regression models were calculated to assess the association of plasma FGF23 with 24 h urinary tetrahydroaldosterone excretion. We included 625 participants in the analysis. Mean age was 47 ± 14 years and 71% were male. Mean estimated GFR was 94 ml/min per 1.73 m2. In unadjusted analyses, we found a positive association between plasma FGF23 and 24 h urinary tetrahydroaldosterone excretion (β: 0.0027; p = 4.2 × 10–7). In multivariable regression models adjusting for age, sex, body mass index and GFR, this association remained robust (β: 0.0022; p = 2.1 × 10–5). Mineralotropic hormones, 24 h urinary sodium and potassium excretion as surrogates for sodium and potassium intake or antihypertensive drugs did not affect this association. Our data reveal a robust association of RAS activity with circulating FGF23 levels in kidney stone formers. These findings are in line with previous studies in rodents and suggest a physiological link between RAS system activation and FGF23 secretion.
Collapse
|
30
|
Abstract
Apart from its phosphaturic action, the bone-derived hormone fibroblast growth factor-23 (FGF23) is also an essential regulator of vitamin D metabolism. The main target organ of FGF23 is the kidney, where FGF23 suppresses transcription of the key enzyme in vitamin D hormone (1,25(OH)2D) activation, 1α-hydroxylase, and activates transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase, in proximal renal tubules. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in bone, forming a feedback loop between kidney and bone. The importance of FGF23 as regulator of vitamin D metabolism is underscored by the fact that in the absence of FGF23 signaling, the tight control of renal 1α-hydroxylase fails, resulting in overproduction of 1,25(OH)2D in mice and men. During recent years, big strides have been made toward a more complete understanding of the mechanisms underlying the FGF23-mediated regulation of vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. Importantly, the intracellular signaling cascades downstream of FGF receptors regulating transcription of 1α-hydroxylase and 24-hydroxylase in proximal renal tubules still remain unresolved. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the regulation of vitamin D metabolism by FGF23, and to discuss the role of these mechanisms in physiology and pathophysiology. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nejla Latic
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| |
Collapse
|
31
|
Verlinden L, Carmeliet G. Integrated View on the Role of Vitamin D Actions on Bone and Growth Plate Homeostasis. JBMR Plus 2021; 5:e10577. [PMID: 34950832 PMCID: PMC8674772 DOI: 10.1002/jbm4.10577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022] Open
Abstract
1,25(OH)2D3, the biologically active form of vitamin D3, is a major regulator of mineral and bone homeostasis and exerts its actions through binding to the vitamin D receptor (VDR), a ligand‐activated transcription factor that can directly modulate gene expression in vitamin D‐target tissues such as the intestine, kidney, and bone. Inactivating VDR mutations or vitamin D deficiency during development results in rickets, hypocalcemia, secondary hyperparathyroidism, and hypophosphatemia, pointing to the critical role of 1,25(OH)2D3‐induced signaling in the maintenance of mineral homeostasis and skeletal health. 1,25(OH)2D3 is a potent stimulator of VDR‐mediated intestinal calcium absorption, thus increasing the availability of calcium required for proper bone mineralization. However, when intestinal calcium absorption is impaired, renal calcium reabsorption is increased and calcium is mobilized from the bone to preserve normocalcemia. Multiple cell types within bone express the VDR, thereby allowing 1,25(OH)2D3 to directly affect bone homeostasis. In this review, we will discuss different transgenic mouse models with either Vdr deletion or overexpression in chondrocytes, osteoblasts, osteocytes, or osteoclasts to delineate the direct effects of 1,25(OH)2D3 on bone homeostasis. We will address the bone cell type–specific effects of 1,25(OH)2D3 in conditions of a positive calcium balance, where the amount of (re)absorbed calcium equals or exceeds fecal and renal calcium losses, as well as during a negative calcium balance, due to selective Vdr knockdown in the intestine or triggered by a low calcium diet. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism KU Leuven Leuven Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism KU Leuven Leuven Belgium
| |
Collapse
|
32
|
Münz S, Feger M, Edemir B, Föller M. Up-Regulation of Fibroblast Growth Factor 23 Gene Expression in UMR106 Osteoblast-like Cells with Reduced Viability. Cells 2021; 11:40. [PMID: 35011602 PMCID: PMC8750768 DOI: 10.3390/cells11010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) controls vitamin D and phosphate homeostasis in the kidney and has additional paracrine effects elsewhere. As a biomarker, its plasma concentration is associated with progression of inflammatory, renal, and cardiovascular diseases. Major stimuli of FGF23 synthesis include active vitamin D and inflammation. Antineoplastic chemotherapy treats cancer by inducing cellular damage ultimately favoring cell death (apoptosis and necrosis) and causing inflammation. Our study explored whether chemotherapeutics and other apoptosis inducers impact on Fgf23 expression. Experiments were performed in osteoblast-like UMR106 cells, Fgf23 gene expression and protein synthesis were determined by qRT-PCR and ELISA, respectively. Viability was assessed by MTT assay and NFκB activity by Western Blotting. Antineoplastic drugs cisplatin and doxorubicin as well as apoptosis inducers procaspase-activating compound 1 (PAC-1), a caspase 3 activator, and serum depletion up-regulated Fgf23 transcripts while reducing cell proliferation and viability. The effect of cisplatin on Fgf23 transcription was paralleled by Il-6 up-regulation and NFκB activation and attenuated by Il-6 and NFκB signaling inhibitors. To conclude, cell viability-decreasing chemotherapeutics as well as apoptosis stimulants PAC-1 and serum depletion up-regulate Fgf23 gene expression. At least in part, Il-6 and NFκB may contribute to this effect.
Collapse
Affiliation(s)
- Sina Münz
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (M.F.)
| | - Martina Feger
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (M.F.)
| | - Bayram Edemir
- Department of Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Michael Föller
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (M.F.)
| |
Collapse
|
33
|
Rashid H, Chen H, Javed A. Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification. Matrix Biol Plus 2021; 12:100088. [PMID: 34805821 PMCID: PMC8586806 DOI: 10.1016/j.mbplus.2021.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 10/25/2022] Open
Abstract
The RUNX2 transcription factor is a key regulator for the development of cartilage and bone. Global or resting chondrocyte-specific deletion of the Runx2 gene results in failure of chondrocyte hypertrophy, endochondral ossification, and perinatal lethality. The terminally mature hypertrophic chondrocyte regulates critical steps of endochondral ossification. Importantly, expression of the Runx2 gene starts in the resting chondrocyte and increases progressively, reaching the maximum level in hypertrophic chondrocytes. However, the RUNX2 role after chondrocyte hypertrophy remains unknown. To answer this question, we deleted the Runx2 gene specifically in hypertrophic chondrocytes using the Col10-Cre line. Mice lacking the Runx2 gene in hypertrophic chondrocytes (Runx2HC/HC ) survive but exhibit limb dwarfism. Interestingly, the length of the hypertrophic chondrocyte zone is doubled in the growth plate of Runx2HC/HC mice. Expression of pro-apoptotic Bax decreased significantly while anti-apoptotic Bcl2 remains unchanged leading to a four-fold increase in the Bcl2/Bax ratio in mutant mice. In line with this, a significant reduction in apoptosis of Runx2HC/HC hypertrophic chondrocyte is noted. A large amount of cartilage matrix is present in the long bones that extend toward the diaphyseal region of Runx2HC/HC mice. This is not due to enhanced synthesis of the cartilage matrix as the expression of both collagen type 2 and aggrecan were comparable among Runx2HC/HC and WT littermates. Our qPCR analysis demonstrates the increased amount of cartilage matrix is due to impaired expression of cartilage degrading enzymes such as metalloproteinase and aggrecanase as well as tissue inhibitor of metalloproteinases. Moreover, a significant decrease of TRAP positive chondroclasts was noted along the cartilage islands in Runx2HC/HC mice. Consistently, qPCR data showed an 81% reduction in the Rankl/Opg ratio in Runx2HC/HC littermates, which is inhibitory for chondroclast differentiation. Finally, we assess if increase cartilage matrix in Runx2HC/HC mice serves as a template for bone and mineral deposition using micro-CT and Von Kossa. The mutant mice exhibit a significant increase in trabecular bone mass compared to littermates. In summary, our findings have uncovered a novel role of Runx2 in apoptosis of hypertrophic chondrocytes and degradation of cartilage matrix during endochondral ossification.
Collapse
Key Words
- ACAN, Aggrecan
- Aggrecanase
- Apoptosis
- BAC, Bacterial artificial chromosome
- CCND1, Cyclin D1
- CDK1, Cyclin-dependent kinase 1
- COL10, Collagen type X
- COL2, Collagen type II
- Chondroclast/osteoclast
- Dwarfism
- IHH, Indian hedgehog
- MMP, Matrix metalloproteinase
- Matrix-metalloproteinase
- OPG, Osteoprotegerin
- PCNA, Proliferating cell nuclear antigen
- PTHRP, Parathyroid hormone-related peptide
- RANKL, Receptor activator of nuclear factor Kappa B ligand
- RUNX2, Runt related transcription factor 2
- SOX9, SRY box transcription factor
- TNAP, Tissue-nonspecific alkaline phosphatase
- TRAP, Tartrate-resistant acid phosphatase
- VEGFA, Vascular endothelial growth factor a
- Wnt/PCP, Wnt/planar cell polarity
Collapse
Affiliation(s)
- Harunur Rashid
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haiyan Chen
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amjad Javed
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
34
|
Ito K, Yokoyama K, Nakayama M, Fukagawa M, Hirakata H. Association of fibroblast growth factor 23 and α-klotho in hemodialysis patients during administration of ferric citrate hydrate: post hoc analysis of ASTRIO study. BMC Nephrol 2021; 22:374. [PMID: 34758731 PMCID: PMC8582217 DOI: 10.1186/s12882-021-02575-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
Background Fibroblast growth factor-23 (FGF23) and α-klotho are associated with anemia in patients with chronic kidney disease. In this post hoc analysis of the ASTRIO study (UMIN000019176), we investigated the relationship between FGF23 and α-klotho during treatment with an iron-based phosphate binder, ferric citrate hydrate (FC), compared with non-iron-based phosphate binders in hemodialysis (HD) patients. We examined the effect of iron absorption by FC on the relationship between FGF23 and α-klotho. There have been few clinical studies evaluating these biomarkers simultaneously in HD patients. Methods The ASTRIO study was a 24-week, randomized, open-label, multicenter trial. HD patients taking non-iron-based phosphate binder(s) were randomized at a 1:1 ratio to continue other binder(s) (control group) or switch to FC (FC group). Serum phosphate (P) and hemoglobin (Hb) were maintained within 3.5–6.0 mg/dL and 10–12 g/dL, respectively. Plasma levels of intact FGF23 (i-FGF23), C-terminal FGF23 (c-FGF23), and α-klotho were measured, as were iron-related parameters. Association analyses of FGF23 and α-klotho were conducted. Results Patients were randomized to FC (n = 48) and control (n = 45) groups. Serum ferritin significantly increased from baseline to end-of-treatment (EOT) in the FC group, compared with the control group (adjusted mean difference [95% confidence interval]: 79.5 [44.7, 114.4] ng/mL; p < 0.001). The mean change from baseline to EOT in c-FGF23 was significantly different between the FC and control groups (mean ± standard deviation (SD): − 0.2 ± 0.8 loge pg/mL vs. 0.2 ± 0.8 loge pg/mL, respectively; p = 0.04). The mean change from baseline to EOT in i-FGF23 and α-klotho were not significantly different between the FC and control groups (mean ± SD: − 0.1 ± 0.8 loge pg/mL vs. 0.1 ± 0.9 loge pg/mL; p = 0.33, and 2.0 ± 91.5 pg/mL vs. − 8.9 ± 145.3; p = 0.58, respectively). However, both forms of FGF23 and α-klotho were not significantly associated with each other in both groups. Conclusions Iron absorbed via FC administration in HD patients did not influence the correlation relationship between plasma levels of FGF23 and α-klotho under the condition of serum P and Hb were maintained. Trial registration ASTRIO study (UMIN000019176, registered at UMIN Clinical Trials Registry on October 1, 2015).
Collapse
Affiliation(s)
- Kyoko Ito
- Medical Affairs Department, Torii Pharmaceutical Co. Ltd., Tokyo, Japan
| | - Keitaro Yokoyama
- Health Care Center, Harumi Toriton Clinic, The Jikei University Hospital, 1-8-8 Harumi, Chuo-ku, Tokyo, 104-0053, Japan.
| | - Masaaki Nakayama
- St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | | |
Collapse
|
35
|
Abstract
Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or β-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure–function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.
Collapse
|
36
|
Chen A, Han Y, Poss KD. Regulation of zebrafish fin regeneration by vitamin D signaling. Dev Dyn 2021; 250:1330-1339. [PMID: 33064344 PMCID: PMC8050121 DOI: 10.1002/dvdy.261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Vitamin D is an essential nutrient that has long been known to regulate skeletal growth and integrity. In models of major appendage regeneration, treatment with vitamin D analogs has been reported to improve aspects of zebrafish fin regeneration in specific disease or gene misexpression contexts, but also to disrupt pattern in regenerating salamander limbs. Recently, we reported strong mitogenic roles for vitamin D signaling in several zebrafish tissues throughout life stages, including epidermal cells and osteoblasts of adult fins. To our knowledge, molecular genetic approaches to dissect vitamin D function in appendage regeneration have not been described. RESULTS Using a knock-in GFP reporter for the expression of the vitamin D target gene and negative regulator cyp24a1, we identified active vitamin D signaling in adult zebrafish fins during tissue homeostasis and regeneration. Transgenic expression of cyp24a1 or a dominant-negative vitamin D receptor (VDR) inhibited regeneration of amputated fins, whereas global vitamin D treatment accelerated regeneration. Using tissue regeneration enhancer elements, we found that local enhancement of VDR expression could improve regeneration with low doses of a vitamin D analog. CONCLUSIONS Vitamin D signaling enhances the efficacy of fin regeneration in zebrafish.
Collapse
Affiliation(s)
- Anzhi Chen
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
| | - Yanchao Han
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
- Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
| |
Collapse
|
37
|
Heyer FL, de Jong JJ, Willems PC, Arts JJ, Bours SGP, van Kuijk SMJ, Bons JAP, Poeze M, Geusens PP, van Rietbergen B, van den Bergh JP. The Effect of Bolus Vitamin D 3 Supplementation on Distal Radius Fracture Healing: A Randomized Controlled Trial Using HR-pQCT. J Bone Miner Res 2021; 36:1492-1501. [PMID: 33877707 PMCID: PMC8453928 DOI: 10.1002/jbmr.4311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Vitamin D is an important factor in bone metabolism. Animal studies have shown a positive effect of vitamin D3 supplementation on fracture healing, but evidence from clinical trials is inconclusive. A randomized controlled trial was performed to assess the effects of vitamin D3 supplementation on fracture healing using HR-pQCT-based outcome parameters. Thirty-two postmenopausal women with a conservatively treated distal radius fracture were included within 2 weeks postfracture and randomized to a low-dose (N = 10) and a high-dose (N = 11) vitamin D intervention group receiving a 6-week bolus dose, equivalent to 700 and 1800 IU vitamin D3 supplementation per day, respectively, in addition to a control group (N = 11) receiving no supplementation. After the baseline visit 1-2 weeks postfracture, follow-up visits were scheduled at 3-4, 6-8, and 12 weeks postfracture. At each visit, HR-pQCT scans of the fractured radius were performed. Cortical and trabecular bone density and microarchitectural parameters and microfinite element analysis-derived torsion, compression, and bending stiffness were assessed. Additionally, serum markers of bone resorption (CTX) and bone formation (PINP) were measured. Baseline serum levels of 25OHD3 were <50 nmol/L in 33% of all participants and <75 nmol/L in 70%. Compared with the control group, high-dose vitamin D3 supplementation resulted in a decreased trabecular number (regression coefficient β: -0.22; p < 0.01) and lower compression stiffness (B: -3.63; p < 0.05, together with an increase in the bone resorption marker CTX (B: 0.062; p < 0.05). No statistically significant differences were observed between the control and low-dose intervention group. In conclusion, the bolus equivalent of 700 U/day vitamin D3 supplementation in a Western postmenopausal population does not improve distal radius fracture healing and an equivalent dose of 1800 IU/day may be detrimental in restoring bone stiffness during the first 12 weeks of fracture healing. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Frans L Heyer
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Surgery, VieCuri Medical Center Venlo, Venlo, The Netherlands
| | - Joost Ja de Jong
- MHeNs School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul C Willems
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.,Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus J Arts
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.,Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sandrine G P Bours
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.,Department of Rheumatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology & Medical Technology Assessment, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Judith A P Bons
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martijn Poeze
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Piet P Geusens
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.,Department of Rheumatology, Maastricht University Medical Center, Maastricht, The Netherlands.,Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert van Rietbergen
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.,Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joop P van den Bergh
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Rheumatology, Maastricht University Medical Center, Maastricht, The Netherlands.,Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Internal Medicine, VieCuri Medical Center Venlo, Venlo, The Netherlands
| |
Collapse
|
38
|
Ono-Ohmachi A, Ishida Y, Morita Y, Kato K, Yamanaka H, Masuyama R. Bone mass protective potential mediated by bovine milk basic protein requires normal calcium homeostasis in mice. Nutrition 2021; 91-92:111409. [PMID: 34388585 DOI: 10.1016/j.nut.2021.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Milk provide protective effects against bone loss caused by an impaired calcium balance. Although the effects of some elements have previously been confirmed, the involvement of milk basic protein (MBP) in bone mineral metabolism remains poorly characterized. Moreover, the importance of mineral nutrition sufficiency to establish the effect of MBP must be evaluated. METHODS First, to evaluate the physiological conditions required for MBP activity, we examined the bone and mineral phenotypes of mice that suffer from insufficient calcium absorption due to a lack of intestinal vitamin D signaling. Second, to determine whether vitamin D signaling affects the effect of MBP on bone resorption, in vitro osteoclastogenesis were assessed using bone marrow cells. RESULTS In mice with systemic vitamin D receptor (Vdr) inactivation, dietary MBP supplementation was unable to normalize hypercalcemia and hyperparathyroidism and failed to rescue bone mineralization impairments. In contrast, calcium and bone homeostasis responded to MBP supplementation when Vdr inactivation was restricted to the intestines. Hyperparathyroidism in intestine-specific Vdr knockout mice was also improved by MBP supplementation, along with a decrease in bone resorption in response to the level of serum tartrate-resistant acid phosphatase 5b. These results corresponded with a reduction in tartrate-resistant acid phosphatase-stained osteoclast numbers and the eroded surface on the tibia. MBP treatment dose-dependently suppressed osteoclastogenesis in cultured bone marrow macrophages regardless of vitamin D activity. These effects of MBP were blunted when parathyroid hormone was added to the culture medium, which is in line with the in vivo phenotype observed with systemic Vdr inactivation and suggests that severe hyperparathyroidism limits MBP activity in the bone. CONCLUSIONS Therefore, adaptive calcium homeostasis is an essential requirement when MBP exerts protective effects through the inhibition of bone resorption.
Collapse
Affiliation(s)
- Aiko Ono-Ohmachi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan; Department of Quality Assurance, Bean Stalk Snow Co., Ltd., Tokyo, Japan
| | - Yuko Ishida
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan
| | - Yoshikazu Morita
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan
| | - Ken Kato
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan
| | - Hitoki Yamanaka
- Research Center for Support to Advanced Science, Shinshu University, Nagano, Japan
| | - Ritsuko Masuyama
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Ritsumeikan University, Graduate school of Gastronomy Management, Shiga, Japan
| |
Collapse
|
39
|
Myostatin regulates the production of fibroblast growth factor 23 (FGF23) in UMR106 osteoblast-like cells. Pflugers Arch 2021; 473:969-976. [PMID: 33895875 PMCID: PMC8164604 DOI: 10.1007/s00424-021-02561-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Myostatin is a signaling molecule produced by skeletal muscle cells (myokine) that inhibits muscle hypertrophy and has further paracrine and endocrine effects in other organs including bone. Myostatin binds to activin receptor type 2B which forms a complex with transforming growth factor-β type I receptor (TGF-βRI) and induces intracellular p38MAPK and NFκB signaling. Fibroblast growth factor 23 (FGF23) is a paracrine and endocrine mediator produced by bone cells and regulates phosphate and vitamin D metabolism in the kidney. P38MAPK and NFκB-dependent store-operated Ca2+ entry (SOCE) are positive regulators of FGF23 production. Here, we explored whether myostatin influences the synthesis of FGF23. Fgf23 gene expression was determined by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast–like cells. UMR106 cells expressed activin receptor type 2A and B. Myostatin upregulated Fgf23 gene expression and protein production. The myostatin effect on Fgf23 was significantly attenuated by TGF-βRI inhibitor SB431542, p38MAPK inhibitor SB202190, and NFκB inhibitor withaferin A. Moreover, SOCE inhibitor 2-APB blunted the myostatin effect on Fgf23. Taken together, myostatin is a stimulator of Fgf23 expression in UMR106 cells, an effect at least partially mediated by downstream TGF-βRI/p38MAPK signaling as well as NFκB-dependent SOCE.
Collapse
|
40
|
Qamar H, Perumal N, Papp E, Gernand AD, Al Mahmud A, Roth DE. Higher maternal parathyroid hormone concentration at delivery is not associated with smaller newborn size. Endocr Connect 2021; 10:345-357. [PMID: 33640873 PMCID: PMC8052570 DOI: 10.1530/ec-21-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 11/08/2022]
Abstract
Intrauterine growth restriction (IUGR) reflects inadequate growth in-utero and is prevalent in low resource settings. This study aimed to assess the association of maternal delivery parathyroid hormone (PTH) - a regulator of bone turnover and calcium homeostasis - with newborn anthropometry, to identify regulators of PTH, and to delineate pathways by which maternal PTH regulates birth size using path analysis. This was a cross-sectional analysis of data from participants (n = 537) enrolled in the Maternal Vitamin D for Infant Growth trial in Dhaka, Bangladesh. Primary exposures were maternal delivery intact PTH (iPTH) or whole PTH (wPTH) and outcomes were gestational age- and sex-standardized z-scores for birth length (LAZ), weight (WAZ), and head circumference (HCAZ). Hypothesized regulators of PTH included calcium and protein intake, vitamin D, magnesium, fibroblast-like growth factor-23 (FGF23), and C-reactive protein. Maternal iPTH was not associated with birth size in linear regression analyses; however, in path analysis models, every SD increase in log(iPTH) was associated with 0.08SD (95% CI: 0.002, 0.162) higher LAZ. In linear regression and path analysis models, wPTH was positively associated with WAZ. Vitamin D suppressed PTH, while FGF23 was positively associated with PTH. In path analysis models, higher magnesium was negatively associated with LAZ; FGF23 was positively associated and protein intake was negatively associated with LAZ, WAZ, and HCAZ. Higher maternal PTH in late pregnancy is unlikely to contribute to IUGR. Future studies should investigate maternal FGF23, magnesium and protein intake as regulators of fetal growth, particularly in settings where food insecurity and IUGR are public health problems.
Collapse
Affiliation(s)
- Huma Qamar
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nandita Perumal
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Eszter Papp
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alison D Gernand
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abdullah Al Mahmud
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka, Bangladesh
| | - Daniel E Roth
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
- Correspondence should be addressed to D E Roth:
| |
Collapse
|
41
|
Abstract
During the evolution of skeletons, vertebrates acquired the bone made of calcium phosphate. By keeping the extracellular fluid in a supersaturated condition regarding calcium and phosphate, vertebrates create the bone when and where they want simply by providing a cue for precipitation. To secure this strategy, a new endocrine system has evolved that strictly controls the extracellular phosphate concentration. In response to phosphate intake, fibroblast growth factor-23 (FGF23) is secreted from the bone and acts on the kidney through binding to its receptor Klotho to increase urinary phosphate excretion and maintain phosphate homeostasis. The FGF23-Klotho endocrine system, when disrupted, results in hyperphosphatemia and ectopic precipitation of calcium phosphate in mice and humans. In addition to disturbed phosphate homeostasis, mice lacking Klotho suffer from premature aging. They exhibit multiple organ atrophy, arteriosclerosis characterized by vascular calcification, cardiac hypertrophy, sarcopenia, cognition impairment, frailty, and a shortened life span associated with chronic non-infectious inflammation. Restoration of the phosphate balance by placing Klotho- or FGF23-deficient mice on low phosphate diet rescued them from the aging-like phenotypes, indicating that phosphate was responsible for the accelerated aging. The similar pathophysiology is universally observed in patients with chronic kidney disease (CKD), rendering advanced CKD a clinical model of accelerated aging. CKD patients bear colloidal nanoparticles containing calcium phosphate in the blood, which are termed calciprotein particles (CPPs). CPPs have the ability to induce cell damage and inflammation, potentially contributing to accelerated aging. Terrestrial vertebrates with the bone made of calcium phosphate may be destined to age due to ectopic calcium phosphate.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
42
|
Miao D, Goltzman D. Probing the Scope and Mechanisms of Calcitriol Actions Using Genetically Modified Mouse Models. JBMR Plus 2021; 5:e10434. [PMID: 33553990 PMCID: PMC7839819 DOI: 10.1002/jbm4.10434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Genetically modified mice have provided novel insights into the mechanisms of activation and inactivation of vitamin D, and in the process have provided phenocopies of acquired human disease such as rickets and osteomalacia and inherited diseases such as pseudovitamin D deficiency rickets, hereditary vitamin D resistant rickets, and idiopathic infantile hypercalcemia. Both global and tissue-specific deletion studies leading to decreases of the active form of vitamin D, calcitriol [1,25(OH)2D], and/or of the vitamin D receptor (VDR), have demonstrated the primary role of calcitriol and VDR in bone, cartilage and tooth development and in the regulation of mineral metabolism and of parathyroid hormone (PTH) and FGF23, which modulate calcium and phosphate fluxes. They have also, however, extended the spectrum of actions of calcitriol and the VDR to include, among others: modulation, jointly and independently, of skin metabolism; joint regulation of adipose tissue metabolism; cardiovascular function; and immune function. Genetic studies in older mice have also shed light on the molecular mechanisms underlying the important role of the calcitriol/VDR pathway in diseases of aging such as osteoporosis and cancer. In the course of these studies in diverse tissues, important upstream and downstream, often tissue-selective, pathways have been illuminated, and intracrine, as well as endocrine actions have been described. Human studies to date have focused on acquired or genetic deficiencies of the prohormone vitamin D or the (generally inactive) precursor metabolite 25-hyrodxyvitamin D, but have yet to probe the pleiotropic aspects of deficiency of the active form of vitamin D, calcitriol, in human disease. © 2020 American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Dengshun Miao
- The Research Center for AgingAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjingChina
| | - David Goltzman
- Department of MedicineMcGill University Health Centre and McGill UniversityMontrealQCCanada
| |
Collapse
|
43
|
Zafeiris EP, Babis GC, Zafeiris CP, Chronopoulos E. Association of vitamin D, BMD and knee osteoarthritis in postmenopausal women. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:509-516. [PMID: 34854390 PMCID: PMC8672405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the association of knee OA with bone mineral density (BMD) and vitamin D serum levels in postmenopausal women. METHODS A cross-sectional study including 240 postmenopausal women with knee OA was conducted. Demographic data were recorded along with balance and functionality scores. Knee OA severity was assessed by the radiological Kellgren & Lawrence scale. BMD and T-scores were calculated in hips and lumbar spine. Serum levels of vitamin D were also measured. RESULTS High BMI (p<0.005), high number of children (p=0.022) and family history of hip fracture (p=0.011) are significantly associated with knee OA severity. Lumbar spine OP is negatively associated with knee OA (p<0.005). A significant difference was detected between vitamin D deficiency and severe knee OA, adjusted for BMD [OR (95%CI); 3.1 (1.6-6.1), p=0.001]. BMD does not affect the relationship of vitamin D levels in relation to OA and vitamin D levels do not affect the relationship of BMD with OA. CONCLUSIONS Low BMD has a protective role against knee OA while vitamin D deficiency contributes significantly to knee OA severity. However, the association between OA and OP is not affected by vitamin D deficiency and the association of OA and vitamin D serum levels is not affected by BMD.
Collapse
Affiliation(s)
- Evangelos P. Zafeiris
- 2nd Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece;,Corresponding author: Evangelos P. Zafeiris, 2nd Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, Agias Olgas 3-5, 14233, Athens, Greece E-mail:
| | - George C. Babis
- 2nd Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Christos P. Zafeiris
- Orthopaedics and Spine Surgery, Metropolitan General Hospital, Athens, Greece,Laboratory for Research of the Musculoskeletal System, School of Medicine University of Athens, Greece
| | - Efstathios Chronopoulos
- 2nd Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece;,Laboratory for Research of the Musculoskeletal System, School of Medicine University of Athens, Greece
| |
Collapse
|
44
|
Caloric Intake in Renal Patients: Repercussions on Mineral Metabolism. Nutrients 2020; 13:nu13010018. [PMID: 33374582 PMCID: PMC7822489 DOI: 10.3390/nu13010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this paper is to review current knowledge about how calorie intake influences mineral metabolism focussing on four aspects of major interest for the renal patient: (a) phosphate (P) handling, (b) fibroblast growth factor 23 (FGF23) and calcitriol synthesis and secretion, (c) metabolic bone disease, and (d) vascular calcification (VC). Caloric intake has been shown to modulate P balance in experimental models: high caloric intake promotes P retention, while caloric restriction decreases plasma P concentrations. Synthesis and secretion of the phosphaturic hormone FGF23 is directly influenced by energy intake; a direct correlation between caloric intake and FGF23 plasma concentrations has been shown in animals and humans. Moreover, in vitro, energy availability has been demonstrated to regulate FGF23 synthesis through mechanisms in which the molecular target of rapamycin (mTOR) signalling pathway is involved. Plasma calcitriol concentrations are inversely proportional to caloric intake due to modulation by FGF23 of the enzymes implicated in vitamin D metabolism. The effect of caloric intake on bone is controversial. High caloric intake has been reported to increase bone mass, but the associated changes in adipokines and cytokines may as well be deleterious for bone. Low caloric intake tends to reduce bone mass but also may provide indirect (through modulation of inflammation and insulin regulation) beneficial effects on bone. Finally, while VC has been shown to be exacerbated by diets with high caloric content, the opposite has not been demonstrated with low calorie intake. In conclusion, although prospective studies in humans are needed, when planning caloric intake for a renal patient, it is important to take into consideration the associated changes in mineral metabolism.
Collapse
|
45
|
Walz NL, Hinchliffe PM, Soares MJ, Dhaliwal SS, Newsholme P, Yovich JL, Keane KN. Serum Vitamin D status is associated with increased blastocyst development rate in women undergoing IVF. Reprod Biomed Online 2020; 41:1101-1111. [PMID: 33012659 DOI: 10.1016/j.rbmo.2020.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
RESEARCH QUESTION To determine the relationship between vitamin D (VitD) status and embryological, clinical pregnancy and live birth outcomes in women undergoing IVF. DESIGN Cross-sectional, observational study conducted at a university-affiliated private IVF clinic. A total of 287 women underwent 287 IVF cycles and received a fresh embryo transfer. Patients had their serum 25-hydroxyvitamin D2/D3 (VitD) determined on the day of oocyte retrieval, which was analysed in relation to blastocyst development rate, clinical pregnancy and live birth outcomes. RESULTS In stepwise, multivariable logistic regression models, increases in blastocyst development rate, number and quality, along with embryo cryopreservation and utilization rates were associated with women with a sufficient VitD status (≥20 ng/ml). For a single increase in the number of blastocysts generated per cycle or embryos cryopreserved per cycle, the likelihood for the patient to be VitD sufficient was increased by 32% (odds ratio [OR] 1.32, 95% confidence interval [CI] 1.10-1.58, P = 0.002 and OR 1.33, 95% CI 1.10-1.60, P = 0.004, respectively). Clinical pregnancy (40.7% versus 30.8%, P = 0.086) and live birth rates (32.9% versus 25.8%, P = 0.195) in the sufficient VitD group versus the insufficient group were not significantly different and VitD sufficiency was not significantly associated with these outcomes. CONCLUSION A strong relationship was observed between blastocyst development and VitD sufficiency. However, there was no association between VitD and clinical pregnancy or live birth outcomes. Further larger studies are needed to investigate whether the observed effect on blastocyst development may have downstream implications on subsequent clinical pregnancy or live birth rates, and on a potential mechanism where sufficient VitD concentrations are linked to improved IVF outcomes.
Collapse
Affiliation(s)
- Nikita L Walz
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6845, Australia; PIVET Medical Centre, Leederville, Perth WA 6007, Australia
| | | | - Mario J Soares
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley WA 6845, Australia
| | - Satvinder S Dhaliwal
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley WA 6845, Australia; Duke-NUS Medical School, National University of Singapore (NUS), Singapore
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6845, Australia
| | - John L Yovich
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6845, Australia; PIVET Medical Centre, Leederville, Perth WA 6007, Australia
| | - Kevin N Keane
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6845, Australia; PIVET Medical Centre, Leederville, Perth WA 6007, Australia.
| |
Collapse
|
46
|
FGF23 protects osteoblasts from dexamethasone-induced oxidative injury. Aging (Albany NY) 2020; 12:19045-19059. [PMID: 33052883 PMCID: PMC7732311 DOI: 10.18632/aging.103689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Dexamethasone (DEX) can exert a cytotoxic effect on cultured osteoblasts. The current study explored the potential osteoblast cytoprotective effect of fibroblast growth factor 23 (FGF23). In OB-6 human osteoblastic cells and primary murine osteoblasts, FGF23 induced phosphorylation of the receptor FGFR1 and activated the downstream Akt-S6K1 signaling. FGF23-induced FGFR1-Akt-S6K phosphorylation was largely inhibited by FGFR1 shRNA, but augmented with ectopic FGFR1 expression in OB-6 cells. FGF23 attenuated DEX-induced death and apoptosis in OB-6 cells and murine osteoblasts. Its cytoprotective effects were abolished by FGFR1 shRNA, Akt inhibition or Akt1 knockout. Conversely, forced activation of Akt inhibited DEX-induced cytotoxicity in OB-6 cells. Furthermore, FGF23 activated Akt downstream nuclear-factor-E2-related factor 2 (Nrf2) signaling to alleviate DEX-induced oxidative injury. On the contrary, Nrf2 shRNA or knockout almost reversed FGF23-induced osteoblast cytoprotection against DEX. Collectively, FGF23 activates FGFR1-Akt and Nrf2 signaling cascades to protect osteoblasts from DEX-induced oxidative injury and cell death.
Collapse
|
47
|
Rausch S, Barholz M, Föller M, Feger M. Vitamin A regulates fibroblast growth factor 23 (FGF23). Nutrition 2020; 79-80:110988. [PMID: 32961447 DOI: 10.1016/j.nut.2020.110988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Renal phosphate and vitamin D metabolism are regulated by proteohormone fibroblast growth factor 23 (FGF23), which is secreted by bone cells. FGF23 inhibits phosphate reabsorption and the production of calcitriol, active vitamin D (1,25(OH)2D3). FGF23 generated by other cells exerts further paracrine effects in the liver, heart, and immune system. The FGF23 plasma concentration is positively associated with the onset and progression of kidney and cardiovascular diseases, disclosing FGF23 as a potential disease biomarker. The effects of vitamin A on the expression of FGF23 are controversial. Vitamin A components, retinoids, are mainly effective through nuclear retinoic acid receptors (RAR) and exert different effects on bone. The aim of this study was to clarify whether vitamin A modulates the production of FGF23. METHODS We studied the relevance of vitamin A for FGF23 production. Fgf23 transcripts were determined by real-time quantitative polymerase chain reaction in UMR106 osteoblast-like cells and IDG-SW3 osteocytes. FGF23 protein in the cell culture supernatant was measured by enzyme-linked immunosorbent assay. RESULTS All-trans-retinoic acid, retinyl acetate, RAR agonist TTNPB (4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid), and 13-cis-retinoic acid downregulated the expression of the Fgf23 gene in a dose-dependent manner. This effect was significantly attenuated by RAR antagonist AGN193109 (4-[2-[5,6-Dihydro-5,5-dimethyl-8-(4-methylphenyl)-2-naphthalenyl]ethynyl]benzoic acid). CONCLUSION The present study demonstrated that vitamin A is a potent suppressor of FGF23 production through RAR.
Collapse
Affiliation(s)
- Steffen Rausch
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michelle Barholz
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
48
|
Zeng S, Querfeld U, Feger M, Haffner D, Hasan AA, Chu C, Slowinski T, Bernd Dschietzig T, Schäfer F, Xiong Y, Zhang B, Rausch S, Horvathova K, Lang F, Karl Krämer B, Föller M, Hocher B. Relationship between GFR, intact PTH, oxidized PTH, non-oxidized PTH as well as FGF23 in patients with CKD. FASEB J 2020; 34:15269-15281. [PMID: 32964520 DOI: 10.1096/fj.202000596r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH) are regulators of renal phosphate excretion and vitamin D metabolism. In chronic kidney disease (CKD), circulating FGF23 and PTH concentrations progressively increase as renal function declines. Oxidation of PTH at two methionine residues (positions 8 and 18) causes a loss of function. The impact of n-oxPTH and oxPTH on FGF23 synthesis, however, and how n-oxPTH and oxPTH concentrations are affected by CKD, is yet unknown. The effects of oxidized and non-oxidized PTH 1-34 on Fgf23 gene expression were analyzed in UMR106 osteoblast-like cells. Furthermore, we investigated the relationship between n-oxPTH and oxPTH, respectively, with FGF23 in two independent patients' cohorts (620 children with CKD and 600 kidney transplant recipients). While n-oxPTH stimulated Fgf23 mRNA synthesis in vitro, oxidation of PTH in particular at Met8 led to a markedly weaker stimulation of Fgf23. The effect was even stronger when both Met8 and Met18 were oxidized. In both clinical cohorts, n-oxPTH-but not oxPTH-was significantly associated with FGF23 concentrations, independent of known confounding factors. Moreover, with progressive deterioration of kidney function, intact PTH (iPTH) and oxPTH increased substantially, whereas n-oxPTH increased only moderately. In conclusion, n-oxPTH, but not oxPTH, stimulates Fgf23 gene expression. The increase in PTH with decreasing GFR is mainly due to an increase in oxPTH in more advanced stages of CKD.
Collapse
Affiliation(s)
- Shufei Zeng
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Querfeld
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Slowinski
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Franz Schäfer
- Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Yingquan Xiong
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Bingbing Zhang
- Institute of Physiology, University of Tübingen, Tübingen, Germany.,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Steffen Rausch
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | | | - Florian Lang
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Bernhard Karl Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Medical Diagnostics, IMD, Berlin, , Berlin, Germany
| |
Collapse
|
49
|
Nakamura S, Masuyama R, Sakai K, Fukuda K, Takeda K, Tanimura S. SH3P2 suppresses osteoclast differentiation through restricting membrane localization of myosin 1E. Genes Cells 2020; 25:707-717. [PMID: 32916757 DOI: 10.1111/gtc.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. Src homology 3 (SH3) domain-containing protein-2 (SH3P2)/osteoclast-stimulating factor-1 regulates osteoclast differentiation, but its exact role remains elusive. Here, we show that SH3P2 suppresses osteoclast differentiation. SH3P2 knockout (KO) mice displayed decreased femoral trabecular bone mass and enhanced localization of osteoclasts on the tibial trabecular bone surface, suggesting that SH3P2 suppresses bone resorption by osteoclasts. Osteoclast differentiation based on cellular multinuclearity induced by macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) was enhanced in bone marrow-derived macrophages lacking SH3P2. RANKL induced SH3P2 dephosphorylation, which increased the association of actin-dependent motor protein myosin 1E (Myo1E) with SH3P2 and thereby prevented Myo1E localization to the plasma membrane. Consistent with this, Myo1E in the membrane fraction increased in SH3P2-KO cells. Together with the attenuated osteoclast differentiation in Myo1E knocked down cells, SH3P2 may suppress osteoclast differentiation by preventing their cell-to-cell fusion depending on Myo1E membrane localization.
Collapse
Affiliation(s)
- Shota Nakamura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ritsuko Masuyama
- Department of Gastronomy Management, College of Gastronomy Management, Ritsumeikan University, Kusatsu, Japan
| | - Kosuke Sakai
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Karin Fukuda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
50
|
Sun M, Wu X, Yu Y, Wang L, Xie D, Zhang Z, Chen L, Lu A, Zhang G, Li F. Disorders of Calcium and Phosphorus Metabolism and the Proteomics/Metabolomics-Based Research. Front Cell Dev Biol 2020; 8:576110. [PMID: 33015068 PMCID: PMC7511772 DOI: 10.3389/fcell.2020.576110] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Since calcium and phosphorus play vital roles in a multitude of physiologic systems, disorders of calcium and phosphorus metabolism always lead to severe consequences such as skeletal-related and cardiovascular morbidity, or even life-threatening. Physiologically, the maintenance of calcium and phosphorus homeostasis is achieved via a variety of concerted actions of hormones such as parathyroid hormone (PTH), vitamin D, and fibroblast growth factor (FGF23), which could be regulated mainly at three organs, the intestine, kidney, and bone. Disruption of any organ or factor might lead to disorders of calcium and phosphorus metabolism. Currently, lacking of accurate diagnostic approaches and unknown molecular basis of pathophysiology will result in patients being unable to receive a precise diagnosis and personalized treatment timely. Therefore, it is urgent to identify early diagnostic biomarkers and develop therapeutic strategies. Fortunately, proteomics and metabolomics offer promising tools to discover novel indicators and further understanding of pathological mechanisms. Therefore, in this review, we will give a systematic introduction on PTH-1,25(OH)2D-FGF23 axis in the disorders of calcium and phosphorus metabolism, diagnostic biomarkers identified, and potential altered metabolic pathways involved.
Collapse
Affiliation(s)
- Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|