1
|
Ott C. Mapping the interplay of immunoproteasome and autophagy in different heart failure phenotypes. Free Radic Biol Med 2024; 218:149-165. [PMID: 38570171 DOI: 10.1016/j.freeradbiomed.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Proper protein degradation is required for cellular protein homeostasis and organ function. Particularly, in post-mitotic cells, such as cardiomyocytes, unbalanced proteolysis due to inflammatory stimuli and oxidative stress contributes to organ dysfunction. To ensure appropriate protein turnover, eukaryotic cells exert two main degradation systems, the ubiquitin-proteasome-system and the autophagy-lysosome-pathway. It has been shown that proteasome activity affects the development of cardiac dysfunction differently, depending on the type of heart failure. Studies analyzing the inducible subtype of the proteasome, the immunoproteasome (i20S), demonstrated that the i20S plays a double role in diseased hearts. While i20S subunits are increased in cardiac hypertrophy, atrial fibrillation and partly in myocarditis, the opposite applies to diabetic cardiomyopathy and ischemia/reperfusion injury. In addition, the i20S appears to play a role in autophagy modulation depending on heart failure phenotype. This review summarizes the current literature on the i20S in different heart failure phenotypes, emphasizing the two faces of i20S in injured hearts. A selection of established i20S inhibitors is introduced and signaling pathways linking the i20S to autophagy are highlighted. Mapping the interplay of the i20S and autophagy in different types of heart failure offers potential approaches for developing treatment strategies against heart failure.
Collapse
Affiliation(s)
- Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Li G, Zhao X, Zheng Z, Zhang H, Wu Y, Shen Y, Chen Q. cGAS-STING pathway mediates activation of dendritic cell sensing of immunogenic tumors. Cell Mol Life Sci 2024; 81:149. [PMID: 38512518 PMCID: PMC10957617 DOI: 10.1007/s00018-024-05191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Type I interferons (IFN-I) play pivotal roles in tumor therapy for three decades, underscoring the critical importance of maintaining the integrity of the IFN-1 signaling pathway in radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the specific mechanism by which IFN-I contributes to these therapies, particularly in terms of activating dendritic cells (DCs), remains unclear. Based on recent studies, aberrant DNA in the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signaling pathway, which in turn produces IFN-I, which is essential for antiviral and anticancer immunity. Notably, STING can also enhance anticancer immunity by promoting autophagy, inflammation, and glycolysis in an IFN-I-independent manner. These research advancements contribute to our comprehension of the distinctions between IFN-I drugs and STING agonists in the context of oncology therapy and shed light on the challenges involved in developing STING agonist drugs. Thus, we aimed to summarize the novel mechanisms underlying cGAS-STING-IFN-I signal activation in DC-mediated antigen presentation and its role in the cancer immune cycle in this review.
Collapse
Affiliation(s)
- Guohao Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zuda Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hucheng Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yundi Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
3
|
Luo X, Qiu Y, Fitzsimonds ZR, Wang Q, Chen Q, Lei YL. Immune escape of head and neck cancer mediated by the impaired MHC-I antigen presentation pathway. Oncogene 2024; 43:388-394. [PMID: 38177410 DOI: 10.1038/s41388-023-02912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Tumor immune evasion is a hallmark of Head and Neck Cancers. The advent of immune checkpoint inhibitors (ICIs) in the first-line setting has transformed the management of these tumors. Unfortunately, the response rate of Head and Neck Squamous Cell Carcinomas (HNSCC) to ICIs is below 15%, regardless of the human papillomavirus (HPV) status, which might be partially related with impaired antigen presentation machinery (APM). Mechanistically, HNSCC cells are usually defective in the expression of MHC-I associated APM, while this transcriptional pathway is critical for the activation of tumor-killing effector T-cells. To specifically illuminate the phenomenon and seek for therapeutic strategies, this review summarizes the most recently identified role of genetic and functional dysregulation of the MHC-I pathway, specifically through changes at the genetic, epigenetic, post-transcriptional, and post-translational levels, which substantially contributes to HNSCC immune escape and ICI resistance. Several treatment modalities can be potentially exploited to restore APM signaling in tumors, which improves anti-tumor immunity through the activation of interferons, vaccines or rimantadine against HPV and the inhibition of EGFR, SHP-2, PI3K and MEK. Additionally, the combinatorial use of radiotherapy or cytotoxic agents with ICIs can synergize to potentiate APM signaling. Future directions would include further dissection of MHC-I related APM signaling in HNSCC and whether reversing this inhibition in combination with ICIs would elicit a more robust immune response leading to improved response rates in HNSCC. Therapeutic approaches to restore the MHC-I antigen presentation machinery in Head and Neck Cancer. (Red color texts represent the according strategies and the outcomes).
Collapse
Affiliation(s)
- Xiaobo Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zackary R Fitzsimonds
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qiuhao Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Teo WY, Lim YYE, Sio YY, Say YH, Reginald K, Chew FT. Atopic dermatitis-associated genetic variants regulate LOC100294145 expression implicating interleukin-27 production and type 1 interferon signaling. World Allergy Organ J 2024; 17:100869. [PMID: 38298829 PMCID: PMC10827559 DOI: 10.1016/j.waojou.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Background Atopic dermatitis (AD) is a complex inflammatory disease with a strong genetic component. A singular approach of genome wide association studies (GWAS) can identify AD-associated genetic variants, but is unable to explain their functional relevance in AD. This study aims to characterize AD-associated genetic variants and elucidate the mechanisms leading to AD through a multi-omics approach. Methods GWAS identified an association between genetic variants at 6p21.32 locus and AD. Genotypes of 6p21.32 locus variants were evaluated against LOC100294145 expression in peripheral blood mononuclear cells (PBMCs). Their influence on LOC100294145 promoter activity was measured in vitro via a dual-luciferase assay. The function of LOC100294145 was then elucidated through a combination of co-expression analyses and gene enrichment with g:Profiler. Mendelian randomization was further used to assess the causal regulatory effect of LOC100294145 on its co-expressed genes. Results Minor alleles of rs116160149 and rs115388857 at 6p21.32 locus were associated with increased AD risk (p = 2.175 × 10-8, OR = 1.552; p = 2.805 × 10-9, OR = 1.55) and higher LOC100294145 expression in PBMCs (adjusted p = 0.182; 8.267 × 10-12). LOC100294145 expression was also found to be increased in those with AD (adjusted p = 3.653 × 10-2). The genotype effect of 6p21.32 locus on LOC100294145 promoter activity was further validated in vitro. Co-expression analyses predicted LOC100294145 protein's involvement in interleukin-27 and type 1 interferon signaling, which was further substantiated through mendelian randomization. Conclusion Genetic variants at 6p21.32 locus increase AD susceptibility through raising LOC100294145 expression. A multi-omics approach enabled the deduction of its pathogenesis model comprising dysregulation of hub genes involved in type 1 interferon and interleukin 27 signaling.
Collapse
Affiliation(s)
- Wei Yi Teo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Ying Eliza Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
5
|
Jiang P, Jia H, Qian X, Tang T, Han Y, Zhang Z, Jiang L, Yu Z, Zheng L, Yu G, Cai H, Zhang S, Zhang X, Gu J, Ye C, Yang L, Lu Y, Liu H, Lu X, Jin C, Ren Y, Lu M, Xu L, Yu J, Jin X, Yang Y, Qian P. Single-cell RNA sequencing reveals the immunoregulatory roles of PegIFN-α in patients with chronic hepatitis B. Hepatology 2024; 79:167-182. [PMID: 37368993 DOI: 10.1097/hep.0000000000000524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND AND AIMS Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.
Collapse
Affiliation(s)
- Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Tian Tang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoru Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lingli Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jueqing Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chanyuan Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisha Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaomiao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Second People's Hospital of Yuhang District, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
6
|
Nowak I, Bochen P. The Antigen-Processing Pathway via Major Histocompatibility Complex I as a New Perspective in the Diagnosis and Treatment of Endometriosis. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0008. [PMID: 38478380 DOI: 10.2478/aite-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 04/16/2024]
Abstract
Endometriosis is a debilitating gynecological disease defined as the presence of endometrium-like epithelium and/or stroma outside the uterine cavity. The most commonly affected sites are the pelvic peritoneum, ovaries, uterosacral ligaments, and the rectovaginal septum. The aberrant tissue responds to hormonal stimulation, undergoing cyclical growth and shedding similar to appropriately located endometrial tissue in the uterus. Common symptoms of endometriosis are painful periods and ovulation, severe pelvic cramping, heavy bleeding, pain during sex, urination and bowel pain, bleeding, and pain between periods. Numerous theories have been proposed to explain the pathogenesis of endometriosis. Sampson's theory of retrograde menstruation is considered to be the most accepted. This theory assumes that endometriosis occurs due to the retrograde flow of endometrial cells through the fallopian tubes during menstruation. However, it has been shown that this process takes place in 90% of women, while endometriosis is diagnosed in only 10% of them. This means that there must be a mechanism that blocks the immune system from removing endometrial cells and interferes with its function, leading to implantation of the ectopic endometrium and the formation of lesions. In this review, we consider the contribution of components of the Major Histocompatibility Complex (MHC)-I-mediated antigen-processing pathway, such as the ERAP, TAP, LMP, LNPEP, and tapasin, to the susceptibility, onset, and severity of endometriosis. These elements can induce significant changes in MHC-I-bound peptidomes that may influence the response of immune cells to ectopic endometrial cells.
Collapse
Affiliation(s)
- Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Patrycja Bochen
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Groth C, Maric J, Garcés Lázaro I, Hofman T, Zhang Z, Ni Y, Keller F, Seufert I, Hofmann M, Neumann-Haefelin C, Sticht C, Rippe K, Urban S, Cerwenka A. Hepatitis D infection induces IFN-β-mediated NK cell activation and TRAIL-dependent cytotoxicity. Front Immunol 2023; 14:1287367. [PMID: 38143742 PMCID: PMC10739304 DOI: 10.3389/fimmu.2023.1287367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background and aims The co-infection of hepatitis B (HBV) patients with the hepatitis D virus (HDV) causes the most severe form of viral hepatitis and thus drastically worsens the course of the disease. Therapy options for HBV/HDV patients are still limited. Here, we investigated the potential of natural killer (NK) cells that are crucial drivers of the innate immune response against viruses to target HDV-infected hepatocytes. Methods We established in vitro co-culture models using HDV-infected hepatoma cell lines and human peripheral blood NK cells. We determined NK cell activation by flow cytometry, transcriptome analysis, bead-based cytokine immunoassays, and NK cell-mediated effects on T cells by flow cytometry. We validated the mechanisms using CRISPR/Cas9-mediated gene deletions. Moreover, we assessed the frequencies and phenotype of NK cells in peripheral blood of HBV and HDV superinfected patients. Results Upon co-culture with HDV-infected hepatic cell lines, NK cells upregulated activation markers, interferon-stimulated genes (ISGs) including the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), produced interferon (IFN)-γ and eliminated HDV-infected cells via the TRAIL-TRAIL-R2 axis. We identified IFN-β released by HDV-infected cells as an important enhancer of NK cell activity. In line with our in vitro data, we observed activation of peripheral blood NK cells from HBV/HDV co-infected, but not HBV mono-infected patients. Conclusion Our data demonstrate NK cell activation in HDV infection and their potential to eliminate HDV-infected hepatoma cells via the TRAIL/TRAIL-R2 axis which implies a high relevance of NK cells for the design of novel anti-viral therapies.
Collapse
Affiliation(s)
- Christopher Groth
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jovana Maric
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Irene Garcés Lázaro
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tomáš Hofman
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZFI) - Heidelberg Partner Site, Heidelberg, Germany
| | - Franziska Keller
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ) and Bioquant, Heidelberg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZFI) - Heidelberg Partner Site, Heidelberg, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Müller M, Fischer K, Woehnke E, Zaeck LM, Prönnecke C, Knittler MR, Karger A, Diederich S, Finke S. Analysis of Nipah Virus Replication and Host Proteome Response Patterns in Differentiated Porcine Airway Epithelial Cells Cultured at the Air-Liquid Interface. Viruses 2023; 15:v15040961. [PMID: 37112941 PMCID: PMC10143807 DOI: 10.3390/v15040961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory tract epithelium infection plays a primary role in Nipah virus (NiV) pathogenesis and transmission. Knowledge about infection dynamics and host responses to NiV infection in respiratory tract epithelia is scarce. Studies in non-differentiated primary respiratory tract cells or cell lines indicate insufficient interferon (IFN) responses. However, studies are lacking in the determination of complex host response patterns in differentiated respiratory tract epithelia for the understanding of NiV replication and spread in swine. Here we characterized infection and spread of NiV in differentiated primary porcine bronchial epithelial cells (PBEC) cultivated at the air-liquid interface (ALI). After the initial infection of only a few apical cells, lateral spread for 12 days with epithelium disruption was observed without releasing substantial amounts of infectious virus from the apical or basal sides. Deep time course proteomics revealed pronounced upregulation of genes related to type I/II IFN, immunoproteasomal subunits, transporter associated with antigen processing (TAP)-mediated peptide transport, and major histocompatibility complex (MHC) I antigen presentation. Spliceosomal factors were downregulated. We propose a model in which NiV replication in PBEC is slowed by a potent and broad type I/II IFN host response with conversion from 26S proteasomes to immunoproteasomal antigen processing and improved MHC I presentation for adaptive immunity priming. NiV induced cytopathic effects could reflect the focal release of cell-associated NiV, which may contribute to efficient airborne viral spread between pigs.
Collapse
Affiliation(s)
- Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Elisabeth Woehnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Luca M Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Christoph Prönnecke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, 04103 Leipzig, Germany
| | - Michael R Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
9
|
Wang X, Zhang H, Wang Y, Bramasole L, Guo K, Mourtada F, Meul T, Hu Q, Viteri V, Kammerl I, Konigshoff M, Lehmann M, Magg T, Hauck F, Fernandez IE, Meiners S. DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity. EMBO J 2023; 42:e110597. [PMID: 36912165 PMCID: PMC10106989 DOI: 10.15252/embj.2022110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
The immunoproteasome is a specialized type of proteasome involved in MHC class I antigen presentation, antiviral adaptive immunity, autoimmunity, and is also part of a broader response to stress. Whether the immunoproteasome is regulated by DNA stress, however, is not known. We here demonstrate that mitochondrial DNA stress upregulates the immunoproteasome and MHC class I antigen presentation pathway via cGAS/STING/type I interferon signaling resulting in cell autonomous activation of CD8+ T cells. The cGAS/STING-induced adaptive immune response is also observed in response to genomic DNA and is conserved in epithelial and mesenchymal cells of mice and men. In patients with idiopathic pulmonary fibrosis, chronic activation of the cGAS/STING-induced adaptive immune response in aberrant lung epithelial cells concurs with CD8+ T-cell activation in diseased lungs. Genetic depletion of the immunoproteasome and specific immunoproteasome inhibitors counteract DNA stress induced cytotoxic CD8+ T-cell activation. Our data thus unravel cytoplasmic DNA sensing via the cGAS/STING pathway as an activator of the immunoproteasome and CD8+ T cells. This represents a novel potential pathomechanism for pulmonary fibrosis that opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Huabin Zhang
- Neurosurgical Research, Department of Neurosurgery, University Hospital and Walter-Brendel-Centre of Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.,The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Wang
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Laylan Bramasole
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Fatima Mourtada
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Qianjiang Hu
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Valeria Viteri
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Ilona Kammerl
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Melanie Konigshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany.,Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Department of Medicine V, University Hospital, LMU Munich, Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
10
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
11
|
Chen Y, Qian Y, Huang W, Zhang Y, Wu M, Cheng Y, Yang N, Liu Y. Chronic stress promotes tumor immune evasion via the suppression of MHC-I expression and the upregulation of PD-L1. Am J Cancer Res 2022; 12:5286-5299. [PMID: 36504904 PMCID: PMC9729909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic stress induces cancer initiation and progression via regulation of diverse cancer risk factors including immune evasion. Our previous research demonstrated that β-adrenergic blockade with propranolol almost completely reversed the accelerated tumor growth induced by chronic restraint stress, but the underlying mechanism of immune escape remains largely unknown. In the present study, a chronic restraint stress paradigm was applied to the H22 hepatocellular carcinoma (HCC) bearing mice to mimic the psychological stress. We observed that chronic restraint stress significantly promoted HCC growth and tumor escape from T cell surveillance. Chronic restraint stress reduced intratumor MHC-I expression and enhanced PD-L1 expression, whereas propranolol rectified the changes of MHC-I and PD-L1. Under chronic stress, the activated MAPK pathway suppressed MHC-I production by inactivating STAT1/IRF1 signaling pathway, and promoted PD-L1 translation by elevating eIF2α phosphorylation. These findings support the crucial role of β-adrenergic signaling cascade in the tumor escape from T cell surveillance under chronic restraint stress.
Collapse
Affiliation(s)
- Yuzhu Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Yazhi Qian
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Yi Zhang
- Medical College, Tibet UniversityLhasa, Tibet Autonomous Region, China
| | - Mo Wu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Yinlong Cheng
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China,Medical College, Tibet UniversityLhasa, Tibet Autonomous Region, China
| |
Collapse
|
12
|
Kuipery A, Sanchez Vasquez JD, Mehrotra A, Feld JJ, Janssen HLA, Gehring AJ. Immunomodulation and RNA interference alter hepatitis B virus-specific CD8 T-cell recognition of infected HepG2-NTCP. Hepatology 2022; 75:1539-1550. [PMID: 34743340 DOI: 10.1002/hep.32230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD8 T cells are essential in controlling HBV infection. Viral control is dependent on efficient recognition of HBV-infected hepatocytes by CD8 T cells, which can induce direct lysis of infected hepatocytes. In addition, CD8 T cells produce interferon (IFN)-γ, which mediates noncytopathic viral clearance. Innate immunomodulators and HBV-targeted RNA interference (RNAi) are being developed to treat chronic hepatitis B (CHB), but may modify HBV antigen presentation and impact CD8 T-cell recognition, in addition to their primary mechanisms of action. APPROACH AND RESULTS HBV-infected HepG2-NTCP cells were treated with tenofovir disoproxil fumarate (TDF), Toll-like receptor (TLR) 7/8 agonists, TLR7/8 conditioned media (CM) collected from immune cells, or RNAi using short interfering RNAs. The effect of these treatments on antigen presentation was measured through coculture with CD8 T cells recognizing human leukocyte antigen-A0201 restricted epitopes, HBc18-27 or HBs183-191. Cytokine profiles of TLR7/8 CM were measured using a cytometric bead array. TDF reduced viral replication, but not CD8 T-cell recognition, of infected cells. Direct exposure of infected HepG2-NTCP to TLR7/8 agonists had no impact on T-cell recognition. Exposure of infected HepG2-NTCP to TLR7/8 CM enhanced HBV-specific CD8 T-cell recognition through type 1 interferon (IFN) and IFN-γ-dependent mechanisms. RNAi rapidly suppressed HBV-DNA, HBcAg, and HBsAg expression, impairing recognition by HBV-specific CD8 T cells. CONCLUSIONS Immunomodulation and RNAi, but not nucleos(t)ide analogues, alter the recognition of infected HepG2-NTCP by HBV-specific CD8 T cells. Understanding these changes will inform combination treatments for CHB.
Collapse
Affiliation(s)
- Adrian Kuipery
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Juan Diego Sanchez Vasquez
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Aman Mehrotra
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Jordan J Feld
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Harry L A Janssen
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Adam J Gehring
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
13
|
Targeted inhibition of the immunoproteasome blocks endothelial MHC class II antigen presentation to CD4 + T cells in chronic liver injury. Int Immunopharmacol 2022; 107:108639. [PMID: 35219165 DOI: 10.1016/j.intimp.2022.108639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Chronic or overwhelming liver injury is frequently associated with fibrosis, which is the main histological characteristic of non-alcoholic steatohepatitis (NASH). Currently, there is no effective treatment for liver fibrosis. Adaptive immunity is one of the perpetrators of liver inflammation and involves the antigen-specific activation of lymphocytes. Targeting adaptive immunity has been proposed as a novel therapeutic approach for NASH. In this study, we demonstrated that liver endothelial cells contribute to MHC class II (MHC-II) antigen presentation to CD4+ T cells after chronic liver injury. In human cirrhotic liver samples, we observed an increased expression of endothelial MHC-II and of the antigen presentation-associated protein LMP7, which is one of the proteolytically active subunits of the immunoproteasome. In a CCl4-induced chronic injury model or a diet- and chemical-induced NASH model, endothelial MHC-II and LMP7 expression was induced to increase. PR-957, a selective inhibitor of the immunoproteasome, inhibited MHC-II expression in endothelial cells and CD4+ T cell response after chronic liver injury. In vitro experiment demonstrated PR-957 also reversed IFN-γ-induced upregulation of MHC-II in endothelial cells. Furthermore, PR-957 treatment or CD4+ T cell depletion in chronic liver injury alleviated liver fibrosis and reduced inflammation, as indicated by the downregulation of inflammatory response markers (F4/80, IL-1, IL-6 and IL-18). In conclusion, targeted inhibition of the immunoproteasome blocks endothelial MHC-II antigen presentation to CD4+ T cells in chronic liver injury. In this regard, the PR-957 inhibitor is a promising candidate for the development of future therapies against NASH.
Collapse
|
14
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
15
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
16
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
17
|
A Cell-Based Platform for the Investigation of Immunoproteasome Subunit β5i Expression and Biology of β5i-Containing Proteasomes. Cells 2021; 10:cells10113049. [PMID: 34831272 PMCID: PMC8616536 DOI: 10.3390/cells10113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using a CRISPR-Cas9 nickase technology, four cell lines: histiocytic lymphoma, colorectal adenocarcinoma, cervix adenocarcinoma, and hepatocarcinoma were modified to express proteasomes with mCherry-tagged β5i subunit, which is a catalytic subunit of iPs and intPs. Importantly, the expression of the chimeric gene in modified cells is under the control of endogenous regulatory mechanisms and is increased following IFN-γ and/or TNF-α stimulation. Fluorescent proteasomes retain catalytic activity and are distributed within the nucleus and cytoplasm. RNAseq reveals marginal differences in gene expression profiles between the modified and wild-type cell lines. Predominant metabolic pathways and patterns of expressed receptors were identified for each cell line. Using established cell lines, we demonstrated that anti-cancer drugs Ruxolitinib, Vincristine and Gefitinib stimulated the expression of β5i-containing proteasomes, which might affect disease prognosis. Taken together, obtained cell lines can be used as a platform for real-time studies of immunoproteasome gene expression, localization of iPs and intPs, interaction of non-constitutive proteasomes with other proteins, proteasome trafficking and many other aspects of proteasome biology in living cells. Moreover, the established platform might be especially useful for fast and large-scale experiments intended to evaluate the effects of different conditions including treatment with various drugs and compounds on the proteasome pool.
Collapse
|
18
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
19
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
20
|
Krishnan R, Kim JO, Jang YS, Oh MJ. Proteasome subunit beta type-8 from sevenband grouper negatively regulates cytokine responses by interfering NF-κB signaling upon nervous necrosis viral infection. FISH & SHELLFISH IMMUNOLOGY 2021; 113:118-124. [PMID: 33848637 DOI: 10.1016/j.fsi.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
During viral infection, proper regulation of immune signaling is essential to ensure successful clearance of virus. Immunoproteasome is constitutively expressed and gets induced during viral infection by interferon signaling and contributes to regulate proinflammatory cytokine production and activation of the NF-κB pathway. In this study, we identified Hs-PSMB8, a member of the proteasome β-subunits (PSMB) family, as a negative regulator of NF-κB responses during NNV infection. The transient expression of Hs-PSMB8 delayed the appearance of cytopathic effect (CPE) and showed a higher viral load. The Hs-PSMB8 interacted with NNV which was confirmed using immunocolocalization and co-IP. Overexpression of Hs-PSMB8 diminished virus induced activation of the NF-κB promoters and downregulated the activation of IL-1β, TNFα, IL6, IL8, IFNγ expression upon NNV infection. Collectively, our results demonstrate that PSMB8 is an important regulator of NF-κB signaling during NNV infection in sevenband grouper.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Jong-Oh Kim
- Institute of Marine Biotechnology, Pukyong National University, Busan, Republic of Korea.
| | - Yo-Seb Jang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
21
|
Mehrotra A, D'Angelo JA, Romney-Vanterpool A, Chu T, Bertoletti A, Janssen HLA, Gehring AJ. IFN-α Suppresses Myeloid Cytokine Production, Impairing IL-12 Production and the Ability to Support T-Cell Proliferation. J Infect Dis 2021; 222:148-157. [PMID: 32049318 DOI: 10.1093/infdis/jiaa064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interferon-α (IFN-α) can suppress production of T-cell polarizing cytokines or induce inhibitory antigen-presenting cells that suppress T-cell activation. Previous studies showed that IFN-α therapy fails to boost virus-specific T-cell immunity in patients with chronic hepatitis B virus infection. Our aim was to determine whether IFN-α exposure alters human antigen-presenting cell function in vivo. METHODS We investigated the immunomodulatory effects using peripheral blood mononuclear cells from healthy donors exposed to IFN-α and chronic hepatitis B (CHB) patients starting IFN-α therapy. RESULTS IFN-α increased HLA-DR, CD80, CD86, and PD-L1 expression on healthy donor monocytes. In contrast to the activated phenotype, IFN-α inhibited Toll-like receptor-induced cytokine production and monocyte-induced T-cell proliferation. In CHB patients, peg-IFN treatment induced an interferon-stimulated gene signature in monocytes and increased HLA-DR, CD80, CD86, and PD-L1 expression. As early as 3 days after CHB patients started treatment, IFN-α inhibited monocyte cytokine production and T-cell stimulation ex vivo. IFN-α-mediated inhibition of IL-12 production, rather than inhibitory receptor expression, was responsible for inhibition of T-cell proliferation. Addition of IL-12 restored T-cell proliferation to baseline levels. CONCLUSIONS Understanding how professional antigen-presenting cells respond to immunomodulation is important for both new innate and adaptive-targeted immunotherapies. CLINICAL TRIALS REGISTRATION NCT00962871.
Collapse
Affiliation(s)
- Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - June Ann D'Angelo
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Amanda Romney-Vanterpool
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Tom Chu
- Safety Science, Genentech, San Francisco, California, USA
| | - Antonio Bertoletti
- Program of Emerging Viral Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Dale JM, Hood SP, Bowen O, Bright H, Cutler KL, Berry N, Almond N, Goldin R, Karayiannis P, Rose NJ. Development of hepatic pathology in GBV-B-infected red-bellied tamarins (Saguinus labiatus). J Med Virol 2020; 92:3584-3595. [PMID: 32181899 DOI: 10.1002/jmv.25769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/14/2020] [Indexed: 01/08/2023]
Abstract
GB virus B (GBV-B) is a new world monkey-associated flavivirus used to model acute hepatitis C virus (HCV) infection. Critical for evaluation of antiviral or vaccine approaches is an understanding of the effect of HCV on the liver at different stages of infection. In the absence of longitudinal human tissue samples at defined time points, we have characterized changes in tamarins. As early as 2 weeks post-infection histological changes were noticeable, and these were established in all animals by 6 weeks. Despite high levels of liver-associated viral RNA, there was reversal of hepatic damage on clearance of peripheral virus though fibrosis was demonstrated in four tamarins. Notably, viral RNA burden in the liver dropped to near undetectable or background levels in all animals which underwent a second viral challenge, highlighting the efficacy of the immune response in removing foci of replication in the liver. These data add to the knowledge of GBV-B infection in New World primates which can offer attractive systems for the testing of prophylactic and therapeutic treatments and the evaluation of their utility in preventing or reversing liver pathology.
Collapse
Affiliation(s)
- Jessica M Dale
- Division of Virology, National Institute for Biological Standards and Control, Medicine and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Simon P Hood
- Division of Virology, National Institute for Biological Standards and Control, Medicine and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Ori Bowen
- Division of Virology, National Institute for Biological Standards and Control, Medicine and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Helen Bright
- Internal Medicine Research Unit, Pfizer Research and Development, Sandwich, Kent, UK
| | - Keith L Cutler
- Division of Virology, National Institute for Biological Standards and Control, Medicine and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Neil Berry
- Division of Virology, National Institute for Biological Standards and Control, Medicine and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Neil Almond
- Division of Virology, National Institute for Biological Standards and Control, Medicine and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Robert Goldin
- Department of Cellular Pathology, Imperial College London, St. Mary's Campus, Norfolk Place, London, UK
| | - Peter Karayiannis
- Department of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London, UK
| | - Nicola J Rose
- Division of Virology, National Institute for Biological Standards and Control, Medicine and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| |
Collapse
|
23
|
Sabbatino F, Liguori L, Polcaro G, Salvato I, Caramori G, Salzano FA, Casolaro V, Stellato C, Dal Col J, Pepe S. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci 2020; 21:ijms21197295. [PMID: 33023239 PMCID: PMC7582904 DOI: 10.3390/ijms21197295] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer immunotherapy have clearly shown that checkpoint-based immunotherapy is effective in a small subgroup of cancer patients. However, no effective predictive biomarker has been identified so far. The major histocompatibility complex, better known in humans as human leukocyte antigen (HLA), is a very polymorphic gene complex consisting of more than 200 genes. It has a crucial role in activating an appropriate host immune response against pathogens and tumor cells by discriminating self and non-self peptides. Several lines of evidence have shown that down-regulation of expression of HLA class I antigen derived peptide complexes by cancer cells is a mechanism of tumor immune escape and is often associated to poor prognosis in cancer patients. In addition, it has also been shown that HLA class I and II antigen expression, as well as defects in the antigen processing machinery complex, may predict tumor responses in cancer immunotherapy. Nevertheless, the role of HLA in predicting tumor responses to checkpoint-based immunotherapy is still debated. In this review, firstly, we will describe the structure and function of the HLA system. Secondly, we will summarize the HLA defects and their clinical significance in cancer patients. Thirdly, we will review the potential role of the HLA as a predictive biomarker for checkpoint-based immunotherapy in cancer patients. Lastly, we will discuss the potential strategies that may restore HLA function to implement novel therapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Gaetano Caramori
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Francesco A. Salzano
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Correspondence: ; Tel.: +39-08996-5210
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| |
Collapse
|
24
|
Immunoproteasome Genes Are Modulated in CD34 + JAK2 V617F Mutated Cells from Primary Myelofibrosis Patients. Int J Mol Sci 2020; 21:ijms21082926. [PMID: 32331228 PMCID: PMC7216198 DOI: 10.3390/ijms21082926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation.
Collapse
|
25
|
Colberg L, Cammann C, Greinacher A, Seifert U. Structure and function of the ubiquitin-proteasome system in platelets. J Thromb Haemost 2020; 18:771-780. [PMID: 31898400 DOI: 10.1111/jth.14730] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Platelets are small anucleate blood cells with a life span of 7 to 10 days. They are main regulators of hemostasis. Balanced platelet activity is crucial to prevent bleeding or occlusive thrombus formation. Growing evidence supports that platelets also participate in immune reactions, and interaction between platelets and leukocytes contributes to both thrombosis and inflammation. The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis by its ability to degrade non-functional self-, foreign, or short-lived regulatory proteins. Platelets express standard and immunoproteasomes. Inhibition of the proteasome impairs platelet production and platelet function. Platelets also express major histocompatibility complex (MHC) class I molecules. Peptide fragments released by proteasomes can bind to MHC class I, which makes it also likely that platelets can activate epitope specific cytotoxic T lymphocytes (CTLs). In this review, we focus on current knowledge on the significance of the proteasome for the functions of platelets as critical regulators of hemostasis as well as modulators of the immune response.
Collapse
Affiliation(s)
- Lisa Colberg
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advances in cancer therapy have offered great promise but only modest clinical benefits as monotherapies to date. Patients usually respond well to therapies targeted at specific mutations, but only for a short time. Conversely, immunotherapies help fewer patients, but increase survival. Combination therapies, which could offer the best of both worlds, are currently limited by substantial toxicity. While recent advances in genomics and proteomics have yielded an unprecedented depth of enabling datasets, it has also shifted the focus toward in silico predictions. Designing the next wave of multidimensional immunotherapies will require leveraging this knowledge while providing a renewed emphasis on tumor biology and vaccine design. This includes careful selection of tumor clinical stage in the context of pre-existing tumor microenvironments, target antigen and technology platform selections to maximize their effect, and treatment staging. Here, we review strategies on how to approach an increasingly complex landscape of immunotherapeutic agents for use in combination therapies.
Collapse
|
27
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
28
|
Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019; 11:40. [PMID: 31221199 PMCID: PMC6587285 DOI: 10.1186/s13073-019-0653-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The expression of antigens that are recognized by self-reactive T cells is essential for immune-mediated tumor rejection by immune checkpoint blockade (ICB) therapy. Growing evidence suggests that mutation-associated neoantigens drive ICB responses in tumors with high mutational burden. In most patients, only a few of the mutations in the cancer exome that are predicted to be immunogenic are recognized by T cells. One factor that limits this recognition is the level of expression of the mutated gene product in cancer cells. Substantial preclinical data show that radiation can convert the irradiated tumor into a site for priming of tumor-specific T cells, that is, an in situ vaccine, and can induce responses in otherwise ICB-resistant tumors. Critical for radiation-elicited T-cell activation is the induction of viral mimicry, which is mediated by the accumulation of cytosolic DNA in the irradiated cells, with consequent activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon (IFN) genes (STING) pathway and downstream production of type I IFN and other pro-inflammatory cytokines. Recent data suggest that radiation can also enhance cancer cell antigenicity by upregulating the expression of a large number of genes that are involved in the response to DNA damage and cellular stress, thus potentially exposing immunogenic mutations to the immune system. Here, we discuss how the principles of antigen presentation favor the presentation of peptides that are derived from newly synthesized proteins in irradiated cells. These concepts support a model that incorporates the presence of immunogenic mutations in genes that are upregulated by radiation to predict which patients might benefit from treatment with combinations of radiotherapy and ICB.
Collapse
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA. .,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
29
|
The proteasome activator REGγ counteracts immunoproteasome expression and autoimmunity. J Autoimmun 2019; 103:102282. [PMID: 31171475 DOI: 10.1016/j.jaut.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022]
Abstract
For quite a long time, the 11S proteasome activator REGɑ and REGβ, but not REGγ, are known to control immunoproteasome and promote antigen processing. Here, we demonstrate that REGγ functions as an inhibitor for immunoproteasome and autoimmune disease. Depletion of REGγ promotes MHC class I-restricted presentation to prime CD8+ T cells in vitro and in vivo. Mice deficient for REGγ have elevation of CD8+ T cells and DCs, and develop age-related spontaneous autoimmune symptoms. Mechanistically, REGγ specifically interacts with phosphorylated STAT3 and promotes its degradation in vitro and in cells. Inhibition of STAT3 dramatically attenuates levels of LMP2/LMP7 and antigen presentation in cells lacking REGγ. Importantly, treatment with STAT3 or LMP2/7 inhibitor prevented accumulation of immune complex in REGγ-/- kidney. Moreover, REGγ-/- mice also expedites Pristane-induced lupus. Bioinformatics and immunohistological analyses of clinical samples have correlated lower expression of REGγ with enhanced expression of phosphorylated STAT3, LMP2 and LMP7 in human Lupus Nephritis. Collectively, our results support the concept that REGγ is a new regulator of immunoproteasome to balance autoimmunity.
Collapse
|
30
|
Irshad M, Gupta P, Irshad K. Immunopathogenesis of Liver Injury During Hepatitis C Virus Infection. Viral Immunol 2019; 32:112-120. [PMID: 30817236 DOI: 10.1089/vim.2018.0124] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present report describes current concepts about the mechanism of liver cell injury caused by host immune response against hepatitis C virus (HCV) infection in human beings. This report is based on the observations from experimental studies and follow-up actions on human liver diseases. The results from different investigations suggest that liver injury depends on the presentation of viral antigen and the level of host immune response raised against HCV-related peptides. Both innate and adaptive immunity are triggered to counter the viral onset. During development of host immunity, the cell-mediated immune response involving CD4+ Th1 cells and CD8+ cytotoxic T-lymphocyte (CTL) cells were found to play a major role in causing liver damage. The hepatic Innate lymphoid cells (ILCs) subsets are involved in the immune regulation of different liver diseases: viral hepatitis, mechanical liver injury, and fibrosis. Humoral immunity and natural killer (NK) cell action also contributed in liver cell injury by antibody-dependent cellular cytotoxicity (ADCC). In fact, immunopathogenesis of HCV infection is a complex phenomenon where regulation of immune response at several steps decides the possibility of viral elimination or persistence. Regulation of immune response was noted starting from viral-host interaction to immune reaction cascade engaged in cell damage. The activation or suppression of interferon-stimulated genes, NK cell action, CTL inducement by regulatory T cells (Treg), B cell proliferation, and so on was demonstrated during HCV infection. Involvement of HLA in antigen presentation, as well as types of viral genotypes, also influenced host immune response against HCV peptides. The combined effect of all these effector mechanisms ultimately decides the progression of viral onset to acute or chronic infection. In conclusion, immunopathogenesis of liver injury after HCV infection may be ascribed mainly to host immune response. Second, it is cell-mediated immunity that plays a predominant role in liver cell damage.
Collapse
Affiliation(s)
- Mohammad Irshad
- 1 Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Gupta
- 2 Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- 3 Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
31
|
New strategies and perspectives on managing IgA nephropathy. Clin Exp Nephrol 2019; 23:577-588. [PMID: 30756248 PMCID: PMC6469670 DOI: 10.1007/s10157-019-01700-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
IgA nephropathy is an inflammatory renal disease characterised by the deposition of IgA in the glomerular mesangium and is the most commonly reported primary glomerulonephritis worldwide. Thirty to forty percent of patients with the disease develop progressive renal function decline, requiring renal replacement therapy within two decades of diagnosis. Despite this, accurate individual risk stratification at diagnosis and predicting treatment response remains a challenge. Furthermore, there are currently no disease specific treatments currently licensed to treat the condition due to long standing challenges in the nature and prevalence of the disease. Despite this, there have been exciting recent advances in the field that may represent paradigm shifts in the way IgA nephropathy is managed in the near future. In this review, we explore the evidence base informing current approaches to management and explore new strategies and future directions in the diagnosis and management of IgA nephropathy.
Collapse
|
32
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
33
|
Corneal keratin aggresome (CKAGG) formation and clearance by proteasome activation. Heliyon 2018; 4:e01012. [PMID: 30619956 PMCID: PMC6313837 DOI: 10.1016/j.heliyon.2018.e01012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
Purpose To understand the mechanism of corneal keratin expression and clearance in corneal epithelium with Limbal Stem Cell Deficiency (LSCD). The hypothesis is that LSCD-induced proteasome dysfunction is a contributing factor to keratin aggregation, causing corneal keratin aggresome (CKAGG) formation. Method LSCD was surgically induced in rabbit corneas. LSCD corneal epithelial cells (D-CEC) were collected to investigate keratin K4 and K13 expression and CKAGG formation. Oral mucosal epithelial cells (OMECS) were isolated and cultured to study K4 and K13 expression. Cultured cells were treated with proteasome inhibitor to induce CKAGG formation. Results K4 and K13 were strongly expressed in D-CEC, with additional higher molecular weight bands of K4 and K13, suggesting CKAGG formation. Double staining of K4/K13 and ubiquitin showed co-localization of these keratins with ubiquitin in D-CEC. Proteasome inhibition also showed K4/K13 modification and accumulation in cultured OMECS, similar to D-CEC. Proteasome activation was then performed in cultured OMEC. There was no accumulation of keratins, and levels of unmodified keratins were found significantly reduced. Conclusion Results showed an abnormal expression of K4 and K13 after LSCD-induced proteasome dysfunction, which coalesce to form CKAGG in Corneal Epithelial Cells (CEC). We propose that CKAGG formation may be one of the causative factors of morphological alterations in the injured corneal epithelium, and that CKAGG could potentially be cleared by enhancing proteasome activity.
Collapse
|
34
|
Immunoproteasomes as a novel antiviral mechanism in rhinovirus-infected airways. Clin Sci (Lond) 2018; 132:1711-1723. [PMID: 29980604 DOI: 10.1042/cs20180337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
Rhinovirus (RV) infection is involved in acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). RV primarily infects upper and lower airway epithelium. Immunoproteasomes (IP) are proteolytic machineries with multiple functions including the regulation of MHC class I antigen processing during viral infection. However, the role of IP in RV infection has not been explored. We sought to investigate the expression and function of IP during airway RV infection. Primary human tracheobronchial epithelial (HTBE) cells were cultured at air-liquid interface (ALI) and treated with RV16, RV1B, or interferon (IFN)-λ in the absence or presence of an IP inhibitor (ONX-0914). IP gene (i.e. LMP2) deficient mouse tracheal epithelial cells (mTECs) were cultured for the mechanistic studies. LMP2-deficient mouse model was used to define the in vivo role of IP in RV infection. IP subunits LMP2 and LMP7, antiviral genes MX1 and OAS1 and viral load were measured. Both RV16 and RV1B significantly increased the expression of LMP2 and LMP7 mRNA and proteins, and IFN-λ mRNA in HTBE cells. ONX-0914 down-regulated MX1 and OAS1, and increased RV16 load in HTBE cells. LMP2-deficient mTECs showed a significant increase in RV1B load compared with the wild-type (WT) cells. LMP2-deficient (compared with WT) mice increased viral load and neutrophils in bronchoalveolar lavage (BAL) fluid after 24 h of RV1B infection. Mechanistically, IFN-λ induction by RV infection contributed to LMP2 and LMP7 up-regulation in HTBE cells. Our data suggest that IP are induced during airway RV infection, which in turn may serve as an antiviral and anti-inflammatory mechanism.
Collapse
|
35
|
The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol 2018; 19:923-931. [PMID: 30104634 DOI: 10.1038/s41590-018-0186-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023]
Abstract
The basic principle of adaptive immunity is to strictly discriminate between self and non-self, and a central challenge to overcome is the enormous variety of pathogens that might be encountered. In cell-mediated immunity, immunological discernment takes place at a molecular or cellular level. Central to both mechanisms of discernment is the generation of antigenic peptides associated with MHC class I molecules, which is achieved by a proteolytic complex called the proteasome. To adequately accomplish the discrimination between self and non-self that is essential for adaptive immunity and self-tolerance, two proteasome subtypes have evolved via gene duplication: the immunoproteasome and the thymoproteasome. In this Review, we describe various aspects of these immunity-dedicated proteasomes, from their discovery to recent findings.
Collapse
|
36
|
Anti-viral immune response in the lung and thymus: Molecular characterization and expression analysis of immunoproteasome subunits LMP2, LMP7 and MECL-1 in pigs. Biochem Biophys Res Commun 2018; 502:472-478. [DOI: 10.1016/j.bbrc.2018.05.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
|
37
|
Ogorevc E, Schiffrer ES, Sosič I, Gobec S. A patent review of immunoproteasome inhibitors. Expert Opin Ther Pat 2018; 28:517-540. [PMID: 29865878 DOI: 10.1080/13543776.2018.1484904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The ubiquitin-proteasome system is responsible for maintaining protein homeostasis and regulating a variety of cellular processes. The constitutive proteasome is expressed in all cells while the immunoproteasome (IP) is predominantly found in cells of hematopoietic origin. In other cells, the expression of IP can be induced under the influence of cytokines released by T cells during acute immune and stress responses. Inhibitors of IP are of significant interest, because it is expected that selective inhibition of the IP would cause fewer adverse effects. AREAS COVERED There is a considerable interest on patenting IP-specific inhibitors. Relevant patents and patent applications disclosing IP inhibitors are summarized and divided into two parts according to the chemical characteristics of compounds. We also briefly report on the biochemical methods used in the patents to profile the characteristics of IP inhibitors. EXPERT OPINION Several selective inhibitors of IP with a promising ability to address autoimmune and inflammatory diseases are being developed. Peptidic compounds are prevalent and the most advanced IP-selective compounds to date, ONX-0914 and KZR-616, are tripeptide epoxyketone-based molecules. However, some patents disclose that IP-selective inhibition is possible with compounds possessing non-peptidic scaffolds indicating countless possibilities to address inhibition of IP in the future.
Collapse
Affiliation(s)
- Eva Ogorevc
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | | | - Izidor Sosič
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Stanislav Gobec
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
38
|
Strange DP, Green R, Siemann DN, Gale M, Verma S. Immunoprofiles of human Sertoli cells infected with Zika virus reveals unique insights into host-pathogen crosstalk. Sci Rep 2018; 8:8702. [PMID: 29880853 PMCID: PMC5992156 DOI: 10.1038/s41598-018-27027-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Confirmed reports of Zika virus (ZIKV) in seminal fluid months after clearance of viremia suggests that ZIKV can establish persistent infection in the seminiferous tubules, an immune privileged site of the testis. The seminiferous tubule epithelium is mainly composed of Sertoli cells that function to nourish and protect developing germ cells. We recently demonstrated that primary human Sertoli cells (hSeC) were highly susceptible to ZIKV as compared to dengue virus without causing cell death and thus may act as a reservoir for ZIKV in the testes. However, the cellular and immune responses of hSeC to infection with ZIKV or any other virus are not yet characterized. Using genome-wide RNA-seq to compare immunoprofiles of hSeC, we show that the most prominent response to ZIKV at early stage of infection was suppression of cell growth and proliferation functional pathways. Peak virus replication was associated with induction of multiple antiviral defense pathways. Unique ZIKV-associated signatures included dysregulation of germ cell-Sertoli cell junction signaling. This study demonstrates that hSeC are capable of signaling through canonical pro-inflammatory pathways and provides insights into unique cell-type-specific response induced by ZIKV in association with viral persistence in the testes.
Collapse
Affiliation(s)
- Daniel P Strange
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, Washington, USA
| | - David N Siemann
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
| |
Collapse
|
39
|
Perot BP, Boussier J, Yatim N, Rossman JS, Ingersoll MA, Albert ML. Autophagy diminishes the early interferon-β response to influenza A virus resulting in differential expression of interferon-stimulated genes. Cell Death Dis 2018; 9:539. [PMID: 29748576 PMCID: PMC5945842 DOI: 10.1038/s41419-018-0546-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-β (IFN-β) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-β expression, which may benefit viral replication and spread.
Collapse
Affiliation(s)
- Brieuc P Perot
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France.,Ecole Doctorale Physiologie, Physiopathologie et Thérapeutique, Université Pierre et Marie Curie (Université Paris 6), Paris, France
| | - Jeremy Boussier
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France.,International Group for Data Analysis, Institut Pasteur, Paris, France.,Ecole Doctorale Frontières du Vivant, Université Paris Diderot, Paris, France
| | - Nader Yatim
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France
| | | | - Molly A Ingersoll
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France. .,Inserm 1223, Paris, France.
| | - Matthew L Albert
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France. .,Inserm 1223, Paris, France. .,Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
40
|
Vatner RE, Janssen EM. STING, DCs and the link between innate and adaptive tumor immunity. Mol Immunol 2017; 110:13-23. [PMID: 29273394 PMCID: PMC6768428 DOI: 10.1016/j.molimm.2017.12.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Cancer and the immune system are intimately related. Much of the bulk of tumors is comprised of stromal leukocytes with immune functions, which serve to both promote and inhibit tumor growth, invasion and metastasis. The T lymphocytes of the adaptive immune system are essential for tumor immunity, and these T cells are generated by cross-priming against tumor associated antigens. Dendritic cells (DCs) are essential in this process, serving as the cellular link between innate and adaptive immunity. As a prerequisite for priming of adaptive immune responses, DCs must take up tumor antigens, process them and present them in the context of the major histocompatibility complex (MHC). DCs also serve as sensors of innate activation signals from cancer that are necessary for their activation and effective priming of cancer specific T cells. Here we discuss the role of DCs in the sensing of cancer and in priming the adaptive response against tumors. Furthermore, we present the essential role of the Stimulator of Interferon Genes (STING) signaling pathway in producing type I interferons (IFNs) that are essential in this process.
Collapse
Affiliation(s)
- Ralph E Vatner
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States; Department of Radiation Oncology, University of Cincinnati College of Medicine, 234 Goodman Street, ML 0757, Cincinnati, OH 45267, United States.
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States
| |
Collapse
|
41
|
Liu Q, Zhang YL, Hu SP, Ma ZL, Gao SL, Sun B, Xiao F, Zhang Z, Cai XH, He XJ. Expression of immunoproteasome subunits in the porcine lung: Alterations during normal and inflammatory conditions. Vet Microbiol 2017; 210:134-141. [DOI: 10.1016/j.vetmic.2017.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/30/2023]
|
42
|
A comparative analysis between proteasome and immunoproteasome inhibition in cellular and humoral alloimmunity. Int Immunopharmacol 2017. [PMID: 28628770 DOI: 10.1016/j.intimp.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Triggered by the successful administration of the proteasome inhibitor bortezomib in kidney transplant recipients with acute or chronic antibody-mediated rejection, we evaluated the effect of the proteasome inhibitor CEP-18770 and of the selective immunoproteasome inhibitor ONX-0914 on cellular and humoral alloimmunity. Cellular alloimmunity was assessed by cell proliferation in a two-way mixed lymphocyte reaction (MLR) with human peripheral blood mononuclear cells (PBMC). For assessing humoral alloimmunity we developed a method, where humoral alloimmunity was induced in one-way MLR. The de novo production of alloantibodies was measured with an antibody-mediated complement-dependent cytotoxicity assay, in which supernatants from the above MLRs were used against resting PBMC similar to the stimulator cells of the forementioned MLRs. In two-way MLRs ONX-0914 inhibited cell proliferation more than CEP-18770. In one-way MLRs CEP-18770 and ONX-0194 decreased alloantibody production to the same extent. Inhibition of the immunoproteasome is superior to inhibition of the proteasome in suppressing cellular alloimmunity, and equally effective as regards to humoral alloimmunity. Considering the selective expression of the immunoproteasome in immune cells and the expected restrictive toxicity of its inhibitors, these results render immunoproteasome an excellent target for the development of new immunosuppressive medications in the field of transplantation.
Collapse
|
43
|
Bardag-Gorce F, Hoft R, Meepe I, Garcia J, Tiger K, Wood A, Laporte A, Pan D, Makalinao A, Niihara R, Oliva J, Florentino A, Gorce AM, Stark J, Cortez D, French SW, Niihara Y. Proteasomes in corneal epithelial cells and cultured autologous oral mucosal epithelial cell sheet (CAOMECS) graft used for the ocular surface regeneration. Ocul Surf 2017; 15:749-758. [PMID: 28528957 DOI: 10.1016/j.jtos.2017.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE This study focuses on characterizing proteasomes in corneal epithelial cells (CEC) and in cultured autologous oral mucosal epithelial cell sheets (CAOMECS) used to regenerate the ocular surface. METHODS Limbal stem cell deficiency (LSCD) was surgically induced in rabbit corneas. CAOMECS was engineered and grafted onto corneas with LSCD to regenerate the ocular surface. RESULTS LSCD caused an increase in inflammatory cells in the ocular surface, an increase in the formation of immunoproteasomes (IPR), and a decrease in the formation of constitutive proteasome (CPR). Specifically, LSCD-diseased CEC (D-CEC) showed a decrease in the CPR chymotrypsin-like, trypsin-like and caspase-like activities, while healthy CEC (H-CEC) and CAOMECS showed higher activities. Quantitative analysis of IPR inducible subunit (B5i, B2i, and B1i) were performed and compared to CPR subunit (B5, B2, and B1) levels. Results showed that ratios B5i/B5, B2i/B2 and B1i/B1 were higher in D-CEC, indicating that D-CEC had approximately a two-fold increase in the amount of IPR compared to CAOMECS and H-CEC. Histological analysis demonstrated that CAOMECS-grafted corneas had a re-epithelialized surface, positive staining for CPR subunits, and weak staining for IPR subunits. In addition, digital quantitative measurement of fluorescent intensity showed that the CPR B5 subunit was significantly more expressed in CAOMECS-grafted corneas compared to non-grafted corneas with LSCD. CONCLUSION CAOMECS grafting successfully replaced the D-CEC with oral mucosal epithelial cells with higher levels of CPR. The increase in constitutive proteasome expression is possibly responsible for the recovery and improvement in CAOMECS-grafted corneas.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | - Richard Hoft
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Imara Meepe
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Julio Garcia
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kumar Tiger
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Andrew Wood
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Amanda Laporte
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Derek Pan
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Andrew Makalinao
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Robert Niihara
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Joan Oliva
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Arjie Florentino
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Amber M Gorce
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jeremy Stark
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Daileen Cortez
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Samuel W French
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yutaka Niihara
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
44
|
Immunoproteasome subunit deficiency has no influence on the canonical pathway of NF-κB activation. Mol Immunol 2017; 83:147-153. [PMID: 28157553 DOI: 10.1016/j.molimm.2017.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 01/02/2023]
Abstract
Activation of the pro-inflammatory transcription factor NF-κB requires signal-induced proteasomal degradation of the inhibitor of NF-κB (IκB) in order to allow nuclear translocation. Most cell types are capable of expressing two types of 20S proteasome core particles, the constitutive proteasome and immunoproteasome. Inducible under inflammatory conditions, the immunoproteasome is mainly characterized through an altered cleavage specificity compared to the constitutive proteasome. However, the question whether immunoproteasome subunits affect NF-κB signal transduction differently from constitutive subunits is still up for debate. To study the effect of immunoproteasomes on LPS- or TNF-α-induced NF-κB activation, we used IFN-γ stimulated peritoneal macrophages and mouse embryonic fibroblasts derived from mice deficient for the immunoproteasome subunits low molecular mass polypeptide (LMP) 2, or LMP7 and multicatalytic endopeptidase complex-like 1 (MECL-1). Along the canonical signaling pathway of NF-κB activation no differences in the extent and kinetic of IκB degradation were observed. Neither the nuclear translocation and DNA binding of NF-κB nor the production of the NF-κB dependent cytokines TNF-α, IL-6, and IL-10 differed between immunoproteasome deficient and proficient cells. Hence, we conclude that immunoproteasome subunits have no specialized function for canonical NF-κB activation.
Collapse
|
45
|
Immunoproteasome induction is suppressed in hepatitis C virus-infected cells in a protein kinase R-dependent manner. Exp Mol Med 2016; 48:e270. [PMID: 27833096 PMCID: PMC5133375 DOI: 10.1038/emm.2016.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/11/2016] [Indexed: 02/08/2023] Open
Abstract
By changing the relative abundance of generated antigenic peptides through alterations in the proteolytic activity, interferon (IFN)-γ-induced immunoproteasomes influence the outcome of CD8+ cytotoxic T lymphocyte responses. In the present study, we investigated the effects of hepatitis C virus (HCV) infection on IFN-γ-induced immunoproteasome expression using a HCV infection cell culture system. We found that, although IFN-γ induced the transcriptional expression of mRNAs encoding the β1i/LMP2, β2i/MECL-1 and β5i/LMP7 immunoproteasome subunits, the formation of immunoproteasomes was significantly suppressed in HCV-infected cells. This finding indicated that immunoproteasome induction was impaired at the translational or posttranslational level by HCV infection. Gene silencing studies showed that the suppression of immunoproteasome induction is essentially dependent on protein kinase R (PKR). Indeed, the generation of a strictly immunoproteasome-dependent cytotoxic T lymphocyte epitope was impaired in in vitro processing experiments using isolated 20S proteasomes from HCV-infected cells and was restored by the silencing of PKR expression. In conclusion, our data point to a novel mechanism of immune regulation by HCV that affects the antigen-processing machinery through the PKR-mediated suppression of immunoproteasome induction in infected cells.
Collapse
|
46
|
Spencer CT, Bezbradica JS, Ramos MG, Arico CD, Conant SB, Gilchuk P, Gray JJ, Zheng M, Niu X, Hildebrand W, Link AJ, Joyce S. Viral infection causes a shift in the self peptide repertoire presented by human MHC class I molecules. Proteomics Clin Appl 2016; 9:1035-52. [PMID: 26768311 DOI: 10.1002/prca.201500106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE MHC class I presentation of peptides allows T cells to survey the cytoplasmic protein milieu of host cells. During infection, presentation of self peptides is, in part, replaced by presentation of microbial peptides. However, little is known about the self peptides presented during infection, despite the fact that microbial infections alter host cell gene expression patterns and protein metabolism. EXPERIMENTAL DESIGN The self peptide repertoire presented by HLA-A*01;01, HLA-A*02;01, HLA-B*07;02, HLA-B*35;01, and HLA-B*45;01 (where HLA is human leukocyte antigen) was determined by tandem MS before and after vaccinia virus infection. RESULTS We observed a profound alteration in the self peptide repertoire with hundreds of self peptides uniquely presented after infection for which we have coined the term "self peptidome shift." The fraction of novel self peptides presented following infection varied for different HLA class I molecules. A large part (approximately 40%) of the self peptidome shift arose from peptides derived from type I interferon-inducible genes, consistent with cellular responses to viral infection. Interestingly, approximately 12% of self peptides presented after infection showed allelic variation when searched against approximately 300 human genomes. CONCLUSION AND CLINICAL RELEVANCE Self peptidome shift in a clinical transplant setting could result in alloreactivity by presenting new self peptides in the context of infection-induced inflammation.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jelena S Bezbradica
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Mireya G Ramos
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Chenoa D Arico
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Stephanie B Conant
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Jennifer J Gray
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Mu Zheng
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Centre, Oklahoma City, OK, USA
| | - Andrew J Link
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
47
|
The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J Autoimmun 2016; 75:118-129. [PMID: 27522114 DOI: 10.1016/j.jaut.2016.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are diseases with muscle weakness, morphologically characterized by inflammatory infiltration and increased expression of MHC class I molecule on myofibers. Immunoproteasome, as a proteolytic complex that shapes the repertoire of antigenic peptides, has been previously demonstrated to be over-expressed in IIMs at mRNA level. In this study, we investigated the expression and the function of the immunoproteasome in IIMs in more detail. As shown by immunofluorescence staining, expression of relevant players of the immunoproteasome was detectable in the inflamed skeletal muscle tissue from IIM patients. In fact, two subunits of the immunoproteasome, β1i or β5i were upregulated in sporadic inclusion body myositis, immune-mediated necrotizing myopathies and dermatomyositis muscle biopsies and co-localized with the MHC class I expressing myofibers. Double immunofluorescence revealed that both myofibers and muscle infiltrating cells, including CD8+ T-cells and CD68 + macrophages in IIMs expressed β1i or β5i. In addition, we have also investigated the role of the immunoproteasome in myoblasts during in vitro inflammatory conditions. Using human primary myoblasts cultures we found that pro-inflammatory cytokines, TNF-α or IFN-γ upregulate β1i or β5i. Selective inhibition or depletion of β5i amplified the TNF-α or IFN-γ mediated expression of cytokines/chemokines (myokines) in myoblasts. Furthermore, we demonstrated that specific inhibitors of β1i or β5i reduced the cell surface expression of MHC class I in myoblasts induced by IFN-γ. Taken together, our data suggest that the immunoproteasome is involved in pathologic MHC class I expression and maintenance of myokine production in IIMs. Thus, induction of the immunoproteasome was identified as a pathomechanism underlying inflammation in IIMs.
Collapse
|
48
|
Rehermann B. Peptide-dependent HLA-KIR-mediated regulation of NK cell function. J Hepatol 2016; 65:237-9. [PMID: 27212248 DOI: 10.1016/j.jhep.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/04/2022]
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA.
| |
Collapse
|
49
|
Abstract
Hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) are responsible for most cases of viral hepatitis. Infection by each type of virus results in a different typical natural disease course and clinical outcome that are determined by virological and immunological factors. HCV tends to establish a chronic persistent infection, whereas HAV does not. HBV is effectively controlled in adults, although it persists for a lifetime after neonatal infection. In this Review, we discuss the similarities and differences in immune responses to and immunopathogenesis of HAV, HBV and HCV infections, which may explain the distinct courses and outcomes of each hepatitis virus infection.
Collapse
|
50
|
Kammerl IE, Meiners S. Proteasome function shapes innate and adaptive immune responses. Am J Physiol Lung Cell Mol Physiol 2016; 311:L328-36. [PMID: 27343191 DOI: 10.1152/ajplung.00156.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|