1
|
Arnould S, Benassayag C, Merle T, Monier B, Montemurro M, Suzanne M. Epithelial apoptosis: A back-and-forth mechanical interplay between the dying cell and its surroundings. Semin Cell Dev Biol 2025; 168:1-12. [PMID: 39986249 DOI: 10.1016/j.semcdb.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Apoptosis is an essential cellular process corresponding to a programmed cell suicide. It has long been considered as a cell-autonomous process, supposed to have no particular impact on the surrounding tissue. However, it has become clear in the last 15 years that epithelial apoptotic cells interact mechanically and biochemically with their environment. Here, we explore recent literature on apoptotic mechanics from an individual dying cell to the back-and-forth interplay with the neighboring epithelial tissue. Finally, we discuss how caspases, key regulators of apoptosis, appear to have a dual function as a cytoskeleton regulator favoring either cytoskeleton degradation or dynamics independently of their apoptotic or non-apoptotic role.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Tatiana Merle
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
2
|
Kumar VP, Kong Y, Dolland R, Brown SR, Wang K, Dolland D, Mu D, Brown ML. Exploring Angiotensin II and Oxidative Stress in Radiation-Induced Cataract Formation: Potential for Therapeutic Intervention. Antioxidants (Basel) 2024; 13:1207. [PMID: 39456460 PMCID: PMC11504979 DOI: 10.3390/antiox13101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the mechanisms underlying RIC formation (RICF). This study investigates the roles of angiotensin II (Ang II) and oxidative stress in RIC development, with a focus on their combined effects on lens transparency and cellular function. Key mechanisms include the generation of reactive oxygen species (ROS) and oxidative damage to lens proteins and lipids, as well as the impact of Ang II on inflammatory responses and cellular apoptosis. While the generation of ROS from water radiolysis is well established, the impact of Ang II on RICs is less understood. Ang II intensifies oxidative stress by activating type 1 receptors (AT1Rs) on lens epithelial cells, resulting in increased ROS production and inflammatory responses. This oxidative damage leads to protein aggregation, lipid peroxidation, and apoptosis, ultimately compromising lens transparency and contributing to cataract formation. Recent studies highlight Ang II's dual role in promoting both oxidative stress and inflammation, which accelerates cataract development. RICs pose a substantial public health concern due to their widespread prevalence and impact on quality of life. Targeting Ang II signaling and oxidative stress simultaneously could represent a promising therapeutic approach. Continued research is necessary to validate these strategies and explore their efficacy in preventing or reversing RIC development.
Collapse
Affiliation(s)
- Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA;
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
| | - Riana Dolland
- Trocar Pharma Inc., 8101 Sandy Spring Rd., Suite 300-W9, Laurel, MD 20707, USA; (R.D.); (D.D.)
| | - Sandra R. Brown
- LensCrafters, Inc., 110 Mall Circle, Suite 2001, Waldorf, MD 20603, USA;
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
| | - Damian Dolland
- Trocar Pharma Inc., 8101 Sandy Spring Rd., Suite 300-W9, Laurel, MD 20707, USA; (R.D.); (D.D.)
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
- Leroy T. Canoles, Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
3
|
Rao A, Bhat SA, Shibata T, Giani JF, Rader F, Bernstein KE, Khan Z. Diverse biological functions of the renin-angiotensin system. Med Res Rev 2024; 44:587-605. [PMID: 37947345 DOI: 10.1002/med.21996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/30/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
The renin-angiotensin system (RAS) has been widely known as a circulating endocrine system involved in the control of blood pressure. However, components of RAS have been found to be localized in rather unexpected sites in the body including the kidneys, brain, bone marrow, immune cells, and reproductive system. These discoveries have led to steady, growing evidence of the existence of independent tissue RAS specific to several parts of the body. It is important to understand how RAS regulates these systems for a variety of reasons: It gives a better overall picture of human physiology, helps to understand and mitigate the unintended consequences of RAS-inhibiting or activating drugs, and sets the stage for potential new therapies for a variety of ailments. This review fulfills the need for an updated overview of knowledge about local tissue RAS in several bodily systems, including their components, functions, and medical implications.
Collapse
Affiliation(s)
- Adithi Rao
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Shabir A Bhat
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jorge F Giani
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Florian Rader
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines 2023; 11:biomedicines11030662. [PMID: 36979641 PMCID: PMC10045486 DOI: 10.3390/biomedicines11030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetic cardiomyopathy is characterized by abnormal myocardial structure or performance in the absence of coronary artery disease or significant valvular heart disease in patients with diabetes mellitus. The spectrum of diabetic cardiomyopathy ranges from subtle myocardial changes to myocardial fibrosis and diastolic function and finally to symptomatic heart failure. Except for sodium–glucose transport protein 2 inhibitors and possibly bariatric and metabolic surgery, there is currently no specific treatment for this distinct disease entity in patients with diabetes. The molecular mechanism of diabetic cardiomyopathy includes impaired nutrient-sensing signaling, dysregulated autophagy, impaired mitochondrial energetics, altered fuel utilization, oxidative stress and lipid peroxidation, advanced glycation end-products, inflammation, impaired calcium homeostasis, abnormal endothelial function and nitric oxide production, aberrant epidermal growth factor receptor signaling, the activation of the renin–angiotensin–aldosterone system and sympathetic hyperactivity, and extracellular matrix accumulation and fibrosis. Here, we summarize several important emerging treatments for diabetic cardiomyopathy targeting specific molecular mechanisms, with evidence from preclinical studies and clinical trials.
Collapse
|
5
|
Mohan IK, Baba KSSS, Iyyapu R, Thirumalasetty S, Satish OS. Advances in congestive heart failure biomarkers. Adv Clin Chem 2022; 112:205-248. [PMID: 36642484 DOI: 10.1016/bs.acc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congestive heart failure (CHF) is the leading cause of morbidity and mortality in the elderly worldwide. Although many biomarkers associated with in heart failure, these are generally prognostic and identify patients with moderate and severe disease. Unfortunately, the role of biomarkers in decision making for early and advanced heart failure remains largely unexplored. Previous studies suggest the natriuretic peptides have the potential to improve the diagnosis of heart failure, but they still have significant limitations related to cut-off values. Although some promising cardiac biomarkers have emerged, comprehensive data from large cohort studies is lacking. The utility of multiple biomarkers that reflect various pathophysiologic pathways are increasingly being explored in heart failure risk stratification and to diagnose disease conditions promptly and accurately. MicroRNAs serve as mediators and/or regulators of renin-angiotensin-induced cardiac remodeling by directly targeting enzymes, receptors and signaling molecules. The role of miRNA in HF diagnosis is a promising area of research and further exploration may offer both diagnostic and prognostic applications and phenotype-specific targets. In this review, we provide insight into the classification of different biochemical and molecular markers associated with CHF, examine clinical usefulness in CHF and highlight the most clinically relevant.
Collapse
Affiliation(s)
| | - K S S Sai Baba
- Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana, India
| | - Rohit Iyyapu
- Katuri Medical College & Hospital, Guntur, Andhra Pradesh, India
| | | | - O Sai Satish
- Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Flavonoid Extract from Propolis Provides Cardioprotection following Myocardial Infarction by Activating PPAR-γ. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1333545. [PMID: 35928246 PMCID: PMC9345730 DOI: 10.1155/2022/1333545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022]
Abstract
We have previously reported that flavonoid extract from propolis (FP) can improve cardiac function in rats following myocardial infarction (MI). However, the mechanisms responsible for the cardioprotective effects of FP have not been fully elucidated. In the current study, we explored whether FP can reduce inflammatory cytokines and attenuate sympathetic nerve system activity and antiendoplasmic reticulum (ER) stress and whether the cardioprotective effects are related to peroxisome proliferator-activated receptor gamma (PPAR-γ) activation. Sprague Dawley rats were randomly divided into six groups: Sham group received the surgical procedure but no artery was ligated; MI group received ligation of the left anterior descending (LAD) branch of the coronary artery; MI + FP group received FP (12.5 mg/kg/d, intragastrically) seven days prior to LAD ligation; FP group (Sham group + 12.5 mg/kg/d, intragastrically); MI + FP + GW9662 group received FP prior to LAD ligation with the addition of a specific PPAR-γ inhibitor (GW9662), 1 mg/kg/d, orally); and MI + GW9662 group received the PPAR-γ inhibitor and LAD ligation. The results demonstrated that the following inflammatory markers were significantly elevated following MI as compared with expression in sham animals: IL-1β, TNF-α, CRP; markers of sympathetic activation: plasma norepinephrine, epinephrine and GAP43, nerve growth factor, thyroid hormone; and ER stress response markers GRP78 and CHOP. Notably, the above changes were attenuated by FP, and GW9662 was able to alleviate the effect of FP. In conclusion, FP induces a cardioprotective effect following myocardial infarction by activating PPAR-γ, leading to less inflammation, cardiac sympathetic activity, and ER stress.
Collapse
|
7
|
Kloth B, Mearini G, Weinberger F, Stenzig J, Geertz B, Starbatty J, Lindner D, Schumacher U, Reichenspurner H, Eschenhagen T, Hirt MN. Piezo2 is not an indispensable mechanosensor in murine cardiomyocytes. Sci Rep 2022; 12:8193. [PMID: 35581325 PMCID: PMC9114012 DOI: 10.1038/s41598-022-12085-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
A short-term increase in ventricular filling leads to an immediate (Frank-Starling mechanism) and a slower (Anrep effect) rise in cardiac contractility, while long-term increased cardiac load (e.g., in arterial hypertension) decreases contractility. Whether these answers to mechanical tension are mediated by specific sensors in cardiomyocytes remains elusive. In this study, the piezo2 protein was evaluated as a potential mechanosensor. Piezo2 was found to be upregulated in various rat and mouse cardiac tissues upon mechanical or pharmacological stress. To investigate its function, C57BL/6J mice with homozygous cardiomyocyte-specific piezo2 knockout [Piezo2-KO] were created. To this end, α-MHC-Cre mice were crossed with homozygous "floxed" piezo2 mice. α-MHC-Cre mice crossed with wildtype mice served as controls [WT-Cre+]. In cardiomyocytes of Piezo2-KO mice, piezo2 mRNA was reduced by > 90% and piezo2 protein was not detectable. Piezo2-KO mice displayed no morphological abnormalities or altered cardiac function under nonstressed conditions. In a subsequent step, hearts of Piezo2-KO or WT-Cre+-mice were stressed by either three weeks of increased afterload (angiotensin II, 2.5 mg/kg/day) or one week of hypercontractility (isoprenaline, 30 mg/kg/day). As expected, angiotensin II treatment in WT-Cre+-mice resulted in higher heart and lung weight (per body weight, + 38%, + 42%), lower ejection fraction and cardiac output (- 30%, - 39%) and higher left ventricular anterior and posterior wall thickness (+ 34%, + 37%), while isoprenaline led to higher heart weight (per body weight, + 25%) and higher heart rate and cardiac output (+ 24%, + 54%). The Piezo2-KO mice reacted similarly with the exception that the angiotensin II-induced increases in wall thickness were blunted and the isoprenaline-induced increase in cardiac output was slightly less pronounced. As cardiac function was neither severely affected under basal nor under stressed conditions in Piezo2-KO mice, we conclude that piezo2 is not an indispensable mechanosensor in cardiomyocytes.
Collapse
Affiliation(s)
- Benjamin Kloth
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,Department of Cardiac Surgery, University Heart & Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Justus Stenzig
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Birgit Geertz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jutta Starbatty
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Diana Lindner
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology, University Heart & Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiac Surgery, University Heart & Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc N Hirt
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
8
|
Nurun Nabi A, Ebihara A. Diabetes and Renin-Angiotensin-Aldosterone System: Pathophysiology and Genetics. RENIN-ANGIOTENSIN ALDOSTERONE SYSTEM 2021. [DOI: 10.5772/intechopen.97518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disorder and characterized by hyperglycemia. Being a concern of both the developed and developing world, diabetes is a global health burden and is a major cause of mortality world-wide. The most common is the type 2 diabetes mellitus (T2DM), which is mainly caused by resistance to insulin. Long-term complications of diabetes cause microvascular related problems (eg. nephropathy, neuropathy and retinopathy) along with macrovascular complications (eg. cardiovascular diseases, ischemic heart disease, peripheral vascular disease). Renin-angiotensin-aldosterone system (RAAS) regulates homeostasis of body fluid that in turn, maintains blood pressure. Thus, RAAS plays pivotal role in the pathogenesis of long-term DM complications like cardiovascular diseases and chronic kidney diseases. T2DM is a polygenic disease, and the roles of RAAS components in insulin signaling pathway and insulin resistance have been well documented. Hyperglycemia has been found to be associated with the increased plasma renin activity, arterial pressure and renal vascular resistance. Several studies have reported involvement of single variants within particular genes in initiation and development of T2D using different approaches. This chapter aims to investigate and discuss potential genetic polymorphisms underlying T2D identified through candidate gene studies, genetic linkage studies, genome wide association studies.
Collapse
|
9
|
Stearoyl-CoA Desaturase (SCD) Induces Cardiac Dysfunction with Cardiac Lipid Overload and Angiotensin II AT1 Receptor Protein Up-Regulation. Int J Mol Sci 2021; 22:ijms22189883. [PMID: 34576047 PMCID: PMC8472087 DOI: 10.3390/ijms22189883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a major cause of death worldwide with insufficient treatment options. In the search for pathomechanisms, we found up-regulation of an enzyme, stearoyl-CoA desaturase 1 (Scd1), in different experimental models of heart failure induced by advanced atherosclerosis, chronic pressure overload, and/or volume overload. Because the pathophysiological role of Scd1/SCD in heart failure is not clear, we investigated the impact of cardiac SCD upregulation through the generation of C57BL/6-Tg(MHCSCD)Sjaa mice with myocardium-specific expression of SCD. Echocardiographic examination showed that 4.9-fold-increased SCD levels triggered cardiac hypertrophy and symptoms of heart failure at an age of eight months. Tg-SCD mice had a significantly reduced left ventricular cardiac ejection fraction of 25.7 ± 2.9% compared to 54.3 ± 4.5% of non-transgenic B6 control mice. Whole-genome gene expression profiling identified up-regulated heart-failure-related genes such as resistin, adiponectin, and fatty acid synthase, and type 1 and 3 collagens. Tg-SCD mice were characterized by cardiac lipid accumulation with 1.6- and 1.7-fold-increased cardiac contents of saturated lipids, palmitate, and stearate, respectively. In contrast, unsaturated lipids were not changed. Together with saturated lipids, apoptosis-enhancing p53 protein contents were elevated. Imaging by autoradiography revealed that the heart-failure-promoting and membrane-spanning angiotensin II AT1 receptor protein of Tg-SCD hearts was significantly up-regulated. In transfected HEK cells, the expression of SCD increased the number of cell-surface angiotensin II AT1 receptor binding sites. In addition, increased AT1 receptor protein levels were detected by fluorescence spectroscopy of fluorescent protein-labeled AT1 receptor-Cerulean. Taken together, we found that SCD promotes cardiac dysfunction with overload of cardiotoxic saturated lipids and up-regulation of the heart-failure-promoting AT1 receptor protein.
Collapse
|
10
|
Leong CO, Leong CN, Liew YM, Al Abed A, Aziz YFA, Chee KH, Sridhar GS, Dokos S, Lim E. The role of regional myocardial topography post-myocardial infarction on infarct extension. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3501. [PMID: 34057819 DOI: 10.1002/cnm.3501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Infarct extension involves necrosis of healthy myocardium in the border zone (BZ), progressively enlarging the infarct zone (IZ) and recruiting the remote zone (RZ) into the BZ, eventually leading to heart failure. The mechanisms underlying infarct extension remain unclear, but myocyte stretching has been suggested as the most likely cause. Using human patient-specific left-ventricular (LV) numerical simulations established from cardiac magnetic resonance imaging (MRI) of myocardial infarction (MI) patients, the correlation between infarct extension and regional mechanics abnormality was investigated by analysing the fibre stress-strain loops (FSSLs). FSSL abnormality was characterised using the directional regional external work (DREW) index, which measures FSSL area and loop direction. Sensitivity studies were also performed to investigate the effect of infarct stiffness on regional myocardial mechanics and potential for infarct extension. We found that infarct extension was correlated to severely abnormal FSSL in the form of counter-clockwise loop at the RZ close to the infarct, as indicated by negative DREW values. In regions demonstrating negative DREW values, we observed substantial fibre stretching in the isovolumic relaxation (IVR) phase accompanied by a reduced rate of systolic shortening. Such stretching in IVR phase in part of the RZ was due to its inability to withstand the high LV pressure that was still present and possibly caused by regional myocardial stiffness inhomogeneity. Further analysis revealed that the occurrence of severely abnormal FSSL due to IVR fibre stretching near the RZ-BZ boundary was due to a large amount of surrounding infarcted tissue, or an excessively stiff IZ.
Collapse
Affiliation(s)
- Chen Onn Leong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Neng Leong
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yang Faridah Abdul Aziz
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Han Chee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Socrates Dokos
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
12
|
Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, Lawler JM. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep 2021; 9:e14606. [PMID: 33400850 PMCID: PMC7785102 DOI: 10.14814/phy2.14606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced mechanical loading results in atrophy of skeletal muscle fibers. Increased reactive oxygen species (ROS) are causal in sarcolemmal dislocation of nNOS and FoxO3a activation. The Nox2 isoform of NADPH oxidase and mitochondria release ROS during disuse in skeletal muscle. Activation of the angiotensin II type 1 receptor (AT1R) can elicit Nox2 complex formation. The AT1R blocker losartan was used to test the hypothesis that AT1R activation drives Nox2 assembly, nNOS dislocation, FoxO3a activation, and thus alterations in morphology in the unloaded rat soleus. Male Fischer 344 rats were divided into four groups: ambulatory control (CON), ambulatory + losartan (40 mg kg-1 day-1 ) (CONL), 7 days of tail-traction hindlimb unloading (HU), and HU + losartan (HUL). Losartan attenuated unloading-induced loss of muscle fiber cross-sectional area (CSA) and fiber-type shift. Losartan mitigated unloading-induced elevation of ROS levels and upregulation of Nox2. Furthermore, AT1R blockade abrogated nNOS dislocation away from the sarcolemma and elevation of nuclear FoxO3a. We conclude that AT1R blockade attenuates disuse remodeling by inhibiting Nox2, thereby lessening nNOS dislocation and activation of FoxO3a.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marcela M Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Katherine R Farris
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Yang Lee
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Veeroju S, Mamazhakypov A, Rai N, Kojonazarov B, Nadeau V, Breuils-Bonnet S, Li L, Weissmann N, Rohrbach S, Provencher S, Bonnet S, Seeger W, Schermuly R, Novoyatleva T. Effect of p53 activation on experimental right ventricular hypertrophy. PLoS One 2020; 15:e0234872. [PMID: 32559203 PMCID: PMC7304610 DOI: 10.1371/journal.pone.0234872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
The leading cause of death in Pulmonary Arterial Hypertension (PAH) is right ventricular (RV) failure. The tumor suppressor p53 has been associated with left ventricular hypertrophy (LVH) and remodeling but its role in RV hypertrophy (RVH) is unclear. The purpose of this study was to determine whether pharmacological activation of p53 by Quinacrine affects RV remodeling and function in the pulmonary artery banding (PAB) model of compensated RVH in mice. The effects of p53 activation on cellular functions were studied in isolated cardiomyocytes, cardiac fibroblasts and endothelial cells (ECs). The expression of p53 was examined both on human RV tissues from patients with compensated and decompensated RVH and in mouse RV tissues early and late after the PAB. As compared to control human RVs, there was no change in p53 expression in compensated RVH, while a marked upregulation was found in decompensated RVH. Similarly, in comparison to SHAM-operated mice, unaltered RV p53 expression 7 days after PAB, was markedly induced 21 days after the PAB. Quinacrine induced p53 accumulation did not further deteriorate RV function at day 7 after PAB. Quinacrine administration did not increase EC death, neither diminished EC number and capillary density in RV tissues. No major impact on the expression of markers of sarcomere organization, fatty acid and mitochondrial metabolism and respiration was noted in Quinacrine-treated PAB mice. p53 accumulation modulated the expression of Heme Oxygenase 1 (HO-1) and Glucose Transporter (Glut1) in mouse RVs and in adult cardiomyocytes. We conclude that early p53 activation in PAB-induced RVH does not cause substantial detrimental effects on right ventricular remodeling and function.
Collapse
Affiliation(s)
- Swathi Veeroju
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Argen Mamazhakypov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Nabham Rai
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Valerie Nadeau
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Ling Li
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Steve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- * E-mail: (RTS); (TN)
| | - Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- * E-mail: (RTS); (TN)
| |
Collapse
|
14
|
Closer to Nature Through Dynamic Culture Systems. Cells 2019; 8:cells8090942. [PMID: 31438519 PMCID: PMC6769584 DOI: 10.3390/cells8090942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Mechanics in the human body are required for normal cell function at a molecular level. It is now clear that mechanical stimulations play significant roles in cell growth, differentiation, and migration in normal and diseased cells. Recent studies have led to the discovery that normal and cancer cells have different mechanosensing properties. Here, we discuss the application and the physiological and pathological meaning of mechanical stimulations. To reveal the optimal conditions for mimicking an in vivo microenvironment, we must, therefore, discern the mechanotransduction occurring in cells.
Collapse
|
15
|
Weil BR, Suzuki G, Young RF, Iyer V, Canty JM. Troponin Release and Reversible Left Ventricular Dysfunction After Transient Pressure Overload. J Am Coll Cardiol 2019; 71:2906-2916. [PMID: 29929614 DOI: 10.1016/j.jacc.2018.04.029] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The authors previously demonstrated that brief ischemia elicits cardiac troponin I (cTnI) release and myocyte apoptosis in the absence of necrosis. It remains uncertain whether other pathophysiological stresses can produce apoptosis and transient cTnI release without ischemia. OBJECTIVES This study sought to determine whether a transient increase in left ventricular (LV) preload elicits cTnI release in the absence of ischemia. METHODS Propofol-anesthetized swine (N = 13) received intravenous phenylephrine (PE) (300 μg/min) for 1 h to increase left ventricular end-diastolic pressure (LVEDP) to ∼30 mm Hg. Serial cTnI and echocardiographic function were assessed for 24 h, and myocardial tissue was analyzed for apoptosis and necrosis. RESULTS PE infusion increased systolic blood pressure from 137 ± 14 mm Hg to 192 ± 11 mm Hg (mean ± SD; p < 0.001) and increased LVEDP from 17 ± 2 mm Hg to 30 ± 5 mm Hg (p < 0.001). Myocardial flow measurements demonstrated no evidence of ischemia. Hemodynamics normalized rapidly after PE, but LV ejection fraction remained depressed (32 ± 21% vs. 58 ± 7%; p < 0.01) with normalization after 24 h (51 ± 16%; p = 0.31). Baseline transcoronary cTnI release was low (16 ± 20 ng/l) but increased to 856 ± 956 ng/l (p = 0.01) 1 h after LVEDP elevation. Circulating cTnI rose above the 99th percentile within 30 min and remained elevated at 24 h (1,462 ± 1,691 ng/l). Pathological analysis demonstrated myocyte apoptosis at 3 h (31.3 ± 11.9 myocytes/cm2 vs. 4.6 ± 3.7 myocytes/cm2; p < 0.01), that normalized after 24 h (6.2 ± 5.6 myocytes/cm2; p = 0.46) without histological necrosis. CONCLUSIONS Transient elevations of LVEDP lead to cTnI release, apoptosis, and reversible stretch-induced stunning in the absence of ischemia. Thus, preload-induced myocyte injury may explain many cTnI elevations seen in the absence of clinical signs or symptoms of myocardial ischemia.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York; Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York.
| | - Gen Suzuki
- Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York; Department of Medicine, Division of Cardiovascular Medicine, University at Buffalo, Buffalo, New York
| | - Rebeccah F Young
- Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York; Department of Medicine, Division of Cardiovascular Medicine, University at Buffalo, Buffalo, New York
| | - Vijay Iyer
- Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York; Department of Medicine, Division of Cardiovascular Medicine, University at Buffalo, Buffalo, New York
| | - John M Canty
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York; Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York; Department of Medicine, Division of Cardiovascular Medicine, University at Buffalo, Buffalo, New York; Department of Biomedical Engineering, University at Buffalo, Buffalo, New York; VA WNY Health Care System, Buffalo, New York
| |
Collapse
|
16
|
The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20143578. [PMID: 31336621 PMCID: PMC6678077 DOI: 10.3390/ijms20143578] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a unique epithelium, with major roles which are essential in the visual cycle and homeostasis of the outer retina. The RPE is a monolayer of polygonal and pigmented cells strategically placed between the neuroretina and Bruch membrane, adjacent to the fenestrated capillaries of the choriocapillaris. It shows strong apical (towards photoreceptors) to basal/basolateral (towards Bruch membrane) polarization. Multiple functions are bound to a complex structure of highly organized and polarized intracellular components: the cytoskeleton. A strong connection between the intracellular cytoskeleton and extracellular matrix is indispensable to maintaining the function of the RPE and thus, the photoreceptors. Impairments of these intracellular structures and the regular architecture they maintain often result in a disrupted cytoskeleton, which can be found in many retinal diseases, including age-related macular degeneration (AMD). This review article will give an overview of current knowledge on the molecules and proteins involved in cytoskeleton formation in cells, including RPE and how the cytoskeleton is affected under stress conditions—especially in AMD.
Collapse
|
17
|
Radiological assessment of effectiveness of soluble RAGE in attenuating Angiotensin II-induced LVH mouse model using in vivo 9.4T MRI. Sci Rep 2019; 9:8475. [PMID: 31186521 PMCID: PMC6559980 DOI: 10.1038/s41598-019-44933-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/30/2019] [Indexed: 01/11/2023] Open
Abstract
We investigated the effectiveness of soluble Receptor for Advanced Glycation Endproducts (sRAGE) in attenuating angiotensin II (AngII)-induced left ventricular hypertrophy (LVH) using in vivo 9.4T cine-magnetic resonance imaging (CINE-MRI). Mice were divided into four groups: AngII (n = 9), saline (n = 10), sRAGE (n = 10), and AngII + sRAGE (n = 10). CINE-MRI was performed in each group after administration of the AngII or sRAGE, and CINE-MR images were analyzed to obtain parameters indicating cardiac anatomical and functional changes including end-diastolic and end-systolic blood volume, end-diastolic and end-systolic myocardial volume, ejection fraction, end-diastolic and end-systolic myocardial mass, and LV wall thickness. LVH observed in AngII group was significantly attenuated by sRAGE. These trends were also observed in histological analysis, demonstrating that cardiac function tracking using in vivo and real-time 9.4T MR imaging provides valuable information about the cardiac remodeling induced by AngII and sRAGE in an AngII-induced LV hypertrophy mice model.
Collapse
|
18
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 316:H1237-H1252. [PMID: 30925069 PMCID: PMC6620689 DOI: 10.1152/ajpheart.00004.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
The death of cardiomyocytes is a precursor for the cascade of hypertrophic and fibrotic remodeling that leads to cardiomyopathy. In diabetes mellitus (DM), the metabolic environment of hyperglycemia, hyperlipidemia, and oxidative stress causes cardiomyocyte cell death, leading to diabetic cardiomyopathy (DMCM), an independent cause of heart failure. Understanding the roles of the cell death signaling pathways involved in the development of cardiomyopathies is crucial to the discovery of novel targeted therapeutics and biomarkers for DMCM. Recent evidence suggests that hydrogen sulfide (H2S), an endogenous gaseous molecule, has cardioprotective effects against cell death. However, very little is known about signaling by which H2S and its downstream targets regulate myocardial cell death in the DM heart. This review focuses on H2S in the signaling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in DMCM and other cardiomyopathies, abnormalities in H2S synthesis in DM, and potential H2S-based therapeutic strategies to mitigate myocardial cell death to ameliorate DMCM.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Anesthesiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
20
|
Dowrick JM, Tran K, Loiselle DS, Nielsen PMF, Taberner AJ, Han J, Ward M. The slow force response to stretch: Controversy and contradictions. Acta Physiol (Oxf) 2019; 226:e13250. [PMID: 30614655 DOI: 10.1111/apha.13250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
When exposed to an abrupt stretch, cardiac muscle exhibits biphasic active force enhancement. The initial, instantaneous, force enhancement is well explained by the Frank-Starling mechanism. However, the cellular mechanisms associated with the second, slower phase remain contentious. This review explores hypotheses regarding this "slow force response" with the intention of clarifying some apparent contradictions in the literature. The review is partitioned into three sections. The first section considers pathways that modify the intracellular calcium handling to address the role of the sarcoplasmic reticulum in the mechanism underlying the slow force response. The second section focuses on extracellular calcium fluxes and explores the identity and contribution of the stretch-activated, non-specific, cation channels as well as signalling cascades associated with G-protein coupled receptors. The final section introduces promising candidates for the mechanosensor(s) responsible for detecting the stretch perturbation.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Physiology University of Auckland Auckland New Zealand
| | - Poul M. F. Nielsen
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - June‐Chiew Han
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Marie‐Louise Ward
- Department of Physiology University of Auckland Auckland New Zealand
| |
Collapse
|
21
|
Zhao Y, Song W, Wang L, Rane MJ, Han F, Cai L. Multiple roles of KLF15 in the heart: Underlying mechanisms and therapeutic implications. J Mol Cell Cardiol 2019; 129:193-196. [PMID: 30831134 DOI: 10.1016/j.yjmcc.2019.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Although there is an increasing understanding of the signaling pathways that promote cardiac hypertrophy, negative regulatory factors of this process have received less attention. Increasing evidence indicates that Krüppel-like factor 15 (KLF15) plays an important role in maintaining cardiac function by controlling the transcriptional pathways that regulating cardiac metabolism. Recent studies have also revealed a vital role for KLF15 as an inhibitor of pathological cardiac hypertrophy and fibrosis via its effects on factors such as myocyte enhancer factor 2 (MEF2), GATA-binding protein 4 (GATA4), transforming growth factor-β (TGF-β), and myocardin. KLF15 may therefore be an effective therapeutic target for the treatment of heart failure and other cardiovascular diseases. In this review, we focus on the physiological and pathophysiological roles of KLF15 in the heart and the potential mechanisms through which KLF15 is regulated in various cardiac diseases.
Collapse
Affiliation(s)
- Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lizhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Madhavi J Rane
- Departments of Medicine, Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
22
|
Differential Gene Expression Profile of Renin-Angiotensin System in the Left Atrium in Mitral Regurgitation Patients. DISEASE MARKERS 2018; 2018:6924608. [PMID: 30581499 PMCID: PMC6276386 DOI: 10.1155/2018/6924608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022]
Abstract
Background Left atrial enlargement is a mortality and heart failure risk factor in primary mitral regurgitation (MR) patients. Pig models of MR have shown differential expression of genes linked to the renin-angiotensin system. Therefore, the aim of this study was to investigate the key genes of the renin-angiotensin that are expressed differentially in the left atrial myocardium in MR patients. Methods Quantitative RT-PCR was used to compare gene expression in the renin-angiotensin system in the left atrium in MR patients, aortic valve disease patients, and normal subjects. Results Plasma angiotensin II concentrations did not significantly differ between MR patients and aortic valve disease patients (P = 0.582). Compared to normal controls, however, MR patients had significantly downregulated expressions of angiotensin-converting enzyme, angiotensin I converting enzyme 2, type 1 angiotensin II receptor, glutamyl aminopeptidase, angiotensinogen, cathepsin A (CTSA), thimet oligopeptidase 1, neurolysin, alanyl aminopeptidase, cathepsin G, leucyl/cystinyl aminopeptidase (LNPEP), neprilysin, and carboxypeptidase A3 in the left atrium. The MR patients also had significantly upregulated expressions of MAS1 oncogene (MAS1) and mineralocorticoid receptor compared to normal controls. Additionally, in comparison with aortic valve disease patients, MR patients had significantly downregulated CTSA and LNPEP expression and significantly upregulated MAS1 expression in the left atrium. Conclusions Expressions of genes in the renin-angiotensin system, especially CTSA, LNPEP, and MAS1, in the left atrium in MR patients significantly differed from expressions of these genes in aortic valve disease patients and normal controls. Notably, differences in expression were independent of circulating angiotensin II levels. The results of this study provide a rationale for pharmacological therapies or posttranslational regulation therapies targeting genes expressed differentially in the renin-angiotensin system to remedy structural remodeling associated with atrial enlargement and heart failure progression in patients with MR.
Collapse
|
23
|
Powers SK, Morton AB, Hyatt H, Hinkley MJ. The Renin-Angiotensin System and Skeletal Muscle. Exerc Sport Sci Rev 2018; 46:205-214. [PMID: 30001274 DOI: 10.1249/jes.0000000000000158] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The renin-angiotensin system (RAS) plays a key role in the control of blood pressure and fluid homeostasis. Emerging evidence also reveals that hyperactivity of the RAS contributes to skeletal muscle wasting. This review discusses the key role that the RAS plays in skeletal muscle wasting due to congestive heart failure, chronic kidney disease, and ventilator-induced diaphragmatic wasting.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | | | | | | |
Collapse
|
24
|
Zhang Y, Somers KR, Becari C, Polonis K, Pfeifer MA, Allen AM, Kellogg TA, Covassin N, Singh P. Comparative Expression of Renin-Angiotensin Pathway Proteins in Visceral Versus Subcutaneous Fat. Front Physiol 2018; 9:1370. [PMID: 30364113 PMCID: PMC6191467 DOI: 10.3389/fphys.2018.01370] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
Body fat distribution contributes to obesity-related metabolic and cardiovascular disorders. Visceral fat is more detrimental than subcutaneous fat. However, the mechanisms underlying visceral fat-mediated cardiometabolic dysregulation are not completely understood. Localized increases in expression of the renin angiotensin system (RAS) in adipose tissue (AT) may be implicated. We therefore investigated mRNA and protein expression of RAS components in visceral versus subcutaneous AT using paired samples from individuals undergoing surgery (N = 20, body mass index: 45.6 ± 6.2 kg/m2, and age: 44.6 ± 9.1 years). We also examined RAS-related proteins in AT obtained from individuals on renin angiotensin aldosterone system (RAAS) targeted drugs (N = 10, body mass index: 47.2 ± 9.3 kg/m2, and age: 53.3 ± 10.1 years). Comparison of protein expression between subcutaneous and visceral AT samples showed an increase in renin (p = 0.004) and no change in angiotensinogen (p = 0.987) expression in visceral AT. Among proteins involved in angiotensin peptide generation, angiotensin converting enzyme (p = 0.02) was increased in subcutaneous AT while chymase (p = 0.001) and angiotensin converting enzyme-2 (p = 0.001) were elevated in visceral fat. Furthermore, visceral fat expression of angiotensin II type-2 receptor (p = 0.007) and angiotensin II type-1 receptor (p = 0.031) was higher, and MAS receptor (p < 0.001) was lower. Phosphorylated-p53 (p = 0.147), AT fibrosis (p = 0.138) and average adipocyte size (p = 0.846) were similar in the two depots. Nonetheless, visceral AT showed increased mRNA expression of inflammatory (TNFα, p < 0.001; IL-6, p = 0.001) and oxidative stress markers (NOX2, p = 0.038; NOX4, p < 0.001). Of note, mRNA and protein expression of RAS components did not differ between subjects taking or not taking RAAS related drugs. In summary, several RAS related proteins are differentially expressed in subcutaneous versus visceral AT. This differential expression may not alter AngII but likely increases Ang1-7 generation in visceral fat. These potential differences in active angiotensin peptides and receptor expression in the two depots suggest that localized RAS may not be involved in differences in visceral vs subcutaneous AT function in obese individuals. Our findings do not support a role for localized RAS differences in visceral fat-mediated development of cardiovascular and metabolic pathology.
Collapse
Affiliation(s)
- Yuebo Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Kiran R Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christiane Becari
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Katarzyna Polonis
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Michaela A Pfeifer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Prachi Singh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
A proposed mechanism for the Berecek phenomenon with implications for cardiovascular reprogramming. ACTA ACUST UNITED AC 2018; 12:644-651. [PMID: 30220305 DOI: 10.1016/j.jash.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/15/2018] [Indexed: 01/29/2023]
Abstract
Berecek et al reported in the 1990s that when spontaneously hypertensive rat (SHR) mating pairs were treated with captopril and the resulting pups were continued on the drug for 2 months followed by drug discontinuation, the pups did not develop full blown hypertension, and the cardiovascular structural changes associated with hypertension in SHR were mitigated. The offspring of the pups also displayed diminished hypertension and structural changes, suggesting that the drug therapy produced a heritable amelioration of the SHR phenotype. This observation is reviewed. The link between cellular renin angiotensin systems and epigenetic histone modification is explored, and a mechanism responsible for the observation is proposed. In any case, the observations of Berecek are sufficiently intriguing and biologically important to merit re-exploration and definitive explanation. Equally important is determining the role of renin angiotensin systems in epigenetic modification.
Collapse
|
26
|
Yang M, Zhuang YY, Wang WW, Zhu HP, Zhang YJ, Zheng SL, Yang YR, Chen BC, Xia P, Zhang Y. Role of Sirolimus in renal tubular apoptosis in response to unilateral ureteral obstruction. Int J Med Sci 2018; 15:1433-1442. [PMID: 30443162 PMCID: PMC6216060 DOI: 10.7150/ijms.26954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023] Open
Abstract
Renal tubule cell apoptosis plays a pivotal role in the progression of chronic renal diseases. The previous study indicates that Sirolimus is effective on unilateral ureteral obstruction (UUO)-induced renal fibrosis. However, the role of Sirolimus in renal tubular apoptosis induced by UUO has not yet been addressed. The aim of this study was to determine the role of Sirolimus in renal tubular apoptosis induced by UUO. Male Sprague-Dawley rats were divided into three groups, sham-operated rats, and after which unilateral ureteral obstruction (UUO) was performed: non-treated and sirolimus-treated (1mg/kg). After 4, 7 and 14 d, animals were sacrificed and blood, kidney tissue samples were collected for analyses. Histologic changes and interstitial collagen were determined microscopically following HE and Masson's trichrome staining. The expression of PCNA was investigated using immunohistochemistry and the expression of Bcl-2, Bax, caspase-9, and caspase-3 were investigated using Western blot in each group. Tubular apoptotic cell deaths were assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Sirolimus administration resulted in a significant reduction in tubulointerstitial fibrosis scores. After UUO, there was an increase in tubular and interstitial apoptosis in untreated controls as compared to Sirolimus treatment rats (P<0.05). In addition, the expression of PCNA, Bcl-2, Bax, caspase-9, and caspase-3 in obstructed kidney was characterized by immunohistochemistry and Western blot analyses demonstrating that sirolimus treatment significantly reduced PCNA, Bax, caspase-9 and cleaved caspase-3 expression compared to those observed in controls (P<0.05), whereas, Bcl-2 in the obstructed kidney were decreased in untreated controls compared to Sirolimus treatment rats subjected to the same time course of obstruction (P<0.05). We demonstrated a marked renoprotective effect of sirolimus by inhibition of UUO-induced renal tubular apoptosis in vivo.
Collapse
Affiliation(s)
- Mei Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yang-Yang Zhuang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Wei-Wei Wang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Hai-Ping Zhu
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yan-Jie Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Sao-Ling Zheng
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yi-Rrong Yang
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Bi-Cheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325015, China
| | - Peng Xia
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yan Zhang
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| |
Collapse
|
27
|
Papadakis E, Kanakis M, Kataki A, Spandidos DA. The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review). Mol Med Rep 2017; 17:2089-2099. [PMID: 29207125 PMCID: PMC5783448 DOI: 10.3892/mmr.2017.8174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Classic cardiac surgery, determined through the function of cardiopulmonary bypass machine and myocardial cardioplegic arrest, represents the most controlled scenario for cardiomyocyte homeostatic disturbances due to systemic inflammatory response and myocardial reperfusion injury. An increasing number of studies have demonstrated that myocardial cell homeostasis in cardiac surgery procedures is a sequence of molecularly interrelated and overlapping mechanisms in the form of apoptosis, autophagy and necrosis, which are activated by a plethora of induced inflammatory mediators and gene-related signaling pathways. In this study, we outline the molecular mechanisms of the cardiomyocyte adaptive homeostatic process and the associated clinical implications, in the settings of classic cardiac surgery procedures.
Collapse
Affiliation(s)
- Emmanuel Papadakis
- Department of Cardiac Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Meletios Kanakis
- Cardiothoracic Surgery Unit, Great Ormond Street Hospital for Children, WC1N 3JH London, UK
| | - Agapi Kataki
- Propaedeutic Surgery First Department, University of Athens, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
28
|
Müller I, Pappritz K, Savvatis K, Puhl K, Dong F, El-Shafeey M, Hamdani N, Hamann I, Noutsias M, Infante-Duarte C, Linke WA, Van Linthout S, Tschöpe C. CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS One 2017; 12:e0182643. [PMID: 28800592 PMCID: PMC5553786 DOI: 10.1371/journal.pone.0182643] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
Studies on inflammatory disorders elucidated the pivotal role of the CX3CL1/CX3CR1 axis with respect to the pathophysiology and diseases progression. Coxsackievirus B3 (CVB3)-induced myocarditis is associated with severe cardiac inflammation, which may progress to heart failure. We therefore investigated the influence of CX3CR1 ablation in the model of acute myocarditis, which was induced by inoculation with 5x105 plaque forming units of CVB3 (Nancy strain) in either CX3CR1-/- or C57BL6/j (WT) mice. Seven days after infection, myocardial inflammation, remodeling, and titin expression and phosphorylation were examined by immunohistochemistry, real-time PCR and Pro-Q diamond stain. Cardiac function was assessed by tip catheter. Compared to WT CVB3 mice, CX3CR1-/- CVB3 mice exhibited enhanced left ventricular expression of inflammatory cytokines and chemokines, which was associated with an increase of immune cell infiltration/presence. This shift towards a pro-inflammatory immune response further resulted in increased cardiac fibrosis and cardiomyocyte apoptosis, which was reflected by an impaired cardiac function in CX3CR1-/- CVB3 compared to WT CVB3 mice. These findings demonstrate a cardioprotective role of CX3CR1 in CVB3-infected mice and indicate the relevance of the CX3CL1/CX3CR1 system in CVB3-induced myocarditis.
Collapse
MESH Headings
- Animals
- Apoptosis
- CX3C Chemokine Receptor 1
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Chemokine CX3CL1/genetics
- Chemokine CX3CL1/immunology
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- Disease Models, Animal
- Enterovirus B, Human/growth & development
- Enterovirus B, Human/pathogenicity
- Gene Expression Regulation
- Heart Function Tests
- Host-Pathogen Interactions/immunology
- Humans
- Interleukins/genetics
- Interleukins/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocarditis/genetics
- Myocarditis/immunology
- Myocarditis/pathology
- Myocarditis/virology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Protein Kinases/genetics
- Protein Kinases/immunology
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
Collapse
Affiliation(s)
- Irene Müller
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Kathleen Pappritz
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Konstantinos Savvatis
- Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Kerstin Puhl
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Fengquan Dong
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Muhammad El-Shafeey
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Isabell Hamann
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Berlin, Germany
| | - Michel Noutsias
- Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Halle (Saale), Germany
| | - Carmen Infante-Duarte
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Berlin, Germany
| | - Wolfgang A. Linke
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Sophie Van Linthout
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Carsten Tschöpe
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
- * E-mail:
| |
Collapse
|
29
|
Pande S, Tewari P, Agarwal SK, Agarwal V, Agrawal V, Chagtoo M, Majumdar G, Tewari S. Evidence of apoptosis in right ventricular dysfunction in rheumatic mitral valve stenosis. Indian J Med Res 2017; 144:718-724. [PMID: 28361825 PMCID: PMC5393083 DOI: 10.4103/ijmr.ijmr_686_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background & objectives: Right ventricular (RV) dysfunction is one of the causes of morbidity and mortality in valvular heart disease. The phenomenon of apoptosis, though rare in cardiac muscle may contribute to loss of its function. Role of apoptosis in RV in patients with rheumatic valvular heart disease is investigated in this study. Methods: Patients with rheumatic mitral valve stenosis formed two groups based on RV systolic pressure (RVSP) as RVSP <40 mmHg (group I, n=9) and RVSP ≥40 mmHg (group II, n=30). Patients having atrial septal defect (ASD) with RVSP <40 mmHg served as control (group III, n=15). Myocardial performance index was assessed for RV function. Real-time polymerase chain reaction was performed on muscle biopsy procured from RV to assess expression of pro-apoptotic genes (Bax, cytochrome c, caspase 3 and Fas) and anti-apoptotic genes (Bcl-2). Apoptosis was confirmed by histopathology and terminal deoxynucleotide-transferase-mediated dUTP nick end labelling. Results: Group II had significant RV dysfunction compared to group I (P=0.05) while caspase 3 (P=0.01) and cytochrome c (P=0.03) were expressed excessively in group I. When group I was compared to group III (control), though there was no difference in RV function, a highly significant expression of pro-apoptotic genes was observed in group I (Bax, P=0.02, cytochrome c=0.001 and caspase 3=0.01). There was a positive correlation between pro-apoptotic genes. Nuclear degeneration was present conforming to apoptosis in valve disease patients (groups I and II) while it was absent in patients with ASD. Interpretation & conclusion: Our findings showed evidence of apoptosis in RV of patients with valvular heart disease. Apoptosis was set early in the course of rheumatic valve disease even with lower RVSP, followed by RV dysfunction; however, expression of pro-apoptotic genes regressed.
Collapse
Affiliation(s)
- Shantanu Pande
- Department of Cardiovascular & Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhat Tewari
- Department of Anaesthesiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Surendra K Agarwal
- Department of Cardiovascular & Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vinita Agrawal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Megha Chagtoo
- Department of Cardiovascular & Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Gauranga Majumdar
- Department of Cardiovascular & Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
30
|
Liang J, Huang B, Yuan G, Chen Y, Liang F, Zeng H, Zheng S, Cao L, Geng D, Zhou S. Stretch-activated channel Piezo1 is up-regulated in failure heart and cardiomyocyte stimulated by AngII. Am J Transl Res 2017; 9:2945-2955. [PMID: 28670382 PMCID: PMC5489894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Mechanotransduction is the conversion of extracellular mechanical stimuli into intracellular biochemical signals, and plays an important role in heart responses to its own mechanical environment. Piezo1 as a distinct stretch-activated channel (SAC) in mammal involves in not only vascular remodeling during embryonic development but also arterial remodeling upon to hypertension at adult stage. In the present study, the expression of Piezo1 was up-regulated in failure heart induced by myocardial infarction (MI) by real-time PCR, Western blot and immunohistochemistry analysis. Expression of Piezo1 mRNA and protein was enhanced by AngiotensinII (AngII) in neonatal rat ventricular myocytes via AT1 receptor depended methods. Furthermore, the Piezo1 expression was attenuated by Erk1/2 chemical inhibitor (U0126) only, but not by p38 MAPK inhibitor (SB203580), or JNK inhibitor (SP600125). Finally, systolic function improvement followed by chronic treatment with angiotensin receptor blocker (ARB) losartan prevented Piezo1 up-regulation in failure heart in vivo. In conclusion, our studies linked mechanotransduction which involved renin-angiotensin system that mediated up-regulation of Piezo1 to a clinically relevant heart failure.
Collapse
Affiliation(s)
- Jianlin Liang
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Shunde Hospital of Southern Medical UniversityFoshan 528300, People’s Republic of China
| | - Boshui Huang
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Guiyi Yuan
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Ying Chen
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Fasheng Liang
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Huayuan Zeng
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Shaoxin Zheng
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicago, United States
| | - Dengfeng Geng
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Shuxian Zhou
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| |
Collapse
|
31
|
Lin YC, Lin CH, Yao HT, Kuo WW, Shen CY, Yeh YL, Ho TJ, Padma VV, Lin YC, Huang CY, Huang CY. Platycodon grandiflorum (PG) reverses angiotensin II-induced apoptosis by repressing IGF-IIR expression. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:41-50. [PMID: 28473244 DOI: 10.1016/j.jep.2017.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorum (PG) is a Chinese medical plant used for decades as a traditional prescription to eliminate phlegm, relieve cough, reduce inflammation and lower blood pressure. PG also has a significant effect on the cardiovascular systems. MATERIALS AND METHODS The aqueous extract of Platycodon grandiflorum (JACQ.) A. DC. root was screened for inhibiting Ang II-induced IGF-IIR activation and apoptosis pathway in H9c2 cardiomyocytes. The effects were also studied in spontaneously hypertensive rats (five groups, n=5) using low and high doses of PG for 50 days. The Ang II-induced IGF-IIR activation was analyzed by luciferase reporter, RT-PCR, western blot and surface IGF-IIR expression assay. Furthermore, the major active constituent of PG was carried out by high performance liquid chromatography-mass spectrometry (HPLC-MS). RESULTS Our results indicate that a crude extract of PG significantly suppresses the Ang II-induced IGF-IIR signaling pathway to prevent cardiomyocyte apoptosis. PG extract inhibits Ang II-mediated JNK activation and SIRT1 degradation to reduce IGF-IIR activity. Moreover, PG maintains SIRT1 stability to enhance HSF1-mediated IGF-IIR suppression, which prevents cardiomyocyte apoptosis. In animal models, the administration of PG markedly reduced this apoptotic pathway in the heart of SHRs. CONCLUSION Taken together, PG may be considered as an effective treatment for cardiac diseases in hypertensive patients.
Collapse
Affiliation(s)
- Yuan-Chuan Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Hsueh Lin
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan; Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Yu-Chen Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan; Department of Biological Science, Asia University, Taichung, Taiwan; Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
| |
Collapse
|
32
|
Mosaad SM, Zaitone SA, Ibrahim A, El-Baz AA, Abo-Elmatty DM, Moustafa YM. Celecoxib aggravates cardiac apoptosis in L-NAME-induced pressure overload model in rats: Immunohistochemical determination of cardiac caspase-3, Mcl-1, Bax and Bcl-2. Chem Biol Interact 2017; 272:92-106. [DOI: 10.1016/j.cbi.2017.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023]
|
33
|
Huang K, Gao L, Yang M, Wang J, Wang Z, Wang L, Wang G, Li H. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy. Int J Biochem Cell Biol 2017; 89:6-15. [PMID: 28522343 DOI: 10.1016/j.biocel.2017.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 12/29/2022]
Abstract
Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China.
| |
Collapse
|
34
|
Quercetin from Polygonum capitatum Protects against Gastric Inflammation and Apoptosis Associated with Helicobacter pylori Infection by Affecting the Levels of p38MAPK, BCL-2 and BAX. Molecules 2017; 22:molecules22050744. [PMID: 28481232 PMCID: PMC6154337 DOI: 10.3390/molecules22050744] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori-associated gastritis is a major threat to public health and Polygonum capitatum (PC) may have beneficial effects on the disease. However, the molecular mechanism remains unknown. Quercetin was isolated from PC and found to be a main bioactive compound. The effects of quercetin on human gastric cancer cells GES-1 were determined by xCELLigence. H. pylori-infected mouse models were established. All mice were divided into three groups: control (CG, healthy mice), model (MG, H. pylori infection) and quercetin (QG, mouse model treated by quercetin) groups. IL-8 (interleukin-8) levels were detected via enzyme-linked immunosorbent assay (ELISA). Cell cycle and apoptosis were measured by flow cytometry (FCM). Quantitative reverse transcription PCR (qRT-PCR) and Western Blot were used to detect the levels of p38MAPK (38-kD tyrosine phosphorylated protein kinase), apoptosis regulator BCL-2-associated protein X (BAX) and B cell lymphoma gene 2 (BCL-2). The levels of IL-8 were increased by 8.1-fold in a MG group and 4.3-fold in a QG group when compared with a CG group. In a MG group, G0–G1(phases of the cell cycle)% ratio was higher than a CG group while S phase fraction was lower in a model group than in a control group (p < 0.01). After quercetin treatment, G0–G1% ratio was lower in a QG group than a MG group while S phase fraction was higher than a MG group (p < 0.01). Quercetin treatment reduced the levels of p38MAPK and BAX, and increased the levels of BCL-2 when compared with a MG group (p < 0.05). Quercetin regulates the balance of gastric cell proliferation and apoptosis to protect against gastritis. Quercetin protects against gastric inflammation and apoptosis associated with H. pylori infection by affecting the levels of p38MAPK, BCL-2 and BAX.
Collapse
|
35
|
Kannappan R, Matsuda A, Ferreira-Martins J, Zhang E, Palano G, Czarna A, Cabral-Da-Silva MC, Bastos-Carvalho A, Sanada F, Ide N, Rota M, Blasco MA, Serrano M, Anversa P, Leri A. p53 Modulates the Fate of Cardiac Progenitor Cells Ex Vivo and in the Diabetic Heart In Vivo. EBioMedicine 2017; 16:224-237. [PMID: 28163043 PMCID: PMC5474510 DOI: 10.1016/j.ebiom.2017.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/01/2022] Open
Abstract
p53 is an important modulator of stem cell fate, but its role in cardiac progenitor cells (CPCs) is unknown. Here, we tested the effects of a single extra-copy of p53 on the function of CPCs in the presence of oxidative stress mediated by doxorubicin in vitro and type-1 diabetes in vivo. CPCs were obtained from super-p53 transgenic mice (p53-tg), in which the additional allele is regulated in a manner similar to the endogenous protein. Old CPCs with increased p53 dosage showed a superior ability to sustain oxidative stress, repair DNA damage and restore cell division. With doxorubicin, a larger fraction of CPCs carrying an extra-copy of the p53 allele recruited γH2A.X reestablishing DNA integrity. Enhanced p53 expression resulted in a superior tolerance to oxidative stress in vivo by providing CPCs with defense mechanisms necessary to survive in the milieu of the diabetic heart; they engrafted in regions of tissue injury and in three days acquired the cardiomyocyte phenotype. The biological advantage provided by the increased dosage of p53 in CPCs suggests that this genetic strategy may be translated to humans to increase cellular engraftment and growth, critical determinants of successful cell therapy for the failing heart. p53 improves the ability of CPCs to sustain oxidative stress. p53 promotes the restoration of DNA integrity and cell division. p53 enhances the engraftment of CPCs in the diabetic heart.
Ongoing clinical trials with autologous cardiac stem cells (CSCs) are faced with a critical limitation which is related to the modest amount of retained cells within the damaged myocardium. We have developed a strategy that overcomes in part this problem enhancing the number of CSCs able to engraft within the pathologic organ. Additionally, these genetically modified CSCs can be generated in large number, raising the possibility that multiple temporally distinct deliveries of cells can be introduced to restore the structural and functional integrity of the decompensated heart.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Matsuda
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - João Ferreira-Martins
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Zhang
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giorgia Palano
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Czarna
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - Mauricio Castro Cabral-Da-Silva
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adriana Bastos-Carvalho
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fumihiro Sanada
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noriko Ide
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcello Rota
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria A Blasco
- Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Piero Anversa
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland.
| |
Collapse
|
36
|
Thibodeau JT, Jenny BE, Maduka JO, Divanji PH, Ayers CR, Araj F, Amin AA, Morlend RM, Mammen PP, Drazner MH. Bendopnea and risk of adverse clinical outcomes in ambulatory patients with systolic heart failure. Am Heart J 2017; 183:102-107. [PMID: 27979033 DOI: 10.1016/j.ahj.2016.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recently, the symptom of bendopnea, that is, shortness of breath when bending forwards such as when putting on shoes, has been described in heart failure patients and found to be associated with higher ventricular filling pressures, particularly in the setting of low cardiac index. However, it is not known whether bendopnea is associated with clinical outcomes. METHODS In a prospective convenience sample of 179 patients followed in our heart failure disease management clinic, we determined the presence of bendopnea at the time of enrollment and ascertained clinical outcomes through 1 year of follow-up. We performed univariate and stepwise multivariable modeling to test the association of bendopnea with clinical outcomes. RESULTS Bendopnea was present in 32 of 179 (18%) subjects. At 1 year, those with versus without bendopnea were at increased risk of the composite endpoint of death, heart failure admission, inotrope initiation, left ventricular assist device implantation, or cardiac transplantation in univariate (hazard ratio [HR] 1.9, P < .05) but not multivariable (HR 1.9, P = .11) analysis. Bendopnea was more strongly associated with short-term outcomes including heart failure admission at 3 months in both univariate (HR 3.1, P < .004) and multivariable (HR 2.5, P = .04) analysis. CONCLUSIONS Bendopnea was associated with an increased risk of adverse outcomes in ambulatory patients with heart failure, particularly heart failure admission at 3 months.
Collapse
|
37
|
Abstract
Heart failure and chronic renal diseases are usually progressive and only partially amenable to therapy. These disorders can be the sequelae of hypertension or worsened by hypertension. They are associated with the tissue up-regulation of multiple peptides, many of which are capable of acting within the cell interior. This article proposes that these peptides, intracrines, can form self-sustaining regulatory loops that can spread through heart or kidney, producing progressive disease. Moreover, mineralocorticoid activation seems capable of amplifying some of these peptide networks. This view suggests an expanded explanation of the pathogenesis of progressive cardiorenal disease and suggests new approaches to treatment.
Collapse
Affiliation(s)
- Richard N Re
- Ochsner Clinic Foundation, Division of Research, 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| |
Collapse
|
38
|
Carbon Ion-Irradiated Hepatoma Cells Exhibit Coupling Interplay between Apoptotic Signaling and Morphological and Mechanical Remodeling. Sci Rep 2016; 6:35131. [PMID: 27731354 PMCID: PMC5059721 DOI: 10.1038/srep35131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
A apoptotic model was established based on the results of five hepatocellular carcinoma cell (HCC) lines irradiated with carbon ions to investigate the coupling interplay between apoptotic signaling and morphological and mechanical cellular remodeling. The expression levels of key apoptotic proteins and the changes in morphological characteristics and mechanical properties were systematically examined in the irradiated HCC lines. We observed that caspase-3 was activated and that the Bax/Bcl-2 ratio was significantly increased over time. Cellular morphology and mechanics analyses indicated monotonic decreases in spatial sizes, an increase in surface roughness, a considerable reduction in stiffness, and disassembly of the cytoskeletal architecture. A theoretical model of apoptosis revealed that mechanical changes in cells induce the characteristic cellular budding of apoptotic bodies. Statistical analysis indicated that the projected area, stiffness, and cytoskeletal density of the irradiated cells were positively correlated, whereas stiffness and caspase-3 expression were negatively correlated, suggesting a tight coupling interplay between the cellular structures, mechanical properties, and apoptotic protein levels. These results help to clarify a novel arbitration mechanism of cellular demise induced by carbon ions. This biomechanics strategy for evaluating apoptosis contributes to our understanding of cancer-killing mechanisms in the context of carbon ion radiotherapy.
Collapse
|
39
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Pasipoularides A. Calcific Aortic Valve Disease: Part 2-Morphomechanical Abnormalities, Gene Reexpression, and Gender Effects on Ventricular Hypertrophy and Its Reversibility. J Cardiovasc Transl Res 2016; 9:374-99. [PMID: 27184804 PMCID: PMC4992466 DOI: 10.1007/s12265-016-9695-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
In part 1, we considered cytomolecular mechanisms underlying calcific aortic valve disease (CAVD), hemodynamics, and adaptive feedbacks controlling pathological left ventricular hypertrophy provoked by ensuing aortic valvular stenosis (AVS). In part 2, we survey diverse signal transduction pathways that precede cellular/molecular mechanisms controlling hypertrophic gene expression by activation of specific transcription factors that induce sarcomere replication in-parallel. Such signaling pathways represent potential targets for therapeutic intervention and prevention of decompensation/failure. Hypertrophy provoking signals, in the form of dynamic stresses and ligand/effector molecules that bind to specific receptors to initiate the hypertrophy, are transcribed across the sarcolemma by several second messengers. They comprise intricate feedback mechanisms involving gene network cascades, specific signaling molecules encompassing G protein-coupled receptors and mechanotransducers, and myocardial stresses. Future multidisciplinary studies will characterize the adaptive/maladaptive nature of the AVS-induced hypertrophy, its gender- and individual patient-dependent peculiarities, and its response to surgical/medical interventions. They will herald more effective, precision medicine treatments.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke University School of Medicine, Durham, NC, USA.
- Duke/NSF Research Center for Emerging Cardiovascular Technologies, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
41
|
Shieh FK, Kotlyar E, Sam F. Aldosterone and cardiovascular remodelling: focus on myocardial failure. J Renin Angiotensin Aldosterone Syst 2016; 5:3-13. [PMID: 15136967 DOI: 10.3317/jraas.2004.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heart failure is a clinical syndrome that may result from different disease states or conditions that injure the myocardium. The activation of circulating neurohormones, particularly aldosterone, may play a pivotal role in left ventricular (LV) remodelling. The Randomized Aldactone Evaluation Study and Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival trial have emphasised the clinical importance of aldosterone. This review addresses some of the proposed mechanisms of LV remodelling in heart failure.
Collapse
Affiliation(s)
- Frederick K Shieh
- Boston University Medical School, Boston University Medical Center, Boston, Massechussetts, USA
| | | | | |
Collapse
|
42
|
A novel single cell method to identify the genetic composition at a single nuclear body. Sci Rep 2016; 6:29191. [PMID: 27389808 PMCID: PMC4937434 DOI: 10.1038/srep29191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/14/2016] [Indexed: 11/24/2022] Open
Abstract
Gene loci make specific associations with compartments of the nucleus (e.g. the nuclear envelope, nucleolus, and transcription factories) and this association may determine or reflect a mechanism of genetic control. With current methods, it is not possible to identify sets of genes that converge to form a “gene hub” as there is a reliance on loci-specific probes, or immunoprecipitation of a particular protein from bulk cells. We introduce a method that will allow for the identification of loci contained within the vicinity of a single nuclear body in a single cell. For the first time, we demonstrate that the DNA sequences originating from a single sub-nuclear structure in a single cell targeted by two-photon irradiation can be determined, and mapped to a particular locus. Its application to single PML nuclear bodies reveals ontologically related loci that frequently associate with each other and with PML bodies in a population of cells, and a possible nuclear body targeting role for specific transcription factor binding sites.
Collapse
|
43
|
An Expanded View of Progressive Cardiorenal Disorders. Am J Med Sci 2016; 351:626-33. [DOI: 10.1016/j.amjms.2016.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/17/2016] [Indexed: 11/23/2022]
|
44
|
Bai Y, Wang X, Shen L, Jiang K, Ding X, Cappetta D, Zhou J, Ge J, Zou Y. Mechanical Stress Regulates Endothelial Progenitor Cell Angiogenesis Through VEGF Receptor Endocytosis. Int Heart J 2016; 57:356-62. [PMID: 27150003 DOI: 10.1536/ihj.15-387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The clinical goal of cell-based treatment for chronic heart failure is to coordinately reconstitute the cardiomyocytes and associated circulation environment including coronary resistance arteries, arterioles, and capillary profiles.(1)) This goal can be possibly achieved by implementing multipotent adult stem cells. However, it remains a challenge to modify the capillary network in the decompensated heart. A mechanical stress model was used in this study to mimic the hemodynamic and hormonal states of the decompensated heart in vitro. The angiogenesis role of endothelial progenitor cells (EPCs) under stress has been well-recognized in vascular repair. We investigated the molecular mechanisms of EPCs in this model. We found that expression of vascular endothelial growth factor (VEGF) in EPCs was significantly decreased by mechanical stress, and this effect was accompanied by a decrease in angiogenesis in vitro. Interestingly, the defective angiogenesis can be reversed by upregulating the membrane VEGF receptor (VEGFR) endocytosis. An atypical protein kinase C (aPKC) inhibitor can promote the VEGFR internalization in EPCs and enhance the formation of vascular networks. Thus, the upregulation of VEGFR endocytosis in EPCs could be a potential therapy for the cell-based treatment of chronic heart failure by enhancing the cardiomyocytes.
Collapse
Affiliation(s)
- Yingnan Bai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ye F, Zhao T, Liu X, Jin X, Liu X, Wang T, Li Q. Long-term Autophagy and Nrf2 Signaling in the Hippocampi of Developing Mice after Carbon Ion Exposure. Sci Rep 2015; 5:18636. [PMID: 26689155 PMCID: PMC4686898 DOI: 10.1038/srep18636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/20/2015] [Indexed: 12/29/2022] Open
Abstract
To explore charged particle radiation-induced long-term hippocampus damage, we investigated the expression of autophagy and antioxidant Nrf2 signaling-related proteins in the mouse hippocampus after carbon ion radiation. Heads of immature female Balb/c mice were irradiated with carbon ions of different LETs at various doses. Behavioral tests were performed on the mice after maturation. Acute and chronic expression of LC3-II, p62/SQSTM1, nuclear Nrf2, activated caspase-3 and the Bax/Bcl-2 ratio were measured in the hippocampi. Secondary X-ray insult was adopted to amplify potential damages. Long-term behavioral changes were observed in high-LET carbon ion-irradiated mice. There were no differences in the rates of LC3-II induction and p62/SQSTM1 degradation compared to the control group regardless of whether the mice received the secondary X-ray insult. A high nuclear Nrf2 content and low apoptosis level in hippocampal cells subjected to secondary X-rays were observed for the mice exposed to relatively low-LET carbon ions. Therefore, carbon ion exposure in the immature mouse led to an LET-dependent behavioral change after maturation. Although autophagy was intact, the persistently high nuclear Nrf2 content in the hippocampus might account for the unchanged behavioral pattern in mice exposed to the relatively low-LET carbon ions and the subsequent increased radioresistance of the hippocampus.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Department of Modern Physics, Lanzhou University, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tieshan Wang
- Department of Modern Physics, Lanzhou University, Lanzhou 730000, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
46
|
Cappetta D, Esposito G, Piegari E, Russo R, Ciuffreda LP, Rivellino A, Berrino L, Rossi F, De Angelis A, Urbanek K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int J Cardiol 2015; 205:99-110. [PMID: 26730840 DOI: 10.1016/j.ijcard.2015.12.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Doxorubicin (DOXO) is an effective anti-neoplastic drug but its clinical benefits are hampered by cardiotoxicity. Oxidative stress, apoptosis and myocardial fibrosis mediate the anthracycline cardiomyopathy. ROS trigger TGF-β pathway that activates cardiac fibroblasts promoting fibrosis. Myocardial stiffness contributes to diastolic dysfunction, less studied aspect of anthracycline cardiomyopathy. Considering the role of SIRT1 in the inhibition of the TGF-β/SMAD3 pathway, resveratrol (RES), a SIRT1 activator, might improve cardiac function by interfering with the development of cardiac fibrosis in a model of DOXO-induced cardiomyopathy. METHODS F344 rats received a cumulative dose of 15 mg/kg of DOXO in 2 weeks or DOXO+RES (DOXO and RES, 2.5mg/kg/day, concomitantly for 2 weeks and then RES alone for 1 more week). The effects of RES on cardiac fibroblasts were also tested in vitro. RESULTS Along with systolic dysfunction, DOXO was also responsible of diastolic abnormalities. Myocardial stiffness correlated with fibroblast activation and collagen deposition. DOXO+RES co-treatment significantly improved ± dP/dt and, more interestingly, ameliorated end-diastolic pressure/volume relationship. Treatment with RES resulted in reduced fibrosis and fibroblast activation and, most importantly, the mortality rate was significantly reduced in DOXO+RES group. Fibroblasts isolated from DOXO+RES-treated rats, in which SIRT1 was upregulated, showed decreased levels of TGF-β and pSMAD3/SMAD3 when compared to cells isolated from DOXO-exposed hearts. CONCLUSIONS Our findings reveal a key role of SIRT1 in supporting animal survival and functional parameters of the heart. SIRT1 activation by interfering with fibrogenesis can improve relaxation properties of myocardium and attenuate myocardial remodeling related to chemotherapy.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Loreta Pia Ciuffreda
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Alessia Rivellino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy.
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
47
|
Liu TJ, Shi YY, Wang EB, Zhu T, Zhao Q. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease. Mol Med Rep 2015; 13:1156-62. [PMID: 26676112 PMCID: PMC4732858 DOI: 10.3892/mmr.2015.4686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 10/02/2015] [Indexed: 12/11/2022] Open
Abstract
Angiotensin II, which is the main effector of the renin-angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proin-flammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3.
Collapse
Affiliation(s)
- Tian-Jing Liu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - En-Bo Wang
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tong Zhu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qun Zhao
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
48
|
Minami Y, Kajimoto K, Sato N, Aokage T, Mizuno M, Asai K, Munakata R, Yumino D, Murai K, Hagiwara N, Mizuno K, Kasanuki H, Takano T. Third heart sound in hospitalised patients with acute heart failure: insights from the ATTEND study. Int J Clin Pract 2015; 69:820-8. [PMID: 25521285 DOI: 10.1111/ijcp.12603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Several previous studies have suggested that detection of a third heart sound (S3) in patients with chronic congestive heart failure is associated with adverse long-term outcomes. However, the short-term prognostic value of identifying an S3 on admission in patients with acute heart failure (AHF) is not well established. We therefore analysed the in-hospital prognostic value of detecting an S3 on admission in hospitalised patients with AHF. METHODS The Acute Decompensated Heart Failure Syndromes (ATTEND) study investigators enrolled 4107 patients hospitalised with AHF. Investigators evaluated the presence or absence of an S3 during routine physical examination. RESULTS On admission to hospital, 1673 patients (41%) had an S3. Patients with an S3 had a higher heart rate, higher serum level of B-type natriuretic peptide and higher creatinine levels than patients without an S3. However, there were no significant differences of systolic blood pressure, serum sodium, haemoglobin, C-reactive protein and total bilirubin between the two groups. Multivariate analysis adjusted for various markers of disease severity revealed that only the presence of an S3 was independently associated with an increase of in-hospital all cause death [adjusted odds ratio (OR), 1.69; 95% confidence interval (CI), 1.19-2.41; p = 0.003] and cardiac death (adjusted OR, 1.66; 95% CI, 1.08-2.54; p = 0.020) among the congestive physical findings related to heart failure (S3, rales, jugular venous distension and peripheral oedema). CONCLUSIONS Detecting an S3 on admission was independently associated with adverse in-hospital outcomes in patients with AHF. Our findings suggest that careful bedside assessment is clinically meaningful.
Collapse
Affiliation(s)
- Y Minami
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - K Kajimoto
- Department of Cardiology, Sensoji Hospital, Tokyo, Japan
| | - N Sato
- Internal Medicine, Cardiology, and Intensive Care Unit, Nippon Medical School Musashi-Kosugi Hospital, Kawasaki, Japan
| | - T Aokage
- Intensive and Cardiac Care Unit, Nippon Medical School, Tokyo, Japan
| | - M Mizuno
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - K Asai
- Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - R Munakata
- Intensive and Cardiac Care Unit, Nippon Medical School, Tokyo, Japan
| | - D Yumino
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - K Murai
- Intensive and Cardiac Care Unit, Nippon Medical School, Tokyo, Japan
| | - N Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - K Mizuno
- Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - H Kasanuki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - T Takano
- Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
49
|
Cardiac transcription factor Nkx2.5 interacts with p53 and modulates its activity. Arch Biochem Biophys 2015; 569:45-53. [DOI: 10.1016/j.abb.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/01/2015] [Indexed: 01/30/2023]
|
50
|
Bajgelman MC, Dos Santos L, Silva GJJ, Nakamuta J, Sirvente RA, Chaves M, Krieger JE, Strauss BE. Preservation of cardiac function in left ventricle cardiac hypertrophy using an AAV vector which provides VEGF-A expression in response to p53. Virology 2014; 476:106-114. [PMID: 25543961 DOI: 10.1016/j.virol.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
Abstract
Here we present the application of our adeno-associated virus (AAV2) vector where transgene expression is driven by a synthetic, p53-responsive promoter, termed PG, used to supply human vascular endothelial growth factor-A165 (VEGF-A). Thus, p53 is harnessed to promote the beneficial expression of VEGF-A encoded by the AAVPG vector, bypassing the negative effect of p53 on HIF-1α which occurs during cardiac hypertrophy. Wistar rats were submitted to pressure overload induced by thoracic aorta coarctation (TAC) with or without concomitant gene therapy (intramuscular delivery in the left ventricle). After 12 weeks, rats receiving AAVPG-VEGF gene therapy were compared to those that did not, revealing significantly improved cardiac function under hemodynamic stress, lack of fibrosis and reversal of capillary rarefaction. With these functional assays, we have demonstrated that application of the AAVPG-VEGF vector under physiologic conditions known to stimulate p53 resulted in the preservation of cardiac performance.
Collapse
Affiliation(s)
- Marcio C Bajgelman
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leonardo Dos Santos
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo J J Silva
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliana Nakamuta
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Raquel A Sirvente
- Hypertension Unit, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marcio Chaves
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|